Lecture 22

Chemical Reaction Engineering (CRE) is the
field that studies the rates and mechanisms of
chemical reactions and the design of the reactors in

which they take place.
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Review of Multiple Steady States (MSS)

Reactor Safety (Chapter 13)
Blowout Velocity
CSTR Explosion
Batch Reactor Explosion
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CSTR with Heat Effects
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Review Last Lecture

Energy Balance for CSTRs

dT -
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G(T)=(r,V ) AH,, |
R(T)=C, (1+x)|T-T,]
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K = T —
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Energy Balance for CSTRs

R(T)=C, (1+x)T-T_]

T

Increasing T,

Variation of heat removal line with inlet temperature.
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Energy Balance for CSTRs
R(T)=C, (1+x)T-T_]

K=0o0

R(T)

Increase K

T T, T
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Variation of heat removal line with kK (k=UA/Cp,F »()
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Multiple Steady States (MSS)
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G(T)

Increasing 1

T

Variation of heat generation curve with space-time.
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Multiple Steady States (MSS)
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Finding Multiple Steady States with T, varied

R(T), G(T)
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Multiple Steady States (MSS)
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Temperature ignition-extinction curve
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Multiple Steady States (MSS)

Half-pipe Fine-type
Jacket baffle

Conventional
- Jacket

Bunsen Burner Effect (Blowout)




/T

Review Last Lecture

Multiple Steady States (MSS)

Increase
Vo

Bunsen Burner Effect (Blowout)




Reversible Reaction

Gas Flow in a PBR with Heat Effects

A< B

|V

_ v,C, X X - Tk
kC,, l—X—X 1+1k 1+1
Ke Ke
' — AH, Tk
G=-AH, X = kT
1+tk 1+1)
Ke
R(T)=C,(1+x|T-T,.]
T, + kT
T, = "% 319
l1+x

R(T) = 400[T - 310]




Reversible Reaction

Gas Flow in a PBR with Heat Effects

A< B

G(T) & A(T) (cavmol)

UA=73,520




Reversible Reaction
Gas Flow in a PBR with Heat Effects

A< B

K = —Be _
) C CAO(I_Xe)pTO/T
K
8) X = ¢
( ) ° 1+K




Reversible Reaction
Gas Flow in a PBR with Heat Effects

A< B

Exothermic Case:

KC\ xe\

T T

Endothermic Case:

___________________ ~1
KC / Xe /

T T




Adiabatic Equilibrium Conversion

Conversion on Temperature
Exothermic AH is negative

Adiabatic Equilibrium temperature (T,4,) and conversion (X

e,adia)




Gas Phase Heat Effects

Trends:
Adiabatic:

X exothermic
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Gas Phase Heat Effects




Gas Phase Heat Effects

Effect of adding inerts on adiabatic equilibrium conversion

Adiabatic:
X

@:OO
x"/I

.——Adiabatic Equilibrium

Conversion

+ (_AHRx)
-AHp, Cp, +6,Cp,
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Adiabatic Exothermic Reactions

kcal
A——B AHg, = +15——
mol
The heat of reaction for endothermic reaction is positive, i.e.,

Energy Balance :

AHg, X 1y _ (CPA +Cp O XTO -T)

T = TO -
Cp, +O,Cp. AHg,

-Isothermal

We want to learn the effects of adding inerts on conversion. How the
conversion varies with the amount, i.e., ©,, depends on what you vary
and what you hold constant as you change 0,.
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A. First Order Reaction

dX _ =T
Combining the , rate law and stoichiometry
kC A o(1-X
dX _ Aol )= k (1-X)
dVv VoCao vy

Two cases will be considered
Case 1 Constant v,, volumetric flow rate
Case 2: Variable v,, volumetric flow rate
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A.l. Liguid Phase Reaction

Ta \ Ta FTao
ij@) T f—>T
T0 Ta _/

V=0 V=V,

For Liquids, volumetric flow rates are additive.

Vg =Vp0 + Vg = UA0(1+ @1)
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Effect of Adding Inerts to an Endothermic Adiabatic Reaction

What happens when we add Inerts, i.e., vary Theta |??7? It all depends
what you change and what you hold constant!!!

O,

X 1SO O,
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A.l.a. Case 1. Constant v,

To keep v, constant if we increase the amount of Inerts,
l.e., increase O, we will need to decrease the amount of
A entering, i.e., vag. SO O, 1 then v, |

——————— ISO ----q -1SO
T = T() _ AHRX)( T k
Cp, +©Cp,

O o]
\Y% \Y%
®I ®I




A.l.a. Case 2. Constant v, Variable v,

dX _k(1-X)  k(1-X)

dVv V) v (1+6y) v v
k
k [+0O;
O, O,
X /\

7 g




Without Inerts

A.2. Gas Phase

With Inerts and A

og OnNlyAis fed.

-

Cao Fio—— Caol
U
F VA j— —L{) —>
AP LT, '@ P, T,
Cra Fao— Cr
Fao PA Frp _Fao+ho _ B
Cra=—"=Cao=5 Crp=—"= =
VA RTy Vg Vg RT;
Taking the ratio of C, to Cy,
Fryp 5\
Cra Fra Pa
SN RTA
Solving for v, V=V, Frp Pa T
Fra Pp Ty

We want to compare what happens when Inerts and A are fed to the case when
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Nomenclature note: Sub | with Inerts | and reactant A fed
Sub A with only reactant A fed

F., = Total inlet molar flow rate of inert, I, plus reactant A, F;; = F,, + Fg
F.A = Total inlet molar flow rate when no Inerts are fed, i.e., Fta = Fpq
P,, T, = Inlet temperature and pressure for the case when both Inerts (1) and A are fed

Pa, Ta = Inlet temperature and pressure when only A is fed

F
C,o = Concentration of A entering when no inerts are presents Cyq = —A0
VA
C:a = Total concentration when no inerts are present = Pa
RTy
P
Cq, = Total concentration when both | and A are present = ﬁ
I

Cao = Concentration of A entering when inerts A are entering = Fao
U1

v, = Entering volumetric flow rate with both Inerts (l) and reactant (A)




FT1=FA0+FIOE(1+®1)= 1 _
Fr, Fyo Fyo Pao
Fio+ 1y,
1
pAO_(1+@I)
v, =, (1+®,)%%
1 1A
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A.2.a. Case 1

Maintain constant volumetric flow, v, rate as inerts are added. l.e., v, =
v, = va. Not a very reasonable situation, but does represent one extreme.
Achieve constant v, varying P, T to adjust conditions so term in
brackets, [ ], is one.

Pa Ty
Pr T

=1

[(1+ ©;)

For example if ®, = 2 then v, will be the same as v,, but we need the
entering pressures P, and P, to be in the relationship P, = 3P, with T, =
TI

Pa Ta
3P, T,

301
3

=VA =V

vy = vA[(1+ 2)e
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A.2.a. Case 1

That is the term in brackets, [ ], would be 1 which would
keep v, constant with v, = v, = v,. Returning to our
combined mole balance, rate law and stoichiometry

dX k(I-X)
dV UO
k/ . K . /
O, 0, O,
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A.2.b. Case 2: Variable v, Constant T, P

.e, P =P, T,=T,

F Fag +F
Vv = "UAFTI = A( A(l)j IO)—UA(1+(H)I)
TA AO

U1 _UA(l"'@I)

dX (1 X)
v vy 1+0
k
T k k J 1+®I
Vv Vv S O
X /\
33 @I
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B. Gas Phase Second Order Reaction

Inerts Plus A
Fo—
= ’ | Caor Vi ()
P, T, Cpy
Fpro—
P F Fin(l+©®
Cag = A _TAo Cpy = AO( I)
RTA UA UI
2 2
dX —rA kCAOI (1 — X)
dV Fag Fao
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B. Gas Phase Second Order Reaction

P, T
v =vA(1+@I)P—AT—I
1 A
2
Choi _ Fao/vi)” _Fag _ Fao
Fao Fao v RV
I A

2
_ CAO (PI TA)
UA(I + ®I )2 PA TI

2
dX k C P T 2
_ _ AO( I A) (1-X)
dV. (1+0;) va \PA Ty
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B. Gas Phase Second Order Reaction

For the same temperature and pressures for the cases
with and without inerts, i.e., P, =P, and T, = T,, then
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Isothermal Design

Stoichiometry

Mole Balance
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Isothermal Design

Mole Balance
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End of
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