Lecture 32

Chemical Reaction Engineering (CRE) is the
field that studies the rates and mechanisms of
chemical reactions and the design of the reactors in

which they take place.
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Some Guidelines for Developing Models

* The overall goal is to use the following equation
* RTD Data + Model + Kinetics = Predictions
* The model must be mathematically tractable
* The model must realistically describe the characteristics of the non-ideal reactor

* The model should not have more than two adjustable parameters
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A PROCEDURE FOR CHOOSING A MODEL TO PREDICT
THE OUTLET CONCENTRATION AND CONVERSION

Look at the reactor
Where are the inlet and outlet streams to and from the reactors? (Is by-passing a possibility?)
Look at the mixing system. How many impellers are there? (Could there be multiple mixing zones in
the reactor?)
Look at the configuration. (Is internal recirculation possible? Is the packing of the catalyst particles
loose so channeling could occur?)

Look at the tracer data
Plot the E(t) and F(t) curves.

Plot and analyze the shapes of the E(®) and F(®) curves. Is the shape of the curve such that the curve
or parts of the curve can be fit by an ideal reactor model? Does the curve have a 1ong tail suggesting a
stagnant zone? Does the curve have an early spike indicating bypassing?

Calculate the mean residence time, tm, and variance, 6. How does the tm determined from the RTD
data compare with T as measured with a yardstick and flow meter? How large is the variance; is it

larger or smaller than t2?
Choose a model or perhaps two or three models
Use the tracer data to determine the model parameters (e.g., n, D,, v,)

Use the CRE algorithm in Chapter 5. Calculate the exit concentrations and conversion for the model
system you have selected
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The RTD will be analyzed from a tracer pulse injected into the first reactor of three equally sized

CSTRs in series

Pulse

(a)

Pul

(b)

Generalizing this method to a series of n CSTRs gives the RTD for n CSTRs in series, E(t):

-l —t/T;
E(f)zme ' (18-4)
n—1
E®) = tE(f) = % @ (18-5)




Tanks-in-series response to a pulse tracer input for different numbers of tanks
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Calculating Conversion for the T-I-S
Model

If the reaction is first order, we can use the equation below to calculate the conversion

(A +Th)e (5-15)

where




Tanks-in-Series versus Segregation for

a First-Order Reaction

XT—I-S = Xseg = Xmm

The molar flow rate of tracer (FT ) by both convection and dispersion is:

aC
Fr = [—Da H—f+ UCy

-

(18-12)

(14-14)
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Figure 18-5 Dispersion in a tubular reactor. (Levenspiel, O., Chemical Reaction
Engineering, 2nd ed. Copyright © 1972 John Wiley & Sons, Inc. Reprinted by

permission of John Wiley & Sons, Inc. All rights reserved.)
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Figure 18-6 Symmetric concentration gradients causing the spreading by
dispersion of a pulse input.
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Flow, Reaction, and Dispersion

v
dC, dC

D—2-U—"+r,=0
dz dz

Rearranging Equation (14-16) we obtain

D,dCy_dCy 1 _,
U dz? dz U

by letting & = Cy/Cao and X = z/L

2
L@ - d_"l" —Da,- =0
Pl ax Y

(14-16)

(18-15)
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The quantity Da, appearing in Equation (18-17) is called the Damkdhler
number for a first-order conversion and physically represents the ratio

Da, = _ Rate of consumption of A by reaction — kT

Rate of transport of A by convection (18-18)

The other dimensionless term is the Peclet number, Pe,

—~

Pe Rate of transport by convection U

4 Rate of transport by diffusion or dispersion 5‘, (18-19)




Boundary Conditions

! ' ' )
' '
D=0 | D0 { D=0 D>0 | D0 { D,>0
' " H - .
— - [ — 3 3
= | —— A s
~ | (R ' ~
z=0 z=L =0 =L
Mug Dispersion
Flow

(a) Closed-closed vessel

Atz=0
Fy(0) = F4(0%)

Substituting for F, yields

dC
UA.C4(07) = —A.D, [d—")

7,
— :
_09

z=

(b) Open-open vessel

+ UA.C4(07)




Solving for the entering concentration C,(0—) = C,,

Cro =

D, [dC4 +Cy(0%)
U | dz o+

(18-20)

At the exit to the reaction section, the concentration is continuous, and there is no gradient in

tracer concentration.

Atz

-
-

L:

Co(L7)=C,(LY)
dC,
dz

(18-21)




Open-0Open System

For an open-open system, there is continuity of flux at the boundaries at

Atz=0

Fo(0-) = F,(0+)

= a.—) +UCA(07) = —D,
z=0"

-

aC,

-
-
-

) + UCA(0Y)
z=0"

(18-22)
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Figure 18-8 Schematic of Danckwerts boundary conditions: (a) entrance: (b) exit.

At z = L, we have continuity of concentration and

aCa _ (18-23)




Back to the Solution for a Closed-Closed
System

We now shall solve the dispersion reaction balance for a first-order reaction

Ldy db_py -

Perdkz d\ (18-17)

For the closed-closed system, the Danckwerts boundary conditions in dimensionless form are

At A = 0 then 1=—Ld_‘1’) +W(0")
A=0"

Pe,d\ (18-24)

_ db _
At A = 1 then N 0 (18-25)




At the end of the reactor, where A = 1, the solution to the top equation is

B 4qgexp(Pe,/2)
(1+q)’ exp (Pe,q/2) — (1 —q)° exp (— Pe,q/2) (18-26)
where ¢ = ,/1 +4Da,/Pe,

4gexp (Pe,/2)

X=1- 2 2
(1+g) exp (Pe.q/2)—(1—gq) exp (— Pe,q/2)

(18-27)




Finding D_ and the Peclet Number

There are three ways we can use to find D_ and hence P,

1. Laminar flow with radial and axial molecular diffusion theory
2. Correlations from the literature for pipes and packed beds

3. Experimental tracer data
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Dispersion in a Tubular Reactor with

Laminar Flow

dc dc _ 1 d[r(dc/ar)] , d?c
— tu(r) — = Dpp4- + 18-28
dt (") dz AB{r ar dz2 ( )




— 1 (R
C (z, t)_mjo c(r.z, t)2mrdr (18-31)

dC dC . 9T
— 4+ = [)* -
o U T (18-32)
Where D* is the Aris-Taylor dispersion coefficient
U2R?
D=D,n+
AB 48D g (18-33)

That is, for laminar flow in a pipe
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Correlations for D,
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Figure 18-10 Correlation for dispersion for streamline flow in pipes. (Levenspiel, O., Chemical
Reaction Engineering, 2nd ed. Copyright © 1972 John Wiley & Sons, Inc. Reprinted by
permission of John Wiley & Sons, Inc. All rights reserved.) [Note: D = D,
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permission of John Wiley & Sons, Inc. All rights reserved.) [Note: D = D]
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Dispersion in Packed Beds
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Figure 18-12 Experimental findings on dispersion of fluids flowing with mean
axial velocity u in packed beds. (Levenspiel. O., Chemical Reaction Engineering,
2nd ed. Copyright © 1972 John Wiley & Sons, Inc. Reprinted by permission of John
Wiley & Sons, Inc. All rights reserved.) [Note: D = D,]




Experimental Determination of D,

9°C;  d(UCy) _ aCy

D )
a az?. dz at (18 13)
The Unsteady-State Tracer Balance
L ¢ _ob _ 0¥ (18-34)
Pe, g\2 odN 00O
Solution for a Closed-Closed System
In dimensionless form, the Danckwerts boundary conditions are
1 9 v _ CH0 1)
At A = 0: (—__) + (0" = - _
Pe.an), g P(0) o (18-36)
Ath=1: W _ o (18-37)
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Figure 18-13 C-curves in closed vessels for various extents of back-mixing as
predicted by the dispersion model. (Levenspiel, O., Chemical Reaction Engineering,
2nd ed. Copyright © 1972 John Wiley & Sons, Inc. Reprinted by permission of John
Wiley & Sons, Inc. All rights reserved.) [Note: D = D,]'°
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For long tubes (Per > 100) in which the concentration gradient at I 00 will be zero, the solution
to the Unsteady-State Tracer balance at the exit is!!
CAL.t 1 —(1-0)°
W(1,0) = bl _ exp [Q} (18-44)
Cro  2,/mO/Pe, 40/Pe,
The mean residence time for an open-open system is
{, = (1 + i)f (18-45)
Pe,
ol _ 2 . 8
. Pe, Pe? (18-46)
W Jost, Diffusion in Solids, Liquids and Gases (New York: Academic Press, 1960), pp. 17, 47. /
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We now consider two cases for which we can use previous equations to determine the system

parameters:

Case 1. The space time T is known. That is, V and v, are measured independently. Here, we can
determine the Peclet number by determining t_ and 6° from the concentration—time
data and then use Equation (18-46) to calculate P_ . We can also calculate t_ and then
use Equation (18-45) as a check, but this is usually less accurate.




Case 2. The space time T is unknown. This situation arises when there are dead or stagnant
pockets that exist in the reactor along with the dispersion effects. To analyze this
situation, we first calculate mean residence time, t_, and the variance, 6%, from the data
as in case 1. Then, we use Equation (18-45) to eliminate T° from Equation (18-46) to

arrive at

2 2Pe,+8
Pe? +4Pe +4 (18-47)

3\9' q

We now can solve for the Peclet number in terms of our experimentally
determined variables 6° and t,, . Knowing P_, we can solve Equation (18-45) for T,
and hence V. The dead volume is the difference between the measured volume
(i.e., with a yardstick) and the effective volume calculated from the RTD.




- Two-Parameter Models—Modeling Real

Reactors with Combinations of Ideal
Reactors

Real CSTR Modeled Using Bypassing and Dead Space
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Figure 18-14 (a) Real system; (b) model system.




Solving the Model System for C, and X

We shall calculate the conversion for this model for the first-order reaction

A——B

The bypass stream and effluent stream from the reaction volume are mixed at the junction point

2. From a balance on species A around this point

[In]=[Out]

[CAOVb + Casvs]:[CA (Vb+vs)]

(18-57)




Let a=V_/V and f=v,/v,, then

Ca = BCao + (1 — B)Cy;

For a first-order reaction, a mole balance onV_ gives

USCAO — USCA_, - kCAsVs =0

or, in terms of o and 3

_ Cao(1 =By
A (1—-B)vg+aVk

(18-58)

(18-59)

(18-60)

Substituting Equation (18-60) into (18-58) gives the effluent concentration of species A:

A _X=B+ (]_8)2
Cho (1—B) +atk

(18-61)
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Using a Tracer to Determine the Model

Parameters in a CSTR-with-Dead-Space-
and-Bypass Model
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Figure 18-15 Model system: CSTR with dead volume and bypassing.




dNTs_
dt

vsCTO — vsCTs=

dCr,
dt

The conditions for the positive-step input are

Att<0,C.=0
Att20,C = Cy

A balance around junction point 2 gives

_ UpCro + Cry 05
Ug

T

(18-62)

(18-63)




As before

Vi =aV
v, = B
=K
Vg

Integrating Equation (18-62) and substituting in terms of o and f3

G 1-B(t (18-64)
Combining Equations (18-63) and (18-64), the effluent tracer concentration is
CTs 1—B |t
Cro 17 eXP{—T (;]] (18-65)

1 1—B |t
In————=1In + -
Cro—Cr 1-B [ a ]x (18-66)




Other Models
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Figure 18-16 (a) Real reaction system; (b) model reaction system.




Solving the Model System for C, and X

Let B represent that fraction of the total flow that is exchanged between reactors 1 and 2; that is,

v, = B,

and let o represent that fraction of the total volume, V, occupied by the highly agitated region:

V] == C!V
Then
Vo=(1—a)V
The space time is
4
I —




and

CAO

Car=1 +B +atk—{B/[B+ (1 —a)Tk]}

X =1

Car _

(B +atk)[B+ (1 —a)tk] — B2

Cao

(1+B+atk)[B+(1—a)tk]—B2

(18-67)

(18-68)
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Using a Tracer to Determine the Model

Parameters in a CSTR with an Exchange
Volume

The problem now is to evaluate the parameters 0 and B using the RTD data. A mole balance on a

tracer pulse injected at t = O for each of the tanks is

Accumulation = Rate in - Rate out

Reactor 1: V) 7=U|Crz —(©oCr +v1Cn) (18-67)
dCr,
Reactor 2: Vs, ar =v,C —v,Cpy (18-68)




where

dC
ta —= = BCr—(1+B)Cry

dC
(1 —a) Tt” = BCr —BCpy

_ (am; +B+ l)e"'zm—(am2+B+ l)e'"'”t

qulsc a(ml B m2)

| 1l—a+B |l _;. [ _4aB(]l—a)
’m2_|:2a(l—a):|[ l‘«/l (1—a+B2)

|

(18-71)

(18-72)

(18-73)




Other Models of Nonideal Reactors
Using CSTRs and PFRs

Real System Model System
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Combinations of ideal reactors used to model real tubular reactors: two ideal PFRs in parallel
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parallel




Summary

1. The models for predicting conversion from RTD data are:
A. Zero adjustable parameters
i.  Segregation model
ii. Maximum mixedness model
B.  One adjustable parameter
i.  Tanks-in-series model

ii. Dispersion model

C. Two adjustable parameters: real reactor modeled as combinations of ideal reactors

2. Tanks-in-series model: Use RTD data to estimate the number of tanks in series,
2

n="1 (S18-1)
o2

For a first-order reaction




3. Dispersion model: For a first-order reaction, use the Danckwerts boundary
conditions

4q exp(Pe,/2)

(1+q)Y exp(Pe.q/2)—(1—q) exp(—Pe,q/2) (S18-2)
where
o= [1+4Da (818-3)
Pe,
Da, = 1k (S18-4)

For a first-order reaction

UL Ud
Pe, = — Pe; = 4
D, " D, (S18-5)




Determine Da

A For laminar flow, the dispersion coefficient is
2p2
D* = D,y + LR (S18-6)
48D \p

Correlations. Use Figures 18-10 through 18-12.

B
C Experiment in RTD analysis to find t_ and 6°.
For a closed-closed system, use Equation (S18-6) to calculate Per from the RTD data

o? 2 -
s — = (1—e

L Pe,)
2~ P, Pél (S18-7)

For an open-open system, use
2

07 )2Per + 8 (18-47)
t, Pe +4Pe +4




5.

If a real reactor is modeled as a combination of ideal reactors, the model should

have at most two parameters
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The RTD is used to extract model parameters.
Comparison of conversions for a PFR and CSTR with the zero-parameter and two-
parameter models. X g symbolizes the conversion obtained from the
segregation model and X is that from the maxi-mum

mixedness model for reaction orders greater than one.

Xppr = Xeg = X nm =~ X osTR

Xppr =X with X 0 <Xcstk OF X, ode1 = XoSTR

model mode mode

Cautions: For rate laws with unusual concentration functionalities or for nonisothermal

operation, these bounds may not be accurate for certain types of rate laws.




