
Chemical Reaction Engineering (CRE) is the 
field that studies the rates and mechanisms of 

chemical reactions and the design of the reactors in 
which they take place.

Lecture 19



Web Lecture 19

Class Lecture 17–Tuesday

 Energy Balance Fundamentals

 Adiabatic reactors
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Today’s Lecture
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Energy Balance, Rationale and Overview

Let’s calculate the volume necessary to achieve a

conversion, X, in a PFR for a first-order, exothermic and

adiabatic reaction.

The temperature profile might look something like this:
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Energy Balance, Rationale and Overview
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Mole Balance:

Rate Law:

Stoichiometry:

Combine:
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Energy Balance, Rationale and Overview
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We cannot solve this equation because we don’t 

have X either as a function of  V or T. 

We need another equation. That equation is: 
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The Energy Balance



User Friendly Equations Relate T and X or Fi
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1. Adiabatic CSTR, PFR, Batch or PBR
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2. CSTR with heat exchange: UA(Ta-T) and a

large coolant flow rate
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User Friendly Equations Relate T and X or Fi



3. PFR/PBR with heat exchange
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3A. PFR in terms of conversion
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User Friendly Equations Relate T and X or Fi



3B. PBR in terms of conversion
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User Friendly Equations Relate T and X or Fi



3D. PFR in terms of molar flow rates
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User Friendly Equations Relate T and X or Fi



5. For Semibatch or unsteady CSTR
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6. For multiple reactions in a PFR (q reactions and m species)
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User Friendly Equations Relate T and X or Fi
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Energy Balance 

Reactor with no Spatial Variations
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OK folks, here is what we are going to do to put the 

above equation into a usable form.

1. Replace Ui by Ui=Hi-PVi

2. Express Hi in terms of heat capacities

3. Express Fi in terms of either conversion or rates 

of reaction

4. Define ΔHRx

5. Define ΔCP

6. Manipulate so that the overall energy balance 
is in terms of the User Friendly Equations.
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Assumptions:
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Intro to Heat Effects

21

H i U i  P ˜ V i

Recall:
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Substituting for W

  0HFHFWQ ii0i0iS
Steady State:

Intro to Heat Effects



General Energy Balance :

 
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Intro to Heat Effects





Fi0Hi0  FA 0 i Hi0
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Intro to Heat Effects




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Heat of reaction at temperature T
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For No Phase Changes
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Intro to Heat Effects



Substituting back into the Energy Balance 
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Intro to Heat Effects



Substituting back into the Energy Balance 
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Intro to Heat Effects
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Example:  Adiabatic PFR
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A ↔ B



 
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First need to calculate the maximum conversion 

which is at the adiabatic equilibrium conversion.

A ↔ B

Example:  Adiabatic PFR



Example:  Adiabatic PFR







Pii

X

C

XH
TT



0

0

T

Xe Adiabatic equilibrium conversion 

and temperature



Xeq 
KC

1KC33

A ↔ B

Example:  Adiabatic PFR



We can now form a table. Set X, then calculate T, -VA,

and FA0/-rA, increment X, then plot FA0/-rA vs. X:

FA0/-rA

X
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Example:  Adiabatic PFR



End of Web Lecture 19

Class Lecture 17
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