Lecture 2

Chemical Reaction Engineering (CRE) is the
field that studies the rates and mechanisms of
chemical reactions and the design of the reactors in

which they take place.
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Lecture 2

Review of Lecture 1

Definition of Conversion, X

Develop the Design Equations in terms of X
Size CSTRs and PFRs given —r,= f(X)
Conversion for Reactors in Series

Review the Fall of the Tower of CRE
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Review Lecture 1

Reactor Summary

The GMBE applied to the four major reactor types
(and the general reaction A->B)

Reactor Differential Algebraic Integral
N A NA
Batch dN, —rV = J aN, L
dt  * N T2V :
CSTR v tao= I
7y . F,
PFR ar, _, v = | 9F L
v e dry
\Y
PBR dF, _ W fAR L
3 aw Fao M
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Review Lecture 1

CSTR - Example Problem

Given the following information, Find V

_10dm’
Lo =10 /nin
CAO

Fao = 0,C a0

Liquid phase
V=0,
F,=v,C,

3
v=0v,=10 dm%nin
C, =0.1C,,

FA:UCA
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Review Lecture 1

CSTR - Example Problem

(1) Mole Balance:
Fro—Fa  0,Cao —0,Cp 1y [CAO _CA]

(2) Rate Law:
—r, =kC,

(3) Stoichiometry:
|:A _ |:A
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Review Lecture 1

CSTR - Example Problem

(4) Combine:

v — UO[CAO _CA]
kC,

(5) Evaluate:
C,=0.1C,,

10dm?®

C.,.—0.1C
_ min Cs

~ (0.23min?)0.1C,,)  (0.23)(0.1)

po) ~10[1-0.1] .

V _200_ 391dm®
2.3
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Define conversion, X

Consider the generic reaction:
aA+bB——>cC+dD

Chose limiting reactant A as basis of calculation:

A+lB_,Cci9p
a a a

Define conversion, X
moles A reacted
moles A fed

X =




Chapter 2\

Batch
Moles A ___MolesA_  Moles A
‘remaining| |initially | |reacted
NA — NAO — NAOX
dN, =0—-N,,dX
dN, dX
=—N,,—=r,V
dt S | .
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Batch
dNA__rAV t=0 X =0
dt N .o t=t X=X
Integrating,
X
dX
L= NAOI
0 _rAV

The necessary t to achieve conversion X.
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Chapter 2\

CSTR

Consider the generic reaction:
aA+bB——>cC+dD

Chose limiting reactant A as basis of calculation:

A+lB_,Cci9p

d d d

Define conversion, X
moles A reacted
moles A fed

X =
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CSTR
Steady State dN, —0
dt
Well Mixed V:FAO_ £,
j r,dv =r\V
11 /
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CSTR
' Moles A |

leaving |
|:A

' MolesA] | MolesA

entering| | reacted |
=  Fy = Fy X

Fro—Fa+ [ 1,dV =0

V=

FAO_ FAO_FAOX)

Chapter 2\

CSTR volume necessary to achieve conversion X.
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PFR
dF, _
dVv
Fao=Fp—FaoX

Steady State dF, =0-F, X

ax _ -1,
dv  F,,

13
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Chapter 2
PFR
V=0 X=0
V=V X=X
Integrating,
j —Af’dx

PFR volume necessary to achieve conversion X.
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Reactor Summary
In terms of conversion, X
Reactor Differential Algebraic Integral
X
dX
Batch ax __ t=N /
N A, it IV AO'(‘)-—I‘AV
L
CSTR V = FaoX
—r,
X
dX F,,dX
Dbl V =
PFR F,, e v, _(.; _r,
X
PBR X W=fFAOd,X /
15 0 aw 4 o —Ta
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Levenspiel Plots

Reactor Sizing

Given —r, as a function of conversion, -r,= f(X), one
can size any type of reactor. We do this by
constructing a Levenspiel plot. Here we plot either
(Fao/-ra) Or (1/-r,) as a function of X. For (Fpy/-ra) VS.
X, the volume of a CSTR and the volume of a PFR
can be represented as the shaded areas Iin the
Levenspiel Plots shown as:

I:AO

= g(X)

A
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Levenspiel Plots

Chapter 2\
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CSTR

/ —Area = Volume of CSTR

F,o —
4 / V :(ij Xl
X

— rA
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PFR

Chapter 2\

Area = Volume of PFR
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CSTR PFR
40 F ao 40
V=——X 0.8 F
A V= [—20 dX
30 30 o A /
Fao F
q(dms) 20 %(dmg) 20
10 10
0 0
0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
Conversion, X Conversion, X
20
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) data points)
1 : Simpson’s Three-Eight’s
R0 g X, X, Rule (uses four data points)
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Numerical Evaluations of Integrals

The integral to calculate the PFR volume can be
evaluated using method as Simpson’s One-Third
Rule: (See Appendix A.4)

idX A—AO L + 4 + L
—Ia 3 _rA(O) _rA(X/Z) _rA(x)

V=

[N

*

[

[

[

[

[

[

[

[

[

[

[

|
O'—.X

Other numerical methods are:
Trapezoidal Rule (uses two

Five-Point Quadrature
Formula J
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Reactors in Series

Given: r, as a function of conversion, one can also
design any sequence of reactors in series by defining
X:

_ total molesof A reactedup to point |

~ molesof Afedto firstreactor

X.

Only valid if there are no side streams.

Molar Flow rate of species A at point i:

FAi — FAO - FAOXi
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Chapter 2\

Reactors in Series
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Reactors in Series

Reactor 1.

FAl — FAO — Fonl

\V = FAO —Fu _ FAO _(FAO B FAOXl) _ Fonl

1
—Th —In —In

24 X /
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Reactors in Series
Reactor 2:
Xy F
V, = [—A2dX
X, r
Fro \ v,
_rA
25 /
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Reactors in Series

Reactor 3:
Faz = Fag + 1V =0

(FAO — FAOXZ)_(FAO - Fons)"‘ rV; =0




rs in Series

Reacto

2.5

First CSTR

b — — — — —

b — —— — —

b~ — — — — —

b~ — —— — —

|
||||| [ e g A e

AN SN— —
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0.2 0.3

0.1

Conversion, X

C7
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Reactors in Series

Space time t is the time necessary to process 1
reactor volume of fluid at entrance conditions.

T =——
UO
a b
iﬂ 20 m e 20 m =i
oo T
—"';"I V=0.2 m? j Reactor, V=0.2 m? 6—1*
Vo e e e
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KEEPING UP

The tower of CRE, Is it stable?

Chapter 2\
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Algorithm\

Reaction Engineering

These topics build upon one another.
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Isothermal Design

Stoichiornetry

Mole Balance

CRE Algorithm

Algorithm\




32

Be careful not to cut corners on any of the

CRE building blocks while learning this material!

Mole Balance

Algorithm\
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Isothermal Desig

Mole Balance

Otherwise, your Algorithm becomes unstable.

Algorithm\
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End of Lecture 2




