Lecture 19

Chemical Reaction Engineering (CRE) is the
field that studies the rates and mechanisms of
chemical reactions and the design of the reactors in

which they take place.
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Energy Balance Fundamentals
Adiabatic reactors




Today’s Lecture

Energy Balance, Rationale and Overview

Let's calculate the volume necessary to achieve a
conversion, X, in a PFR for a first-order, exothermic and
adiabatic reaction.

The temperature profile might look something like this:
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Energy Balance, Rationale and Overview
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Stoichiometry: C, = CAO(l— X)
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Energy Balance, Rationale and Overview

E(1 1)
k. exp —
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We cannot solve this equation because we don't
have X either as a function of V or T.

We need another equation. That equation Is:

The Energy Balance




User Friendly Equations Relate T and X or F,

1. Adiabatic CSTR, PFR, Batch or PBR
W,=0 AC,=0
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User Friendly Equations Relate T and X or F,

2. CSTR_with _heat exchange: UA(T,-T) and a
large coolant flow rate

L?A (T-T, )] +2.0C, (T-T,)
X, = A0 T
T
m ~_
- T




User Friendly Equations Relate T and X or F,

3. PFR/PBR with heat exchange

Coolant

Fao Ta A

T, O 0000
. OO 0O

OO OO0
O 00O

3A. PFER In terms of conversion

dT B rnAH_. (T)—Ua(T —Ta) Qg -Q,

dV  Fu (D OC,+AC X)  Fu(D.0C, +AC X)
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User Friendly Equations Relate T and X or F,

3B. PBR In terms of conversion

AT Rx(T)_—(T T)

dw FAO(Z(H),.CPI. " ACPX)

3C. PBR In terms of molar flow rates

dT Rx(T)_—(T T)
dw ZF.CPZ_

l
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User Friendly Equations Relate T and X or F;

3D. PFR In terms of molar flow rates

dT FAAHRX(T)_UQ(T_E)_ 0, -0,
v XFC,  XEC,

4. Batch

dr _ (nV XAH,, )-UA(T-T,)
i 2NG,
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User Friendly Equations Relate T and X or F;
5. For_ or unsteady CSTR

i Q —W, ZF.O( (T =To)+[-AH (T) (1))

dt Z”: NC,
i=1

6. For multiple reactions in a PFR (q reactions and m species)
q
QrAH,, ~Ua(T-T,)
_ =l
dV
ZF

Let’s look where these User Friendly Equations came from.




~ Energy Balance
Reactor with no Spatial Variations




~ Energy Balance
Reactor with no Spatial Variations
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~ Energy Balance
Reactor with no Spatial Variations
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~ Energy Balance
Reactor with no Spatial Variations
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~ Energy Balance

Reactor with no Spatial Variations
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~ Energy Balance

-

Reactor with no Spatial Variations
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Energy Balance

3
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Energy Balance on an open system: schematic.
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OK folks, here is what we are going to do to put the
above equation into a usable form.

1.
2.

3.

4.
D.

6.

Replace U; by U=H.-PV,
Express H, in terms of heat capacities

Express F,; in terms of either conversion or rates
of reaction

Define AHg,
Define AC,

Manipulate so that the overall energy balance

IS In terms of the User Friendly Equations.
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Intro to Heat Effects

Assumptions:

=0 =0

E.=U +PE + . Other energies small compared to internal

W = flow work + shaft work

flowwork =— > FoP Vi, +Y FPV, (\7:

Recall:
H,=U,+PV,

m3
mol




-

™~
Intro to Heat Effects
Substituting for W
ZFiOUiO _ZFiUi +Q_[_Z FiOPO\7iO "'ZI:.P\Z +Ws:| - dldE;ys
F g F Hin vi, = Lo
3R+ - SR 0+PY] 0, -
> FoHio— > FH, +Q-W, :diiys
Steady State: Q—WS+ZEOHiO —Z:FiHi =0
22 /
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Intro to Heat Effects

General Energy Balance :

dE

system

Q_WS+ZI:iOHiO_Z|:iHi: dt

For Steady State Operation:

Q_Ws"'zFioHio _ZFiHi =0
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Intro to Heat Effects

ZFioHio = FAOZ®iHiO

AH g,
A\

S EH, =Fo 3 (0, +0X H, = Fy S OH, + F, X S uH,

QW +Fy (D0 (Hig —H,)+ F,yXAH, ) =0
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Intro to Heat Effects

For No Phase Changes

T
H(1)=H(T)+ || C,ar
—. Enthalpy of formation at temperature T
Constant Heat Capacities

—~H/(T)=H](T; )+ C,(T - T;)

Hy,—H, = CPi(T_Z))

ZUiHi :ZUinQ +ZUZCP1'(T_ZQ)

\ Heat of reaction at temperature T




Intro to Heat Effects
ZUiHi :ZUiHZQ_I_ZUiCPi(T_T;{)

A (1) = A (5, )+ AC, (T~ T3)

A ~ d a2 C 2 b A A
ZUiCPi =AC, ZECPD +5CPC _gCPB —Cpa

Substituting back into the Energy Balance

QW — Fpo X | AHZ (To ) +AC, (T =T, ) |- Fpo 2. 0.Coy (T = T;) =0

Adiabatic (Q=0) and no Work (W, =0)

26
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Intro to Heat Effects

d b

AH. =2H_+°H.-2H_ —H,

d d d

d C b
AC,.=—C..+—C_..——C
P 3 PD 3 PC 3 PB

—Coa




QW — Fpo X | AHZ (To )+ AC, (T =T,) |- Fpo 2 0.Coy (T ~T;) =0
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Intro to Heat Effects

QW +Fu (D0 (Hig —H;)+ F,yXAH, ) =0

Substituting back into the Energy Balance




Adiabatic Energy Balance
Adiabatic (Q=0) and no Work ONS =0)

_— X[AH (T, )+ AC, (T —TR)J_T ~ X[AH,(T)]
: Z@,CP, + XAC, " Y 0,C, + XAC,
.
Exothermic
TO




Example: Adiabatic PFR

A—B
ax T
dVv Fro
C E(1 1)
r.=-k|C, ——2 k =k —
2) Rate Laws: 1, { A kj 16X|O{R(Tl Tj_

AHY (1 1
AC, =0 kC:kCZexp{ kXLTZ—Tﬂ
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Example: Adiabatic PFR

A— B

3) Stoichiometry:
Ca :CAo(l_X)
CB :CAOX

4) Energy Balance
— AH; X

ZeiCPi

First need to calculate the maximum conversion
which is at the adiabatic equilibrium conversion.

T=T,+




Example: Adiabatic PFR

Differential equations

1 d(T)/d(t) = 1

Explicit equations

1 Kcl = 1000

2 T1 =290

3 R=1.987

4 DeltaH = -20000

5 Kc = Kcl*exp((DeltaH/R)*(1/T1-1/T))
6 Xe = Kc/(1+Kc)

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

o e

N

Xe

N

—

290 302 314 326 338 350 362 374 386 398 410

T

/
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Example: Adiabatic PFR

A< B 0y
T = T+_AH

\ > 6C.,

Adiabatic equilibrium conversion
--------------------- (<~ and temperature

Xe
1+ K,




34

Example: Adiabatic PFR

We can now form a table. Set X, then calculate T, -V,,
and F,y/-ra, Increment X, then plot F,y/-r, vs. X:

~_
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End of Web Lecture 19
Class Lecture 17




