Lecture 24

Chemical Reaction Engineering (CRE) is the
field that studies the rates and mechanisms of
chemical reactions and the design of the reactors in

which they take place.
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Review of Multiple Steady States (MSS)

Reactor Safety (Chapter 13)
Blowout Velocity
CSTR Explosion
Batch Reactor Explosion
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Energy Balance for CSTRs

dT
i ~sxe (6 -R)

G(T)= (’”A V)[AHRx]
R()=C,, (+ 07T, ]

K =

UA . - T, +«T,
F,0Chy © l+x




/T

Review Last Lecture

5

-

Energy Balance for CSTRs

R(T)=C,, (40T~ T,]
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Increasing T,

Variation of heat removal line with inlet temperature.
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Energy Balance for CSTRs
R(T)=C, 1+x)|T-T]

K=00
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Increase K
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Variation of heat removal line with K (K=UA/Cy,F,0)
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Multiple Steady States (MSS)

G{T)

Increasing T

T

Variation of heat generation curve with space-time.
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Multiple Steady States (MSS)

abecde f
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Finding Multiple Steady States with T, varied
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Multiple Steady States (MSS)
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Temperature ignition-extinction curve
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Multiple Steady States (MSS)
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Bunsen Burner Effect (Blowout)
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Multiple Steady States (MSS)
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Bunsen Burner Effect (Blowout)
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Reversible Reaction

Gas Flow in a PBR with Heat Effects

A< B
sonoo V= V,C X X — K
KC Ao l—X—X 1+ 1k 1+l
Ke Ke
G = —AH X = ——2HaK

1+ rk(1+ 1J
Ke

R(T)=Cp L+ x)T-Tc]
T, +xT

1+«
R(T)=400T -310]

G(T) & A(T) {calmol)

T, = 2 310
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Reversible Reaction

Gas Flow in a PBR with Heat Effects

A— B

G(T) & R(T) (cavmol)

UA =73,520
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Reversible Reaction

Gas Flow in a PBR with Heat Effects

A— B

K . = CBe — CAOXeyTE)/T
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Reversible Reaction
Gas Flow in a PBR with Heat

A— B

Exothermic Case:

KC\ xe\

T T

Endothermic Case:

Ke / Xe f

T T

Effects
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Adiabatic Equilibrium Conversion

Conversion on Temperature
Exothermic AH is negative

Adiabatic Equilibrium temperature (T,4,) and conversion (X 4gia)
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Gas Phase Heat Effects

X endothermic

Adiabatic T
and X,
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Gas Phase Heat Effects
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Gas Phase Heat Effects

Effect of adding inerts on adiabatic equilibrium conversion

Adiabatic:
X

O, =
x‘/l

.__—Adiabatic Equilibrium

Conversion

©,=0




20







22

Adiabatic Exothermic Reactions

A——B AHRpy :+15@

mol
The heat of reaction for endothermic reaction is positive, i.e.,

Energy Balance :

AHg, X and X = (CPA +CPI®IXTO -T)

p, + ®ICPI AHgp,

~[sathermal

1lllr

We want to learn the effects of adding inerts on conversion. How the
conversion varies with the amount, i.e., ®,, depends on what you vary
and what you hold constant as you change 0,.
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A. First Order Reaction

dX _ _rA
Combining the , rate law and stoichiometry

dX kCpo(l-X) Kk
dV UOCAO (o)

(1-X)

Two cases will be considered
Case 1 Constant v,, volumetric flow rate
Case 2: Variable v,, volumetric flow rate
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A.l. Liguid Phase Reaction

Yo

] )

U

For Liquids, volumetric flow rates are additive.

UO :UAO_I_UIO :UAO(I_I_@I)
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Effect of Adding Inerts to an Endothermic Adiabatic Reaction

What happens when we add Inerts, i.e., vary Theta 1??? It all depends
what you change and what you hold constant!!!

O
X 1SO /4@)1
T K 1SO 1
% (1+0;)
V V o
X
k
1+ 0,
®IOPT ®I ®IOPT ®I
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A.l.a. Case 1. Constant v,

To keep v, constant if we increase the amount of Inerts,
l.e., Increase O, we will need to decrease the amount of
A entering, i.e., v,. S0 0, T then v,y v

- - -4 50
Cp, +©,Cp.

T - TO
l:":l|

I:":I | I:":I |




A.l.a. Case 2. Constant v, Variable v,

dX k(1-X) k(1-X)

dv L _DA(1+®I) - -
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A.2. Gas Phase

Without Inerts With Inerts and A
Can Fin— Cam
Fon UA AI_['” ] —
MTPLLT, 6 -;I_..- i P T,
Cop, Far— Cp
F P F Fyn+F P
Cop=-20=C, ,=—A Cpr=-—LL=-A0T 10 _ I
UA RTA UI UI RTI

Taking the ratio of C;, to Cy,

LA RTA

Solving for v, U} =Uy Frp PA T
Fra Pr Ta

We want to compare what happens when Inerts and A are fed to the case when
og onlyAis fed.

-
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Nomenclature note: Sub | with Inerts | and reactant A fed
Sub A with only reactant A fed

F;, = Total inlet molar flow rate of inert, I, plus reactant A, Fy, = F5o + Fg
F;, = Total inlet molar flow rate when no Inerts are fed, i.e., F1p = Fyg
P, T, = Inlet temperature and pressure for the case when both Inerts (I) and A are fed

P., To = Inlet temperature and pressure when only A is fed

Cao = Concentration of A entering when no inerts are presents Cy =-a0
LA
C+, = Total concentration when no inerts are present = P—A
RT,
, Py
C+, = Total concentration when both | and A are present = ﬁ
I

Cao = Concentration of A entering when inerts A are entering = Fao
V1

v, = Entering volumetric flow rate with both Inerts (I) and reactant (A)
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P _FaotFo_g,)e L _ |
Fra Fag ( Fao J Y A0
Fro +Fag
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Py TI—|
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A.2.a. Case 1

Maintain constant volumetric flow, v, rate as inerts are added. l.e., v, =
v, = V. Not a very reasonable situation, but does represent one extreme.
Achieve constant v, varying P, T to adjust conditions so term in
brackets, [ ], is one.

P, T
1+, )-A 1|1
{( " I)PI To}

For example if ®, = 2 then v, will be the same as v,, but we need the

entering pressures P, and P, to be in the relationship P, = 3P, with T, =T,

S ISEEA B T

3P, Ty
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A.2.a. Case 1

That Is the term in brackets, [ ], would be 1 which would

keep v, constant with v, = v, = v,. Returning to our
combined mole balance, rate law and stoichiometry

dX _k(1-X)

dv
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A.2.b. Case 2: Variable v, Constant T, P

l.e,, Pi=P, T, =1,

Fri _y, ExotFio) 1 60))

FTA FAO

UI :UA(1+®I)

dX: 1 k (I—X)
dV UA1+®
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B. Gas Phase Second Order Reaction

Pure A Inerts Plus A

Cra=Cu rlll_ C .

i .1 B
F o Py é} —- P.T.Cqqy -TI[ ]

F a—
_ Py Fap _Fpo(1+0y)
A0 = = Crr =
RTA UA UI
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B. Gas Phase Second Order Reaction

P, Tj
L =VA(1+0; )2 —
P, T,
>
Chor _ (Fao/v1)” _Fag _ Fao
Fao Fao o P V(T )
UA'UA(1+®I) PA TI
I A

2
_ Cao [PI TA)
UA(1+®I)2 Py T
Xk Cua P Tal oo
- 2 (1-X)
dV (1+0©;)" va \Py T
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B. Gas Phase Second Order Reaction

For the same temperature and pressures for the cases
with and without inerts, i.e., P, = Py, and T, = T,, then

dX: X 2CAO(1_X)2
dV (1+0;) va

k /\ /\
_ X
1+8, )

I:":I | I:":I |
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|Isothermal Design

Stoichiometry

Mole Balance
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Isothermal Design

Mole Balance
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End of
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