Lecture 4

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Lecture 4

- Block 1
 - Mole Balances
 - Size CSTRs and PFRs given –r_A=f(X)
- Block 2
 - Rate Laws
 - Reaction Orders
 - Arrhenius Equation
- Block 3
 - Stoichiometry
 - Stoichiometric Table
 - Definitions of Concentration
 - Calculate the Equilibrium Conversion, X_e

Reactor Mole Balances Summary

in terms of conversion, X

Reactor

Differential

Algebraic

Integral

Batch
$$N_{A0} \frac{d}{dt}$$

$$N_{A0} \frac{dX}{dt} = -r_A V$$

$$t = N_{A0} \int_{0}^{X} \frac{dX}{-r_{A}V}$$

CSTR

$$V = \frac{F_{A0}X}{-r_A}$$

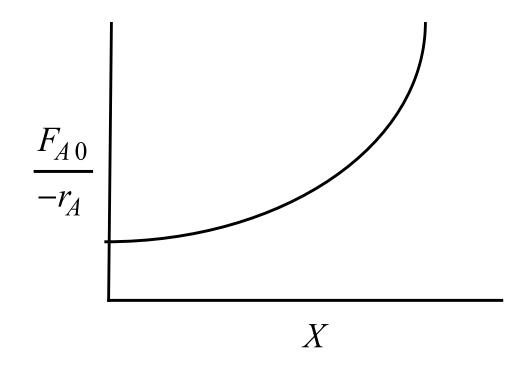
$$F_{A0} \frac{dX}{dV} = -r_A$$

$$V = F_{A0} \int_{0}^{X} \frac{dX}{-r_{A}}$$

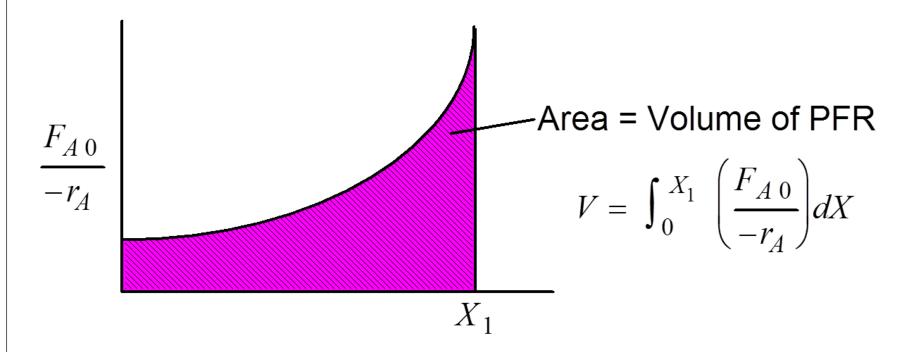
$$F_{A0} \frac{dX}{dW} = -r_A'$$

$$W = F_{A0} \int_{0}^{X} \frac{dX}{-r_A'}$$

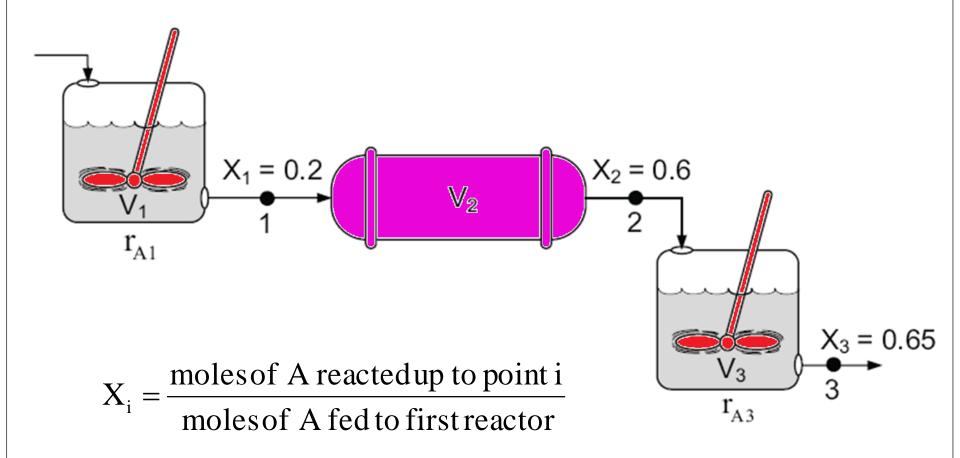
Levenspiel Plots



PFR

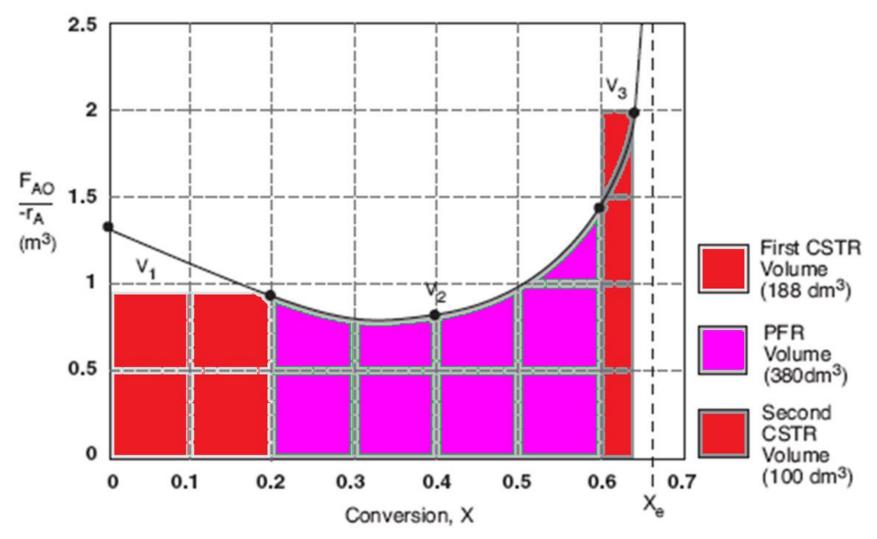


Reactors in Series



Only valid if there are no side streams

Reactors in Series



Two steps to get
$$-r_A = f(X)$$

Step 1: Rate Law
$$-r_A = g(C_i)$$

Step 2: Stoichiometry
$$(C_i) = h(X)$$

Step 3: Combine to get
$$-r_A = f(X)$$

Building Block 2: Rate Laws

Rate Law Rate Law HACK KNAOH

Power Law Model:

$$-r_A = kC_A^{\alpha}C_B^{\beta} \qquad \begin{array}{c} \alpha \text{ order in A} \\ \beta \text{ order in B} \end{array}$$

Overall Rection Order =
$$\alpha + \beta$$

A reactor follows an elementary rate law if the reaction orders just happens to agree with the stoichiometric coefficients for the reaction as written.

e.g. If the above reaction follows an elementary rate law

$$-r_A = k_A C_A^2 C_B$$

2nd order in A, 1st order in B, overall third order

Arrhenius Equation

$$k = Ae^{-E/RT}$$

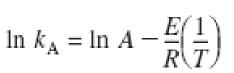
E = Activation energy (cal/mol)

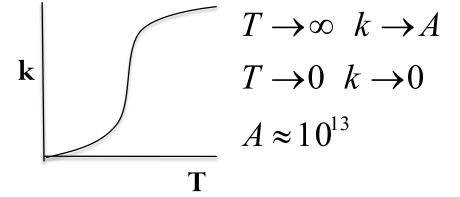
R = Gas constant (cal/mol*K)

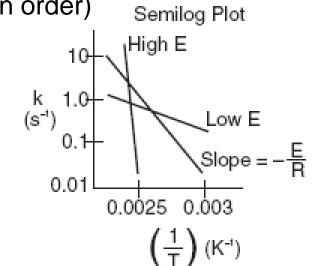
T = Temperature (K)

A = Frequency factor (same units as rate constant k)

(units of A, and k, depend on overall reaction order)







Reaction Engineering

Mole Balance

Rate Laws

Stoichiometry

These topics build upon one another

Algorithm

How to find
$$-r_A = f(X)$$

Step 1: Rate Law
$$-r_A = g(C_i)$$

Step 2: Stoichiometry
$$(C_i) = h(X)$$

Step 3: Combine to get
$$-r_A = f(X)$$

Building Block 3: Stoichiometry

We shall set up <u>Stoichiometry Tables</u> using species A as our basis of calculation in the following reaction. We will use the stoichiometric tables to express the concentration as a function of conversion. We will combine $C_i = f(X)$ with the appropriate rate law to obtain $-r_A = f(X)$.

$$A + \frac{b}{a}B \rightarrow \frac{c}{a}C + \frac{d}{a}D$$

A is the limiting reactant.

Stoichiometry

$$N_A = N_{A0} - N_{A0}X$$

For every mole of A that reacts, **b/a** moles of B react. Therefore moles of B remaining:

$$N_{B} = N_{B0} - \frac{b}{a} N_{A0} X = N_{A0} \xi \frac{N_{B0}}{N_{A0}} - \frac{b}{a} X_{\div}^{0}$$

Let $\Theta_B = N_{BO}/N_{AO}$

Then:

$$N_B = N_{A0} \left(\Theta_B - \frac{b}{a} X \right)$$

$$N_{C} = N_{C0} + \frac{c}{a} N_{A0} X = N_{A0} \left(\Theta_{C} + \frac{c}{a} X \right)$$

Batch System - Stoichiometry Table

<u>Species</u>	<u>Symbol</u>	<u>Initial</u>	<u>Change</u>	<u>Remaining</u>
A	A	N_{AO}	$-N_{AO}X$	$N_A = N_{AO}(1 - X)$
В	В	$N_{BO} = N_{AO} \boldsymbol{\Theta}_B$	$-b/aN_{AO}X$	$N_B = N_{AO}(\boldsymbol{\Theta}_B - b/aX)$
C	C	$N_{CO} = N_{AO} \boldsymbol{\Theta}_C$	$+c/aN_{A0}X$	$N_C = N_{AO}(\boldsymbol{\Theta}_C + c/aX)$
D	D	$N_{DO} = N_{AO} \boldsymbol{\Theta}_D$	$+d/aN_{A0}X$	$N_D = N_{AO}(\boldsymbol{\Theta}_D + d/aX)$
Inert	I	$N_{IO} = N_{AO} \boldsymbol{\Theta}_I$		$N_I = N_{AO} \boldsymbol{\Theta}_I$
		F_{TO}		$N_T = N_{TO} + \delta N_{AO} X$

Where: $\Theta_i = \frac{N_{i0}}{N_{A0}} = \frac{C_{i0}\nu_0}{C_{A0}\nu_0} = \frac{C_{i0}}{C_{A0}} = \frac{y_{i0}}{y_{A0}}$ and $\delta = \frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1$

 δ = change in total number of mol per mol A reacted

Stoichiometry Constant Volume Batch

Note: If the reaction occurs in the liquid phase or

if a gas phase reaction occurs in a rigid (e.g. steel) batch reactor

Then
$$V = V_0$$

$$C_A = \frac{N_A}{V} = \frac{N_{A0}(1-X)}{V_0} = C_{A0}(1-X)$$

$$C_B = \frac{N_B}{V} = \frac{N_{A0}}{V_0} \left(\Theta_B - \frac{b}{a} X \right) = C_{A0} \left(\Theta_B - \frac{b}{a} X \right)$$

etc.

Stoichiometry Constant Volume Batch

Suppose
$$-r_A = k_A C_A^2 C_B$$

Batch: $V = V_0$

$$-r_A = k_A C_A^3 (1 - X)^2 \stackrel{\text{de}}{\in} O_B - \frac{b}{a} X_{\stackrel{\text{de}}{\otimes}}^0$$

Equimolar feed: $\Theta_R = 1$

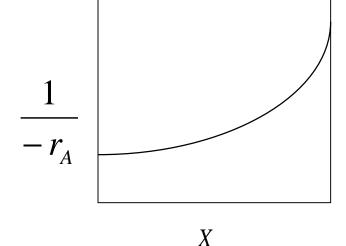
Stoichiometric feed: $\Theta_B = \frac{b}{a}$

Stoichiometry Constant Volume Batch

If
$$-r_A = k_A C_A^2 C_B$$
, then

$$-r_A = C_{A0}^{3} (1-X)^2 \left(\Theta_B - \frac{b}{a}X\right)$$
 Constant Volume Batch

and we have $-r_A = f(X)$



Calculate the equilibrium conversion for gas phase reaction, $X_{\rm e}$.

Consider the following elementary reaction with $K_C=20~dm^3/mol$ and $C_{A0}=0.2~mol/dm^3$. Find X_e for both a batch reactor and a flow reactor.

$$2A \Leftrightarrow B$$

$$-r_A = k_A \left[C_A^2 - \frac{C_B}{K_C} \right]$$

Calculate
$$X_e$$

$$C_{A0} = 0.2 \, mol/dm^3$$

$$K_C = 20 \, dm^3/mol$$

Step 1:
$$\frac{dX}{dt} = \frac{-r_A V}{N_{A0}}$$

Step 2: rate law: $-r_A = k_A C_A^2 - k_B C_B$

$$-r_{A} = k_{A} \left[C_{A}^{2} - \frac{C_{B}}{K_{C}} \right]$$

$$K_{\rm C} = \frac{k_{\rm A}}{k_{\rm B}}$$

Totals:
$$N_{TO}=N_{AO}$$
 $N_{T}=N_{AO}$ $-N_{AO}$ X/2

@ equilibrium:
$$-r_A=0$$

$$0 = C_{Ae}^2 - \frac{C_{Be}}{K_C}$$

$$K_e = \frac{C_{Be}}{C_{Ae}^2}$$
 $C_{Ae} = \frac{N_{Ae}}{V} = C_{A0}(1 - X_e)$

$$C_{Be} = C_{A0} \frac{X_e}{2}$$

Solution:

At equilibrium
$$-r_A = 0 = k_A \left[C_{Ae}^2 - \frac{C_{Be}}{K_C} \right]$$

$$K_{\rm C} = \frac{C_{\rm Be}}{C_{\Delta e}^2}$$

Stoichiometry: $A \rightarrow B/2$

Constant Volume: $V = V_0$

Batch

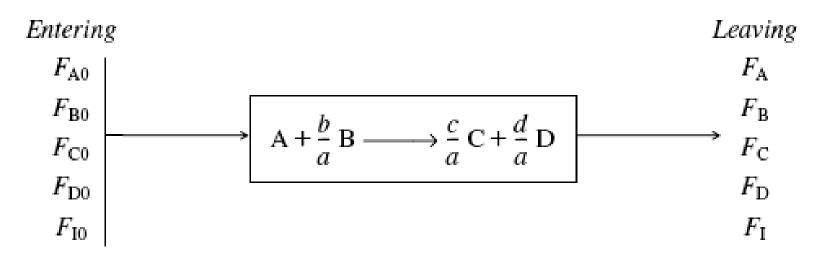
Species	Initial	Change	Remaining
Α	N _{A0}	-N _{A0} X	$N_A = N_{A0}(1-X)$
В	0	+N _{A0} X/2	$N_B = N_{A0}X/2$
	N _{T0} =N _{A0}		$N_{T} = N_{A0} - N_{A0} X/2$

$$K_{e} = \frac{C_{A0} \frac{X_{e}}{2}}{[C_{A0}(1-X_{e})]^{2}} = \frac{X_{e}}{2C_{A0}(1-X_{e})^{2}}$$

$$2K_e C_{A0} = \frac{X_e}{(1-X_e)^2} = 2(20)(0.2) = 8$$

$$X_{eb} = 0.703$$

Flow System - Stoichiometry Table



<u>Species</u>	<u>Symbol</u>	Reactor Feed	<u>Change</u>	Reactor Effluent
A	A	F_{A0}	$-F_{A0}X$	$F_A = F_{A0}(1-X)$
В	В	$F_{BO} = F_{AO} \Theta_B$	-b/aF _{A0} X	$F_B = F_{A0}(\Theta_B - b/aX)$

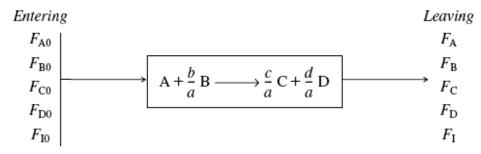
Where:
$$\Theta_i = \frac{F_{i0}}{F_{40}} = \frac{C_{i0} \upsilon_0}{C_{40} \upsilon_0} = \frac{C_{i0}}{C_{40}} = \frac{y_{i0}}{y_{40}}$$

Flow System - Stoichiometry Table

Where:
$$\Theta_i = \frac{F_{i0}}{F_{A0}} = \frac{C_{i0}v_0}{C_{A0}v_0} = \frac{C_{i0}}{C_{A0}} = \frac{y_{i0}}{y_{A0}}$$
 and $\delta = \frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1$

Concentration – Flow System $C_A = \frac{F_A}{V}$

Flow System - Stoichiometry Table



Species	<u>Symbol</u>	Reactor Feed	<u>Change</u>	Reactor Effluent
Α	Α	F_{AO}	-F _{A0} X	$F_A = F_{AO}(1-X)$
В	В	$F_{B0}=F_{A0}\Theta_{B}$	-b/aF _{A0} X	$F_B = F_{A0}(\Theta_B - b/aX)$
С	С	$F_{C0}=F_{A0}\Theta_{C}$	+c/aF _{A0} X	$F_C = F_{A0}(\Theta_C + c/aX)$
D	D	$F_{D0}=F_{A0}\Theta_{D}$	+d/aF _{A0} X	$F_D = F_{A0}(\Theta_D + d/aX)$
Inert	I	$F_{I0}=F_{A0}\Theta_{I}$		$F_I = F_{A0}\Theta_I$
		F _{T0}	-	$F_T = F_{T0} + \delta F_{A0} X$

$$\text{Where:} \Theta_{i} = \frac{F_{i0}}{F_{A0}} = \frac{C_{i0} \upsilon_{0}}{C_{A0} \upsilon_{0}} = \frac{C_{i0}}{C_{A0}} = \frac{y_{i0}}{y_{A0}} \qquad \text{and} \qquad \delta = \frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1$$

Concentration – Flow System = $\frac{F_A}{v}$

Stoichiometry

Concentration Flow System: $C_A = \frac{F_A}{V}$

Liquid Phase Flow System: $v = v_0$

$$C_A = \frac{F_A}{v} = \frac{F_{A0}(1-X)}{v_0} = C_{A0}(1-X)$$
 Flow Liquid Phase

$$C_B = \frac{N_B}{\upsilon} = \frac{N_{A0}}{\upsilon_0} \left(\Theta_B - \frac{b}{a} X \right) = C_{A0} \left(\Theta_B - \frac{b}{a} X \right)$$

etc.

We will consider C_A and C_B for gas phase reactions in the next lecture

Algorithm

Heat Effects

Isothermal Design

Stoichiometry

Rate Laws

Mole Balance

End of Lecture 4