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Use the RTD to
evaluate
parameters

Models for Nonideal 44

Reactors

Success is a journey, not a destination.
Ben Sweetland

Overview Not all tank reactors are perfectly mixed nor do all tubular reac-
tors exhibit plug-flow behavior. In these situations, some means must be
used to allow for deviations from ideal behavior. Chapter 13 showed how
the RTD was sufficient if the reaction was first order or if the fluid was
either in a state of complete segregation or maximum mixedness. We use
the segregation and maximum mixedness models to bound the conversion
when no adjustable parameters are used. For non-first-order reactions in a
fluid with good micromixing, more than just the RTD is needed. These sit-
uations compose a great majority of reactor analysis problems and cannot
be ignored. For example, we may have an existing reactor and want to carry
out a new reaction in that reactor. To predict conversions and product distri-
butions for such systems, a model of reactor flow patterns is necessary. To
model these patterns, we use combinations and/or modifications of ideal
reactors to represent real reactors. With this technique, we classify a model
as being either a one-parameter model (e.g., tanks-in-series model or disper-
sion model) or a two-parameter model (e.g., reactor with bypassing and
dead volume). The RTD is then used to evaluate the parameter(s) in the
model. After completing this chapter, the reader will be able to apply the
tanks-in-series model and the dispersion model to tubular reactors. In addi-
tion, the reader will be able to suggest combinations of ideal reactors to
model a real reactor.
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Conflicting goals

A Model Must
« Fit the data
¢ Be able to
extrapolate
theory and
experiment
¢ Have realistic
parameters

946 Models for Nonideal Reactors ~ Chap. 14

14.1 Some Guidelines

The overall goal is to use the following equation

| RTD Data + Kinetics + Model = Prediction

The choice of the particular model to be used depends largely on the engineer-
ing judgment of the person carrying out the analysis. It is this person’s job to
choose the model that best combines the conflicting goals of mathematical
simplicity and physical realism. There is a certain amount of art in the devel-
opment of a model for a particular reactor, and the examples presented here
can only point toward a direction that an engineer’s thinking might follow.

For a given real reactor, it is not uncommon to use all the models dis-
cussed previously to predict conversion and then make a comparison. Usually,
the real conversion will be bounded by the model calculations.

The following guidelines are suggested when developing models for non-
ideal reactors:

1. The model must be mathematically tractable. The equations used to
describe a chemical reactor should be able to be solved without an
inordinate expenditure of human or computer time.

2. The model must realistically describe the characteristics of the non-
ideal reactor. The phenomena occurring in the nonideal reactor must
be reasonably described physically, chemically, and mathematically.

3. The model must not have more than two adjustable parameters. This
constraint is used because an expression with more than two adjust-
able parameters can be fitted to a great variety of experimental data,
and the modeling process in this circumstance is nothing more than
an exercise in curve fitting. The statement “Give me four adjustable
parameters and I can fit an elephant; give me five and I can include
his tail!” is one that I have heard from many colleagues. Unless one
is into modern art, a substantially larger number of adjustable param-
eters is necessary to draw a reasonable-looking elephant.! A
one-parameter model is, of course, superior to a two-parameter model
if the one-parameter model is sufficiently realistic. To be fair, how-
ever, in complex systems (e.g., internal diffusion and conduction,
mass transfer limitations) where other parameters may be measured
independently, then more than two parameters are quite acceptable.

Table 14-1 gives some guidelines that will help your analysis and model build-
ing of nonideal reaction systems.

1'J. Wei, CHEMTECH, 5, 128 (1975).

e

=



%% $ Fogler_ECRE_CDROM.book Page 947 Wednesday, September 17,2008 5:01 PM

The Guidelines

Nonideal tubular
reactors

Sec. 14.1 Some Guidelines 947

TABLE 14-1. A PROCEDURE FOR CHOOSING A MODEL
TO PREDICT THE OUTLET CONCENTRATION AND CONVERSION

1. Look at the reactor.

a.  Where are the inlet and outlet streams to and from the reactors? (Is
by-passing a possibility?)

b.  Look at the mixing system. How many impellers are there? (Could there be
multiple mixing zones in the reactor?)

c.  Look at the configuration. (Is internal recirculation possible? Is the packing of
the catalyst particles loose so channeling could occur?)

2. Look at the tracer data.

a. Plot the E(t) and F(t) curves.

b.  Plot and analyze the shapes of the E(©) and F(®) curves. Is the shape of the
curve such that the curve or parts of the curve can be fit by an ideal reactor
model? Does the curve have a long tail suggesting a stagnant zone? Does the
curve have an early spike indicating bypassing?

c. Calculate the mean residence time, t,,, and variance, 62. How does the t,
determined from the RTD data compare with T as measured with a yardstick
and flow meter? How large is the variance; is it larger or smaller than T2?

Choose a model or perhaps two or three models.

Use the tracer data to determine the model parameters (e.g., n, D,, vy).

5. Use the CRE algorithm in Chapter 4. Calculate the exit concentrations and conver-

sion for the model system you have selected.

o

14.1.1 One-Parameter Models

Here we use a single parameter to account for the nonideality of our reactor.
This parameter is most always evaluated by analyzing the RTD determined
from a tracer test. Examples of one-parameter models for nonideal CSTRs
include a reactor dead volume V;,, where no reaction takes place, or a fraction
f of fluid bypassing the reactor, thereby exiting unreacted. Examples of
one-parameter models for tubular reactors include the tanks-in-series model
and the dispersion model. For the tanks-in-series model, the parameter is the
number of tanks, n, and for the dispersion model, it is the dispersion coeffi-
cient, D,. Knowing the parameter values, we then proceed to determine the
conversion and/or effluent concentrations for the reactor.

We first consider nonideal tubular reactors. Tubular reactors may be
empty, or they may be packed with some material that acts as a catalyst,
heat-transfer medium, or means of promoting interphase contact. Until now
when analyzing ideal tubular reactors, it usually has been assumed that the fluid
moved through the reactor in piston-like flow (PFR), and every atom spends an
identical length of time in the reaction environment. Here, the velocity profile
is flat, and there is no axial mixing. Both of these assumptions are false to some
extent in every tubular reactor; frequently, they are sufficiently false to warrant
some modification. Most popular tubular reactor models need to have means to
allow for failure of the plug-flow model and insignificant axial mixing assump-
tions; examples include the unpacked laminar flow tubular reactor, the
unpacked turbulent flow, and packed-bed reactors. One of two approaches is
usually taken to compensate for failure of either or both of the ideal assump-
tions. One approach involves modeling the nonideal tubular reactor as a series
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In Figure 2-9, we
saw how tanks in
series could approxi-
mate a PFR.

948 Models for Nonideal Reactors ~ Chap. 14

of identically sized CSTRs. The other approach (the dispersion model) involves
a modification of the ideal reactor by imposing axial dispersion on plug flow.

14.1.2 Two-Parameter Models

The premise for the two-parameter model is that we can use a combination of
ideal reactors to model the real reactor. For example, consider a packed bed
reactor with channeling. Here the response to a pulse tracer input would show
two dispersed pulses in the output as shown in Figure 13-10 and Figure 14-1.

Chan(\eling
—i{0_0 _ 0.0 _0 NO _O j{»
#ogogogogogogo# ct
— 0208080208050 ()
— 0902020909090 —
— 09990 20°0%00%0 —
z=0 ]’ z=L
Dead Zones

(@)

Figure 14-1 (a) Real system; (b) outlet for a pulse input; (c) model system.

Here we could model the real reactor as two ideal PBRs in parallel with the
two parameters being the fluid that channels, vy, and the reactor dead volume,
Vp. The real reactor voume is V = Vj, + Vs with vy = v, + vg.

14.2 Tanks-in-Series (T-I-S) Model

In this section we discuss the use of the tanks-in-series (T-I-S) model to
describe nonideal reactors and calculate conversion. The T-I-S model is a
one-parameter model. We will analyze the RTD to determine the number of
ideal tanks, n, in series that will give approximately the same RTD as the non-
ideal reactor. Next we will apply the reaction engineering algorithm developed
in Chapters 1 through 4 to calculate conversion. We are first going to develop
the RTD equation for three tanks in series (Figure 14-2) and then generalize to
n reactors in series to derive an equation that gives the number of tanks in
series that best fits the RTD data.

Pulseﬁv
Pulse %

(a) (b)

Figure 14-2 Tanks in series: (a) real system, (b) model system.
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We perform a
tracer balance on
each reactor to
obtain C(t)

Sec. 142 Tanks-in-Series (T-I-S) Model 949

The RTD will be analyzed from a tracer pulse injected into the first reac-
tor of three equally sized CSTRs in series. Using the definition of the RTD
presented in Section 13.2, the fraction of material leaving the system of three
reactors (i.e., leaving the third reactor) that has been in the system between
time ¢ and ¢ + Aris

vG () Ar . G(@)

E(t) At = At

©

JO C, (1) dt

0

Then

E(t) = — G5 (1)

C, () dt

(14-1)

0

In this expression, C;(¢) is the concentration of tracer in the effluent from the
third reactor and the other terms are as defined previously.

It is now necessary to obtain the outlet concentration of tracer, C5(¢), as
a function of time. As in a single CSTR, a material balance on the first reactor
gives

V] —_— = _Ucl (14-2)

Integrating gives the expression for the tracer concentration in the effluent
from the first reactor:

Ci=Coe """ =Cpe "™ (14-3)

©

v, j C, (1) dt
0

1

The volumetric flow rate is constant (v =1v,) and all the reactor volumes are
identical (V, = V, = V;); therefore, all the space times of the individual reac-
tors are identical (T, = T, = T;). Because V; is the volume of a single reactor
in the series, T; here is the residence time in one of the reactors, not in the
entire reactor system (i.e., T; = t/n).

A material balance on the tracer in the second reactor gives

V_
2 odr

Using Equation (14-3) to substitute for C;, we obtain the first-order ordinary
differential equation

=
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RTD for equal-size
tanks in series

950 Models for Nonideal Reactors ~ Chap. 14

Ci_C'z —+ 92 = 99 eif/‘ti
dt T, T

1 1

/T

This equation is readily solved using an integrating factor ¢” "' along with the

initial condition C, = 0 at t = 0, to give

C,= CTOt e (14-4)

1

The same procedure used for the third reactor gives the expression for the con-
centration of tracer in the effluent from the third reactor (and therefore from
the reactor system),

_ C() r —t/T;
3= 2—112 e (14-5)
Substituting Equation (14-5) into Equation (14-1), we find that
o CreDe
E(t) — 3( ) — 0 ( T[ )e
) © 2 *t/‘ti
j Cy(Hyds J Coe ',
0 o 27
2 _
=L v (14-6)

213

l

Generalizing this method to a series of n CSTRs gives the RTD for n
CSTRs in series, E(t):

! —1/1;
E({t) = — ! 14-7
0= G ¢ (14-7)

Because the total reactor volume is nV;, then t; = 1t/n, where T represents the
total reactor volume divided by the flow rate, v:

E(©) = tE( = L e (14-8)
(n—1)!

where © = ¢/1.

Figure 14-3 illustrates the RTDs of various numbers of CSTRs in series
in a two-dimensional plot (a) and in a three-dimensional plot (b). As the num-
ber becomes very large, the behavior of the system approaches that of a
plug-flow reactor.

:
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As the number of
tanks increases, the
variance decreases.

Sec. 142 Tanks-in-Series (T-I-S) Model 951
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Figure 14-3 Tanks-in-series response to a pulse tracer input for different numbers of tanks.

We can determine the number of tanks in series by calculating the
dimensionless variance o from a tracer experiment.

o2 = ‘Lzzr (O — 12E(0) dO

T2 0
- f O’E(©) d® — 2 J OE(©) dO +j E©)d®  (14-9)
0 0 0
ol = J O2E(0) dO — 1 (14-10)
0
f D@ Oy e yg —
0 (n—1)!
0(%) = n_”J Ontle=n0 4@ — 1
(n=D],
_ o |men]
(n—1)!| prt2
_1 (14-11)
n
The number of tanks in series is
=Ll =2 (14-12)
oy O

This expression represents the number of tanks necessary to model the real
reactor as n ideal tanks in series. If the number of reactors, n, turns out to be
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small, the reactor characteristics turn out to be those of a single CSTR or per-
haps two CSTRs in series. At the other extreme, when n turns out to be large,
we recall from Chapter 2 the reactor characteristics approach those of a PFR.

If the reaction is first order, we can use Equation (4-11) to calculate the
conversion,

]
(1+7,k)

4-11)

where

It is acceptable (and usual) for the value of n calculated from Equation (14-12)
to be a noninteger in Equation (4-11) to calculate the conversion. For reactions
other than first order, an integer number of reactors must be used and sequen-
tial mole balances on each reactor must be carried out. If, for example, n =
2.53, then one could calculate the conversion for two tanks and also for three
tanks to bound the conversion. The conversion and effluent concentrations
would be solved sequentially using the algorithm developed in Chapter 4. That
is, after solving for the effluent from the first tank, it would be used as the
input to the second tank and so on as shown in Table 14-2.

TABLE 14-2.  TANKS-IN-SERIES SECOND-ORDER REACTION

Two-Reactor System Three-Reactor System

For two equally sized reactors For three equally sized reactors

et V=V, +V,+ Vs
m=n=g Vi=Vy,=V,= Vi3
Ty, v, 2 0

For a second-order reaction, the combined mole balance, rate law, and stoichiometry for the
first reactor gives

T= CAin _ CAout

kICZAc»ut
Solving for C
Cco = — 1+ ,/1+4ktCy,,
Aout 2kt
Two-Reactor System: T, = % Three-Reactor System: T3 = g
Solving for exit concentration from reactor 1 for each reactor system gives
—1+/1+41k - /
Cu _ Z1 /1 H4ATkCy c = 1+ /1 +41kCy

21,k 21,k

The exit concentration from the second reactor for each reactor system gives

e
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TABLE 14-2.  TANKS-IN-SERIES SECOND-ORDER REACTION (CONTINUED)

Two-Reactor System Three-Reactor System
oo o ZLHTHankCy . =11 +41kC,
AT T AL CAZ =
2T,k 215k

Balancing on the third reactor for the three-reactor system and solving for its outlet concentra-
tion, Cys, gives

s [T+ 41,kC),
- 215k

The corresponding conversion for the two- and three-reactor systems are

x, = Sa0=Co x; = S0 Cis
2 Chro Cao

Forn =253, (X, < X< X})

Tanks-in-Series Versus Segregation for a First-Order Reaction We have
already stated that the segregation and maximum mixedness models are equiv-
alent for a first-order reaction. The proof of this statement was left as an exer-
cise in Problem P13-35. We now show the tanks-in-series model and the
segregation models are equivalent for a first-order reaction.

Reference Chelf

Example 14-1 Equivalency of Models for a First-Order Reaction
Show that Xt_;_g = Xy for a first-order reaction
A—+> B

Solution

For a first-order reaction, we already showed in Problem P13-3 that

XSeg = Xmm

Therefore we only need to show Xg., = Xp.1g.
For a first-order reaction in a batch reactor the conversion is

X=1-¢H (E14-1.1)
Segregation Model
X= j X(OE(t)dt = J (1— e ™E@)dr (E14-12)
0 0
=1 —re”"E(t)dz (E14-1.3)
0

Using Maclaurin’s series expansion gives

&
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e
et =1—kt+ =5 + Error (E14-1.4)

neglecting the error term
o 22
X=1 —j [1 —kt-i-l%JE(t)dt (E14-1.5)
0

2 o
X=th— ’LJ PE(r)dt (E14-1.6)
279
To evaluate the second term, we first recall Equation (E13-2.5) for the variance

o’ = r(f —0’E(ndr = j ) tzE(t)dt—2‘tr (E(t)di + rzfoE(t)dt (E14-1.7)
0 o . .

o? = j PE(tYdl— 27 + 7 (E14-1.8)
0

Rearranging Equation (E14-1.8)
f PE(Ddr =0 + T (E14-1.9)
0

Combining Equations (E14-1.6) and (E14-1.9), we find the mean conversion for the
segregation model for a first-order reaction is

2
X= tk—%(cz +7) (E14-1.10)

Tanks in Series

Recall from Chapter 4, for n tanks in series for a first-order reaction, the conversion
is

X=1- - 4-11)
(1 + Ek)
n
Rearranging yields
X= 1—(1+3k)7 (E14-1.11)
n
We now expand in a binomial series
2,2
X=1—{1—nzk+m%+Enor} (B14-1.12)
n 2 n
2,2 2,2
=kr—‘7k—12_k+1zrmr (E14-1.13)
n

&%
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Neglecting the error gives

K2 7
X=kt—=|1+= (E14-1.14)
2 n
Rearranging Equation (14-12) in the form
’ 2
T g (14-12)

n

and substituting in Equation (E14-1.14) the mean conversion for the T-I-S model is

2
X= ‘tk—%(‘tz-ﬂrz) (E14-1.15)

We see that Equations (E14-1.10) and (E14-1.15) are identical; thus, the conversions
are identical, and for a first-order reaction we have

Important Result |XT—I—S = Xseg = Xum

But this is true only for a first-order reaction.

14.3 Dispersion Model

The dispersion model is also used to describe nonideal tubular reactors. In this
model, there is an axial dispersion of the material, which is governed by an
analogy to Fick’s law of diffusion, superimposed on the flow as shown in Fig-
ure 14-4. So in addition to transport by bulk flow, UA.C, every component in
the mixture is transported through any cross section of the reactor at a rate
equal to [-D,A (dC/dz)] resulting from molecular and convective diffusion. By
convective diffusion (i.e., dispersion) we mean either Aris-Taylor dispersion in
laminar flow reactors or turbulent diffusion resulting from turbulent eddies.
Radial concentration profiles for plug flow (a) and a representative axial and
radial profile for dispersive flow (b) are shown in Figure 14-4. Some molecules
will diffuse forward ahead of the molar average velocity while others will lag
behind.

Plug Flow Dispersion

Figure 14-4 Concentration profiles (a) without and (b) with dispersion.
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To illustrate how dispersion affects the concentration profile in a tubular
reactor we consider the injection of a perfect tracer pulse. Figure 14-5 shows
how dispersion causes the pulse to broaden as it moves down the reactor and
becomes less concentrated.

v Lt %

= =

S—input Measurement
point

Tracer pulse with Tracer pulse with
dispersion dispersion

Figure 14-5 Dispersion in a tubular reactor. (From O. Levenspiel, Chemical
Reaction Engineering, 2nd ed. Copyright © 1972 John Wiley & Sons, Inc.
Reprinted by permission of John Wiley & Sons, Inc. All rights reserved.)

Recall Equation (11-20). The molar flow rate of tracer (F;) by both con-
vection and dispersion is

aC
F,= [—Da S UCT}AC (11-20)
4

In this expression D, is the effective dispersion coefficient (m?/s) and U (m/s)
is the superficial velocity. To better understand how the pulse broadens, we
refer to the concentration peaks 7, and #; in Figure 14-6. We see that there is a
concentration gradient on both sides of the peak causing molecules to diffuse
away from the peak and thus broaden the pulse. The pulse broadens as it
moves through the reactor.

t3

Figure 14-6 Symmetric concentration gradients causing the spreading by
dispersion of a pulse input.

Correlations for the dispersion coefficients in both liquid and gas systems
may be found in Levenspiel.> Some of these correlations are given in Section
14.4.5.

20. Levenspiel, Chemical Reaction Engineering (New York: Wiley, 1962), pp.
290-293.

e

—#

&



$ Fogler_ECRE_CDROM.book Page 957 Wednesday, September 17,2008 5:01 PM

Pulse tracer balance
with dispersion

The Plan

Sec. 14.4  Flow, Reaction, and Dispersion 957

A mole balance on the inert tracer T gives

aF, aC;
0z <ot
Substituting for F and dividing by the cross-sectional area A., we have
92Cy 9(UCy) _ 9Cy

“Tozz 9z ot

Once we know the boundary conditions, the solution to Equation (14-13) will
give the outlet tracer concentration—time curves. Consequently, we will have to
wait to obtain this solution until we discuss the boundary conditions in Section
14.4.2.

We are now going to proceed in the following manner. First, we will
write the balance equations for dispersion with reaction. We will discuss the
two types of boundary conditions: closed-closed and open-open. We will then
obtain an analytical solution for the closed-closed system for the conversion
for a first-order reaction in terms of the Peclet number (dispersion coefficient)
and the Damkohler number. We then will discuss how the dispersion coeffi-
cient can be obtained either from correlations or from the analysis of the RTD
curve.

(14-13)

14.4 Flow, Reaction, and Dispersion

Now that we have an intuitive feel for how dispersion affects the transport of
molecules in a tubular reactor, we shall consider two types of dispersion in a
tubular reactor, laminar and turbulent.

14.4.1 Balance Equations

A mole balance is taken on a particular component of the mixture (say, species
A) over a short length Az of a tubular reactor of cross section A, in a manner
identical to that in Chapter 1, to arrive at

1 dF

Tar, =0 14-14
T (14-14)

Combining Equations (14-14) and the equation for the molar flux F,, we can
rearrange Equation (11-22) in Chapter 11 as

14-15
U dz? dz U ( )

This equation is a second-order ordinary differential equation. It is nonlinear
when r, is other than zero or first order.
When the reaction rate r, is first order, r4 = —kCy, then Equation (14-16)

e
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2
Flow, reaction, and 1_).3 d CA — @ — IQ =

_ ) (14-16)
dispersion U dz? dz U

is amenable to an analytical solution. However, before obtaining a solution, we
put our Equation (14-16) describing dispersion and reaction in dimensionless
form by letting s = C,/Cyxy and N = z/L:

o 1 dy
D, = Dispersion ————~—"Lt—Da-§y=0 (14-17)
coefficient Perd)\z d\ v
Da = Damkﬁhéer The quantity Da appearing in Equation (14-17) is called the Damkohler
number

number for convection and physically represents the ratio

Damkéhler number _ Rate of consumption of A by reaction _ T (14-18)

for a first-order Rate of transport of A by convection

reaction . . .
The other dimensionless term is the Peclet number, Pe,

_ Rate of transport by convection _ vl (14-19)
Rate of transport by diffusion or dispersion D,

in which [ is the characteristic length term. There are two different types of
Peclet numbers in common use. We can call Pe, the reactor Peclet number; it
uses the reactor length, L, for the characteristic length, so Pe, = UL/D,,. It is
For open tubes  Pe, that appears in Equation (14-17). The reactor Peclet number, Pe,, for mass
f;er - 11006‘; dispersion is often referred to in reacting systems as the Bodenstein number,
o Bo, rather than the Peclet number. The other type of Peclet number can be
called the fluid Peclet number, Pe; it uses the characteristic length that deter-
mines the fluid’s mechanical behavior. In a packed bed this length is the parti-
cle diameter d,, and Pe, = Ud,/$D,. (The term U is the empty tube or
superficial velocity. For packed beds we often wish to use the average intersti-
tial velocity, and thus U/¢ is commonly used for the packed-bed velocity
For packed beds  term.) In an empty tube, the fluid behavior is determined by the tube diameter
Pe, ~ 103; d,, and Pe; = Ud,/D,. The fluid Peclet number, Pe,, is given in all correlations
Pe, ~ 10 . ’ .
relating the Peclet number to the Reynolds number because both are directly
related to the fluid mechanical behavior. It is, of course, very simple to convert
Pe, to Pe,: Multiply by the ratio L/d, or L/d,. The reciprocal of Pe,, D,/UL, is
sometimes called the vessel dispersion number.

14.4.2 Boundary Conditions

There are two cases that we need to consider: boundary conditions for closed
vessels and open vessels. In the case of closed-closed vessels, we assume that
there is no dispersion or radial variation in concentration either upstream
(closed) or downstream (closed) of the reaction section; hence this is a
closed-closed vessel. In an open vessel, dispersion occurs both upstream
(open) and downstream (open) of the reaction section; hence this is an

&%
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conditions at the
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Concentration
boundary
conditions at the exit

Sec. 14.4  Flow, Reaction, and Dispersion 959

open-open vessel. These two cases are shown in Figure 14-7, where fluctua-
tions in concentration due to dispersion are superimposed on the plug-flow
velocity profile. A closed-open vessel boundary condition is one in which there
is no dispersion in the entrance section but there is dispersion in the reaction
and exit sections.

H H H }
D=0 ! D,>0 i D=0 D,>0 ! D,>0 i D,>0
' 1 H v
—_— 11 | 8 H ]
. i S o —= E W :
—] e =
D | i []
——— o H e
z=0 z=L z=0 z=L
Plug Dispersion
Flow
Closed-closed vessel Open-open vessel

Figure 14-7 Types of boundary conditions.

14.4.2A Closed-Closed Vessel Boundary Condition

For a closed-closed vessel, we have plug flow (no dispersion) to the immediate
left of the entrance line (z = 07) (closed) and to the immediate right of the exit
z =L (z = L*) (closed). However, between z = 0* and z = L-, we have disper-
sion and reaction. The corresponding entrance boundary condition is

Atz=0: Fu(00) = F,(0%)
Substituting for F, yields

9
UA.C,(07) = —A,.D, [%) + UA,C,(0%)
4

z=0"

Solving for the entering concentration C,(07) = Cyy:

=D, (d
Cho = U[%‘j +C,(0%) (14-20)
z z=0"

At the exit to the reaction section, the concentration is continuous, and there is
no gradient in tracer concentration.

Atz = L: Co(L7)=Co(LY) (14-21)
0

iA = 0
0z

e
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These two boundary conditions, Equations (14-20) and (14-21), first
stated by Danckwerts,? have become known as the famous Danckwerts bound-
ary conditions. Bischoff* has given a rigorous derivation of them, solving the
differential equations governing the dispersion of component A in the entrance
and exit sections and taking the limit as D, in the entrance and exit sections
approaches zero. From the solutions he obtained boundary conditions on the
reaction section identical with those Danckwerts proposed.

The closed-closed concentration boundary condition at the entrance is
shown schematically in Figure 14-8. One should not be uncomfortable with the
discontinuity in concentration at z = 0 because if you recall for an ideal CSTR
the concentration drops immediately on entering from C,, to Cy.,;. For the
other boundary condition at the exit z = L, we see the concentration gradient
has gone to zero. At steady state, it can be shown that this Danckwerts bound-
ary condition at z = L also applies to the open-open system at steady state.

dCa
Dap dC ey
—Cy (0F)-2AB A =0
Cao=Ca(0%) -T2 = )Z=O+ |
Prof. P. V. Danckwerts, Cao
Cambridge Umveggj \OA({ \\CA @) Ca(LH)
(2)
o~ lo* Lt
z=0 z=L

(@ (b)
Figure 14-8 Schematic of Danckwerts boundary conditions. (a) Entrance (b) Exit

14.4.2B Open-Open System

For an open-open system there is continuity of flux at the boundaries at z = 0,

Fu(07) = F4(0%)

Open-open oC _ oC
boundary condition — Daa—A) +UCL(0 )= — Daa—A)
Z Jz=0" z

HUCL(07)| (14-22)
0

z=

3 P. V. Danckwerts, Chem. Eng. Sci., 2, 1 (1953).
4 K. B. Bischoff, Chem. Eng. Sci., 16, 131 (1961).
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At z = L, we have continuity of concentration and

c;

=0 14-23
dz ( )

14.4.2C Back to the Solution for a Closed-Closed System

We now shall solve the dispersion reaction balance for a first-order reaction

2
Ld_‘b_d_‘l’—pmp =0 (14-17)
Pe,g\*> d\

For the closed-closed system, the Danckwerts boundary conditions in dimen-
sionless form are

_ _ 1 dq;) +
t X = 0 then 1I=— —— +4(0 14-24
. nl=— g T (14-24)
dy
AtN = 1then—=+ =10 14-25
en ™y ( )

At the end of the reactor, where A = 1, the solution to Equation (14-17) is

Cu
CAO

¥ = =1-X

_ 4qexp(Pe,/2) (14-26)
(1+q)” exp (Pe,q/2) — (1 = q) exp (— Pe,q/2)

where ¢ =./1 +4Da/Pe,

This solution was first obtained by Danckwerts’ and has been published in
many places (e.g., Levenspiel®). With a slight rearrangement of Equation
(14-26), we obtain the conversion as a function of Da and Pe,.

4q exp (Pe,/2)
(1+¢)” exp (Pe,q/2) — (1 —q)” exp (— Pe,g/2)

X=1- (14-27)

Outside the limited case of a first-order reaction, a numerical solution of the
equation is required, and because this is a split-boundary-value problem, an
iterative technique is required.

To evaluate the exit concentration given by Equation (14-26) or the con-
version given by (14-27), we need to know the Damkohler and Peclet num-
bers. The Damkohler number for a first-order reaction, Da = tk, can be found
using the techniques in Chapter 5. In the next section, we discuss methods to
determine D,, by finding the Peclet number.

5 P. V. Danckwerts, Chem. Eng. Sci., 2, 1 (1953).
¢ Levenspiel, Chemical Reaction Engineering, 3rd ed. (New York: Wiley, 1999).
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14.4.3 Finding D, and the Peclet Number

There are three ways we can use to find D, and hence Pe,

1. Laminar flow with radial and axial molecular diffusion theory

2. Correlations from the literature for pipes and packed beds

3. Experimental tracer data

At first sight, simple models described by Equation (14-13) appear to

have the capability of accounting only for axial mixing effects. It will be
shown, however, that this approach can compensate not only for problems
caused by axial mixing, but also for those caused by radial mixing and other
nonflat velocity profiles.” These fluctuations in concentration can result from
different flow velocities and pathways and from molecular and turbulent diffu-
sion.

14.4.4 Dispersion in a Tubular Reactor with Laminar Flow

In a laminar flow reactor, we know that the axial velocity varies in the radial
direction according to the Hagen—Poiseuille equation:

aor=u[1-(3]

where U is the average velocity. For laminar flow, we saw that the RTD func-
tion E(f) was given by

E(t) = (13-47)

In arriving at this distribution E(f), it was assumed that there was no transfer
of molecules in the radial direction between streamlines. Consequently, with
the aid of Equation (13-43), we know that the molecules on the center stream-
line (r = 0) exited the reactor at a time ¢ = 7/2, and molecules traveling on the
streamline at r = 3R/4 exited the reactor at time
= L _ L _ T
U U — (/R 21— (3/4)]

1]
o0
!

7R. Aris, Proc. R. Soc. (London), A235, 67 (1956).
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The question now arises: What would happen if some of the molecules
traveling on the streamline at r = 3R/4 jumped (i.e., diffused) onto the stream-
line at r = 07 The answer is that they would exit sooner than if they had stayed
on the streamline at r = 3R/4. Analogously, if some of the molecules from the
faster streamline at r = 0 jumped (i.e., diffused) on to the streamline at r =
3R/4, they would take a longer time to exit (Figure 14-9). In addition to the
molecules diffusing between streamlines, they can also move forward or back-
ward relative to the average fluid velocity by molecular diffusion (Fick’s law).
With both axial and radial diffusion occurring, the question arises as to what
will be the distribution of residence times when molecules are transported
between and along streamlines by diffusion. To answer this question we will
derive an equation for the axial dispersion coefficient, D,, that accounts for the
axial and radial diffusion mechanisms. In deriving D,, which is referred to as
the Aris—Taylor dispersion coefficient, we closely follow the development
given by Brenner and Edwards.?

r=3p - >
4 *—r
—
—-—
r=0 -

J T vezuprlf

z=0 Z ——

Figure 14-9 Radial diffusion in laminar flow.

The convective—diffusion equation for solute (e.g., tracer) transport in
both the axial and radial direction can be obtained by combining Equations
(11-3) and (11-15),

dc dc _ 1 d[r(ac/or)] | 9%c
9 4@ 9 = p,y gL 2rlde/on] o7 14-28
ot u(r) Jz AB{r or 0z2 ( )

where c is the solute concentration at a particular r, z, and 7.
We are going to change the variable in the axial direction z to z*, which
corresponds to an observer moving with the fluid

Z'=z-Ut (14-29)

A value of z* = 0 corresponds to an observer moving with the fluid on the
center streamline. Using the chain rule, we obtain

8 H. Brenner and D. A. Edwards, Macrotransport Processes (Boston: Butterworth-
Heinemann, 1993).
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dc dc 1 0| ac 9%c
= + — =Dppl| == |r=\+ 14-30
(atl* ()=l az* A {r ar( ar] 82*2} ( )

Because we want to know the concentrations and conversions at the exit to the
reactor, we are really only interested in the average axial concentration C,
which is given by

Cen=——("ctzn2mrdr (14-31)
mR? o

Consequently, we are going to solve Equation (14-30) for the solution concen-
tration as a function of r and then substitute the solution ¢ (1, z, t) into Equa-
tion (14-31) to find C (z, 7). All the intermediate steps are given on the
CD-ROM R14.1, and the partial differential equation describing the variation
of the average axial concentration with time and distance is

(14-32)
2
9T,y - p- IC
at 9z 9z*2
where D* is the Aris—Taylor dispersion coefficient:
U?R?
D* = Dpp+ —— 14-33
LR ( )
That is, for laminar flow in a pipe
D,=D*

Figure 14-10 shows the dispersion coefficient D* in terms of the ratio
D*/U(2R) = D*/Ud, as a function of the product of the Reynolds and Schmidt
numbers.

14.4.5 Correlations for D,
14.4.5A Dispersion for Laminar and Turbulent Flow in Pipes

An estimate of the dispersion coefficient, D,, can be determined from Figure
14-11. Here d, is the tube diameter and Sc is the Schmidt number discussed in
Chapter 11. The flow is laminar (streamline) below 2,100, and we see the ratio
(D,/Ud)) increases with increasing Schmidt and Reynolds numbers. Between
Reynolds numbers of 2,100 and 30,000, one can put bounds on D, by calculat-
ing the maximum and minimum values at the top and bottom of the shaded
region.

:
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100 Model only applicable when:
L >> 3d, L >> 30d; L >>300a
Streamline flow
— in pipes —
10 /
o | B
oy L For whole regime, _
242
u<d
1 D =D+ !
—
192 Dyg Dispersion
B by convection, N
Dispersion by u2d?
[~ diffusion D =D, N\ Y= m m
0.1 | [ LN | | | | |
0.1 1 10 102 108 10%

Figure 14-10 Correlation for dispersion for streamline flow in pipes. (From O. Levenspiel,
Chemical Reaction Engineering, 2nd ed. Copyright © 1972 John Wiley & Sons, Inc. Reprinted
by permission of John Wiley & Sons, Inc. All rights reserved.) [Note: D = D,]

T TTTTI [T TTTTT T TTTTT
Flow in 3
Pipes :1
Once the Reynolds
number is calcu- =
lated, D, can be =
found. S || -
Q 1
i —
1
|
= o =
- fé“’% ‘ /- Experimental .
» Gp&" : L Theoretical, from Taylor
| (19545)
10 T —
© =
Q?’ : -
e :
I = ]
«— Streamline —l—-TurbuIent —
o1l 1 il o pavid i
102 103 104 108 108
Re = diUp/u

Figure 14-11 Correlation for dispersion of fluids flowing in pipes. (From O. Levenspiel,
Chemical Reaction Engineering, 2nd ed. Copyright © 1972 John Wiley & Sons, Inc. Reprinted
by permission of John Wiley & Sons, Inc. All rights reserved.) [Note: D = D,]
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14.4.5B Dispersion in Packed Beds
For the case of gas—solid catalytic reactions that take place in packed-bed reac-

tors, the dispersion coefficient, D,, can be estimated by using Figure 14-12.
Here d, is the particle diameter and € is the porosity.

20 T T TTTIT T T T T T T T
10

T, T TTTITT
Flow in
packed beds

NGases Sc= 0.2

\
:/{ Sc=0.35

-
3
g 1‘0,___ ~, ~ ~
R e .
| Gases Sc= 1.0 |
0.1 (N RN i Lt
0.1 1.0 10 100 1000 2000
Re = d,Up/u

Figure 14-12 Experimental findings on dispersion of fluids flowing with mean
axial velocity u in packed beds. (From O. Levenspiel, Chemical Reaction
Engineering, 2nd ed. Copyright © 1972 John Wiley & Sons, Inc. Reprinted by
permission of John Wiley & Sons, Inc. All rights reserved.) [Note: D = D,]

14.4.6 Experimental Determination of D,

The dispersion coefficient can be determined from a pulse tracer experiment.
Here, we will use t,, and o to solve for the dispersion coefficient D, and then
the Peclet number, Pe,. Here the effluent concentration of the reactor is mea-
sured as a function of time. From the effluent concentration data, the mean res-
idence time, f,,, and variance, o2, are calculated, and these values are then used
to determine D,. To show how this is accomplished, we will write

9’Cr aUCy) _aC,

D,
622 Jdz Jt

(14-13)

in dimensionless form, discuss the different types of boundary conditions at
the reactor entrance and exit, solve for the exit concentration as a function of
dimensionless time (@ = /1), and then relate D,, ¢2, and T.

14.4.6A The Unsteady-State Tracer Balance

The first step is to put Equation (14-13) in dimensionless form to arrive at the
dimensionless group(s) that characterize the process. Let

y=—L, )\:Z, and @:&]

1
4
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For a pulse input, Cy, is defined as the mass of tracer injected, M, divided by
the vessel volume, V. Then

1 02y _oP _ Iy
_ LT =t 14-34
Pe, oA2 N 00O ( )
The initial condition is
Initial condition Att=0, z>0, CH0%0)=0, U(0H=0 (14-35)

The mass of tracer injected, M is

M= UACJ Co (0, 1) di
0

14.4.6B Solution for a Closed-Closed System

In dimensionless form, the Danckwerts boundary conditions are

o ] aq;) w CH0T D)

AtA=0: L +0h) = 22— 14-36

! ( Pe,oN), _ ot v(0) Cro ( )

AtA=1: o _ (14-37)
I\

Equation (14-34) has been solved numerically for a pulse injection, and the

resulting dimensionless effluent tracer concentration, s.,;, is shown as a func-

tion of the dimensionless time © in Figure 14-13 for various Peclet numbers.

o — Although analytical solutions for {s can be found, the result is an infinite series.
The corresponding equations for the mean residence time, #,,, and the variance,
o2, are®

b

f,=1 (14-38)

and

o2 _ 1 Jw (t — TRE(t) dt
0

2 2
2 1

which can be used with the solution to Equation (14-34) to obtain

9 See K. Bischoff and O. Levenspiel, Adv. Chem. Eng., 4, 95 (1963).
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20 ~

Plug flow, uR =0 —{,

L Small amount of dispersion,

~ [« D
1:0.002

15 = Intermediate amount of dispersion,
<«—D
Effects of T 0.025
dispersion on the
effluent tracer Mixed flow, 2= o0
. = > uL
concentration s 1.0
>

Large amount of dispersion,
D _

- 0.2

0.5

JN\
0 0.5 1.0 15 2.0

O=t/t

Figure 14-13 C curves in closed vessels for various extents of back-mixing as
predicted by the dispersion model. (From O. Levenspiel, Chemical Reaction
Engineering, 2nd ed. Copyright © 1972 John Wiley & Sons, Inc. Reprinted by
permission of John Wiley & Sons, Inc. All rights reserved.) [Note: D = D,]"°

Calculating Pe,

using 7,, and o2 2 -
determined from o _ i — L (1- efper) (14-39)
RTD data for a 2 Pe, Pe2
closed-closed
system

Consequently, we see that the Peclet number, Pe, (and hence D,), can be found
experimentally by determining #,, and ¢ from the RTD data and then solving
Equation (14-39) for Pe,.

14.4.6C Open-Open Vessel Boundary Conditions

When a tracer is injected into a packed bed at a location more than two or
three particle diameters downstream from the entrance and measured some dis-
tance upstream from the exit, the open-open vessel boundary conditions apply.
For an open-open system, an analytical solution to Equation (14-13) can be
obtained for a pulse tracer input.

For an open-open system, the boundary conditions at the entrance are

Fr(07, 1) = Fr (0", 1)

190, Levenspiel, Chemical Reaction Engineering, 2nd ed. (New York: Wiley, 1972),
p. 277.

=
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Then for the case when the dispersion coefficient is the same in the entrance
and reaction sections:

aC _ aC
—Da(—T) +UCA0 1) = —Da(—T) +UCA0",1)  (14-40)
dz z=0 dz z= OJr

Because there are no discontinuities across the boundary at z=0

CA0 ,0)=CH0" 1) (14-41)

At the exit

—Da(a—CT) +UCHL™ ) = —Da( ) HUCKL 1) (14-42)
z=1L z=1L

Jdz 4

CAL ,t)=CHL" 1) (14-43)

There are a number of perturbations of these boundary conditions that can be
applied. The dispersion coefficient can take on different values in each of the
three regions (z < 0,0 <z < L, and z > L), and the tracer can also be injected
at some point z; rather than at the boundary, z = 0. These cases and others can
be found in the supplementary readings cited at the end of the chapter. We
shall consider the case when there is no variation in the dispersion coefficient
for all z and an impulse of tracer is injected at z = 0 at = 0.

For long tubes (Pe, > 100) in which the concentration gradient at + oo
will be zero, the solution to Equation (14-34) at the exit is!!

2
b1,0) = HED - Lo [ZUZOV ) (4as)
Cro 2,/m0O/Pe, 40/Pe,
The mean residence time for an open-open system is
_ 2
t, = (1 + —)’L’ (14-45)
Pe,.

where T is based on the volume between z = 0 and z = L (i.e., reactor volume
measured with a yardstick). We note that the mean residence time for an open
system is greater than that for a closed system. The reason is that the mole-
cules can diffuse back into the reactor after they exit. The variance for an
open-open system is

o_ 2,8 (14-46)

1'W. Jost, Diffusion in Solids, Liquids and Gases (New York: Academic Press, 1960),
pp- 17, 47.
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We now consider two cases for which we can use Equations (14-39) and
(14-46) to determine the system parameters:

Case 1. The space time T is known. That is, V and v, are measured
independently. Here we can determine the Peclet number by
determining 7,, and o? from the concentration—time data and
then using Equation (14-46) to calculate Pe,. We can also cal-
culate #,, and then use Equation (14-45) as a check, but this is
usually less accurate.

Case 2. The space time T is unknown. This situation arises when there
are dead or stagnant pockets that exist in the reactor along with
the dispersion effects. To analyze this situation we first calcu-
late 7,, and o from the data as in case 1. Then use Equation
(14-45) to eliminate > from Equation (14-46) to arrive at

o2 2Per +8
o __ % T8 14-47
2 Pel+4pe +4 (14-47)

We now can solve for the Peclet number in terms of our exper-
imentally determined variables o> and ti. Knowing Pe,, we
can solve Equation (14-45) for 7, and hence V. The dead vol-
ume is the difference between the measured volume (i.e., with
a yardstick) and the effective volume calculated from the RTD.

14.4.7 Sloppy Tracer Inputs

It is not always possible to inject a tracer pulse cleanly as an input to a system
because it takes a finite time to inject the tracer. When the injection does not
approach a perfect pulse input (Figure 14-14), the differences in the variances
between the input and output tracer measurements are used to calculate the
Peclet number:
2 = g2 — g2
Ao 9in = %out
where O'izn is the variance of the tracer measured at some point upstream (near
the entrance) and )'(Z)u is the variance measured at some point downstream
(near the exit).

t

ViN

z=0 z=L
Inject Measure

Figure 14-14 Imperfect tracer input.
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For an open-open system, it has been shown!? that the Peclet number can
be calculated from the equation

2
At—z(’ - % (14-48)

”

Now let’s put all the material in Section 14.4 together to determine the conver-
sion in a tubular reactor for a first-order reaction.

Example 14-2 Conversion Using Dispersion and Tanks-in-Series Models

The first-order reaction
A —— B

is carried out in a 10-cm-diameter tubular reactor 6.36 m in length. The specific
reaction rate is 0.25 min~!. The results of a tracer test carried out on this reactor are
shown in Table E14-2.1.

TABLE E14-2.1.  EFFLUENT TRACER CONCENTRATION AS A FUNCTION OF TIME

¢t (min) o1 2 3 4 5 6 7 8 9 10 12 14

C (mg/L) o 1 5 8 10 8 6 4 3 22 15 06 0

Calculate the conversion using (a) the closed vessel dispersion model, (b) PFR,
(c) the tanks-in-series model, and (d) a single CSTR.

Solution
(a) We will use Equation (14-27) to calculate the conversion

B 4q exp (Pe,/2)
(1+¢)* exp(Pe,q/2)— (1 —¢)* exp(—Pe,q/2)

(14-27)

where ; = ,/1+4Da/Pe, Da = tk, and Pe, = UL/D,. We can calculate Pe, from
Equation (14-39):

o2 2 2 —Pe,
—=——-——"(1—-e 14-39
2 Pe, Pe? ( ) ( )
First calculate 7,, and However, we must find 12 and ¢ from the tracer concentration data first.
o2 from RTD data. y
T =J tE(t) dt = 5 (E14-2.1),
0 ,

o2 = J‘” (t—1)2E(f) dt = Jm ©2E(1) dt —

(E14-2.2)
0 0

12R. Aris, Chem. Eng. Sci., 9, 266 (1959).
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Consider the data listed in Table E14-2.2.

TaBLE E14-2.2.  CALCULATIONS TO DETERMINE £,, AND G2

t (min) 0 1 2 3 4 5 6 7 8 9 10 12 14

Here again Cty(moldm» O 1 5 8 10 8 6 4 3 22 15 06 0

spreadsheets can be
used to calculate T2
and o2,

E(t) (min™) | 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

tE(1) 0 0.02 02 048 0.8 080 0.72 056 048 040 03 014 0

E(r) (min) | 0 0.02 04 1.44 32 40 432 392 384 360 30 168 0

To find E(¢) and then t,,, we first find the area under the C curve, which is

3

J C(#) dt = 50 g~ min
0
Then

T=1¢ = Jm tE(f) dt = 5.15 min

0
Calculating the first term on the right-hand side of Equation (E14-2.2), we find

J T RE@) dt = (1) [1(0) +4(0.02) +2(0.4) + 4(1.44) +2(3.2) + 4(4.0)
0

+2(4.32) +4(3.92) + 2(3.84) + 4(3.6) + 1(3.0)]
+ (%) [3.0+4(1.68)+0]
= 32.63 min?

Substituting these values into Equation (E14-2.2), we obtain the variance, a2.
02 =32.63—(5.15)? = 6.10 min?

Most people, including the author, would use Polymath or Excel to form Table
E14-2.2 and to calculate #,, and o2, Dispersion in a closed vessel is represented by

2 —
5= P—zz (Pe,—1+e ") (14-39)
Calculate Pe, from T e;
t,, and o2 )
=8l _923=2 (Pe, 1+
(5157 Pe?

Solving for Pe, either by trial and error or using Polymath, we obtain

Next, calculate Next we calculate Da to be

Da, g, and X.
Da = tk = (5.15 min)(0.25 min~—!) = 1.29

&%
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Using the equations for ¢ and X gives

g = 1+4PIZa - JH“—(;'?) =130

r

Then

Pe.q  (7.5)(13) _
S = A = 487

Substitution into Equation (14-40) yields

Yoo 4(1.30) e(7:5/2)
Dispersion Model (2.3)2 exp (4.87) — (—0.3)2 exp (—4.87)

X=10.68 68% conversion for the dispersion model

When dispersion effects are present in this tubular reactor, 68% conversion is

achieved.
(b) If the reactor were operating ideally as a plug-flow reactor, the conversion
would be
PFR X=1l—-e%=1—-eDr=1-¢12=0725
That is, 72.5% conversion would be achieved in an ideal plug-flow reactor.
Tanks-in-series (c) Conversion using the tanks-in-series model: We recall Equation (14-12) to
model calculate the number of tanks in series:
2 2
S 1) ) Y
o? 6.1

To calculate the conversion, we recall Equation (4-11). For a first-order reaction for
n tanks in series, the conversion is

— e 1 — — —
(1+ 1,k [1+(t/n)k]" (1+1.29/4.35)435

X = 67.7% for the tanks-in-series model

1 _ 1 1 1

(d) For a single CSTR,

I+t 229 0563

So 56.3% conversion would be achieved in a single ideal tank.
Summary:

PFR: X = 72.5%
Dispersion: X = 68.0%
Tanks in series: X = 67.7%
Single CSTR: X = 56.3%

Summary

In this example, correction for finite dispersion, whether by a dispersion model or a
tanks-in-series model, is significant when compared with a PFR.

&%
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14.5 Tanks-in-Series Model Versus Dispersion Model

We have seen that we can apply both of these one-parameter models to tubular
reactors using the variance of the RTD. For first-order reactions, the two mod-
els can be applied with equal ease. However, the tanks-in-series model is math-
ematically easier to use to obtain the effluent concentration and conversion for
reaction orders other than one and for multiple reactions. However, we need to
ask what would be the accuracy of using the tanks-in-series model over the
dispersion model. These two models are equivalent when the Peclet-Boden-
stein number is related to the number of tanks in series, n, by the equation'3

Bo=2(n-1) (14-49)
or
n= 132_0 +1 (14-50)

where Bo = UL/D,, where U is the superficial velocity, L the reactor length,
and D, the dispersion coefficient.

For the conditions in Example 14-2, we see that the number of tanks cal-
culated from the Bodenstein number, Bo (i.e., Pe,), Equation (14-50), is 4.75,
which is very close to the value of 4.35 calculated from Equation (14-12).
Consequently, for reactions other than first order, one would solve successively
for the exit concentration and conversion from each tank in series for both a
battery of four tanks in series and of five tanks in series in order to bound the
expected values.

In addition to the one-parameter models of tanks-in-series and disper-
sion, many other one-parameter models exist when a combination of ideal
reactors is used to model the real reactor as shown in Section 13.5 for reactors
with bypassing and dead volume. Another example of a one-parameter model
would be to model the real reactor as a PFR and a CSTR in series with the one
parameter being the fraction of the total volume that behaves as a CSTR. We
can dream up many other situations that would alter the behavior of ideal reac-
tors in a way that adequately describes a real reactor. However, it may be that
one parameter is not sufficient to yield an adequate comparison between theory
and practice. We explore these situations with combinations of ideal reactors in
the section on two-parameter models.

The reaction rate parameters are usually known (i.e., Da), but the Peclet
number is usually not known because it depends on the flow and the vessel.
Consequently, we need to find Pe, using one of the three techniques discussed
earlier in the chapter.

BK. Elgeti, Chem. Eng. Sci., 51, 5077 (1996).

e




$ Fogler_ECRE_CDROM.book Page 975 Wednesday, September 17,2008 5:01 PM

. E

Sec. 14.6 Numerical Solutions to Flows with Dispersion and Reaction 975
14.6 Numerical Solutions to Flows with Dispersion
and Reaction

We now consider dispersion and reaction. We first write our mole balance on
species A by recalling Equation (14-28) and including the rate of formation of
A, ry. At steady state we obtain

8( GCA)
1 ar d CA

ar GZ

()-—-—+ ra =20 (14-51)

Analytical solutions to dispersion with reaction can only be obtained for iso-
thermal zero- and first-order reactions. We are now going to use COMSOL to
solve the flow with reaction and dispersion with reaction. A COMSOL
CD-ROM is included with the text.

We are going to compare two solutions: one which uses the Aris—Taylor
approach and one in which we numerically solve for both the axial and radial
concentration using COMSOL.

Case A. Aris—Taylor Analysis for Laminar Flow

For the case of an nth-order reaction, Equation (14-15) is

D,d’Cy dCy kCy _

(14-52)
U d-> dz U

If we use the Aris—Taylor analysis, we can use Equation (14-15) with a caveat
that 1]1 CA/ C,o where Cy is the average concentration from r =0 to r = R
as given by

1 d_d _
Day" =0 14-53
Pe,gx?  dA V= (14-53)

where

Pe,= % and Da = tkCAO

a

For the closed-closed boundary conditions we have

1 dllj -+
At AN=0: -— +¢(0) =1 14-54
poan, MO (14-54)
Danckwerts bound- dll_j
ary conditions At AN=1: d_)\ =

For the open-open boundary conditions we have

<@

e .
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= = 1 dy =t 1 dis
At N=0: 0 )——=— =0 )——==
w0 Pe d\|, _ - w0 Pe d\|, _ ¢
(14-55)

At a=1. W_y
ax

Equation (14-53) is a nonlinear second order ODE that is solved on the COMSOL
CD-ROM.

Case B. Full Numerical Solution
To obtain profiles, C,(r,z), we now solve Equation (14-51)

6( BC)
Dus 1 ar o’ Cpl

r or az

()&W ra=10 (14-51)

First we will put the equations in dimensionless form by letting ¢ = C,/Cyy,
A =z/L, and ¢ = r/R. Following our earlier transformation of variables, Equa-
tion (14-51) becomes

¢)d4’ Dal/' =0  (14-56)

4%)
(L)l g/ +Ld)\¢

Pecb a¢ P

Example 14-3 Dispersion with Reaction

(a)  First, use COMSOL to solve the dispersion part of Example 14-2 again.
How does the COMSOL result compare with the solution to Example 14-2?

(b)  Repeat (a) for a second-order reaction with k = 0.5 dm?*/mol ¢ min.

(¢) Repeat (a) but assume laminar flow and consider radial gradients in
concentration. Use D,y for both the radial and axial diffusion coeffi-
cients. Plot the axial and radial profiles. Compare your results with part (a).

Additional information:

Cho = 0.5 mol/dm?, U, = L/t = 1.24 m/min, D, = U,L/Pe, = 1.05 m%*min.
Dyp = 7.6E-5 m?/min.

Note: For part (a), the two-dimensional model with no radial gradients (plug flow)
becomes a one-dimensional model. The inlet boundary condition for part (a) and
part (b) is a closed-closed vessel (flux[z = 0] = flux[z = 0*] or U,-C,, = flux) at the
inlet boundary. In COMSOL format it is: -N;-n = U0*CAQ. The boundary condition
for laminar flow in COMSOL format for part (c) is: —=N;-n = 2*¥*U0*(1-(1/Ra),)*CAO.

Solution

(a) Equation (14-52) was used in the COMSOL program along with the

rate law

e

e

.
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ra=—kCy=-kCpo ¥

We see that we get the same results as the analytical solution in Exam-
ple 14-2. With the Aris-Taylor analysis the two-dimensional profile
becomes a one-dimensional plug flow velocity profile. Figure E14-3.1(a)
shows a uniform concentration surface and shows the plug flow behav-
ior of the reactor. Figure E14-3.1(b) shows the corresponding cross-sec-
tion plots at the inlet, half axial location, and outlet. The average outlet
conversion is 67.9%.

The average outlet concentration at an axial distance z is found by inte-
grating across the radius as shown below

R2qrC\(r,z)dr

o) = | :
0 TR

Be sure to view
documentation on From the average concentrations at the inlet and outlet we can calculate

COMSOL CD-ROM h ;
16 see COMSOL the average conversion as

tutorial with

screen shots X = M
CAO
Concentration Surface Radial Concentration Profiles
7 05
Inlet
Load enclosed 6 £ 04r
COMSOL CD g 04 Average Outlet.Conversion = 67.9%
= 5 :
= 035 .5 0.35p-
g g
g 4 03 E o
5] ® Uer
= 5 025 e
.8 Q i i =12
{\Q é 02 5] i5E Half Axial Location: (Z )
2
0.15
0.2}
1 0.1
- Outlet
Living Example Problem 0.05
ol NS | 015k ! ] ! i i
01 005 0 005 0.1 g 0 0.01 0.02 0.03 0.04 0.05
Radial Location (m ; s
(m) Radial Location (m)
(a) (b)

Figure E14-3.1 COMSOL results for a plug flow reactor with first-order reaction.
(Concentrations in mol/dm?3.)

(b) Now we expand our results to consider the case when the reaction is
second order (—ry = kCi =kCh,¥?) with k=0.5 dm¥mol-min and
Cao=0.5 mol/dm3. Let’s assume the radial dispersion coefficient is
equal to the molecular diffusivity. Keeping everything else constant, the
average outlet conversion is 52.3%. However, because the flow inside
the reactor is modeled as plug flow the concentration profiles are still
flat, as shown in Figure E14-3.2.

e

k.



Z $ Fogler_ECRE_CDROM.book Page 978 Wednesday, September 17,2008 5:01 PM $

978 Models for Nonideal Reactors ~ Chap. 14
Concentration Surface Radial Concentration Profiles
7 045
Inlet

6
E c 04 :
S @ o Average Outlet Conversion = 52.3%
3 &
S =
S T o025
- %)
8 S
X 3
< © Half Axial Location (z = L/2)

5 03 - -

1

0.25[ Qutlet -
ol DN | ‘ ; : ‘ ; ;
0 00 0 00 0 0 0.01 0.02 003 0.04 0.05
Radial Location (m) ; ;
Radial Location (m)
(a) (b)

Figure E14-3.2 COMSOL results for a plug flow reactor with second-order reaction.
(Concentrations in mol/dm?3.)

(¢) Now, we will change the flow assumption from plug flow to laminar
flow and solve Equation (14-51) for a first-order reaction.

Concentration Surface Radial Concentration Profiles
7 05t
Inlet

5 045
E . = 04
= = Average Outlet Conversion = 68.8%
5 T 038
T 4 =
8 @ o3
| c
= 3 8 0.25- Half Axial Location
< 0.2F

2 Outlet

T0 015 e s o s e S S S
1
04F
0 L e —— o 001 0.02 0.03 004 0.05
0.1 -o..os 0 ?.05 0.1 5 . .
Radial Location (m) Radial Location (m)
(@) (b)

Figure E14-3.3 COMSOL output for laminar flow in the reactor.
(Concentrations in mol/dm3.)

The average outlet conversion becomes 68.8%, not much different from
the one in part (a) in agreement with the Aris—Taylor analysis. How-
ever, due to the laminar flow assumption in the reactor, the radial con-
centration profiles are very different throughout the reactor.

(d) As a homework exercise, repeat part (c) for the second-order reaction
given in part (b).

e
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14.7 Two-Parameter Models—Modeling
Real Reactors with Combinations
of ldeal Reactors

We now will see how a real reactor might be modeled by one of two different
combinations of ideal reactors. These are but two of an almost unlimited num-
ber of combinations that could be made. However, if we limit the number of
adjustable parameters to two (e.g., bypass flow rate, v,, and dead volume, Vp),
the situation becomes much more tractable. After reviewing the steps in Table
14-1, choose a model and determine if it is reasonable by qualitatively compar-
ing it with the RTD, and if it is, determine the model parameters. Usually, the
simplest means of obtaining the necessary data is some form of tracer test.
These tests have been described in Chapter 13, together with their uses in
determining the RTD of a reactor system. Tracer tests can be used to determine
the RTD, which can then be used in a similar manner to determine the suitabil-
ity of the model and the value of its parameters.

In determining the suitability of a particular reactor model and the
parameter values from tracer tests, it may not be necessary to calculate the
RTD function E(¢). The model parameters (e.g., Vp) may be acquired directly
from measurements of effluent concentration in a tracer test. The theoretical
prediction of the particular tracer test in the chosen model system is compared
with the tracer measurements from the real reactor. The parameters in the
model are chosen so as to obtain the closest possible agreement between the
model and experiment. If the agreement is then sufficiently close, the model is
deemed reasonable. If not, another model must be chosen.

The quality of the agreement necessary to fulfill the criterion “suffi-
ciently close” again depends on creativity in developing the model and on
engineering judgment. The most extreme demands are that the maximum error
in the prediction not exceed the estimated error in the tracer test and that there
be no observable trends with time in the difference between prediction (the
model) and observation (the real reactor). To illustrate how the modeling is
carried out, we will now consider two different models for a CSTR.

14.7.1 Real CSTR Modeled Using Bypassing and Dead Space

A real CSTR is believed to be modeled as a combination of an ideal CSTR of
volume V, a dead zone of volume V,, and a bypass with a volumetric flow rate
v, (Figure 14-15). We have used a tracer experiment to evaluate the parame-
ters of the model V; and v, . Because the total volume and volumetric flow rate
are known, once V, and v, are found, v, and V, can readily be calculated.

14.7.1A Solving the Model System for C, and X

We shall calculate the conversion for this model for the first-order reaction

A —— B

e
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Cao m Vs
> 7
Vo
The model system q
S Y
] g Vd
Up ¥
VS
Bypass
Dead Cas
ead zone N EA
CAO w Vo = VUp + Vg
(a)
(b)

Figure 14-15 (a) Real system; (b) model system.

The bypass stream and effluent stream from the reaction volume are mixed at
point 2. From a balance on species A around this point,

Balance at junction [In] = [Out]
[CroVy, T+ Cp, V] = [Ca(V, + V)] (14-57)
We can solve for the concentration of A leaving the reactor,

— vbCAO + CASUS — vbCAO + CAS U

Ca
U, T U, U

Leta =V/Vand B = v,/v, . Then

Cpr = BCro + (1 = P)Cy (14-58)
For a first-order reaction, a mole balance on V; gives
Mole bal
ole aarggrl—(?}g US CAO - US CAS - kCASVS == O (14‘59)

or, in terms of o and 3,

_ Cao1 =By

AT (1=B)v,+alk (14-60)

Substituting Equation (14-60) into (14-58) gives the effluent concentration of

species A:
Conversion as a LY
function of model & =1-X=B+ _d=pr (14-61)
parameters Cho (1-B)+tatk

We have used the ideal reactor system shown in Figure 14-15 to predict
the conversion in the real reactor. The model has two parameters, a and (3. If
these parameters are known, we can readily predict the conversion. In the fol-
lowing section, we shall see how we can use tracer experiments and RTD data
to evaluate the model parameters.

e k.
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14.7.1B Using a Tracer to Determine the Model Parameters
in CSTR-with-Dead-Space-and-Bypass Model

In Section 14.7.1A, we used the system shown in Figure 14-16, with bypass
flow rate v, and dead volume V,, to model our real reactor system. We shall
inject our tracer, 7, as a positive-step input. The unsteady-state balance on the
nonreacting tracer 7 in the reactor volume V| is

In — out = accumulation

dN dc
Tracer bzsliznc.e for v CT() — CT _ Ts _ Ts (1 4. 62)
p 1nput s s s dt s df
Cro m vs = (1-P)v,
Yo
Vy=(1-o)V
U = BU S
Model system b 0 )
Crs
Cr
Cro w Vo= Up+ Ug
Figure 14-16 Model system: CSTR with dead volume and bypassing.
The conditions for the positive-step input are
At1<0 C;=0
Att=0 C,= Cp
The junction A halance around junction point 2 gives
balance
0,Cro+ Cprv
CT — b~ T0 Ts%s (14‘63)
Vo
As before,
V.=al
v, = Bu,
_V
T = —
Vo

Integrating Equation (14-62) and substituting in terms of o and 3 gives

Cr 1Bt
Cm_l exp{ = (Tﬂ (14-64)

&%
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Combining Equations (14-63) and (14-64), the effluent tracer concentration is

Sr_ya-p exp{—l-_-—@ [’ﬂ (14-65)
Cro

03 T

We now need to rearrange this equation to extract the model parameters, o. and
B, either by regression (Polymath/MATLAB/Excel) or from the proper plot of
the effluent tracer concentration as a function of time. Rearranging yields

In_Sn_ 1 +[1_B]f (14-66)

Crn—Cr 1-B | a |1

Consequently, we plot In[Cy/(Cry — Cr)] as a function of 7. If our
model is correct, a straight line should result with a slope of (1 — 8)/Ta and
an intercept of In[1/(1 — B)].

Example 14-4 CSTR with Dead Space and Bypass

The elementary reaction
A+B —— C+D

is to be carried out in the CSTR shown schematically in Figure 14-15. There is both
bypassing and a stagnant region in this reactor. The tracer output for this reactor is
shown in Table E14-4.1. The measured reactor volume is 1.0 m? and the flow rate to
the reactor is 0.1 m3/min. The reaction rate constant is 0.28 m3/kmol - min. The feed
is equimolar in A and B with an entering concentration of A equal to 2.0 kmol/m?.
Calculate the conversion that can be expected in this reactor (Figure E14-4.1).

TABLE E14-4.1  TRACER DATA FOR STEP INPUT

Cr (mg/dm?) 1000 1333 1500 1666 1750 1800

¢ (min) 4 8 10 14 16 18

The entering tracer concentration is Cry = 2000 mg/dm?.

(¢]
co 1/
v, \'A V,= (1—a)V
CTS CAS
f\ CT ()
2/ c, °©

Figure E14-4.1 Schematic of real reactor modeled with dead space (V,;) and
bypass (v}).

&
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Solution

Recalling Equation (14-66)

n_Sn_— L (1-B)! (14-66)
Cr—Cr 1-p o 1

Equation (14-66) suggests that we construct Table E14-4.2 from Table E14-4.1 and
plot C/(Cqy — Cyr) as a function of time on semilog paper. Using this table we get
Figure E14-4.2.

TABLE E14-4.2.  PROCESSED DATA

¢ (min) 4 8 10 14 16 18
_Cn 2 3 4 6 8 10
CTO - CT

We can find o and B from either a semilog plot as shown in Figure E14-4.2 or by
regression using Polymath, MATLAB, or Excel.

10.0
8.0}

6.0+
5.0

S a0
30

2.0

lfo—1=1.25

I IO S T T T T S
O 2 4 6 8 1012 14 16 18 20

t {(min)

Figure E14-4.2 Response to a step input.

The volumetric flow rate to the well-mixed portion of the reactor, v, , can be deter-
mined from the intercept, I:

1

——=1=125
1-p

The volume of the well-mixed region, V,, can be calculated from the slope:

128 — §—0.115 min~!
aT
_1-02 _ .
at = = 7 min
0.115

e
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‘We now proceed to determine the conversion corresponding to these model parameters.
1. Balance on reactor volume V:

[In] — Out + Generation = Accumulation

ViCao = ViCps 1 V=0 (E14-4.1)
2. Rate law:
—ras = kCyCpy
Equimolar feed .".Cy, = Cg,
—r 4 = kCis (E14-4.2)
3. Combining Equations (E14-4.1) and (E14-4.2) gives
0,Cpg— U, Ca,— kC3 V=0 (E14-4.3)
Rearranging, we have
T kCﬁs + Cay = Cao=0 (E14-4.4)
Council would tke Solving for C, yields
to point out the
Tunetion Balance, Cpp = 11 ;:k““ *Cao (E14-4.5)

4. Balance around junction point 2:
[In] = [Out]
[05Ca0+ V,Casl = [0oCal (E14-4.6)

Rearranging Equation (E14-4.6) gives us

Vg — U

CA:

Cao+ 22 Cy, (E14-4.7)
Vo

0
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5. Parameter evaluation:
v, = 0.8v, = (0.8)(0.1 m3*/min) = 0.08 m3/min
V.= (at)v, = (7.0 min)(0.1 m3/min) = 0.7 m?
V.

1, = — = 8.7 min
UX
on A THATRCy, 1 (E14-4.8)
As 2tk

_ J1+(4)(8.7 min)(0.28 m3/kmol - min)(2 kmol/m3) — 1
(2)(8.7 min)(0.28 m3/kmol - min)

= 0.724 kmol/m3
Substituting into Equation (E14-4.7) yields

0.1 -0.08
Cp = =—=(2) +(0.8)(0.724) = 0.979
Finding the A 0.1 (2) +(0.8)( )
conversion
X = 1_0.979 ~ 051
2.0

If the real reactor were acting as an ideal CSTR, the conversion would be

+ —
Cp = ’VM (E14-4.9)

2tk
¢ = LTHAANOB =1 _ g ges
2(10)(0.28)
o osl x=1-Sa 0685 _ 6 (E14-4.10)
model . CAO 2.

XIdeal = 0.66

Other Models. In Section 14.7.1 it was shown how we formulated a model
consisting of ideal reactors to represent a real reactor. First, we solved for the
exit concentration and conversion for our model system in terms of two param-
eters o and 3. We next evaluated these parameters from data of tracer concen-
tration as a function of time. Finally, we substituted these parameter values
into the mole balance, rate law, and stoichiometric equations to predict the
conversion in our real reactor.
To reinforce this concept, we will use one more example.

14.7.2 Real CSTR Modeled as Two CSTRs with Interchange

In this particular model there is a highly agitated region in the vicinity of the
impeller; outside this region, there is a region with less agitation (Figure
14-17). There is considerable material transfer between the two regions. Both
inlet and outlet flow channels connect to the highly agitated region. We shall

& | o—

e .
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model the highly agitated region as one CSTR, the quieter region as another
CSTR, with material transfer between the two.

) j

N | U4

O O g N B il
U4

= V.
k= Vv, 2
OQ —
% CA1

(a) (b)

Figure 14-17 (a) Real reaction system; (b) model reaction system.
14.7.2A Solving the Model System for C, and X

Let B represent that fraction of the total flow that is exchanged between reac-
tors 1 and 2, that is,

vy = Bo,

and let o represent that fraction of the total volume V occupied by the highly
agitated region:

V,=al
Then
V,=(0—-a)V
The space time is
4
't = —
Vo

As shown on the CD-ROM 14R .2, for a first-order reaction, the exit concentra-
tion and conversion are

Cag

N T T BT otk (BB + (1 =) k)]

(14-67)

and

e
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Y= l—C—A _ _(Btoath)[B+(l—a)tk] —B?

1
Cpro ((A+B+ath)[B+(1—a)tk]—p>

(14-68)

where C,, is the reactor concentration exiting the first reactor in Figure 14-17(b).

14.7.2B Using a Tracer to Determine the Model Parameters
in a CSTR with an Exchange Volume

The problem now is to evaluate the parameters o and {3 using the RTD data. A
mole balance on a tracer pulse injected at t = O for each of the tanks is

Accumulation = Rate in — Rate out

Reactor 1: v 7 V,Cr, —(VCp +v,Cpy) (14-69)
dC
Reactor 2: v, Ttn =v,Cqy —v,Cp (14-70)

Cy; and Cy, are the tracer concentrations in reactors 1 and 2, respectively, with
initial conditions Cyq = Npo/V, and Cpyy = 0.

Substituting in terms of «, 3, and T, we arrive at two coupled differential
equations describing the unsteady behavior of the tracer that must be solved
simultaneously.

« dst” =BCp—(1+B)Cpy (14-71)
(1 —a) ddc—tn =BCH—BCp (14-72)

Analytical solutions to Equations (14-71) and (14-72) are given in the
CD-ROM, in Appendix A.3 and in Equation (14-73), below. However, for
more complicated systems, analytical solutions to evaluate the system parame-
ters may not be possible.

(14-73)

a(my —my)

[cﬂ J (am, B+ 1™ — (amy + B+ 1) ™M
CTIO pulse

where
meom=| 1B 4 [jo4eB-o)
P 2a(l-a) A (I-a+p?)

By regression on Equation (14-73) and the data in Table E14-4.2 or by an
appropriate semilog plot of Cr/Cry, versus time, one can evaluate the model
parameters o and 3.

e
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14.8 Use of Software Packages to Determine
the Model Parameters

If analytical solutions to the model equations are not available to obtain the
parameters from RTD data, one could use ODE solvers. Here, the RTD data
would first be fit to a polynomial to the effluent concentration—time data and
then compared with the model predictions for different parameter values.

Example 14-5 CSTR with Bypass and Dead Volume

(a) Determine parameters o and 3 that can be used to model two CSTRs with inter-
change using the tracer concentration data listed in Table E14-5.1.

TaBLE E14-5.1. RTD DATA

¢ (min) 0.0 20 40 60 80 120 160 200 240

Cr, (g/m¥| 2000 1050 520 280 160 61 29 164 100

(b) Determine the conversion of a first-order reaction with X = 0.03 min—' and T = 40 min.

Solution

First we will use Polymath to fit the RTD to a polynomial. Because of the steepness
of the curve, we shall use two polynomials.

For += 80 min,

Cr, = 2000 — 59.6¢ + 0.642t> — 0.0014673 — 1.04 X 1075¢* (E14-5.1)
For >80,

Cp =921 — 17.31 + 0.129¢> — 0.00043873 — 5.6 X 1077¢t* (E14-5.2)

where Cy, is the exit concentration of tracer determined experimentally. Next we
would enter the tracer mole (mass) balances Equations (14-71) and (14-72) into an
ODE solver. The Polymath program is shown in Table E14-5.2. Finally, we vary the
parameters o and (3 and then compare the calculated effluent concentration Cy; with
Trial and error using the experimental effluent tracer concentration Cy,. After a few trials we converge on

software packages the values o = 0.8 and 3 = 0.1. We see from Figure E14-5.1 and Table E14-5.3 that
the agreement between the RTD data and the calculated data are quite good, indicat-
ing the validity of our values of o and . The graphical solution to this problem is
given on the CD-ROM and in the 2nd Edition. We now substitute these values in
Equation (14-68), and as shown in the CD-ROM, the corresponding conversion is
51% for the model system of two CSTRs with interchange:

_(_jé_lz Brath[B+ (1 —a)tk] —p2 (14-68)
Crhno (A+B+ath)[B+(1—a)tk]—p2
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e .



$ Fogler_ECRE_CDROM.book Page 989 Wednesday, September 17,2008 5:01 PM

. E

Sec. 14.8  Use of Software Packages to Determine the Model Parameters 989

tk = (40 min)(0.03 min_ ') = 1.2
_[0.1+(0.8)(1.2)1[0.1 + (1 — 0.8)(1.2)] — (0.1)?
[1+0.1+(0.8)(1.2)][0.1+ (1 —0.8)(1.2)—(0.1)2]
X =051

Comparing models, we find

Kinodet = 0.51) < (Xestr = 0.55) < (Xppr = 0.7)

TABLE E14-5.2. POLYMATH PROGRAM: TwWO CSTRS WITH INTERCHANGE

( ) .
ODE Report (RKF45)
Differential equations as entered by the user
Living Example Problem (1) d(CT1)/d(t) = (beta*CT2-(1+beta)*CT1)/alpha/tau

121 d(CT2)/d(t) = (beta*CT1-beta*CT2)/(1-alpha)/tau

Explicit equations as entered by the user
{1] beta=0.1
[2] alpha=0.8
[3] tau=40
[4] CTe1 =2000-59.6*t+0.64*1"2-0.00146"1"3-1.047*107(-5)"t"4
[5] CTe2 =921-17.3"1+0.129*112-0.000438*tA3+5.610/(-7)"t"4
(6] t1=t-80
{7) CTe = if(t<80)then{CTe1)else(CTe2)

201

00 1 I 1 I 1 1 I
0.0 40.0 80.0 120.0 160.0 200.0

t (min)

Figure E14-5.1 Comparison of model and experimental exit tracer concentrations.
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TABLE E14-5.3. COMPARING MODEL (CT1) wiTH EXPERIMENT (CTe)

t CcTl CTe

0 2000 2000

10 1421.1968 1466.4353
20 1014.8151 1050.6448
30 728.9637 740.0993
40 527.4236 519.7568
s0 384.9088 372.0625
60 283.7609 276.9488
70 211.6439 211.8353
80 159.9355 161.2816
100 95.43456 99

120 60.6222 61.8576
140 40.92093 40.6576
160 29.10943 28.3536

14.9 Other Models of Nonideal Reactors
Using CSTRs and PFRs

Several reactor models have been discussed in the preceding pages. All are
based on the physical observation that in almost all agitated tank reactors,
there is a well-mixed zone in the vicinity of the agitator. This zone is usually
represented by a CSTR. The region outside this well-mixed zone may then be
modeled in various fashions. We have already considered the simplest models,
which have the main CSTR combined with a dead-space volume; if some
short-circuiting of the feed to the outlet is suspected, a bypass stream can be
added. The next step is to look at all possible combinations that we can use to
model a nonideal reactor using only CSTRs, PFRs, dead volume, and bypass-
ing. The rate of transfer between the two reactors is one of the model parame-
ters. The positions of the inlet and outlet to the model reactor system depend
on the physical layout of the real reactor.

Figure 14-18(a) describes a real PFR or PBR with channeling that is
modeled as two PFRs/PBRs in parallel. The two parameters are the fraction of
flow to the reactors [i.e., 3 and (1 — )] and the fractional volume [i.e., o and
(1 — a)] of each reactor. Figure 14-18(b) describes a real PFR/PBR that has a
backmix region and is modeled as a PFR/PBR in parallel with a CSTR. Fig-
ures 14-19(a) and (b) show a real CSTR modeled as two CSTRs with inter-
change. In one case, the fluid exits from the top CSTR (a) and in the other case
the fluid exits from the bottom CSTR. The parameter (3 represents the inter-
change volumetric flow rate and o the fractional volume of the top reactor,
where the fluid exits the reaction system. We note that the reactor in model
14-19(b) was found to describe extremely well a real reactor used in the pro-
duction of terephthalic acid.'* A number of other combinations of ideal reac-
tions can be found in Levenspiel. !

4Proc. Indian Inst. Chem. Eng. Golden Jubilee, a Congress, Delhi, 1997, p. 323.

BSLevenspiel, O. Chemical Reaction Engineering, 3rd ed. (New York: Wiley, 1999),
pp. 284-292.
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Real System Model System

o/B (1-0)/(1-B) 0 o/ (1-a)/(1-B) ©
(a)
Real System Model System

AN~~~
e- v0_>
(0B bmwssit B

E(t) F(t)

}s

) 0 /B 0
(b)

Figure 14-18 Combinations of ideal reactors used to model real tubular reactors.
(a) two ideal PFRs in parallel (b) ideal PFR and ideal CSTR in parallel.

14.10 Applications to Pharmacokinetic Modeling

The use of combinations of ideal reactors to model metabolism and drug distri-
bution in the human body is becoming commonplace. For example, one of the
simplest models for drug adsorption and elimination is similar to that shown in
Figure 14-19(a). The drug is injected intravenously into a central compartment
containing the blood (the top reactor). The blood distributes the drug back and
forth to the tissue compartment (the bottom reactor) before being eliminated
(top reactor). This model will give the familiar linear semi-log plot found in
pharmacokinetics textbooks. As can be seen in the figure for Professional Ref-
erence Shelf R7.5 on pharmacokinetics on page 453, there are two different
slopes, one for the drug distribution phase and one for the elmination phase.
More elaborate models using combinations of ideal reactors to model a real
system are described in section 7.5 where alcohol metabolism is discussed.

e k.
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Yo

{0
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=

—
= v
[ 0

t t t t

(a) (b)
Figure 14-19 Combinations of ideal reactors to model a real CSTR. Two ideal CSTRs
with interchange (a) exit from the top of the CSTR (b) exit from the bottom of the CSTR.

Closure

RTD Data + Kinetics + Model = Prediction

In this chapter, models were developed for existing reactors to obtain a more
precise estimate of the exit conversion and concentration than estimates of
the examples given by the zero-order parameter models of segregation and
maximum mixedness. After completing this chapter, the reader will use the
RTD data and kinetic rate law and reactor model to make predictions of the
conversion and exit concentrations using the tank-in-series and dispersion
one-parameter models. In addition, the reader should be able to create com-
binations of ideal reactors that mimic the RTD data and to solve for the exit
conversions and concentrations. The choice of a proper model is almost pure
art requiring creativity and engineering judgment. The flow pattern of the
model must possess the most important characteristics of that in the real
reactor. Standard models are available that have been used with some suc-
cess, and these can be used as starting points. Models of real reactors usually
consist of combinations of PFRs, perfectly mixed CSTRs, and dead spaces in
a configuration that matches the flow patterns in the reactor. For tubular reac-
tors, the simple dispersion model has proven most popular.

The parameters in the model, which with rare exception should not
exceed two in number, are obtained from the RTD data. Once the parame-
ters are evaluated, the conversion in the model, and thus in the real reactor,
can be calculated. For typical tank-reactor models, this is the conversion in
a series—parallel reactor system. For the dispersion model, the second-order
differential equation must be solved, usually numerically. Analytical solu-
tions exist for first-order reactions, but as pointed out previously, no model
has to be assumed for the first-order system if the RTD is available.

Correlations exist for the amount of dispersion that might be expected
in common packed-bed reactors, so these systems can be designed using the
dispersion model without obtaining or estimating the RTD. This situation is
perhaps the only one where an RTD is not necessary for designing a non-
ideal reactor.
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SUMMARY

1. The models for predicting conversion from RTD data are:

a. Zero adjustable parameters

(1) Segregation model
The models (2) Maximum mixedness model

b. One adjustable parameter
(1) Tanks-in-series model
(2) Dispersion model

c. Two adjustable parameters: real reactor modeled as combinations of ideal

reactors
2. Tanks-in-series model: Use RTD data to estimate the number of tanks in
series,
2
n=21 (S14-1)
o2
For a first-order reaction
—1_ 1
(1+r1,k)

3. Dispersion model: For a first-order reaction, use the Danckwerts boundary
conditions
4g exp (Pe,/2)

X=1- S14-2
(1+q7 exp(Pe,¢/2)—(I—q) exp(—Pe,qr2) 7

where
g= [1+4Da (S14-3)
Pe,
ud
Da = tk Pe, = UL Pe, = —£ (S14-4)
D, D,e
4. Determine D,
a. For laminar flow the dispersion coefficient is
2
D* = Dpg+ VR (S14-5)
48D g

b. Correlations. Use Figures 14-10 through 14-12.

c. Experiment in RTD analysis to find t,, and o2

For a closed-closed system use Equation (S14-6) to calculate Pe, from the
RTD data:

2 2 —Pe
== (1- " S14-6
2 Pe, Pez( e ) ( )

1
4
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For an open-open system, use

2 2Pe,+ 8
= e (14-47)
Pe, +4Pe.+4

o] 9

t

m

5. If a real reactor is modeled as a combination of ideal reactors, the model
should have at most two parameters.

Yo Us
Vo
Vs
)
Y0
CSTR with bypass Two CSTRs with
and dead volume interchange

(@)

. The RTD is used to extract model parameters.

7. Comparison of conversions for a PFR and CSTR with the zero-parameter and
two-parameter models. X, symbolizes the conversion obtained from the seg-
regation model and X,,,, that from the maximum mixedness model for reac-
tion orders greater than one.

XPFR >Xseg >Xmm >XCSTR

XprR > Xmodel with Xpode1 <XcsTrR  OF Xiodet > XesTr

Cautions: For rate laws with unusual concentration functionalities or for
nonisothermal operation, these bounds may not be accurate for certain types
of rate laws.

CD-ROM MATERIAL

¢ Learning Resources
1. Summary Notes
2. Web Material

Summary Notes COMSOL CD-ROM
¢ Living Example Problems

1. Example 14-3 Dispersion with Reaction—COMSOL

( Q 2. Example 14-5 CSTR with Bypass and Dead Volume

Living Example Problem




%% é Fogler_ECRE_CDROM.book Page 995 Wednesday, September 17,2008 5:01 PM

Chap. 14  CD-ROM Material 995
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¢ Professional Reference Shelf
R14.1 Derivation of Equation for Taylor-Aris Dispersion

-2a . o
4 *—r aC o0C _ *0 C

Reference Shelf —=+U—==D —;
oo ) ‘) ) -~ at dz 9z °

252

r? *_ UR
s-aofiff) b py UK

z=0 Z —

R14.2 Real Reactor Modeled as two Ideal CSTRs with Exchange Volume
Example R14-1 Two CSTRs with interchange.
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QUESTIONS AND PROBLEMS

The subscript to each of the problem numbers indicates the level of difficulty: A, least
difficult; D, most difficult.

A=@® B=0 C=¢ D=e¢

P14-13 Make up and solve an original problem. The guidelines are given in Problem
P4-1,. However, make up a problem in reverse by first choosing a model system
such as a CSTR in parallel with a CSTR and PFR [with the PFR modeled as
four small CSTRs in series; Figure P14-1g(a)] or a CSTR with recycle and
bypass [Figure P14-15(b)]. Write tracer mass balances and use an ODE solver
to predict the effluent concentrations. In fact, you could build up an arsenal of
tracer curves for different model systems to compare against real reactor RTD
data. In this way you could deduce which model best describes the real reactor.

DB

-
~

O

A\

Creative Thinking

vo—b—

Yp

(b)
Figure P14-1.1 Model systems.

P14-2y (a) Example 14-1. How large would the error term be in Equation E14-1.4
if tk=0.1? tk = 1? tk = 10?
(b) Example 14-2. Vary D,, k, U, and L. To what parameters or groups of
parameters (e.g., k[*/D,) would the conversion be most sensitive?
What if the first-order reaction were carried out in tubular reactors of dif-
ferent diameters, but with the space time, T, remaining constant? The
diameters would range from a diameter of 0.1 dm to a diameter of 1 m
for kinematic viscosity v = W/p = 0.01 cm?s, U = 0.1 cm/s, and Dpg =
10> cm?/s. How would your conversion change? Is there a diameter that
would maximize or minimize conversion in this range?

Hall of Fame

&%
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(c) Example 14-3. (1) Load the reaction and dispersion program from the
COMSOL CD-ROM. Vary the Damkohler number for a second-order
reaction using the Aris—Taylor approximation (part (b) in Example 14-3).
(2) Vary the Peclet and Damkohler numbers for a second-order reaction
in laminar flow. What values of the Peclet number affect the conversion
significantly?

(d) Example 14-4. How would your answers change if the slope was 4 min™!
and the intercept was 2 in Figure E14-4.2?

(e) Example 14-5. Load the Living Example Polymath Program. Vary o. and
f and describe what you find. What would be the conversion if o = 0.75
and B = 0.15?

(f) What if you were asked to design a tubular vessel that would minimize
dispersion? What would be your guidelines? How would you maximize
the dispersion? How would your design change for a packed bed?

(g) What if someone suggested you could use the solution to the flow-disper-
sion-reactor equation, Equation (14-27), for a second-order equation by
linearizing the rate law by lettering —r, = kCi = (kCp/2) Cp = K'CL?
Under what circumstances might this be a good approximation? Would
you divide C,o by something other than 2? What do you think of linear-
izing other non-first-order reactions and using Equation (14-27)? How
could you test your results to learn if the approximation is justified?

(h) What if you were asked to explain why physically the shapes of the
curves in Figure 14-3 look the way they do, what would you say? What
if the first pulse in Figure 14.1(b) broke through at ® = 0.5 and the sec-
ond pulse broke through at ® = 1.5 in a tubular reactor in which a
second-order liquid-phase reaction

2A —— B+ C
was occurring? What would the conversion be if T= 5 min, Cyy = 2

mol/dm3, and k = 0.1 dm?/mol-min?
P14-3; The second-order liquid-phase reaction

A —— B+C
is to be carried out isothermally. The entering concentration of A is 1.0 mol/dm?.
The specific reaction rate is 1.0 dm?/mol-min. A number of used reactors (shown

below) are available, each of which has been characterized by an RTD. There are
two crimson and white reactors and three maize and blue reactors available.

Reactor o (min) T (min) Cost
Maize and blue 2 2 $25,000
Green and white 4 4 50,000
Scarlet and gray 3.05 4 50,000
Orange and blue 2.31 4 50,000
Purple and white 5.17 4 50,000
Silver and black 2.5 4 50,000
Crimson and white 2.5 2 25,000

(a) You have $50,000 available to spend. What is the greatest conversion you
can achieve with the available money and reactors?

(b) How would your answer to (a) change if you had $75,000 available to
spend?

(¢) From which cities do you think the various used reactors came from?

e —+(@
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P14-43 The elementary liquid-phase reaction

A—5 5 B,k =10min"!

is carried out in a packed bed reactor in which dispersion is present.
What is the conversion?

Additional information

Porosity = 50% Reactor length = 0.1 m
Particle size = 0.1 cm Mean velocity = 1 cm/s
Kinematic viscosity = 0.01 cm?/s

P14-5, A gas-phase reaction is being carried out in a 5-cm-diameter tubular reactor
that is 2 m in length. The velocity inside the pipe is 2 cm/s. As a very first
approximation, the gas properties can be taken as those of air (kinematic vis-
cosity = 0.01 cm?/s), and the diffusivities of the reacting species are approx-
imately 0.005 cm?/s.

(a) How many tanks in series would you suggest to model this reactor?

(b) If the second-order reaction A + B ——— C + D is carried out for the
case of equal molar feed and with C,, = 0.01 mol/dm?, what conversion
can be expected at a temperature for which k = 25 dm3/mol-s?

(c) How would your answers to parts (a) and (b) change if the fluid velocity
were reduced to 0.1 cm/s? Increased to 1 m/s?

(d) How would your answers to parts (a) and (b) change if the superficial
velocity was 4 cm/s through a packed bed of 0.2-cm-diameter spheres?

(e) How would your answers to parts (a) to (d) change if the fluid were a lig-
uid with properties similar to water instead of a gas, and the diffusivity
was 5 X 107 cm?¥/s?

P14-6, Use the data in Example 13-2 to make the following determinations. (The vol-
umetric feed rate to this reactor was 60 dm3/min.)

(a) Calculate the Peclet numbers for both open and closed systems.

(b) For an open system, determine the space-time T and then calculate the %
dead volume in a reactor for which the manufacturer’s specifications give
a volume of 420 dm?3.

(¢) Using the dispersion and tanks-in-series models, calculate the conversion
for a closed vessel for the first-order isomerization

A —— B

with kK = 0.18 min~!.
(d) Compare your results in part (c) with the conversion calculated from the
tanks-in-series model, a PFR, and a CSTR.
P14-7, A tubular reactor has been sized to obtain 98% conversion and to process 0.03
m?/s. The reaction is a first-order irreversible isomerization. The reactor is
3 m long, with a cross-sectional area of 25 dm?. After being built, a pulse
tracer test on the reactor gave the following data: 7, = 10 s and % = 65 2.
What conversion can be expected in the real reactor?
P14-8; The following E(f) curve was obtained from a tracer test on a reactor.

E(t) = 0.25t 0<t<?2
=1-0.25t 2<t<4
=0 t>4

t in minutes, and E(t) in min~'.

&%
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The conversion predicted by the tanks-in-series model for the isothermal ele-
mentary reaction

A —— B

was 50% at 300 K.

(a) If the temperature is to be raised 10°C (E = 25,000 cal/mol) and the reac-
tion carried out isothermally, what will be the conversion predicted by
the maximum mixedness model? The T-I-S model?

(b) The elementary reactions

kl k2
A— B—— C
A—— D
ki =k, =k;=0.1min " at300K, C,, =1 mol/dm’

were carried out isothermally at 300 K in the same reactor. What is the
concentration of B in the exit stream predicted by the maximum mixed-
ness model?
(¢) For the multiple reactions given in part (b), what is the conversion of A
predicted by the dispersion model in an isothermal closed-closed system?
P14-9; Revisit Problem P13-4- where the RTD function is a hemicircle. What is the
conversion predicted by
(a) the tanks-in-series model?
(b) the dispersion model?
P14-103 Revisit Problem P13-55.
(a) What combination of ideal reactors would you use to model the RTD?
(b) What are the model parameters?
(c) What is the conversion predicted for your model?
P14-113 Revisit Problem P13-65.
(a) What conversion is predicted by the tanks-in-series model?
(b) What is the Peclet number?
(c) What conversion is predicted by the dispersion model?
P14-12 Consider a real tubular reactor in which dispersion is occurring.
(a) For small deviations from plug flow, show that the conversion for a
first-order reaction is given approximately as

X=1 —exp{—’ck-f—%} (P14.1)

»

(b) Show that to achieve the same conversion, the relationship between the
volume of a plug-flow reactor, Vp and volume of a real reactor, V, in
which dispersion occurs is

Ve . (kv) _ , kD,
N T Uiy R T
V Pe U2
(¢) For a Peclet number of 0.1 based on the PFR length, how much bigger

than a PFR must the real reactor be to achieve the 99% conversion pre-
dicted by the PFR?

(P14.2)

&%
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(d) For an nth-order reaction, the ratio of exit concentration for reactors of
the same length has been suggested as
Ca

=

“A

— n n— CAO
= 1+3 (kCy) In

plug Aplu

(P14.3)

What do you think of this suggestion?

(e) What is the effect of dispersion on zero-order reactions?

Let’s continue Problem P13-19;.

(a) What would be the conversion for a second-order reaction with kC,, =
0.1 min~! and C,y = 1 mol/dm? using the segregation model?

(b) What would be the conversion for a second-order reaction with kC,, =
0.1 min~! and C,y = 1 mol/dm? using the maximum mixedness model?

(c) If the reactor is modeled as tanks in series, how many tanks are needed
to represent this reactor? What is the conversion for a first-order reaction
with £ = 0.1 min~!?

(d) If the reactor is modeled by a dispersion model, what are the Peclet num-
bers for an open system and for a closed system? What is the conversion
for a first-order reaction with k = 0.1 min~! for each case?

(e) Use the dispersion model to estimate the conversion for a second-order
reaction with k = 0.1 dm3mol-s and Cxy = 1 mol/dm’.

(f) Tt is suspected that the reactor might be behaving as shown in Figure
P14-13g, with perhaps (?) V, = V,. What is the “backflow” from the
second to the first vessel, as a multiple of v, ?

Vo —
Y V1 ~V2_+

Figure P14-133 Proposed model system

(g) If the model above is correct, what would be the conversion for a sec-
ond-order reaction with k = 0.1 dm* mol-min if C,, = 1.0 mol/dm3?

(h) Prepare a table comparing the conversion predicted by each of the mod-
els described above.

(i) How would your answer to part (a) change if the reaction were carried
out adiabatically with the parameter values given in Problem P13-2,(j)?

It is proposed to use the elementary reactions

A+B — 5 C+D

C+B —2 5 X+Y

to characterize mixing in a real reactor by monitoring the product distribution

at different temperatures. The ratio of specific reaction rates (k,/k;) at temper-

atures Ty, T,, T3, and Ty is 5.0, 2.0, 0.5, and 0.1, respectively. The correspond-

ing values of Tk;Cy, are 0.2, 2, 20, and 200.

(a) Calculate the product distribution for the CSTR and PFR in series
described in Example 13-3 for Tcgrr = Tppr = 0.57.

(b) Compare the product distribution at two temperatures using the RTD
shown in Examples 13-1 and 13-2 for the complete segregation model
and the maximum mixedness model.
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(c) Explain how you could use the product distribution as a function of tem-
perature (and perhaps flow rate) to characterize your reactor. For example,
could you use the test reactions to determine whether the early mixing
scheme or the late mixing scheme in Example 13-3 is more representative
of a real reactor? Recall that both schemes have the same RTD.

(d) How should the reactions be carried out (i.e., at high or low tempera-
tures) for the product distribution to best characterize the micromixing in
the reactor?

P14-153 A second-order reaction is to be carried out in a real reactor which gives the
following outlet concentration for a step input.
For 0 < ¢ < 10 min then C; = 10 (1—e1%)
For 10 min < ¢ then Cp=5+10 (1—e~)

(a) What model do you propose and what are your model parameters, o and 3?

(b) What conversion can be expected in the real reactor?

(¢) How would your model change and conversion change if your outlet

tracer concentration was

For ¢t £ 10 min, then C; =0
For ¢ > 10 min, then Cy= 5+10 (1 —¢0-2=10))

vy = 1 dm?/min, k = 0.1 dm3*/mol - min, Cy, = 1.25 mol/dm?

P14-16g Suggest combinations of ideal reactors to model real reactors given in Prob-
lem 13-2,(b) for either E(0),E(t), F(0), F(1), or (1 — F(0)).

P14-173 Below are two COMSOL simulations for a laminar flow reactor with heat
effects: Run 1 and Run 2. The figures below show the cross-section plot of
concentration for species A at the middle of the reactor. Run 2 shows a min-
imum on the cross-section plot. This minimum could be the result of (circle
all that apply and explain your reasoning for each suggestion (a) through (e))
(a) the thermal conductivity of reaction mixture decreases
(b) overall heat transfer coefficient increases
(¢) overall heat transfer coefficient decreases
(d) the coolant flow rate increases
(e) the coolant flow rate decreases
Hint: Explore “Nonisothermal Reactor II” on the COMSOL CD-ROM.

€ Figure 1 - FEMLAB [[(=1]E3]  Figure 1 - FEMLAB [A[=15]
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Figure P14-173 COMSOL screen shots
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P14-183 Load the laminar flow with dispersion example on the COMSOL CD-ROM.
Keep Da and L/R constant and vary the reaction order n, (0.5 < n < 5) for dif-
ferent Peclet numbers. Are there any combinations of n and Pe where disper-
sion is more important or less important on the exit concentration? What
generalizations can you make? Hint: for n < 1 use r, = —k - (Abs(Cy))

COMSOL Problem  P14-19. Revisit the COMSOL Example 14-3 for laminar flow with dispersion.

(a) Plot the radial concentration profiles for z/L = 0.5 and 1.0 for a second-order
reaction with Cny = 0.5 mol/dm? and kC,, = 0.7 min™! using both the
closed-vessel and the laminar flow open-vessel boundary conditions at
the inlet. Is the average outlet conversion for the open-vessel boundary
condition lower than that which uses the closed-vessel boundary condition?
In what situation, if any, will the two boundary conditions result in sig-
nificantly different outlet concentrations? Vary Pe and Da and describe
what you find, i.e., Cyo = 0.5 mol/dm?.

(b) Repeat (a) for both a third order with AkC AZO =0.7min 'and a

half-order reaction with k = 0.495 (rnol/drn3)1/2 min~ . Compare the
radial conversion profiles for a first-, a second-, a third-, and a half-order
reaction at different locations down the reactor.

Note in COMSOL:

Open-vessel Boundary (Laminar Flow): —Ni-n = 2*U0*(1-(1r/Ra).*2)*CA0

Closed-vessel Boundary: —Ni-n = U0*CAQO

Concentration Boundary Condition CA = CA0Q

Symmetry/Insulation Condition n-N = 0

P14-20; The F curves for two tubular reactors are shown here, for a closed—closed system.

®

1

®©

F 0.5

1.0 0
Figure P14-20; F Curves

(a) Which curve has the higher Peclet number? Explain.
(b) Which curve has the higher dispersion coefficient? Explain.
(c) If this F curve is for the tanks-in-series model applied to two different
reactors, which curve has the largest number of T-I-S (1) or (2)?
U of M, ChE528 Fall 2000 Exam II
P14-213 Consider the following system used to model a real reactor:

Up

___{) Vi

Y,

» v, =B v,

Vi=a V

Figure P14-21; Model system
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Describe how you would evaluate the parameters o and .
(a) Draw the F and E curves for this system of ideal reactors used to model
a real reactor using B = 0.2 and o = 0.4. Identify the numerical values of
the points on the F curve (e.g., t;) as they relate to T.
(b) If the reaction A — B is second order with kC,, = 0.5 min~!, what is the
conversion assuming the space time for the real reactor is 2 min?
U of M, ChE528 Fall 2000 Final Exam
P14-26; There is a 2 m? reactor in storage that is to be used to carry out the lig-
uid-phase second-order reaction

A+B —— C

A and B are to be fed in equal molar amounts at a volumetric rate of
1 m3/min. The entering concentration of A is 2 molar, and the specific reac-
tion rate is 1.5 m%kmol ¢ min. A tracer experiment was carried out and
reported in terms of F as a function of time in minutes.

1.0
F

0.5

0 2.0 t (min)

Figure P14-225 F curve for a nonideal reactor

Suggest a two-parameter model consistent with the data; evaluate the model
parameters and the expected conversion.
U of M, ChE528 Fall 2001 Final Exam
P14-23; The following E curve was obtained from a tracer test:

0.1

E(t)
(min-1)

t1(min)

Figure P14-23 E curve for a nonideal reactor

(a) What is the mean residence time?

(b) What is the Peclet number for a closed-closed system?

(c) How many tanks in series are necessary to model this non-ideal reactor?
U of M, Doctoral Qualifying Exam (DQE), May 2001
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P14-24; The A first-order reaction is to be carried out in the reactor with k = 0.1 min'.

E(t)
(min-1)

+ T t (mln)
10 20
P14-25; Fill in the following table with the conversion predicted by each type of
model/reactor.
Ideal
laminar Maximum Tanks in
Ideal PFR | Ideal CSTR | flow reactor | Segregation | mixedness | Dispersion series

P14-26; The following outlet concentration trajectory was obtained from a step input
to a nonideal reactor. The entering concentration was 10 millimolar of tracer.

0
95~~~ "~--=="=--

8 _____________

6k------
C -
(m|n)3

10 25 (t) min
Figure P14-265 C curve for a nonideal reactor

Suggest a model using a collection of ideal reactors to model the nonideal
reactor.
U of M, Doctoral Qualifying Exam (DQE), May 2001

e Additional Homework Problems

CDP14-A. A real reactor is modeled as a combination of ideal PFRs and
CSTRs. [2nd Ed. P14-5]

CDP14-B; A real batch reactor is modeled as a combination of two ideal reactors.
[2nd Ed. P14-13]

CDP14-C: Develop a model for a real reactor for RTD obtained from a step
input. [2nd Ed. P14-10]

CDP14-Dg Calculate D, and X from sloppy tracer data. [2nd Ed. P14-6,]

CDP14-Ez Use RTD data from Oak Ridge National Laboratory to calculate the
conversion from the tanks-in-series and the dispersion models. [2nd
Ed. P14-7]

CDP14-Fgy RTD data from a slurry reactor. [3rd Ed. P14-8]

&%

e .
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CDP14-G: RTD data to calculate conversion for a second-order reaction for all
models. [3rd Ed. P14-9]

CDP14-Hy RTD data from barge spill on Mississippi River. [3rd Ed. P14-10]

CDP14-I; RTD data to calculate conversion using all models. [3rd Ed. P14-11]

CDP14-J;  Apply two-parameter model to multiple reactions. [3rd Ed. P14-15]

CDP14-New New problems will be inserted from time to time on the web.

SUPPLEMENTARY READING
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NAUMAN, E. B., “Residence time distributions and micromixing,” Chem. Eng.
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NAUMAN, E. B., and B. A. BUFFHAM, Mixing in Continuous Flow Systems. New
York: Wiley, 1983.

PATTERSON, G. K., “Applications of turbulence fundamentals to reactor model-
ing and scaleup,” Chem. Eng. Commun., 8, 25 (1981).
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Dubukovic, M., and R. FELDER, in CHEMI Modules on Chemical Reaction
Engineering, Vol. 4, ed. B. Crynes and H. S. Fogler. New York: AIChE,
1985.

5. Dispersion. A discussion of the boundary conditions for closed-closed, open-open,
closed-open, and open-closed vessels can be found in
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LEVENSPIEL, O., and K. B. BISCHOFF, Adv. in Chem. Eng., 4, 95 (1963).
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This 1s not the end.
It is not even the beginning of the end.
But it 1s, perhaps, the end of the beginning.

Winston Churchill
November 10, 1942
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