Step 1: Open chapter 12 and click on <u>LEP-T12-2.pol</u> under Polymath[™] Code

Elements of Chemical Reaction Eng 5th Edition	ineering		Hom Problem S Updates an	ofving d FAQs		Essentials Chemical Rea Engineeri	of Inction ng
TOC	1 2 3	4 5 6 7	8 9	10 11	12 13 14 11	\$ 16 17 18 A	ppendices
BY CHAPTER NOT Colpectives Learning Resources -Summary Notes L. Living Example Photients R. Puttessonal Reference Shelf G. Adotsonal HW Problems P. FAOS	Chapte with He Living Ex	r 12: Stead at Exchang ample Problem xamples can be acces	y-State ge ns sed with Polym	Nonis	othermal F	Player ^{TW}	ign: Flow Reactors
Expanded Material BY CONCEPT HOD	Living Examp	le Problem	Polym	ath™ Code	Mattab Code	Code *	AspenTech 14
钳 Interactive Modules	LEP Table 12	-2 computer experime	nt EP.T	12-2.00	LEP-T12-2.20	LEP-T12-2 cdf (tutorial)	17
Interactive Computer Games & Living Example Problems U OF M Interaction Control Control Control Conte State Conte State	Example 12- Butane with P	1 isomerization of Nom leat Exchanger	a) Co- 12-1a b) Cou LEP-11 c) Cou LEP-12 d) Adu 12-10	current LEP- 03 ntercurrent 2-10.00 stant T ₂ 2-10.00 bate: LEP- 00	a) Co-current <u>LEP-12-14 zp</u> b) Countercurren <u>LEP-12-16 zp</u> c) Constant T ₄ <u>LEP-12-16 zp</u> d) Adabath: <u>LEP</u> <u>12-14 zp</u>	a) Co-current LEP-12-1a (df b) Countercurrent LEP-12-16 (df c) Constant T _a LEP-12-16 (df d) Adlabatic LEP- 12-16 (df	
			a) Adia 12-23	eater: LEP-	a) Adiabatic: LEP 12:28.Zip	a) Adiabatic: LEP. 12-2a.cdf	

Step 2: After opening the file, you should see following window. Select all the codes, right click and then copy the codes

Step 3: Open Polymath and click on "DEQ Differential Equations" under Program tab present on toolbar.

🧐 Р	OLYN	1ATH 6.10 Educational Release	
File	Prog	ram Window Help	
		LEQ Linear Equations	2 🖾 📖 🎾 ! 🚟 💡
		NLE Nonlinear Equations	
		DEQ Differential Equations	
		REG Regression	
	_		f

Step 4: You should see that a blank window opens. Right click on the white space and select Paste option to put the codes in the space

POLYMATH 6.10 Educational Release - [Ordinary Differential Equations Solver]	
📧 File Program Edit Format Problem Examples Window Help	_ 8 ×
dig 🔩 📲 👘 🖬 📫 🛛 🕅 🖬 🚽 🔽 🚽 🔽 🖬 🕞 🖬 🖉 🖬 🕞 🖬 🕞 🖬	
Dirretential Equations: 4 Auxiliary Equations: 24 V Ready for solution	
Xe = ((thetaB+1)*Ko (((thetaB+1)*Ko/2-4*(Ko4)*(Ko4)*(Ko*thetaB)/0.5)/(2*(Ko4))	
d(Ta)/d(W) = Uarho*(T-Ta)/(mo*Cpocol) #	
d(p)/d(W) = -alpha/2*(T/To)/p #	
(d[TVd(W) = (Uarho*(Ta-T)+(-ra)*(-Hr))/(Fao*sumcp) #	
(d(X)/d(W) = -rs/Fao	
alobe = 0002 #	
Uarho = 0.5 #	
mc = 1000 #	
Cpccol = 18 #	
Hr = -20000 #	
Fao = 5 #	
thetal = 1 #	
CDA = 20 #	
Che 0.3 #	
Ea = 25000 #	
Kc = 1000°(exp(Hr/1.987*(1/303-1/T))) #	
k = .004*exp(Es/1.987*(1/310-1/T)) #	
yao = 1/(1+thetaB+thetaI) #	
Cao = yao*Cto #	
sumop = (thetal*CpI+CpA+thetaB*CpB) #	
[Ca = Cao*(1.X)*p ⁺ To/T #	
W0=0	
Ta(0=320	
p(0)=1	
T(0)=330	
W(f) = 4500	
• • • • • • • • • • • • • • • • • • •	Þ
Ln 14 No File No Title	
15-25 15-02-2017 CARC MILM	
	//,

graphical format respectively. Click on the place arow is to run the prog	,i ann
🚱 POLYMATH 6.10 Educational Release - [Ordinary Differential Equations Solver]	x
File Program Edit Format Problem Examples Window Help	×
de x= ini- 🚯 🔟 🔿 RKF45 🔽 🔽 Iable 🔽 Graph 🔽 Beport	
Differential Equations: 4 Auxiliary Equations: 24 🗸 Ready for solution	
Xe = ((thetaB+1)*Ko, (((thetaB+1)*Kc/^2-4*(Ko4)*(Ko*thetaB))^0.5)/(2*(Ko-4))	-
d(Ta)/d(W) = Uarho*(T-Ta)/(mc*Cpcool) #	
d(p)/d(W) = -alpha/2*(T/To)/p #	
d(T)/d(W) = (Uarho*(Ta-T)+(-ra)*(-Hr))/(Fao*sumcp) #	
d(X) / d(W) = -ra/Fao	
$\times(0) = 0$	
alpha = .0002 #	
To = 330 #	
Uarho = 0.5 #	
mc = 1000 #	
Cpocol = 18 #	
Hr = -20000 #	
Fao = 5 #	
thetal = 1 #	
Cpl = 40 #	
CpA = 20 #	
thetaB = 1 #	
CpB = 20 #	
Cto = 0.3 #	
Ea = 25000 #	
Kc = 1000*(exp(Hr/1.987*(1/303-1/T))) #	
k = .004*exp(Ea/1.987*(1/310-1/T)) #	
yao = 1/(1+thetaB+thetaI) #	
Cao = yao*Cto #	
sumcp = (thetal*CpI+CpA+thetaB*CpB) #	
Ca = Cao*(1-X)*p*To/T #	
Cb = Cao*(1-X)*p*To/T #	
Cc = Cao*2*X*p*To/T #	
ra = -k*(Ca*Cb-Cc*2/Kc) #	
(W(0)=0	
Ta(0)=320	
p(0)=1	
T(0)=330	
W(f) = 4500	
	F .
Ln 14 No File No Title	
15:28 15-03-2017 CAPS NUM	11.

Step 5: Check the boxes corresponding to Report and Graph option to generate solution in report and graphical format respectively. Click on the pink arrow it to run the program

Step 6: You should see that Polymath report is generated in a new window. To obtain graph, close the current window by clicking on X button

РС	DLYMATH 6	.10 Educational	Release - [Differe	ntial Equations Sol	lution #2]		
) F	ile Edit	Window Help	0				_ d
2	ž 🖻 📕	አ 🖻 🛍 🖉	Ø 🚧 ち 🖪	3 💌 📖 🗐	a 🎾 ! 🛛	₩ ?	
		_					
90 Drdi	LYMATH I	Report ntial Equations					15-Mar-2017
	nary binere	nuar Equations					10-1101-2017
Cal	culated v	alues of DEQ	variables				
	Variable	Initial value	Minimal value	Maximal value	Final value		
1	alpha	0.0002	0.0002	0.0002	0.0002		
2	Ca	0.1	0.0111092	0.1	0.0111092		
3	Cao	0.1	0.1	0.1	0.1		
4	Cb	0.1	0.0111092	0.1	0.0111092		
5	Cc	0	0	0.0655948	0.0255273		
6	<mark>С</mark> рА	20.	20.	20.	20.		
7	СрВ	20.	20.	20.	20.		
8	Cpcool	18.	18.	18.	18.		
9	СрІ	40.	40.	40.	40.		
10	Cto	0.3	0.3	0.3	0.3		
11	Ea	2.5E+04	2.5E+04	2.5E+04	2.5E+04		
12	Fao	5.	5.	5.	5.		
13	Hr	-2.0E+04	-2.0E+04	-2.0E+04	-2.0E+04		
14	k	0.046809	0.0303238	8.418378	0.0303238		
15	Кс	66.01082	1.036802	93.4225	93.4225		
16	mc	1000.	1000.	1000.	1000.		
17	р	1.	0.2360408	1.	0.2360408		
18	ra	-0.0004681	-0.007521	-3.531E-06	-3.531E-06		
10	cumen	on	00	on	on		
o Fil	e	POLYMATH R	eport				
i:39	15-03-2	2017 CAPS NU	JM				

Step 7: You should obtain following graph. To go back to the coding section (Step 4) click on X button