Lecture 26

Chemical Reaction Engineering (CRE) is the
field that studies the rates and mechanisms of
chemical reactions and the design of the reactors in

which they take place.
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P14-2
B W, =J],+CU

U= E U,
Binary System
WA = CAUA and WB = CBUB

U=y U, +ygUsp

Multiply and divide by
U _ CAUA +CBUB]= WA +WB
C C
W, +W
C,U=Cy—2 B=)’A[WA+WB]

Wy =Ju +yA(WA +WB)




1. For equal molar counter diffusion

W, =J, +y, (W, +W,)

J A= _DABVCA
(WA = _WA)
W, =-D,.VC,




Wa=Ja +YA(WA +WB)
2. Diffusion through a stagnant film,

3. For dilute concentration




Wy =Ja +y5(Wa + W)
2. Diffusion through a stagnant film, Wz =0

JA = _DABVCA
W, =-DgVC, +y, W,
D
W, =-——28VC,
-y,

3. For dilute concentration




Wy =Ja +y5(Wa + W)
2. Diffusion through a stagnant film, Wz =0

Wa ==DagVCp + ya Wy

WA = - DAB VCA
1=ya

3. For dilute concentration

yp <<1




TaBLE 14-2.  DIFFUSIVITY RELATIONSHIPS FOR GASES, LIQUIDS, AND SOLIDS
Order of Magnitude
Phase cm?/s m?/s Temperature and Pressure Dependences®
Gas
p. (T )75
Bulk 101 10-3 D, (T,, Py) =D, s(T,, P,) = (—2]
Py \T,
7.2
Knudsen 102 10-6 D, (T,) =D, (T,) [7-}}
1
Liquid 103 10-° D,;(T,)=D,5(T)) CNEr
o (T
: E,|T,—T
Solid 10-9 10-13 D,g(T,) = D,gs(T,) exp [729 ( ;1 T21]:|

a1, Iy, liquid viscosities at temperatures T and T,, respectively; Ep, diffusion activation energy.
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Figure 14-1 Boundary layer around the surface of a catalyst pellet.
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z2+Az
Wa Al =Wy A, +0=0
Divid by A Az
— WAZ|Z+AZ ~Waz -0
Az
dWy, _0
dz




Concentration profile ¢, =C, + (CAb _ CAS)E

o

Figure 14-2 Concentration profile for EMCD in stagnant film model.
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Figure 14-2 Concentration profile for EMCD in stagnant film model.

dC, D
WA = _DAB d—ZA = %(CAO - CAs)

C

k:%
d

| Wa, = k(Cpp— CAs)l
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Figure 14-2 Concentration profile for EMCD in stagnant film model.

dC, D
WA = _DAB d—A = %(CAO - CAs)

Z

k:%
d

C

| WAZ - kc(CAb o CAs)l

W,. = Flux = Dr1v1pg force _ Cpp— Cas
Resistance (1/k.)

(14-25)

(14-27)

(14-28)




k.d
Sh= 2= (m/s)(m) dimensionless
DAB m?2/s
2
Sc = 2 = m~/s dimensionless

Dxg m?2/s

opu_[8/m)m)(ms

Re dimensionless
i (e
TABLE 14-4.  MASS TRANSFER CORRELATIONS
Turbulent flow, mass transfer to pipe wall Sh = .332 (Re)!”2 (Sc)13
Mass transfer to a single sphere Sh =2 + 0.6 Rel”2 Scl3
Mass transfer in fluidized beds Sh = J,, Re Sc!”?

o1, = 0765 + 0365
D™ Re82  Re0386

Mass transfer to packed beds Sh = Jp Re Sc!”?
bJp = 0.453 Re04s3




4 Sh’ = 1.0(Re’)!/2Sc!/3

kc([p b l _ Udpp 1/2 u 1/3
Dyg (1= )y w(l—d)y pD g
_ Sh
JD_Sc”f‘Re

opdp = 0.4548Ngg 069
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Figure 14-3 Diffusion to, and reaction on, external surface of pellet.

- I.As = erAs

"

WASurﬁzce = _rAs

WA = kc (CA - CAs ) = erAs

We need to eliminate C,..

and the rate of reaction on the surface becomes

n kcer
Wa= k=%




/ One will often find the flux to or from the surface as written in terms of an effective \
transport coefficient kg

"
W,=-r, =kuC,

Case 1
k k
&“=@i%
k.>k,

keff =




One will often find the flux to or from the surface as written in terms of an effective
transport coefficient kg

where
Wy=-r fllls =kt C
Case 1
1/2 1/2
k=06 Pas (Y9 (v
‘ d, % D,
1/2
k.~(U/d)
- rz;,S = chA
Case 2

™~




One will often find the flux to or from the surface as written in terms of an effective

transport coefficient kg
"
W, =-ry=kgC,
where

k k

c r

k. =
Tk vk

Case 1 k.>k,
keff = kc

) (5

k,~U/d,)"

1/2

D 4
d

p

h=06(

Case 2 k <k
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Figure 14-4 Regions of mass transfer—limited and reaction—limited reactions.




Transdermal drug delivery schematic.
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Step 1.

Step 2.

Step 3.

Diffusion of A through the Epidermis film, which is stagnant
reduces to

dWAZ
dz

Use Fick’s law to relate the flux W,, and the concentration

gradient
dC
W, =-D, —=
dz

=0

State the boundary conditions
z=0 C,=C,

z=0, C, =CA51




E23

Step 4.

Next substitute for W,, and divide by D,, to obtain

2
’C, _,
dz*
Integrating twice
C,=Kz+K,




Step 4.

Using the boundary conditions we can eliminate the
constants K, and K, to obtain the concentration profile

C,=Kz+K,
C,o-C, =z
CAO_CA (51

Step 5.  Substituting CA we obtain the flux in the Epidermis layer

dC D
WAI = _DAI 4 =—= [CAO - CAI]
dz )
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Step 6. Carry out a similar analysis for the Dermis layer starting with

We find
z=0, C,=C,
Substituting
Step 7. At the interface between the Epedermis(:a/ﬂd Dermit)ayer, i.e.,atz=9,

Al

C,.-0 0o

D
W =242 o
A2 52 Al

E25
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Step 7.

Substituting

D
W,, ==22C
A2 52 Al

At the interface between the Epedermis and Dermis layer,
l.e., at z = o,

WAI = WA2 = WA

Equating Equations (E14-1.5) and (E14-1.6)

DAI [CAO _CAI] _ DAz C
Al

o 0,




/" Step 7.

E27

At the interface between the Epedermis and Dermis layer,
l.e., at z = o,

Wy=W,=W,
Equating Equations (E14-1.5) and (E14-1.6)

DAI [CAO — CAI] _ D

_ A2
61 (52 Al
Solving for Cy,,
D, Cyo
C i
Al =
D, +DA2
o 0

™~




/" Step 7.
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At the interface between the Epedermis and Dermis layer,
l.e., at z = o,

WAI = WA2 = WA

™~
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C C
Fy=AW,=A,—40 -4 —40
ATTPTATTPR AR, T R

If we consider there is a resistance to the drug release in the
patch, Ry, then the total resistance is

RT =Rp+R1+R2

A C
Fy=A,W, =22
Ry
If the resistance in the dermis layer is neglected
Dyp
FA = Ap 1 :|CAp




Molar Molar Molar rate of
ratein| ~ |rateout| T generation accumulation

FAZ|Z T FAZ|Z+AZ + "XaC(ACAZ) - O (14-51)

|
1

Molar rate of}

Figure 14-5 Packed-bed reactor.

_ L (dEs +ra, =0
A\ dz




1 (dFAZ

+rya,.=0
A, dz) AT

Neglect
FAZ = ACWAZ = ( Az +BAz)Ac

=B, A =UC,A,

- udcC ,
dz

+rya,. =0,




Ud&+rga

. =0
dz

_rzg = WAr

dC 4
dz

-0
U —kcaC(CA—CAS)

dC 4
dz

U —kcaCCA =0




CA = exp- (kcac )Z

k.a
—r;; = kCCA = kCCAO CXP—( CI]C <
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Ca X
Cao
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Figure 14-7 Axial concentration (a) and conversion (b) profiles in a packed bed.
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Figure E14-4.2 Parallel arrangement.
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/ One will often find the flux to or from the surface as written in terms of an effective \

transport coefficient kg
Wy = _r;’\s = ke Ca
where
P = k.k,
N k+k
c r
k.d
Sh= ==L =2+ 0.6Re!/2Sc!3
AB
k.= 0.6 (%] Rel/28c1/3
d)
1/2 1/3
= 0.6 Dyg || Ud, L
dp v D,g
2/3
k=06 x 248, U
¢ 176 7 4172
p
k. = 0.6 X (Term 1) X (Term 2)
(U,/ U, ) =203 =141 0r41%
k, <k,
A4 k Ca

Wa = 77 Tk, A /




Fy,

FA|Z =FA|Z+AZ+FAACAZ=O
dFA +I’AA O
dz
FAz = ACWAZ
dC
Wy, =-Dyp dZA +C LU,
dC
= WAZAC DAB dZA + CAUZ Ac
2
DAB d (/;A —U d&+I’A 0
dz dz
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Step 4.

Step 5.

Next substitute for W,, and divide by D,, to obtain

2
d’C, _,
dz’
Integrating twice
C,=Kz+K,

using the boundary conditions we can eliminate the
constants K, and K, to obtain the concentration profile

Cao—Cy _<
CAO - CA ‘51
Substituting CA we C?gtain tlh)e flux in the Epidermis layer
W. ==-D A_ZAlc _C
Al Al dz S [ A0 Al]
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TaBLE 14-1. TYPES OF BOUNDARY CONDITIONS

1.

Specify a concentration at a boundary (e.g., z = 0, C, = C,(). For an instantaneous reaction
at a boundary, the concentration of the reactants at the boundary is taken to be zero (e.g.,
Cux; = 0). See Chapter 18 for the more exact and complicated Danckwerts’ boundary condi-
tionsatz=0and z = L.

. Specify a flux at a boundary.

a. No mass transfer to a boundary,
W, =0 (14-18)

For example, at the wall of a nonreacting pipe. Species A cannot diffuse into the pipe so
W, = 0 and then

a0 ar=r (14-19)
dr
That is, because the diffusivity is finite, the only way the flux can be zero is if the concen-
tration gradient is zero.

b. Set the molar flux to the surface equal to the rate of reaction on the surface,
W, (surface) = —r} (surface) (14-20)
c. Set the molar flux to the boundary equal to convective transport across a boundary layer,
Wy (boundary) = k.(Cpp — Cay) (14-21)

where k. is the mass transfer coefficient and C,, and C,; are the surface and bulk concen-
trations, respectively.
Planes of symmetry. When the concentration profile is symmetrical about a plane, the concen-
tration gradient is zero in that plane of symmetry. For example, in the case of radial diffusion
in a pipe, at the center of the pipe

—= =0 atr =0 (14-22)
dr




