
Chemical Reaction Engineering (CRE) is the 
field that studies the rates and mechanisms of 

chemical reactions and the design of the reactors in 
which they take place.

Lecture 2
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Lecture 2

 Review of Lecture 1

 Definition of Conversion, X

 Develop the Design Equations in terms of X

 Size CSTRs and PFRs given –rA= f(X)

 Conversion for Reactors in Series

 Review the Fall of the Tower of CRE
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Reactor Differential Algebraic Integral

The GMBE applied to the four major reactor types

(and the general reaction AB)



V 
FA 0   FA

rA

CSTR

 Vr
dt

dN
A

A   

0


A

A

N

N A

A

Vr

dN
tBatch

NA

t



dFA

dV
 rA 

A

A

F

F A

A

dr

dF
V

0

PFR

FA

V



dFA

dW
 r A  


A

A

F

F A

A

r

dF
W

0

PBR
FA

W
3

Reactor Mole Balances Summary
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CSTR – Example Problem
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CSTR – Example Problem

(1) Mole Balance:
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(2) Rate Law:

(3) Stoichiometry:
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CSTR – Example Problem

(4) Combine:
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(5) Evaluate:
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Define conversion, X
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D d  C c B b A  a 

Consider the generic reaction:
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Chose limiting reactant A as basis of calculation:
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Define conversion, X
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Batch 
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Batch 
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The necessary t to achieve conversion X.
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CSTR
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D d  C c B b A  a 

Consider the generic reaction:
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Chose limiting reactant A as basis of calculation:
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Define conversion, X

Chapter 2



CSTR
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CSTR

12 CSTR volume necessary to achieve conversion X. 
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PFR
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PFR
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Reactor Differential Algebraic Integral
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Reactor Mole Balances Summary
in terms of conversion, X
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Levenspiel Plots
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Reactor Sizing

Given –rA as a function of conversion, -rA= f(X), one

can size any type of reactor. We do this by

constructing a Levenspiel plot. Here we plot either

(FA0/-rA) or (1/-rA) as a function of X. For (FA0/-rA) vs.

X, the volume of a CSTR and the volume of a PFR

can be represented as the shaded areas in the

Levenspiel Plots shown as:
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Levenspiel Plots
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CSTR
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PFR
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Levenspiel Plots
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Numerical Evaluations of Integrals

 The integral to calculate the PFR volume can be 

evaluated using method as Simpson’s One-Third 

Rule: (See Appendix A.4)
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Other numerical methods are:

 Trapezoidal Rule (uses two 

data points)

 Simpson’s Three-Eight’s 

Rule (uses four data points)

 Five-Point Quadrature 

Formula

)(

1

2XrA

)(

1

1XrA

)0(

1

Ar

Ar

1

0 1X 2X

Chapter 2



Given: rA as a function of conversion, one can also 

design any sequence of reactors in series by defining 

X:

reactorfirst   tofedA  of moles

ipoint   toup reactedA  of moles total
 Xi 

Only valid if there are no side streams.
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Reactors in Series

Molar Flow rate of species A at point i: 

0 0Ai A A iF F F X 

Chapter 2



23

Reactors in Series
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Reactor 1:
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Reactor 2:
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Reactors in Series



Space time τ is the time necessary to process 1 

reactor volume of fluid at entrance conditions.
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Reactors in Series
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KEEPING UP

 The tower of CRE, is it stable?
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Reaction Engineering

Mole Balance Rate Laws Stoichiometry

These topics build upon one another.
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Mole Balance

Rate Laws

Stoichiometry

Isothermal Design

Heat Effects
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CRE Algorithm

Algorithm



Mole Balance

32

Be careful not to cut corners on any of the 

CRE building blocks while learning this material!

Rate Laws

Algorithm



Mole Balance

Rate Laws

Stoichiometry

Isothermal Design

Heat Effects
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Otherwise, your Algorithm becomes unstable.

Algorithm



End of Lecture 2
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