Type Error Feedback via Analytic Program Repair

Georgios Sakkas
Computer Science & Engineering
University of California, San Diego
La Jolla, CA, USA
gsakkas@eng.ucsd.edu

Westley Weimer
Computer Science & Engineering
University of Michigan
Ann Arbor, MI, USA
weimerw@umich.edu

Abstract

We introduce Analytic Program Repair, a data-driven strat-
egy for providing feedback for type-errors via repairs for
the erroneous program. Our strategy is based on insight
that similar errors have similar repairs. Thus, we show how
to use a training dataset of pairs of ill-typed programs and
their fixed versions to: (1) learn a collection of candidate
repair templates by abstracting and partitioning the edits
made in the training set into a representative set of tem-
plates; (2) predict the appropriate template from a given
error, by training multi-class classifiers on the repair tem-
plates used in the training set; (3) synthesize a concrete repair
from the template by enumerating and ranking correct (e.g.
well-typed) terms matching the predicted template. We have
implemented our approach in RITE: a type error reporting
tool for OCaML programs. We present an evaluation of the
accuracy and efficiency of RITE on a corpus of 4,500 ill-typed
OCamL programs drawn from two instances of an introduc-
tory programming course, and a user-study of the quality of
the generated error messages that shows the locations and
final repair quality to be better than the state-of-the-art tool
in a statistically-significant manner.

CCS Concepts: « Software and its engineering — Gen-
eral programming languages; Automatic programming;
« Computing methodologies — Machine learning; « The-
ory of computation — Abstraction.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PLDI °20, June 15-20, 2020, London, UK

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7613-6/20/06...$15.00
https://doi.org/10.1145/3385412.3386005

Madeline Endres
Computer Science & Engineering
University of Michigan
Ann Arbor, MI, USA
endremad@umich.edu

16

Benjamin Cosman
Computer Science & Engineering
University of California, San Diego
La Jolla, CA, USA
blcosman@eng.ucsd.edu

Ranjit Jhala
Computer Science & Engineering
University of California, San Diego
La Jolla, CA, USA
jhala@cs.ucsd.edu

Keywords: Type Error Feedback, Program Synthesis, Pro-
gram Repair, Machine Learning

ACM Reference Format:

Georgios Sakkas, Madeline Endres, Benjamin Cosman, Westley
Weimer, and Ranjit Jhala. 2020. Type Error Feedback via Analytic
Program Repair. In Proceedings of the 41st ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implemen-
tation (PLDI °20), June 15-20, 2020, London, UK. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3385412.3386005

1 Introduction

Languages with Hindley-Milner style, unification-based in-
ference offer the benefits of static typing with minimal an-
notation overhead. The catch, however, is that programmers
must first ascend the steep learning curve associated with
understanding the error messages produced by the compiler.
While experts can, usually, readily decipher the errors, and
view them as invaluable aids to program development and
refactoring, novices are typically left quite befuddled and frus-
trated, without a clear idea of what the problem is [41]. Ow-
ing to the importance of the problem, several authors have
proposed methods to help debug type errors, typically, by slic-
ing down the program to the problematic locations [12, 31],
by enumerating possible causes [6, 21], or by ranking the
possible locations using MAX-SAT [30], Bayesian [43] or
statistical analysis [37]. While valuable, these approaches at
best help localize the problem but students are still left in
the dark about how to fix their code.

Repairs as Feedback. Several recent papers have pro-
posed an inspiring new line of attack on the feedback prob-
lem: using techniques from synthesis to provide feedback in
the form of repairs that students can apply to improve their
code. These repairs can be found by symbolically searching
a space of candidate programs circumscribed by an expert-
defined repair model [14, 38]. However, for type errors, the
space of candidate repairs is massive. It is quite unclear
whether a small set of repair models exists or even if it does,
what it looks like. More importantly, to scale, it is essential

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3385412.3386005
https://doi.org/10.1145/3385412.3386005

PLDI 20, June 15-20, 2020, London, UK

that we remove the requirement that an expert carefully
curate some set of candidate repairs.

Alternately, we can generate repairs via the observation
that similar programs have similar repairs, i.e. by calculating
“diffs” from the student’s solution to the “closest” correct
program [11, 42]. However, this approach requires a corpus
of similar programs, whose syntax trees or execution traces
can be used to match each incorrect program with a “correct”
version that is used to provide feedback. Programs with static
type errors have no execution traces. More importantly, we
desire a means to generate feedback for new programs that
novices write, and hence cannot rely on matching against
some (existing) correct program.

Analytic Program Repair. In this work, we present a
novel error repair strategy called Analytic Program Repair
that uses supervised learning instead of manually crafted re-
pair models or matching against a corpus of correct code. Our
strategy is based on the key insight that similar errors have
similar repairs and realizes this insight by using a training
dataset of pairs of ill-typed programs and their fixed versions
to: (1) learn a collection of candidate repair templates by ab-
stracting and partitioning the edits made in the training set
into a representative set of templates; (2) predict the appro-
priate template from a given error, by training multi-class
classifiers on the repair templates used in the training set;
(3) synthesize a concrete repair from the template by enumer-
ating and ranking correct (e.g. well-typed) terms matching
the predicted template, thereby, generating a fix for a candi-
date program. Critically, we show how to perform the crucial
abstraction from a particular program to an abstract error by
representing programs via bag-of-abstracted-terms (BOAT)
i.e. as numeric vectors of syntactic and semantic features
[35]. This abstraction lets us train predictors over high-level
code features, i.e. to learn correlations between features that
cause errors and their corresponding repairs, allowing the
analytic approach to generalize beyond matching against
existing programs.

RrITE. We have implemented our approach in RITE: a type
error reporting tool for OCAML programs. We train (and
evaluate) RITE on a set of over 4,500 ill-typed OCAML pro-
grams drawn from two years of an introductory program-
ming course. Given a new ill-typed program, RITE generates
a list of potential solutions ranked by likelihood and an edit-
distance metric. We evaluate RITE in several ways. First, we
measure its accuracy: we show that RITE correctly predicts
the right repair template 69% of the time when considering
the top three templates and surpasses 80% when we consider
the top six. Second, we measure its efficiency: we show that
RITE is able to synthesize a concrete repair within 20 sec-
onds 70% of the time. Finally, we measure the quality of the
generated messages via a user study with 29 participants
and show that humans perceive both RITE’s edit locations
and final repair quality to be better than those produced

17

Georgios Sakkas, Madeline Endres, Benjamin Cosman, Westley Weimer, and Ranjit Jhala

by SEMINAL, a state-of-the-art OCaml repair tool [21] in a
statistically-significant manner.

2 Overview

We begin with an overview of our approach to suggesting
fixes for faulty programs by learning from the processes
novice programmers follow to fix errors in their programs.

1 let rec mulByDigit i 1 =

2 match 1 with

3 | [J -> []

4 | hd::tl -> (hd * i) @ mulByDigit i tl
1 let rec mulByDigit i 1 =

2 match 1 with

3 [[1] -> [1

4 | hd::tl -> [hd * i] @ mulByDigit i tl

Figure 1. (top) An ill-typed OCaML program that should
multiply each element of a list by an integer. (bottom) The
fixed version by the student.

The Problem. Consider the program mulByDigit shown
at the top of Figure 1, written by a student in an undergradu-
ate Programming course. The program is meant to multiply
all the numbers in a list with an integer digit. The student
accidentally misuses the list append operator (@), applying
it to a number and a list rather than two lists. Novice stu-
dents who are still building a mental model of how the type
checker works are often perplexed by the compiler’s error
message [26]. Hence a novice will often take a long time to
arrive at a suitable fix, such as the one shown at the bottom
of Figure 1, where @ is used with a singleton list containing
the multiplication of the head hd and i. Our goal is to use
historical data of how programmers have fixed similar errors
in their programs to automatically and rapidly guide novices
to come up with candidate solutions like the one above.

Solution: Analytic Program Repair. One approach is to
view the search for candidate repairs as a synthesis problem:
synthesize a (small) set of edits to the program that yields a
good (e.g. type-correct) one. The key challenge is to ensure
that synthesis is tractable by restricting the repairs to an
efficiently searchable space, and yet precise so the search
does not miss the right fixes for an erroneous program. In
this work, we present a novel strategy called Analytic Pro-
gram Repair which enables tractable and precise search by
decomposing the problem into three steps: First, learn a set
of widely used fix templates. Second, predict, for each er-
roneous program, the correct fix template to apply. Third,
synthesize candidate repairs from the predicted template. In
the remainder of this section, we give a high-level overview
of our approach by describing how to:

1. Represent fixes abstractly via fix templates (§ 2.1),

Type Error Feedback via Analytic Program Repair

2. Acquire a training set of labeled ill-typed programs
and fixes (§ 2.2),

3. Learn a small set of candidate fix templates by parti-
tioning the training set (§ 2.3),

4. Predict the appropriate template to apply by training
a multi-class classifier from the training set (§ 2.4), and

5. Synthesize fixes by enumerating and checking terms
from the predicted templates to give the programmer
localized feedback (§ 2.5).

2.1

Our notion of a fix is defined as a replacement of an existing
expression with a new candidate expression at a specific
program location. For example, the mulByDigit program is
fixed by replacing (hd * i) with the expression [hd * i]
on line 4. We focus on AST-level replacements as they are
compact yet expressive enough to represent fixes.

Representing Fixes

Generic Abstract Syntax Trees. We represent the differ-
ent possible candidate expressions via abstract fix templates
called Generic Abstract Syntax Trees (GAST) which each cor-
respond to many possible expressions. GASTs are obtained
from concrete ASTs in two steps. First, we abstract con-
crete variable, function, and operator names. Next, we prune
GASTs at a certain depth d to keep only the top-level changes
of the fix. Pruned sub-trees are replaced with holes, which
can represent any possible expression in our language.

Together, these steps ensure that GASTs only contain in-
formation about a fix’s structure rather than the specific
changes in variables and functions. For example, the fix
[hd * i] in the mulByDigit example is represented by the
GAST of the expression [_ @ _J, where variables hd and i
are abstracted into holes (e.g. by pruning the GAST at a depth
d = 2) and * is represented by an abstract binary operator &.
Our approach is similar to that of Lerner et al. [21], where
AST-level modifications are used, however, our proposed
GASTs represent more abstract fix schemas.

2.2 Acquiring a Fix-Labeled Training Set

Previous work has used experts to create a set of ill-typed
programs and their fixed versions [21, 22], or to manually
create fix templates [16] that can yield repair patches [24, 25].
These approaches are hard to scale up to yield datasets suit-
able for machine learning. Also, they do not discover the
frequency in practice of particular classes of novice mistakes
and their fixes. In contrast, we show that such fix templates
can be learned from a large, automatically constructed train-
ing set of ill-typed programs labeled with their repairs. Fixes
in our dataset are represented as the ASTs of the expressions
that students changed in the ill-typed program to transform
it into the correct solution.

Interaction Traces. Following [37], we extract a labeled
dataset of erroneous programs and their fixed versions from
interaction traces. Usually students write several versions of

18

PLDI ’20, June 15-20, 2020, London, UK

their programs until they reach the correct solution for a
programming assignment. An instrumented compiler is used
to capture such sequences (or traces) of student programs.
The first type-correct solution in this sequence of attempts
is considered to be the fixed version of all the previous ones
and thus a pair for each of them is added to the dataset. For
each program pair, we then produce a diff of their abstract
syntax trees (ASTs), and assign as the dataset’s fix labels
the smallest sub-tree that changed between the correct and
ill-typed attempt of the program.

2.3 Learning Candidate Fix Templates

Each labeled program in our dataset contains a fix, which we
abstract to a fix template. For example, for the mulByDigit
program in Figure 1 we get the candidate fix [hd * i] and
hence the fix template [_ & _]. However, a large dataset
of fix-labeled programs, which may include many diverse
solutions, can introduce a huge set of fix templates, which
can be inappropriate for predicting the correct one to be
used for the final program repair.

Therefore, the next step in our approach is to learn a set
of fix templates that is small enough to automatically predict
which template to apply to a given erroneous program, but
nevertheless covers most of the fixes that arise in practice.

Partitioning the Fixes. We learn a suitable small set of
fix templates by partitioning all the templates obtained from
our dataset, and then selecting a single GAST to represent
the fix templates from each fix template set. The partitioning
serves two purposes. First, it identifies a small set of the most
common fix templates which then enables the use of discrete
classification algorithms to predict which template to ap-
ply to a new program. Second, it allows for the principled
removal of outliers that arise because student submissions
often contain non-standard or idiosyncratic solutions that
we do not wish to use for suggesting fixes.

Unlike previous repair approaches that have used cluster-
ing to group together similar programs (e.g., [11, 42]), we
partition our set of fix templates into their equivalence classes
based on a fix similarity relation.

2.4 Predicting Templates via Multi-classification

Next, we train models that can correctly predict error loca-
tions and fix templates for a given ill-typed program. We
use these models to generate candidate expressions as pos-
sible program fixes. To reduce the complexity of predicting
the correct fix templates and error locations, we separate
these problems and encode them into two distinct supervised
classification problems.

Supervised Multi-Class Classification. We propose us-
ing a supervised multi-class classification problem for predict-
ing fix templates. A supervised learning problem is one where,
given a labeled training set, the task is to learn a function

PLDI 20, June 15-20, 2020, London, UK

that accurately maps the inputs to output labels and general-
izes to future inputs. In a classification problem, the function
we are trying to learn maps inputs to a discrete set of two or
more output labels, called classes. Therefore, we encode the
task of learning a function that will map subexpressions of
ill-typed programs to a small set of candidate fix templates
as a multi-class classification (MCC) problem.

Feature Extraction. The machine learning models that
we will train to solve our MCC problem expect datasets
of labeled fixed-length vectors as inputs. Therefore, we de-
fine a transformation of fix-labeled programs to fixed-length
vectors. Similarly to Seidel et al. [37], we define a set of
feature extraction functions fi, ..., f,;, that map program
subexpressions to a numeric value (or just {0, 1} to encode a
boolean property). Given a set of feature extraction functions,
we can represent a single program’s AST as a set of fixed-
length vectors by decomposing the AST e into a set of its
constituent subexpressions {ey, . .., e, } and then represent-
ing each e; with the n-dimensional vector [fi(e;), ..., fu(e)].
This method is known as a bag-of-abstracted-terms (BOAT)
representation in previous work [37].

Predicting Templates via MCC. Our fix-labeled dataset
can be updated so the labels represent the corresponding
template that fixes each location, drawn from the minimal
set of fix templates that were acquired through partitioning.
We then train a Deep Neural Network (DNN) classifier on the
updated template-labeled data set.

Neural networks have the advantage of associating each
class with a confidence score that can be interpreted as the
model’s probability of each class being correct for a given
input according to the model’s estimated distribution. There-
fore, confidence scores can be used to rank fix template
predictions for new programs and use them in descending
order when synthesizing repairs. Exploiting recent advances
in machine learning, we use deep and dense architectures
[34] for more accurate fix template predictions.

Error Localization. We view the problem of finding error
locations in a new program as a binary classification problem.
In contrast with the template prediction problem, we want
to learn a function that maps a program’s subexpressions
to a binary output representing the presence of an error or
not. Therefore, this problem is equivalent to MCC with only
two classes and thus, we use similar deep architectures of
neural networks. For each expression in a given program,
the learned model outputs a confidence score representing
how likely it is an error location that needs to be fixed. We
exploit those scores to synthesize candidate expressions for
each location in descending order of confidence.

2.5 Synthesizing Feedback from Templates

Next, we use classic program synthesis techniques to syn-
thesize candidate expressions that will be used to provide

19

Georgios Sakkas, Madeline Endres, Benjamin Cosman, Westley Weimer, and Ranjit Jhala

feedback to users. Additionally, synthesis is guided by pre-
dicted fix templates and a set of possible error locations, and
returns a ranked list of minimal repairs to users as feedback.

Program Synthesis. Given a set of locations and candi-
date templates for those locations, we are trying to solve a
problem of program synthesis. For each program location, we
search over all possible expressions in the language’s gram-
mar for a small set of candidate expressions that match the
fix template and make the program type-check. Expressions
from the ill-typed program are also used during synthesis to
prune the search space of candidate expressions.

Synthesis for Multiple Locations. 1t is often the case
that more than one location needs to be fixed. Therefore, we
do not only consider the ordered set of single error locations
for synthesis, but rather its power set. For simplicity, we
consider fixing different program locations as independent;
the probability we assign that a set of locations needs to be
fixed is thus the product of their individual confidence scores.
This is unlike recent approaches to multi-hunk program
repair [33] where modifications depend on each other.

Ranking Fixes. Finally, we rank each solution by two
metrics, the tree-edit distance and the string-edit distance.
Previous work [11, 21, 42] has used such metrics to consider
minimal changes, i.e. changes that are as close as possible to
the original programs, so novice programmers are presented
with more coherent feedback.

1 let rec mulByDigit i 1 =

2 match 1 with

3 | [] -> []

4 | hd::tl -> [0 * v2] @ mulByDigit i tl

Figure 2. A candidate repair for the mulByDigit program.

Example. We see in Figure 2 a minimal repair that our
method could return ([v; * v,] in line 4) using the template
discussed in § 2.3 to synthesize it. While this solution is not
the highest-ranked that our implementation returns (which
would be identical to the human solution), it demonstrates
relevant aspects of the synthesizer. In particular, this solution
has some abstracted variables, v; and v,. Our algorithm sug-
gests to the user that they can replace the two variables with
two distinct variables and insert the whole expression into a
list, in order to obtain the correct program. We hypothesize
that such solutions produced by our algorithm can provide
valuable feedback to novices, and we investigate that claim
empirically in § 6.3.

3 Learning Fix Templates

We start by introducing our approach for extracting useful
fix templates from a training dataset comprised of paired
erroneous and fixed programs. We express those templates

Type Error Feedback via Analytic Program Repair

x| Ax.e | eé | letx=eine
n|b|e+e]| ifetheneelsee
{e,e) | matchewith (x,x) > e

— e
| [] | ex=e| matchewith{[]
xux—oe
n = 0,1,-1,...
b == true | false

a | bool | int | t >t | txt | [t]

Figure 3. Syntax of AML

_ | x| Axe | xé | letx=eine
n|ede | ifetheneelsee
(e,e) | matchewith (X,x) > e

[]—e

Xux—e

| []] e=e| matchewith{

Figure 4. Syntax of ARTL

in terms of a language that allows us to succinctly represent
fixes in a way that captures the essential structure of various
fix patterns that novices use in practice. However, extracting
a single fix template for each fix in the program pair dataset
yields too many templates to perform accurate predictions.
Hence, we define a similarity relation between templates,
which we use to partition the extracted templates into a small
but representative set, that will make it easier to train precise
models to predict fixes.

3.1 Representing User Fixes

Repair Template Language. Figure 4 describes our Re-
pair Template Language, ARTL which is a lambda calculus
with integers, booleans, pairs, and lists, that extends our
core ML language AM! (Figure 3) with syntactic abstraction
forms:

1. Abstract variable names x are used to denote variable
occurrences for functions, variables and binders, i.e. X
denotes an unknown variable name in ARTL;

2. Abstract literal values fi can represent any integer, float,
boolean, character, or string;

3. Abstract operators @ similarly denote unknown unary
or binary operators;

4. Wildcard expressions _ are used to represent any ex-
pression in ARTL e a program hole.

Recall from § 2.1 that we define fixes as replacements
of expressions with new candidate expressions at specific
program locations. Therefore, we use candidate expressions
over ARTL to represent fix templates.

Generalizing ASTs. A Generic Abstract Syntax Tree (GAST)
is a term from ARTL that represents many possible expres-
sions from AME, GASTs are abstracted from standard ASTs
over the core language AML using the abstract function that

PLDI ’20, June 15-20, 2020, London, UK

(b) Template GAST

-
& ©®
OO

(a) Fix AST

Figure 5. (left) The fix from example Figure 1 and (right) a
possible template for that fix.

takes as input an expression eM’ over AMX and a depth d
and returns an expression eRTL gyer ARTL j e a GAST with
all variables, literals and operators of eML abstracted and all
subexpressions starting at depth greater than d pruned and
replaced with holes _.

Example. Recall our example program mulByDigit in
Figure 1. The expression [hd * i] replaces (hd * i) in
line 4, and hence, is the user’s fix, whose AST is given in Fig-
ure 5a. The output of abstract, given this AST and a depth
d = 2 as input, would be the GAST in Figure 5b, where the
operator * has been replaced with an abstract operator @,
and the sub-terms hd and i at depth 2 have been abstracted
to wildcard expressions _. Hence, the ARTX term [_ @ _]
represents a potential fix template for mulByDigit.

3.2 Extracting Fix Templates from a Dataset

Our approach fully automates the extraction of fixes by har-
vesting a set of fix templates from a training set of program
pairs. Given a program pair (pe,r, prix) from the dataset, we
extract a unique fix for each location in p,,, that changed in
Prix- We do so with an expression-level diff [20] function.
Recall that our fixes are replacements of expressions, so we
abstract these extracted changes as our fix templates.

Contextual Repairs. Following Felleisen et al. [8], let C
be the context in which an expression e appears in a program
p, i.e. the program p with e replaced by a hole _. We write
that p = C[e], meaning that if we fill the hole with the
original expression e we obtain the original program p. In this
fashion, diff finds a minimal (in number of nodes) expression
replacement ef;, for an expression eg,r in perr, such that
Perr = Cp,,,[€err] and Cp,, [erix] = prix. There may be
several such expressions, and diff returns all such changes.

Examples. If f x is rewritten to g x, the contextis C = _x
and the fix is g, since C[g] = g x. If f x is rewritten to
(f x) + 1, the context is C = _, and the fix is the whole
expression (f x) + 1, thus C[(f x) + 1] = (f x) + 1. (Even
though f x appears in both the original and fixed programs,
we consider the application expression f x — but not f or x
— to be replaced with the + operator.)

PLDI 20, June 15-20, 2020, London, UK

3.3 Partitioning the Templates

Programs over AME force similar fixes, such as changes to
variable names, to have identical GASTs. Our next step is
to define a notion of program fix similarity. Our definition
supports the formation of a small but widely-applicable set of
fix templates. This small set is used to train a repair predictor.

GAST Similarity. Two GASTs are similar when the root
nodes are the same and their child subtrees (if any) can be
ordered such that they are pairwise similar. For example,
x+3 and 7 —y yield the similar GASTs X ®7 and n® x, where
the root nodes are both abstract binary operators, one child
is an abstract literal, and one child is an abstract variable.

Partitioning. GAST similarity defines a relation which is
reflexive, symmetric, and transitive and thus an equivalence
relation. We can now define partitioning as the computation
of all possible equivalence classes of our extracted fix tem-
plates w.r.t. GAST similarity. Each class can consist of several
member-expressions and any one of them can be viewed as
the class representative. Each representative can then be used
as a fix template to produce repairs for ill-typed programs.

For example, X®7 and fi@x are in the same class and either
one can be used as the representative. The repair algorithm
in section 5 will essentially consider both when fixing an
erroneous program with this template.

Finally, our partitioning algorithm returns the top N equiv-
alence classes based on their member-expressions frequency
in the dataset. N is a parameter of the algorithm and is chosen
to be as small as possible while the top N classes represent
a large enough portion of the dataset.

4 Predicting Fix Templates

Given a candidate set of templates, our next task is to train
a model that, when given an (erroneous) program, can pre-
dict which template to use for each location in that program.
We do so by defining a function predict which takes as in-
put (1) a feature extraction function Features, (2) a dataset
DataSet of program pairs (perr, prix), and (3) a list of fix tem-
plates T. It returns as output a fix-template-predictor which,
given an erroneous program, returns the locations of likely
fixes, and the templates to be applied at those locations.

We build predict using three helper functions that carry
out each of the high-level steps. First, the extract function
extracts features and labels from the program pair dataset.
Next, these feature vectors are grouped and fed into train
which produces two models, LModel and TModel, that are
respectively used for error localization and predicting fix
templates. Finally, rank takes the features for a new (erro-
neous) program and queries the trained models to return the
likely fix locations and corresponding fix templates.

Next, we describe the key data-types in Figure 6, our im-
plementations of the three key steps, and how they are com-
bined to yield the predict algorithm.

21

Georgios Sakkas, Madeline Endres, Benjamin Cosman, Westley Weimer, and Ranjit Jhala

Confidences, Data and Labels. As shown in Figure 6,
we define EMap a as a mapping from expressions e to values
of type a, and TMap a as a mapping from templates T to such
values. For example, TMap C is a mapping from templates
T to their confidence scores C. Data represents feature vec-
tors used to train our predictive models, while Label B are
the dataset labels for training and Label C are the output
confidence scores. Finally, Pair is a program pair (perr, prix)-

Features and Predictors. We define Features as a func-
tion that generates the feature vectors Data for each subex-
pression of an input program e. Those feature vectors are
given in the form of a map EMap Data, which maps all
subexpressions of the input program e to its feature vector
Data.

Predictors are learned fix-template-predictors returned
from our algorithm that are used to generate confidence score
mappings for input programs e. Specifically, they return a
map EMap (Label C) that associates each subexpression of
the input program e with a confidence score Label C.

Architecture. First, the extract function takes as input
the feature extraction functions Features, a list of templates
[T] and a single program pair Pair and generates a map
EMap (Data X Label 8B) of feature vectors and boolean la-
bels for all subexpressions of the erroneous input program
from Pair. All feature vectors Data and labels Label 8 are
then accumulated into one list, which is given as input to
train and are used for training the two models LModel and
TModel that are respectively used for predicting error loca-
tions and fix templates. Next, the two trained models LModel
and TModel, along with Data from a new and previously
unseen program, can be fed into rank. This produces a
Predictor, which can be used to map subexpressions of the
new program to possible error locations and fix templates.

4.1 Feature and Label Extraction

The machine learning algorithms that we use for predicting
fix templates and error locations expect fixed-length fea-
ture vectors Data as their input. However, we want to repair
variable-sized programs over AML. We thus use the extract
function to convert programs to feature vectors.

Following Seidel et al. [37], we choose to model a program
as a set of feature vectors, where each element corresponds
to a subexpression in the program. Thus, given an erroneous
program p.,, we first split it into its constituent subexpres-
sions and then transform each subexpression into a single
feature vector, i.e. Features pe,, :: EMap Data. We only con-
sider expressions inside a minimal type-error slice. We show
here the five major feature categories used.

Local syntactic features. These features describe the
syntactic category of each expression e. In other words, for
each production rule of e in Figure 3 we introduce a feature

Type Error Feedback via Analytic Program Repair

C = {reR|0<r<1}

B = {beR|b=0Vb=1}
T = eRTL

EMap a = e—a

TMap a = T—a

Data = [C]

Label a = axXTMapa

Pair = eXe

DataSet = [Pair]

Features = e — EMap Data

Predictor = e — EMap (Label C)
abstract e—T
diff Pair — [e]
extract Features — [T] — Pair
— EMap (Data X Label B)
train [Data x Label 8] — LModel x TModel
rank LModel — TModel — Data — Label C
predict Features — [T] — DataSet — Predictor

Figure 6. A high-level API for converting program pairs to
feature vectors and template labels.

that is enabled (set to 1) if the expression was built with that
production, and disabled (set to 0) otherwise.

Contextual syntactic features. The context in which an
expression occurs can be critical for correctly predicting er-
ror sources and fix templates. Therefore, we include contex-
tual features, which are similar to the local syntactic features
but describe the parent and children of an expression. For
example, the Is-[]-C1 feature would describe whether an
expression’s first child is []. This is similar to the n-grams
used in linguistic models [9, 15].

Expression size. We also include a feature representing
the size of each expression, i.e. how many subexpressions
does it contain? This allows the model to learn that, e.g.,
expressions closer to the leaves are more likely to be fixed
than expressions closer to the root.

Typing features. The programs we are trying to repair
are untypeable, but a partial typing derivation from the type
checker could still provide useful information to the model.
Therefore, we include typing features in our representation.
Due to the parametric type constructors - — -, - X -, and
[-], there is an infinite set of possible types — but we must
have a finite set of features. We add features for each abstract
type constructor that describes whether a given type uses
that constructor. For example, the type int — int — bool
would enable the - — -, int, and bool features.

We add these features for parent and child expressions to
summarize the context, but also for the current expression,
as the type of an expression is not always clear syntactically.

22

PLDI ’20, June 15-20, 2020, London, UK

Type error slice. We wish to distinguish changes that
could fix the error from changes that cannot possibly fix
the error. Thus, we compute a minimal type-error slice (e.g.
[12, 40]) for the program (i.e. the set of expressions that
contribute to the error) and if the program contains multiple
type-errors, we compute a minimal slice for each error. We
then have a post-processing step that discards all expressions
that are not included in those slices.

Labels. Recall that we use two predictive models, LModel
for error localization and TModel for predicting fix templates.
We thus require two sets of labels associated with each fea-
ture vector, given by Label 8. LModel is trained using the set
[Data x 8], while TModel using the set [Data X TMap B].

LModel’s labels of type B are set to “true” for each subex-
pression of a program pe,r that changed in ps;,. A label
TMap B, for a subexpression of p.,», maps to the repair
template T that was used to fix it. TMap 8B associates all
subexpressions with a fixed number of templates [T] given
as input to extract. Therefore, for the purpose of template
prediction, TMap B can be viewed as a fixed-length boolean
vector that represents the fix templates used to repair each
subexpression. This vector has at most one slot set to “true”,
representing the template used to fix p.,». These labels are
extracted using diff and abstract, similarly to the way that
templates were extracted in § 3.2.

4.2 Training Predictive Models

Our goal with the train function is to train two separate
classifiers given a training set [Data X Label 8] of labeled ex-
amples. LModel predicts error locations and TModel predicts
fix templates for a new input program pe,,. Critically, we re-
quire that the error localization classifier output a confidence
score C that represents the probability that a subexpression
is the error that needs to be fixed. We also require that the
fix template classifier output a confidence score C for each
fix template that measures how sure the classifier is that the
template can be used to repair the associated location of the
input program pe,,.

We consider a standard learning algorithm to generate our
models: neural networks. A thorough introduction to neural
networks is beyond the scope of this work [13, 28].

Neural Networks. The model that we use is a type of
neural network called a multi-layer perceptron. A multi-layer
perceptron can be represented as a directed acyclic graph
whose nodes are arranged in layers that are fully connected
by weighted edges. The first layer corresponds to the input
features, and the final to the output. The output of an internal
node is the sum of the weighted outputs of the previous layer
passed to a non-linear function, called the activation function.
The number of layers, the number of nodes per layer, and
the connections between layers constitute the architecture of
a neural network. In this work, we use relatively deep neural
networks (DNN). We can train a DNN LModel as a binary

PLDI 20, June 15-20, 2020, London, UK

Algorithm 1 Predicting Templates Algorithm

Input: Feature Extraction Functions F, Fix Templates T,
Program Pair Dataset D
Output: Predictor Pr
1: procedure PReDICT(F, Ts, D)

2: Dyp «— 0

3 for all perr X prix € D do

4: d < EXTRACT(F, TS, perr X Prix)
5 Dy, < Dy U INSLICE(perr, d)

Models « TRAIN(Dyp)

Data < Ap. INSLICE(p, EXTRACT(F, Ts, p X p))
Pr « Ap. Mar(Ap. RaNk(Models, p[0]), Data(p))
return Pr

Y ®

classifier, which will predict whether a location in a program
Perr has to be fixed or not.

Multi-class DNNs. While the above model is enough for
error localization, in the case of template prediction we have
to select from more than two classes. We again use a DNN for
our template prediction TModel, but we adjust the output
layer to have N nodes for the N chosen template-classes.
For multi-class classification problems solved with neural
networks, usually a softmax function is used at output layer
[5, 10]. Softmax assigns probabilities to each class that must
add up to 1. This additional constraint speeds up training.

4.3 Predicting Fix Templates

Our ultimate goal is to be able to pinpoint what parts of an er-
roneous program should be repaired and what fix templates

should be used for that purpose. Therefore, the predict

function uses rank to predict all subexpressions’ confidence

scores C to be an error location and confidence scores TMap C
for each fix template. We show here how all the functions in

our high-level APIin Figure 6 are combined to produce a final

list of confidence scores for a new program p. Algorithm 1

presents our high-level predict algorithm.

The Prediction Algorithm. Our algorithm first extracts
the machine-learning-amenable dataset Dy from the pro-
gram pairs dataset D. For each program pair in D, EXTRACT
returns a mapping from the erroneous program’s subexpres-
sions to features and labels. Then, INSLICE keeps only the
expressions in the the type-error slice and evaluates to a list
of the respective feature and label vectors, which is added to
the Dy dataset. This dataset is used by the TRAIN function
to generate our predictive Models, i.e. LModel and TModel.

At this point we want to generate a Predictor for a new
unknown program p. We perform feature extraction for p
with EXTRACT, and use INSLICE to restrict to expressions in
p’s type-error slice. The result is given by Data(p).

RANK is then applied to all subexpressions produced by
Data(p) with Map, which will create a mapping of the type
EMap (Label C) associating expressions with confidence

23

Georgios Sakkas, Madeline Endres, Benjamin Cosman, Westley Weimer, and Ranjit Jhala

scores. We apply RANK to each feature vector that corre-
sponds to an expression in the type-error slice of p. These
vectors are the first elements of p € Data(p), which are of
type Data x Label 8. Finally, Predictor Pr is returned, which
is used by our synthesis algorithm in section 5 to correlate
subexpressions in p with their confidence scores.

4.4 Discussion

An alternative to the two separate predictive models, LModel
and TModel, would be to have one joint model to predict
both error locations and fix templates. One could simply
add an “empty” fix template to the set of the N extracted
templates. Then, a multi-class DNN could be trained on the
dataset, using N + 1 classes instead. When the “empty” fix
template is predicted, it denotes no error at that location,
while the rest of the classes denote an error along with the fix
template to be used. While the approach of one joint model
is quite intuitive, we found in our early experiments that it
does not produce as accurate predictions as the two separate
models.

Learning representations is a remarkable strength of DNNZs,
so manually extracting features is usually discouraged. Re-
cently, there has been some work in learning program repre-
sentations for use in predictive models [2, 4]. However, we
found that the BOAT features are essential for high accu-
racy (see subsection 6.1) given the relatively small size of our
dataset, similarly to previous work [37]. In future work, how-
ever, it would be interesting to learn features automatically
and avoid the step of manually extracting them.

5 Template-Guided Repair Synthesis

We use program synthesis to fully repair a program using
predicted fix templates and locations from our machine learn-
ing models. We present in § 5.1 a synthesis algorithm for
producing local repairs for a given program location. In § 5.2,
we show how we use local repairs to repair programs that
may have multiple error locations.

5.1 Local Synthesis from Templates

Enumerative Program Synthesis. We utilize classic enu-
merative program synthesis that is guided by a fix template.
Enumerative synthesis searches all possible expressions over
a language until a high-level specification is reached. In our
case, we initially synthesize independent local repairs for a
program that already captures the user’s intent. Therefore,
the required specification is that the repaired program is
type-safe. However, if the users provide type signatures for
their programs, they can be used as a stricter specification.

Given a location /, a template ¢ and a maximum depth d,
Algorithm 2 searches over all possible expressions over AM~
that will satisfy those goals by generating a local repair that
fills t’s GAST with concrete variables, literals, functions etc.

Type Error Feedback via Analytic Program Repair

Algorithm 2 Local Repair Algorithm

Input: Language Grammar AML Program P, Template T,
Repair Location L, Max Repair Depth D
Output: Local Repairs R
1: procedure RepalR(AML, P, T, L, D)
2: R« 10
3 foralld € [1...D] do
4 & < NoNTERMINALSAT(T, d)
5 for all « € RANKNONTERMINALS(Q, P, L) do
6: if IsHoLE(«) then
7 Q « GrRaMMARRULES(AML)
8 B—A{pI|(a p)€Q}
9 for all § € RankRuLEes(f, T) do

10: T « AppLYRULE(T, (a, f))

11: R — RU{T}

12: else

13: for all o € GETTERMINALS(P, L, AML) do
14: T — RepLACENODE(T, a, o)

15: R« RU{T}

16: return R

Our technique can also reuse subexpressions e at location [
for t’s concretization to further optimize the search.

Template-Guided Local Repair. Using the REPAIR method
(Algorithm 2), we produce local repairs R for a given loca-
tion L of an erroneous program P. REPAIR fills in a template
T based on the context-free grammar AML. It traverses the
GAST of template T from root node downward, producing
candidate local repairs of maximum depth D.

When a hole « € T is found, the algorithm expands T’s
GAST one more level using AM%’s production rules Q. The
production rules are considered in a ranked order based on
the subexpressions that already appear in the rest of the
template T and program location L. Each rule is then applied
to template T, returning an instantiated template T, which
is inserted into the list of candidate local repairs R.

If node « is not a hole, terminals from the subexpressions
at location L, the program P in general and the grammar
ML are used to concretize that node, depending on the ARTL
terminal node a. For each of these template T modifications,
we insert an instantiated template T into R.

5.2 Ranking Error Locations

Error Location Confidence. Recall from section 4 that
for each subexpression in a program’s type-error slice, LModel
generates a confidence score C for it being the error location,
and TModel generates scores for the fix templates.

Our synthesis algorithm ranks all program locations based
on their confidence scores C. For all locations in descending
confidence score order, a fix template is used to produce a
local repair using Algorithm 2. Fix templates are considered
in descending order of confidence. Then expressions from the

24

PLDI ’20, June 15-20, 2020, London, UK

returned list of local repairs R replace the expression at the
given program location. The procedure tries the remaining
repairs, templates, and locations until a type-correct program
is found.

Following [21], we allow our final local repairs to have pro-
gram holes _ or abstracted variable x in them. However, Al-
gorithm 2 will prioritize the synthesis of complete solutions.
Abstract ARTL terms can have any type when type-checking
concrete solutions, similarly to OCaML’s raise Exn.

Multiple Error Locations. In practice, frequently more
than one program location needs to be repaired. We thus
extend the above approach to fix programs with multiple
errors. Let the confidence scores C for all locations L in the
type error slice from our error localization model LModel
be (I1,¢1), - .., (Ix, ck), where [; is a program location and c¢;
its error confidence score. We assume for simplicity that the
probabilities c; are independent. Thus the probability that all
the locations {/; . .. [;} need to be fixed is the product ¢; - - - ¢;.
Therefore, instead of ranking and trying to find fixes for sin-
gle locations I, we use sets of locations ({;}, {l;, [; }, {li, [;, lx },
etc.), ranked by the products of their confidence scores. For
a given set, we use Algorithm 2 independently for each loca-
tion in the set and apply all possible combinations of local
repairs, looking again for a type-correct solution.

6 Evaluation

We have implemented analytic program repair in RITE: a
system for repairing type errors for a purely functional subset
of OCamMmL. Next, we describe our implementation and an
evaluation that addresses three questions:

e RQ1: How accurate are RITE’s predicted repairs? (§ 6.1)
e RQ2: How efficiently can RITE synthesize fixes? (§ 6.2)
e RQ3: How useful are RITE’s error messages? (§ 6.3)
e RQ4: How precise are RITE’s template fixes? (§ 6.4)

Training Dataset. For our evaluation, we use an OCAML
dataset gathered from an undergraduate Programming Lan-
guages university course, previously used in related work
[35, 37]. It consists of erroneous programs and their subse-
quent fixes and is divided in two parts; the Spring 2014 class
(SP14) and the Fall 2015 class (FA15). The homework required
students to write 23 distinct programs that demonstrate a
range of functional programming idioms, e.g. higher-order
functions and (polymorphic) algebraic data types.

Feature Extraction. RITE represents programs with BOAT
vectors of 449 features from each expression in a program:
45 local syntactic, 315 contextual, 88 typing features, and
1 expression size feature. For contextual features, for each
expression we extract the local syntactic features of its first 4
(left-to-right) children. In addition, we extract those features
for its ancestors, starting from its parent and going up to two
more parent nodes. For typing features, we support ints,

PLDI 20, June 15-20, 2020, London, UK

floats, chars, strings, and the user-defined expr. These
features are extracted for each expression and its context.

Dataset Cleaning. We extract fixes as expressions re-
placements over a program pair using diff. A disadvantage
of using diffs with this dataset is that some students may
have made many, potentially unrelated, changes between
compilations; at some point the “fix” becomes a “rewrite”.
These rewrites can lead to meaningless fix templates and
error locations. We discard such outliers when the fraction
of subexpressions that have changed in a program is more
than one standard deviation above the mean, establishing a
diff threshold of 40%. We also discard programs that have
changes in 5 or more locations, noting that even state-of-the-
art multi-location repair techniques cannot reproduce such
“fixes” [33]. The discarded changes account for roughly 32%
of each dataset, leaving 2,475 program pairs for SP14 and
2,177 pairs for FA15. Throughout, we use SP14 as a training
set and FA15 as a test set.

DNN based Classifier. RITE’s template prediction uses a
multi-layer neural network DNN based classifier with three
fully-connected hidden layers of 512 neurons. The neurons
use rectified linear units (ReLU) as their activation function
[27]. The DNN was trained using early stopping [13]: training
is stopped when the accuracy on a distinct small part of the
training set is not improved after a certain amount of epochs
(5 epochs, in our implementation). We set the maximum
number of epochs to 200. We used the ApaM optimizer [17],
a variant of stochastic gradient descent that converges faster.

6.1 RQ1: Accuracy

Most developers will consider around five or six suggestions
before falling back to manual debugging [18, 29]. Therefore,
we consider RITE’s accuracy up to the top six fix template pre-
dictions, i.e. we check if any of the top-N predicted templates
actually correspond to the users’s edit. These predicted tem-
plates are not shown to the user; they are only used to guide
the synthesis of concrete repairs which are then presented
to the user.

Baselines. We compare RiTE’s DNN-based predictor against
two baseline classifiers: a RanpowM classifier that returns tem-
plates chosen uniformly at random from the 50 templates
learned from the SP14 training dataset, and a POPULAR clas-
sifier that returns the most popular templates in the training
set in decreasing order. We also compare to a decision tree
(DTREE) and an SVM classifier trained on the SP14 data, since
these are two of the most common learning algorithms [13].

Results: Accuracy of Prediction. Figure 7 shows the ac-
curacy results of our template prediction experiments. The y-
axis describes the fraction of erroneous sub-terms (locations)
for which the actual repair was one of the top-K predicted
repairs. The naive baseline of selecting templates at random

25

Georgios Sakkas, Madeline Endres, Benjamin Cosman, Westley Weimer, and Ranjit Jhala

100 %
907 | | Top-6
80 % O Top-3
70 %] Top-1 -

—
50 %
0 [
30 %
20 %
10 % 5
0%

Ranpom PorurLArR DTREE

Accuracy

SVM DNN

Figure 7. Results of our template prediction classifiers using
the 50 most popular templates. We present the results up to
the top 6 predictions, since our synthesis algorithm considers
that many templates before falling to a different location.

achieves 2% Top-1 accuracy (12% Top-6), while the Popu-
LAR classifier achieves a Top-1 accuracy of 14% (41% Top-6).
Our DNN classifier significantly outperforms these naive
classifiers, ranging from 45% Top-1 accuracy to 80% Top-6
accuracy. In fact, even with only DNN’s first prediction one
outperforms top 6 predictions of both RaANpoM and PoPULAR.
The RanDpoM classifier’s low performance is as expected. The
PopruLAR classifier performs better: some homework assign-
ments were shared between SP14 and FA15 quarters and,
while different groups of students solved these problems for
each quarter, the novice mistakes that they made seem to
have a pattern. Thus, the most popular “fixes” (and therefore
the relevant templates) from SP14 were also popular in FA15.

We also observe that DTREE achieves a Top-1 accuracy
close to that of DNN’s (i.e. 44% vs. 45%) but fails to improve
with more predictions (i.e. with Top-6, 55% vs. 80%). On the
other hand, the SVM does poorly on the Top-1 accuracy (i.e.
30% vs. 45%) but does significantly better with more predic-
tions (i.e. with Top-6, 72% vs. 80%). Therefore, we observe
that more sophisticated learning algorithms can actually
learn patterns from a corpus of fixed programs, with DNN
classifiers achieving the best performance in each category.

Results: Template “Confusion”. The confusion matrix
of the each location’s top prediction shows which templates
our models mix up. Figure 8 shows this matrix for the top 30
templates acquired from the SP14 training set and were tested
on the FA15 dataset. Note that most templates are predicted
correctly and only a few of them are often mis-predicted for
another template. For example, we see that programs that
require template 20 (let Z = match f with (%, §) — d@in)
to be fixed, almost always are mis-predicted with template 11
(let (%, §) =t in (_, _)). We observe that these templates
are still very similar, with both of them having a top-level
let that manipulates tuples £.

Type Error Feedback via Analytic Program Repair

Figure 8. The confusion matrix of the top 30 templates.
Bolder parts of the heatmap show templates that are of-
ten mis-predicted with another template. The bolder the
diagonal is, the more accurate predictions we make.

PLDI ’20, June 15-20, 2020, London, UK

Repair Rate (%)

0 T T T T T T T T
0 10 20 30 40 50 60 70 80 90

Synthesis Time (sec.)

Figure 9. The proportion of the test set that can be repaired
within a given time.

RITE can generate type-correct repairs for the vast ma-
jority of ill-typed programs in under 20 seconds.

RITE learns correlations between program features and
repair templates, yielding almost 2x higher accuracy
than the naive baselines and 8% more than the other
sophisticated learning algorithms. By abstracting pro-
grams into features, RITE is able to generalize across
years and different kinds of programs.

6.2 RQ2: Efficiency

Next we evaluate RITE’s efficiency by measuring how many
programs it is able to generate a (well-typed) repair for. We
limit the synthesizer to 90 seconds. (In general the procedure
is undecidable, and we conjecture that a longer timeout will
diminish the practical usability for novices.) Recall that the
repair synthesis algorithm is guided by the repair template
predictions. We evaluate the efficiency of RiTE by comparing
it against a baseline NAIVE implementation that, given the
predicted fix location, attempts to synthesize a repair from
the trivial “hole” template.

Figure 9 shows the cumulative distribution function of
RITE’s and NAIVE’s repair rates over their synthesis time.
We observe that using the predicted templates for synthesis
allows RITE to generate type-correct repairs for almost 70% of
the programs in under 20 seconds, which is nearly 12 points
higher than the NAIVE baseline. We also observe that RiTE
successfully repairs around 10% more programs than NAIVE
for times greater than 20 seconds. While the NAIVE approach
is still able to synthesize well-typed repairs relatively quickly,
we will see that these repairs are of much lower quality than
those generated from the predicted templates (§ 6.4).

26

6.3 RQ3: Usefulness

The primary outcome is whether the repair-based error mes-
sages generated by RITE were actually useful to novices. To
assess the quality of RITE’s repairs, we conducted an on-
line human study with 29 participants. Each participant was
asked to evaluate the quality of the program fixes and their
locations against a state-of-the-art baseline (SEMINAL [21]).
For each program, beyond the two repairs, participants were
presented with the original ill-typed program, along with
the standard OCAML compiler’s error message and a short
description of what the original author of the program in-
tended it to do. From this study, we found that both the edit
locations and final repairs produced by RITE were better than
SEMINAL’s in a statistically significant manner.

User Study Setup. Study participants were recruited from
two public research institutes (University of California, San
Diego and University of Michigan), and from advertisement
on Twitter. Participants had to assess the quality of, and
give comprehensible bug descriptions for, at least 5 / 10
stimuli. The study took around 25 minutes to complete. Par-
ticipants were compensated by entering a drawing for an
Amazon Echo voice assistant. There were 29 valid partici-
pants. We created the stimuli by randomly selecting a corpus
of 21 buggy programs from the 1834 programs in our dataset
where repairs were synthesized. From this corpus, each par-
ticipant was shown 10 randomly-selected buggy programs,
and two candidate repairs: one generated by RITE and one by
SEMINAL. For both algorithms, we used the highest-ranked
solution returned. Participant were always unaware which
tool generated which candidate patch. Participants were
then asked to assess the quality of each candidate repair

PLDI 20, June 15-20, 2020, London, UK

on a Likert scale of 1 to 5 and were asked for a binary as-
sessment of the quality of each repair’s edit location. We
also collected self-reported estimates of both programming
and OCamL-specific experience as well as qualitative data
assessing factors influencing each participant’s subjective
judgment of repair quality. From the 29 participants, we col-
lected 554 patch quality assessments, 277 each for Rt and
SEMINAL generated repairs.

Results. In a statistically-significant manner, humans per-
ceive that RrTE’s fault localization and final repairs are both
of higher quality than those produced by SEMINAL (p = 0.030
and p = 0.024 respectively).! Regarding fault localization, we
find that humans agreed with RiTe-identified edit locations
81.6% of the time but only agreed with those of SEMINAL
74.0% of the time. As for the final repair, humans also pre-
ferred RITE’s patches to those produced by SEMINAL. Specif-
ically, RITE’s repairs achieved an average quality rating of
2.41/5 while SEMINAL’s repairs had an average rating of only
2.11/5, a 14% increase (p = 0.030), showing a statistically-
significant improvement over SEMINAL.

Qualitative Comparison. We consider several case stud-
ies where there were statistically-significant differences be-
tween the human ratings for RITE’s and SEMINAL’s repairs.
The task in Figure 10a is that wwhile(f, b) should return
x where there exist values vy, ..., v,, such that: b = vy, x = v,,,
and for each i between 0 and n—2, we have fov; = (v;+1, true)
and fv,—1 = (vp, false). The task in Figure 10b is to return a
list of n copies of x. The task in Figure 10c is to return the sum
of the squares of the numbers in the list xs. Humans rated
RITE’s repairs better for the programs in Fig 10a and 10c. In
both cases, RITE’s found a solution which type-checks and
conforms to the problem’s semantic specification. SEMINAL,
however, found a repair that was either incomplete (10a) or
semantically incorrect (10c). On the other hand, in 10b, RiTE
does worse as the second parameter should be n-1. In fact,
RITE’s second ranked repair is the correct one, but it is equal
to the first in terms of edit distance.

Humans perceive both RiTE’s edit locations and fi-
nal repair quality to be better than those produced
by SEMINAL, a state-of-the-art OCAML repair tool, in
a statistically-significant manner.

6.4 RQ4: Impact of Templates on Quality

Finally, we seek to evaluate whether RITE’s template-guided
approach is really at the heart of its effectiveness. To do
so, as in § 6.2, we compared the results of using RITE’s er-
ror messages synthesized from predicted templates to those
generated by a NAIVE synthesizer that returns the first well-
typed term (i.e. synthesized from the trivial “hole” template).

1All tests for statistical significance used the Wilcoxon signed-rank test.

Georgios Sakkas, Madeline Endres, Benjamin Cosman, Westley Weimer, and Ranjit Jhala

User Study Setup. For this user study, we used a corpus
of 20 buggy programs randomly chosen in § 6.3. For each
of the programs we generated three messages: using RITE,
using SEMINAL, and using the NAIVE approach but at the
same location predicted by R1TE. We then randomized and
masked the order in which the tools’ messages were reported,
and asked three experts (authors of this paper who had not
seen the output of any tool for any of those instances) to
rate the messages as one of “Good”, “Ok” or “Bad”.

Results. Figure 11 summarizes the results of the rating.
Since each of 20 programs received 3 ratings, there are a total
of 60 ratings per tool. RITE dominates with 22 Good, 20 Ok
and 18 Bad ratings; SEMINAL follows with only 12 Good, 11
Ok and 37 Bad; while NAIVE received no Good scores, 12 Ok
scores and a dismal 48 Bad scores. On average (with Bad =
0, Ok = 0.5, Good = 1), RITE scored 0.53, SEMINAL 0.30, and
NAIVE just 0.1. Our rating agreement kappa is 0.54, which is
considered “moderate agreement”.

Repairs generated from predicted templates were of sig-
nificantly higher quality than those from expert-biased
enumeration (SEMINAL) or NAIVE enumeration.

7 Related Work

There is a vast literature on automatically repairing or patch-
ing programs: we focus on the most closely related work on
providing feedback for novice errors.

Example-Based Feedback. Recent work uses counterex-
amples that show how a program went wrong, for type er-
rors [36] or for general correctness properties where the
generated inputs show divergence from a reference imple-
mentation or other correctness oracle [39]. In contrast, we
provide feedback on how to fix the error.

Fault Localization. Several authors have studied the prob-
lem of fault localization, i.e. winnowing down the set of lo-
cations that are relevant for the error, often using slicing
[12, 31, 40, 41], counterfactual typing [6] or bayesian meth-
ods [43]. NATE [37] introduced the BOAT representation, and
showed it could be used for accurate localization. We aim
to go beyond localization, into suggesting concrete changes
that novices can make to understand and fix the problem.

Repair-model based feedback. SEMINAL [21] enumerates
minimal fixes using an expert-guided heuristic search. The
above approach is generalized to general correctness prop-
erties by [38] which additionally performs a symbolic search
using a set of expert provided sketches that represent possible
repairs. In contrast, RITE learns a template of repairs from a
corpus yielding higher quality feedback (§ 6).

Corpus-based feedback. CLARA [11] uses code and ex-
ecution traces to match a given incorrect program with a

Type Error Feedback via Analytic Program Repair

PLDI ’20, June 15-20, 2020, London, UK

let rec wwhile (f, b) =
let (b’, ¢’) = f b in
if ¢’ = true then wwhile (f b’) X i
else b’
RITE: (f, b") RITE:
SEMINAL: ((f b'); [[...11) SEMINAL:

let rec clone x n =
if n <= 0 then [] else
clone (n-1)

clone (n-1) n

clone [[...]1] (n-1)

let sqsum xs =
let f a x =a + (x xk 2) in
let base = 0 in
List.fold_left f base xs

RITE: (x * x)

SEMINAL: (x + 2)

(a) RiTE (4.5/5) better than SEMINAL (1.1/5) (b) RITE (1.5/5) worse than SEMINAL (4.1/5) (c) RiTE (4.8/5) better than SEMINAL

with 12 responses p = 0.002.

with 18 responses p = 0.0002.

(1.2/5) with 17 responses p = 0.0003.

Figure 10. Three erroneous programs with the repairs that RiTE and SEMINAL generated for the red error locations.

RITE
SEMINAL

NAIVE

0 15 30 45 60

Good Ok Bad

Figure 11. Rating the errors generated by RiTE, SEMINAL
and NAIVE enumeration.

“nearby” correct solution obtained by clustering all the cor-
rect answers for a particular task. The matched representa-
tive is used to extract repair expressions. Similarly, SARFGEN
[42] focuses on structural and control-flow similarity of pro-
grams to produce repairs, by using AST vector embeddings
to calculate distance metrics (to “nearby” correct programs)
more robustly. CLARA and SARFGEN are data-driven, but both
assume there is a “close” correct sample in the corpus. In con-
trast, RITE has a more general philosophy that similar errors
have similar repairs: we extract generic fix templates that
can be applied to arbitrary programs whose errors (BOAT
vectors) are similar. The TRACER system [1] is closest in
philosophy to ours, except that it focuses on single-line com-
pilation errors for C programs, where it shows that NLP-
based methods like sequence-to-sequence predicting DNNs
can effectively suggest repairs, but this does not scale up
to fixing general type errors. We have found that OCamLr’s
relatively simple syntactic structure but rich type structure
make token-level seq-to-seq methods quite imprecise (e.g.
deleting offending statements suffices to “repair” C but yields
ill-typed OCamL) necessitating RITE’s higher-level semantic
features and (learned) repair templates.

HorrrTy [7] is a DNN-based approach for fixing buggy
JavaScript programs. HOPPITY treats programs as graphs
that are fed to a Graph Neural Network to produce fixed-
length embeddings, which are then used in an LSTM model
that generates a sequence of primitive edits of the program

28

graph. HoppITY is one of the few tools that can repair errors
spanning multiple locations. However, it relies solely on
the learned models to generate a sequence of edits, so it
doesn’t guarantee returning valid JavaScript programs. In
contrast, RITE, uses the learned models to get appropriate
error locations and fix templates, but then uses a synthesis
procedure to always generate type-correct programs.

GETAFIX [3] and REVISAR [32] are two more systems that
learn fix patterns using AST-level differencing on a corpus
of past bug fixes. They both use anti-unification [19] for
generalizing expressions and, thus, grouping together fix
patterns. They cluster together bug fixes in order to reduce
the search space of candidate patches. While REVISAR [32]
ends up with one fix pattern per bug category using anti-
unification, GETAFIX [3] builds a hierarchy of patterns that
also include the context of the edit to be made. They both
keep before and after expression pairs as their fix patterns,
and they use the before expression as a means to match an
expression in a new buggy program and replace it with the
after expression. While these methods are quite effective,
they are only applicable in recurring bug categories e.g. how
to deal with a null pointer exception. RITE on the other hand,
attempts to generalize fix patterns even more by using the
GAST abstractions, and predicts proper error locations and
fix patterns with a learned model from the corpus of bug
fixes, and so so can be applied to a diverse variety of errors.

PROPHET [23] is another technique that uses a corpus of
fixed buggy programs to learn a probabilistic model that
will rank candidate patches. Patches are generated using
a set of predefined transformation schemas and condition
synthesis. PROPHET uses logistic regression to learn the pa-
rameters of this model and uses over 3500 extracted program
features to do so. It also uses an instrumented recompile of a
faulty program together with some failing input test cases to
identify what program locations are of interest. While this
method can be highly accurate for error localization, their
experimental results show that it can take up to 2 hours to
produce a valid candidate fix. In contrast, RITE’s pretrained
models make finding proper error locations and possible fix
templates more robust.

PLDI 20, June 15-20, 2020, London, UK

8 Conclusion

We have presented analytic program repair, a new data-
driven approach to provide repairs as feedback for type er-
rors. Our approach is to use a dataset of ill-typed programs
and their fixed versions to learn a representative set of fix
templates, which, via multi-class classification allows us to
accurately predict fix templates for new ill-typed programs.
These templates guide the synthesis of program repairs in a
tractable and precise manner.

We have implemented our approach in RiTE, and demon-
strate, using a corpus of 4,500 ill-typed OCAML programs
drawn from two instances of an introductory programming
course, that RITE makes accurate fix predictions 69% of the
time when considering the top three templates and surpass
80% when we consider the top six, and that the predicted
templates let us synthesize repairs for over 70% of the test set
in under 20 sec. Finally, we conducted a user study with 29
participants which showed that RITE’s repairs are of higher
quality than those from the state-of-the-art SEMINAL tool
which incorporates several expert-guided heuristics for im-
proving the quality of repairs and error messages. Thus, our
results demonstrate the unreasonable effectiveness of data
for generating better error messages.

Acknowledgments

We thank the anonymous referees and our shepherd Ke
Wang for their excellent suggestions for improving the paper.
This work was supported by the NSF grants (CCF-1908633,
CCF1763674) and the Air Force grants (FA8750-19-2-0006,
FA8750-19-1-0501).

References

[1] Umair Z. Ahmed, Pawan Kumar, Amey Karkare, Purushottam Kar,
and Sumit Gulwani. 2018. Compilation error repair: for the student
programs, from the student programs. In International Conference on
Software Engineering: Software Engineering Education and Training.
78-87. https://doi.org/10.1145/3183377.3183383

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2017.
Learning to Represent Programs with Graphs. arXiv:cs.LG/1711.00740
[3] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra.
2019. Getafix: learning to fix bugs automatically. Proceedings of the
ACM on Programming Languages 3, OOPSLA (Oct 2019), 1-27. https:
//doi.org/10.1145/3360585

Avishkar Bhoopchand, Tim Rocktéschel, Earl Barr, and Sebastian
Riedel. 2016. Learning Python Code Suggestion with a Sparse Pointer
Network. arXiv:cs.NE/1611.08307

Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg,
209-210.

Sheng Chen and Martin Erwig. 2014. Counter-factual Typing for
Debugging Type Errors. In Principles of Programming Languages (POPL
’14). ACM, New York, NY, USA, 583-594. https://doi.org/10.1145/
2535838.2535863

Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and
Ke Wang. 2020. Hoppity: Laerning Graph Transformations to Detect
and Fix Bugs in Programs. In International Conference on Learning
Representations. https://openreview.net/forum?id=SJeqs6EFvB

[2

—

—
~
—

29

Georgios Sakkas, Madeline Endres, Benjamin Cosman, Westley Weimer, and Ranjit Jhala

[8] Matthias Felleisen and Robert Hieb. 1992. The revised report on the
syntactic theories of sequential control and state. Theoretical Computer
Science 103, 2 (1992), 235 — 271. https://doi.org/10.1016/0304-3975(92)
90014-7

Mark Gabel and Zhendong Su. 2010. A Study of the Uniqueness of
Source Code. In Foundations of Software Engineering (FSE ’10). ACM,
New York, NY, USA, 147-156. https://doi.org/10.1145/1882291.1882315
Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep
Learning. MIT Press, 180-184. http://www.deeplearningbook.org.
Sumit Gulwani, Ivan Radicek, and Florian Zuleger. 2018. Automated
clustering and program repair for introductory programming assign-
ments. Programming Language Design and Implementation (2018).
https://doi.org/10.1145/3192366.3192387

Christian Haack and J B Wells. 2003. Type Error Slicing in Implicitly
Typed Higher-Order Languages. In Programming Languages and Sys-
tems. Springer Berlin Heidelberg, 284-301. https://doi.org/10.1007/3-
540-36575-3_20

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2009. The
Elements of Statistical Learning: Data Mining, Inference, and Prediction.
Springer New York. https://doi.org/10.1007/978-0-387-84858-7
Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lu-
cas Figueredo, Loris D’Antoni, and Bjérn Hartmann. 2017. Writing
Reusable Code Feedback at Scale with Mixed-Initiative Program Syn-
thesis. In Learning @ Scale. 89-98. https://doi.org/10.1145/3051457.
3051467

Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premku-
mar Devanbu. 2012. On the Naturalness of Software. In International
Conference on Software Engineering (ICSE ’12). Piscataway, NJ, USA,
837-847.

Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013.
Automatic patch generation learned from human-written patches. In
International Conference on Software Engineering. 802-811. https:
//doi.org/10.1109/ICSE.2013.6606626

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Sto-
chastic Optimization. arXiv:cs.LG/1412.6980

Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. 2016.
Practitioners’ Expectations on Automated Fault Localization. In Inter-
national Symposium on Software Testing and Analysis. ACM, 165-176.
https://doi.org/10.1145/2931037.2931051

Temur Kutsia, Jordi Levy, and Mateu Villaret. 2011. Anti-Unification
for Unranked Terms and Hedges. Journal of Automated Reasoning 52,
219-234. https://doi.org/10.4230/LIPlcs.RTA.2011.219

Eelco Lempsink. 2009. Generic type-safe diff and patch for families of
datatypes. Master’s thesis. Universiteit Utrecht.

Benjamin S Lerner, Matthew Flower, Dan Grossman, and Craig Cham-
bers. 2007. Searching for Type-error Messages. In Programming Lan-
guage Design and Implementation. ACM, 425-434. https://doi.org/10.
1145/1250734.1250783

Calvin Loncaric, Satish Chandra, Cole Schlesinger, and Manu Sridha-
ran. 2016. A practical framework for type inference error explanation.
In Object-Oriented Programming, Systems, Languages, and Applications.
781-799. https://doi.org/10.1145/2983990.2983994

Fan Long and Martin Rinard. 2016. Automatic Patch Generation
by Learning Correct Code. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(St. Petersburg, FL, USA) (POPL ’16). Association for Computing Ma-
chinery, New York, NY, USA, 298-312. https://doi.org/10.1145/2837614.
2837617

Matias Martinez, Laurence Duchien, and Martin Monperrus. 2013.
Automatically extracting instances of code change patterns with AST
analysis. In 2013 IEEE international conference on software maintenance.
IEEE, 388-391.

Matias Martinez and Martin Monperrus. 2015. Mining software repair
models for reasoning on the search space of automated program fixing.
Empirical Software Engineering 20, 1 (2015), 176-205.

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

https://doi.org/10.1145/3183377.3183383
http://arxiv.org/abs/cs.LG/1711.00740
https://doi.org/10.1145/3360585
https://doi.org/10.1145/3360585
http://arxiv.org/abs/cs.NE/1611.08307
https://doi.org/10.1145/2535838.2535863
https://doi.org/10.1145/2535838.2535863
https://openreview.net/forum?id=SJeqs6EFvB
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1145/1882291.1882315
http://www.deeplearningbook.org
https://doi.org/10.1145/3192366.3192387
https://doi.org/10.1007/3-540-36575-3_20
https://doi.org/10.1007/3-540-36575-3_20
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1145/3051457.3051467
https://doi.org/10.1145/3051457.3051467
https://doi.org/10.1109/ICSE.2013.6606626
https://doi.org/10.1109/ICSE.2013.6606626
http://arxiv.org/abs/cs.LG/1412.6980
https://doi.org/10.1145/2931037.2931051
https://doi.org/10.4230/LIPIcs.RTA.2011.219
https://doi.org/10.1145/1250734.1250783
https://doi.org/10.1145/1250734.1250783
https://doi.org/10.1145/2983990.2983994
https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1145/2837614.2837617

Type Error Feedback via Analytic Program Repair

[26]

(30]

[31

—

(32]

(33]

Jonathan P. Munson and Elizabeth A. Schilling. 2016. Analyzing
Novice Programmers’ Response to Compiler Error Messages. J. Com-
put. Sci. Coll. 31, 3 (Jan. 2016), 53-61. http://dl.acm.org/citation.cfm?
id=2835377.2835386

Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve
restricted boltzmann machines. In International Conference on Machine
Learning. 807-814.

Michael A Nielsen. 2015. Neural Networks and Deep Learning. Deter-
mination Press.

Chris Parnin and Alessandro Orso. 2011. Are Automated Debug-
ging Techniques Actually Helping Programmers?. In International
Symposium on Software Testing and Analysis. ACM, 199-209. https:
//doi.org/10.1145/2001420.2001445

Zvonimir Pavlinovic, Tim King, and Thomas Wies. 2014. Finding
Minimum Type Error Sources. In Object Oriented Programming Systems
Languages & Applications. ACM, 525-542. https://doi.org/10.1145/
2660193.2660230

Vincent Rahli, Joe Wells, John Pirie, and Fairouz Kamareddine. 2015.
Skalpel: A Type Error Slicer for Standard ML. Electron. Notes Theor.
Comput. Sci. 312 (24 April 2015), 197-213. https://doi.org/10.1016/j.
entcs.2015.04.012

Reudismam Rolim, Gustavo Soares, Rohit Gheyi, Titus Barik, and
Loris D’Antoni. 2018. Learning Quick Fixes from Code Repositories.
arXiv:cs.SE/1803.03806

Seemanta Saha, Ripon K. Saha, and Mukul R. Prasad. 2019. Harnessing
Evolution for Multi-hunk Program Repair. In International Conference
on Software Engineering. 13-24. https://doi.org/10.1109/ICSE.2019.
00020

[34] Jurgen Schmidhuber. 2015. Deep learning in neural networks: An

overview. Neural Networks 61 (Jan 2015), 85-117. https://doi.org/10.
1016/j.neunet.2014.09.003

30

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

PLDI ’20, June 15-20, 2020, London, UK

Eric L Seidel and Ranyjit Jhala. 2017. A Collection of Novice Interactions
with the OCaml Top-Level System. https://doi.org/10.5281/zenodo.
806813

Eric L Seidel, Ranjit Jhala, and Westley Weimer. 2016. Dynamic
Witnesses for Static Type Errors (or, Ill-typed Programs Usually Go
Wrong). In International Conference on Functional Programming. 228—
242. https://doi.org/10.1145/2951913.2951915

Eric L. Seidel, Huma Sibghat, Kamalika Chaudhuri, Westley Weimer,
and Ranjit Jhala. 2017. Learning to Blame: Localizing Novice Type
Errors with Data-driven Diagnosis. Proc. ACM Program. Lang. 1, OOP-
SLA, Article 60 (Oct. 2017), 27 pages. https://doi.org/10.1145/3138818
Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013.
Automated feedback generation for introductory programming assign-
ments. Acm Sigplan Notices 48, 6 (2013), 15-26.

Dowon Song, Myungho Lee, and Hakjoo Oh. 2019. Automatic and
Scalable Detection of Logical Errors in Functional Programming As-
signments. Proc. ACM Program. Lang. 3, OOPSLA, Article 188 (Oct.
2019), 30 pages. https://doi.org/10.1145/3360614

Frank Tip and T B Dinesh. 2001. A Slicing-based Approach for Locating
Type Errors. ACM Trans. Softw. Eng. Methodol. 10, 1 (Jan. 2001), 5-55.
https://doi.org/10.1145/366378.366379

Mitchell Wand. 1986. Finding the Source of Type Errors. In Principles of
Programming Languages. 38—43. https://doi.org/10.1145/512644.512648
Ke Wang, Rishabh Singh, and Zhendong Su. 2018. Search, Align, and
Repair: Data-driven Feedback Generation for Introductory Program-
ming Exercises. In Programming Language Design and Implementation.
481-495. https://doi.org/10.1145/3192366.3192384

Danfeng Zhang and Andrew C Myers. 2014. Toward General Diagnosis
of Static Errors. In Principles of Programming Languages. 569—-581.
https://doi.org/10.1145/2535838.2535870

http://dl.acm.org/citation.cfm?id=2835377.2835386
http://dl.acm.org/citation.cfm?id=2835377.2835386
https://doi.org/10.1145/2001420.2001445
https://doi.org/10.1145/2001420.2001445
https://doi.org/10.1145/2660193.2660230
https://doi.org/10.1145/2660193.2660230
https://doi.org/10.1016/j.entcs.2015.04.012
https://doi.org/10.1016/j.entcs.2015.04.012
http://arxiv.org/abs/cs.SE/1803.03806
https://doi.org/10.1109/ICSE.2019.00020
https://doi.org/10.1109/ICSE.2019.00020
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.5281/zenodo.806813
https://doi.org/10.5281/zenodo.806813
https://doi.org/10.1145/2951913.2951915
https://doi.org/10.1145/3138818
https://doi.org/10.1145/3360614
https://doi.org/10.1145/366378.366379
https://doi.org/10.1145/512644.512648
https://doi.org/10.1145/3192366.3192384
https://doi.org/10.1145/2535838.2535870

	Abstract
	1 Introduction
	2 Overview
	2.1 Representing Fixes
	2.2 Acquiring a Fix-Labeled Training Set
	2.3 Learning Candidate Fix Templates
	2.4 Predicting Templates via Multi-classification
	2.5 Synthesizing Feedback from Templates

	3 Learning Fix Templates
	3.1 Representing User Fixes
	3.2 Extracting Fix Templates from a Dataset
	3.3 Partitioning the Templates

	4 Predicting Fix Templates
	4.1 Feature and Label Extraction
	4.2 Training Predictive Models
	4.3 Predicting Fix Templates
	4.4 Discussion

	5 Template-Guided Repair Synthesis
	5.1 Local Synthesis from Templates
	5.2 Ranking Error Locations

	6 Evaluation
	6.1 RQ1: Accuracy
	6.2 RQ2: Efficiency
	6.3 RQ3: Usefulness
	6.4 RQ4: Impact of Templates on Quality

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

