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Models for Nonideal
Reactors

 

Success is a journey, not a destination.
Ben Sweetland

Use the RTD to
evaluate

parameters

Overview  Not all tank reactors are perfectly mixed nor do all tubular reac-
tors exhibit plug-flow behavior. In these situations, some means must be
used to allow for deviations from ideal behavior. Chapter 13 showed how
the RTD was sufficient if the reaction was first order or if the fluid was
either in a state of complete segregation or maximum mixedness. We use
the segregation and maximum mixedness models to bound the conversion
when no adjustable parameters are used. For non-first-order reactions in a
fluid with good micromixing, more than just the RTD is needed. These sit-
uations compose a great majority of reactor analysis problems and cannot
be ignored. For example, we may have an existing reactor and want to carry
out a new reaction in that reactor. To predict conversions and product distri-
butions for such systems, a model of reactor flow patterns is necessary. To
model these patterns, we use combinations and/or modifications of ideal
reactors to represent real reactors. With this technique, we classify a model
as being either a one-parameter model (e.g., tanks-in-series model or disper-
sion model) or a two-parameter model (e.g., reactor with bypassing and
dead volume). The RTD is then used to evaluate the parameter(s) in the
model. After completing this chapter, the reader will be able to apply the
tanks-in-series model and the dispersion model to tubular reactors. In addi-
tion, the reader will be able to suggest combinations of ideal reactors to
model a real reactor.

 

Fogler_ECRE_CDROM.book  Page 945  Wednesday, September 17, 2008  5:01 PM



 

946

 

Models for Nonideal Reactors Chap. 14

 

14.1 Some Guidelines

 

The overall goal is to use the following equation

The choice of the particular model to be used depends largely on the engineer-
ing judgment of the person carrying out the analysis. It is this person’s job to
choose the model that best combines the conflicting goals of mathematical
simplicity and physical realism. There is a certain amount of art in the devel-
opment of a model for a particular reactor, and the examples presented here
can only point toward a direction that an engineer’s thinking might follow.

For a given real reactor, it is not uncommon to use all the models dis-
cussed previously to predict conversion and then make a comparison. Usually,
the real conversion will be 

 

bounded

 

 by the model calculations.
The following guidelines are suggested when developing models for non-

ideal reactors:

1.

 

The model must be mathematically tractable

 

. The equations used to
describe a chemical reactor should be able to be solved without an
inordinate expenditure of human or computer time.

2.

 

The model must realistically describe the characteristics of the non-
ideal reactor

 

. The phenomena occurring in the nonideal reactor must
be reasonably described physically, chemically, and mathematically.

3.

 

The model must not have more than two adjustable parameters

 

. This
constraint is used because an expression with more than two adjust-
able parameters can be fitted to a great variety of experimental data,
and the modeling process in this circumstance is nothing more than
an exercise in curve fitting. The statement “Give me four adjustable
parameters and I can fit an elephant; give me five and I can include
his tail!” is one that I have heard from many colleagues. Unless one
is into modern art, a substantially larger number of adjustable param-
eters is necessary to draw a reasonable-looking elephant.

 

1

 

 A
one-parameter model is, of course, superior to a two-parameter model
if the one-parameter model is sufficiently realistic. To be fair, how-
ever, in complex systems (e.g., internal diffusion and conduction,
mass transfer limitations) where other parameters may be measured

 

independently

 

, then more than two parameters are quite acceptable.

Table 14-1 gives some guidelines that will help your analysis and model build-
ing of nonideal reaction systems.

 

1

 

J. Wei, 

 

CHEMTECH

 

, 

 

5

 

, 128 (1975).

RTD Data + Kinetics + Model = Prediction

Conflicting goals

 

A Model Must
• Fit the data
• Be able to 

extrapolate 
theory and 
experiment

• Have realistic 
parameters
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14.1.1 One-Parameter Models

 

Here we use a single parameter to account for the nonideality of our reactor.
This parameter is most always evaluated by analyzing the RTD determined
from a tracer test. Examples of one-parameter models for nonideal CSTRs
include a reactor dead volume 

 

V

 

D

 

, where no reaction takes place, or a fraction

 

f

 

 of fluid bypassing the reactor, thereby exiting unreacted. Examples of
one-parameter models for tubular reactors include the tanks-in-series model
and the dispersion model. For the tanks-in-series model, the parameter is the
number of tanks, 

 

n

 

, and for the dispersion model, it is the dispersion coeffi-
cient, 

 

D

 

a

 

. Knowing the parameter values, we then proceed to determine the
conversion and/or effluent concentrations for the reactor.

We first consider nonideal tubular reactors. Tubular reactors may be
empty, or they may be packed with some material that acts as a catalyst,
heat-transfer medium, or means of promoting interphase contact. Until now
when analyzing ideal tubular reactors, it usually has been assumed that the fluid
moved through the reactor in piston-like flow (PFR), and every atom spends an
identical length of time in the reaction environment. Here, the 

 

velocity profile
is flat,

 

 and there is no axial mixing. Both of these assumptions are false to some
extent in every tubular reactor; frequently, they are sufficiently false to warrant
some modification. Most popular tubular reactor models need to have means to
allow for failure of the plug-flow model and insignificant axial mixing assump-
tions; examples include the unpacked laminar flow tubular reactor, the
unpacked turbulent flow, and packed-bed reactors. One of two approaches is
usually taken to compensate for failure of either or both of the ideal assump-
tions. One approach involves modeling the nonideal tubular reactor as a series

 

T

 

ABLE

 

 14-1.  

 

A P

 

ROCEDURE

 

 

 

FOR

 

 C

 

HOOSING

 

 

 

A

 

 M

 

ODEL

TO

 

 P

 

REDICT

 

 

 

THE

 

 O

 

UTLET

 

 C

 

ONCENTRATION

 

 

 

AND

 

 C

 

ONVERSION

 

1.

 

Look at the reactor.

 

a. Where are the inlet and outlet streams to and from the reactors? (Is
by-passing a possibility?)

b. Look at the mixing system. How many impellers are there? (Could there be 
multiple mixing zones in the reactor?)

c. Look at the configuration. (Is internal recirculation possible? Is the packing of 
the catalyst particles loose so channeling could occur?)

2.

 

Look at the tracer data.

 

a. Plot the E(t) and F(t) curves.
b. Plot and analyze the shapes of the E(

 

Θ

 

) and F(

 

Θ

 

) curves. Is the shape of the 
curve such that the curve or parts of the curve can be fit by an ideal reactor 
model? Does the curve have a long tail suggesting a stagnant zone? Does the 
curve have an early spike indicating bypassing?

c. Calculate the mean residence time, t

 

m

 

, and variance, 

 

σ

 

2

 

. How does the t

 

m

 

 
determined from the RTD data compare with 

 

τ

 

 as measured with a yardstick 
and flow meter? How large is the variance; is it larger or smaller than 

 

τ

 

2

 

?
3.

 

Choose a model or perhaps two or three models.

 

4.

 

Use the tracer data to determine the model parameters

 

 (e.g., n, D

 

a

 

, 

 

v

 

b

 

).
5.

 

Use the CRE algorithm in Chapter 4.

 

 Calculate the exit concentrations and conver-
sion for the model system you have selected.

The Guidelines

Nonideal tubular
reactors
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of identically sized CSTRs. The other approach (the dispersion model) involves
a modification of the ideal reactor by imposing axial dispersion on plug flow.

 

14.1.2 Two-Parameter Models

 

The premise for the two-parameter model is that we can use a combination of
ideal reactors to model the real reactor. For example, consider a packed bed
reactor with channeling. Here the response to a pulse tracer input would show
two dispersed pulses in the output as shown in Figure 13-10 and Figure 14-1.

Here we could model the real reactor as two ideal PBRs in parallel with the
two parameters being the fluid that channels, 

 

v

 

b

 

, and the reactor dead volume,

 

V

 

D

 

. The real reactor voume is 

 

V

 

 = 

 

V

 

D

 

 + 

 

V

 

S

 

 with 

 

v

 

0

 

 = 

 

v

 

b

 

 + 

 

v

 

S

 

.

 

14.2 Tanks-in-Series (T-I-S) Model

 

In this section we discuss the use of the tanks-in-series (T-I-S) model to
describe nonideal reactors and calculate conversion. The T-I-S model is a
one-parameter model. We will analyze the RTD to determine the number of
ideal tanks, 

 

n

 

, in series that will give approximately the same RTD as the non-
ideal reactor. Next we will apply the reaction engineering algorithm developed
in Chapters 1 through 4 to calculate conversion. We are first going to develop
the RTD equation for three tanks in series (Figure 14-2) and then generalize to

 

n

 

 reactors in series to derive an equation that gives the number of tanks in
series that best fits the RTD data.

t

Channeling

C(t)
VS

VD

(a) (b) (c)

Dead Zones
z = 0 z = L

vS

v

v
v

Figure 14-1 (a) Real system; (b) outlet for a pulse input; (c) model system.

n = ?

In Figure 2-9, we
saw how tanks in

series could approxi-
mate a PFR.

Pulse

Pulse

1

2

3

(b)(a)

Figure 14-2 Tanks in series: (a) real system, (b) model system.
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The RTD will be analyzed from a tracer pulse injected into the first reac-
tor of three equally sized CSTRs in series. Using the definition of the RTD
presented in Section 13.2, the fraction of material leaving the system of three
reactors (i.e., leaving the third reactor) that has been in the system between
time 

 

t

 

 and 

 

t

 

 

 

�

 

 

 

�

 

t

 

 is

 

E

 

(

 

t

 

) 

 

�

 

t

 

 

 

�

 

 

Then

 

E

 

(

 

t

 

) 

 

�

 

 (14-1)

In this expression, 

 

C

 

3

 

(

 

t

 

) is the concentration of tracer in the effluent from the
third reactor and the other terms are as defined previously.

It is now necessary to obtain the outlet concentration of tracer, 

 

C

 

3

 

(

 

t

 

), as
a function of time. As in a single CSTR, a material balance on the first reactor
gives

(14-2)

Integrating gives the expression for the tracer concentration in the effluent
from the first reactor:

 

C

 

1

 

 

 

�

 

 

 

C

 

0

 

 

 

�

 

 

 

C

 

0

 

(14-3)

The volumetric flow rate is constant  and all the reactor volumes are
identical (

 

V

 

1

 

 

 

�

 

 

 

V

 

2

 

 

 

�

 

 

 

V

 

i

 

); therefore, all the space times of the individual reac-
tors are identical (

 

τ

 

1

 

 

 

�

 

 

 

τ

 

2

 

 

 

�

 

 

 

τ

 

i ). Because Vi is the volume of a single reactor
in the series, τi here is the residence time in one of the reactors, not in the
entire reactor system (i.e., τi � τ/n).

A material balance on the tracer in the second reactor gives

Using Equation (14-3) to substitute for C1, we obtain the first-order ordinary
differential equation

vC3 t( ) �t

N0

-----------------------
C3 t( )

  C 3 t ( ) t   d 

0

  � 
�

 ------------------------------  � t �

C3 t( )

  C 3 t ( ) t   d 

0

  � 
�

 ------------------------------

V1  
dC
 

1 
dt
 --------- v C 1 ��

We perform a
tracer balance on

each reactor to
obtain C3(t)

e vt V1�� e t τ1��

C0 N0 V1�

v0   C 3 t ( )  td 
0

 

�

 �  

V

 

1

 
-----------------------------------� �

v v0�( )

V2  
dC
 

2 
dt
 --------- v C 1 v C 2 �� 
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This equation is readily solved using an integrating factor  along with the
initial condition 

 

C

 

2

 

 

 

�

 

 0 at 

 

t

 

 

 

�

 

 0, to give

(14-4)

The same procedure used for the third reactor gives the expression for the con-
centration of tracer in the effluent from the third reactor (and therefore from
the reactor system),

(14-5)

Substituting Equation (14-5) into Equation (14-1), we find that

 

E

 

(

 

t

 

) 

 

�

�

 

(14-6)

Generalizing this method to a series of 

 

n

 

 CSTRs gives the RTD for 

 

n

 

CSTRs in series, 

 

E

 

(

 

t

 

):

(14-7)

Because the total reactor volume is 

 

nV

 

i

 

, then 

 

τ

 

i

 

 

 

�

 

 

 

τ

 

/

 

n

 

, where 

 

τ

 

 represents the
total reactor volume divided by the flow rate, :

 

E

 

(

 

�

 

) 

 

� 

 

τ

 

E

 

(

 

t

 

) = 

 

e

 

�

 

n

 

�

 

(14-8)

where 

 

�

 

 

 

�

 

 

 

t

 

/

 

τ

 

.
Figure 14-3 illustrates the RTDs of various numbers of CSTRs in series

in a two-dimensional plot (a) and in a three-dimensional plot (b). As the num-
ber becomes very large, the behavior of the system approaches that of a
plug-flow reactor.
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We can determine the number of tanks in series by calculating the
dimensionless variance  from a tracer experiment.
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(14-9)
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d� � 1

 � �n�1e�n� d� � 1

�

 � (14-11)

The number of tanks in series is

(14-12)

This expression represents the number of tanks necessary to model the real
reactor as n ideal tanks in series. If the number of reactors, n, turns out to be

1.4
n=10

n=∞

n=4
n=2

1.2

1

0.8

0.6

0.4

0.2
0

0 1 2

(a) (b)

3

5
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0

E

1
2

3
4

0.5

1

1.5

n

Figure 14-3 Tanks-in-series response to a pulse tracer input for different numbers of tanks.
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small, the reactor characteristics turn out to be those of a single CSTR or per-
haps two CSTRs in series. At the other extreme, when 

 

n

 

 turns out to be large,
we recall from Chapter 2 the reactor characteristics approach those of a PFR.

If the reaction is first order, we can use Equation (4-11) to calculate the
conversion,

 

X

 

 

 

�

 

 1 

 

�

 

 (4-11)

where

 

τ

 

i

 

 

 

�

 

 

It is acceptable (and usual) for the value of 

 

n

 

 calculated from Equation (14-12)
to be a noninteger in Equation (4-11) to calculate the conversion. For reactions
other than first order, an integer number of reactors must be used and sequen-
tial mole balances on each reactor must be carried out. If, for example, 

 

n

 

 =
2.53, then one could calculate the conversion for two tanks and also for three
tanks to bound the conversion. The conversion and effluent concentrations
would be solved sequentially using the algorithm developed in Chapter 4. That
is, after solving for the effluent from the first tank, it would be used as the
input to the second tank and so on as shown in Table 14-2.
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Two-Reactor System Three-Reactor System

For two equally sized reactors For three equally sized reactors

For a second-order reaction, the combined mole balance, rate law, and stoichiometry for the 
first reactor gives

Solving for C

 

Aout

 

Two-Reactor System:  Three-Reactor System: 

Solving for exit concentration from reactor 1 for each reactor system gives

The exit concentration from the second reactor for each reactor system gives

1
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Tanks-in-Series Versus Segregation for a First-Order Reaction We have
already stated that the segregation and maximum mixedness models are equiv-
alent for a first-order reaction. The proof of this statement was left as an exer-
cise in Problem P13-3B. We now show the tanks-in-series model and the
segregation models are equivalent for a first-order reaction. 

Example 14–1 Equivalency of Models for a First-Order Reaction

Show that XT–I–S = XMM for a first-order reaction

A B

Solution

For a first-order reaction, we already showed in Problem P13-3 that

XSeg = XMM

Therefore we only need to show XSeg = XT-I-S.
For a first-order reaction in a batch reactor the conversion is

X = 1 – e–kt (E14-1.1)

Segregation Model

(E14-1.2)

(E14-1.3)

Using Maclaurin’s series expansion gives

Balancing on the third reactor for the three-reactor system and solving for its outlet concentra-
tion, , gives

The corresponding conversion for the two- and three-reactor systems are

For n = 2.53, (X2 < X < )

TABLE 14-2.  TANKS-IN-SERIES SECOND-ORDER REACTION  (CONTINUED)

Two-Reactor System Three-Reactor System
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e

 

–

 

kt

 

 = 

 

1 

 

– kt + 

 

 + Error (E14-1.4)

neglecting the error term

(E14-1.5)

(E14-1.6)

To evaluate the second term, we first recall Equation (E13-2.5) for the variance

(E14-1.7)

(E14-1.8)

Rearranging Equation (E14-1.8)

(E14-1.9)

Combining Equations (E14-1.6) and (E14-1.9), we find the mean conversion for the
segregation model for a first-order reaction is

(E14-1.10)
 

Tanks in Series

 

Recall from Chapter 4, for 

 

n

 

 tanks in series for a first-order reaction, the conversion
is

(4-11)

Rearranging yields

(E14-1.11)

We now expand in a binomial series
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(E14-1.13)
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Neglecting the error gives

X (E14-1.14)

Rearranging Equation (14-12) in the form

(14-12)

and substituting in Equation (E14-1.14) the mean conversion for the T-I-S model is

(E14-1.15)

We see that Equations (E14-1.10) and (E14-1.15) are identical; thus, the conversions
are identical, and for a first-order reaction we have

But this is true only for a first-order reaction.

14.3 Dispersion Model

The dispersion model is also used to describe nonideal tubular reactors. In this
model, there is an axial dispersion of the material, which is governed by an
analogy to Fick’s law of diffusion, superimposed on the flow as shown in Fig-
ure 14-4. So in addition to transport by bulk flow, UAcC, every component in
the mixture is transported through any cross section of the reactor at a rate
equal to [–DaAc(dC/dz)] resulting from molecular and convective diffusion. By
convective diffusion (i.e., dispersion) we mean either Aris-Taylor dispersion in
laminar flow reactors or turbulent diffusion resulting from turbulent eddies.
Radial concentration profiles for plug flow (a) and a representative axial and
radial profile for dispersive flow (b) are shown in Figure 14-4. Some molecules
will diffuse forward ahead of the molar average velocity while others will lag
behind.

kτ k2

2
---- τ2 τ2

n
----��=

τ2

n
---- 	

2
�

X τk k2

2
---- τ2

	
2

�( )��

Important Result XT I� S� XSeg XMM� �

Plug Flow Dispersion

Figure 14-4 Concentration profiles (a) without and (b) with dispersion.
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To illustrate how dispersion affects the concentration profile in a tubular
reactor we consider the injection of a perfect tracer pulse. Figure 14-5 shows
how dispersion causes the pulse to broaden as it moves down the reactor and
becomes less concentrated.

Recall Equation (11-20). The molar flow rate of tracer (FT) by both con-
vection and dispersion is

(11-20)

In this expression Da is the effective dispersion coefficient (m2/s) and U (m/s)
is the superficial velocity. To better understand how the pulse broadens, we
refer to the concentration peaks t2 and t3 in Figure 14-6. We see that there is a
concentration gradient on both sides of the peak causing molecules to diffuse
away from the peak and thus broaden the pulse. The pulse broadens as it
moves through the reactor.

Correlations for the dispersion coefficients in both liquid and gas systems
may be found in Levenspiel.2 Some of these correlations are given in Section
14.4.5.

2 O. Levenspiel, Chemical Reaction Engineering (New York: Wiley, 1962), pp.
290–293.

Tracer pulse with
dispersion

Measurement
point

Tracer pulse with
dispersion

t1 t2 t3 t4 t5

Figure 14-5 Dispersion in a tubular reactor. (From O. Levenspiel, Chemical 
Reaction Engineering, 2nd ed. Copyright © 1972 John Wiley & Sons, Inc. 
Reprinted by permission of John Wiley & Sons, Inc. All rights reserved.)

FT Da 
�CT

�z
---------� UCT� Ac�

dCT
dz

dCT
dz

t2 t3

Figure 14-6 Symmetric concentration gradients causing the spreading by 
dispersion of a pulse input.
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A mole balance on the inert tracer T gives

Substituting for FT and dividing by the cross-sectional area Ac , we have

(14-13)

Once we know the boundary conditions, the solution to Equation (14-13) will
give the outlet tracer concentration–time curves. Consequently, we will have to
wait to obtain this solution until we discuss the boundary conditions in Section
14.4.2.

We are now going to proceed in the following manner. First, we will
write the balance equations for dispersion with reaction. We will discuss the
two types of boundary conditions: closed-closed and open-open. We will then
obtain an analytical solution for the closed-closed system for the conversion
for a first-order reaction in terms of the Peclet number (dispersion coefficient)
and the Damköhler number. We then will discuss how the dispersion coeffi-
cient can be obtained either from correlations or from the analysis of the RTD
curve.

14.4 Flow, Reaction, and Dispersion

Now that we have an intuitive feel for how dispersion affects the transport of
molecules in a tubular reactor, we shall consider two types of dispersion in a
tubular reactor, laminar and turbulent.

14.4.1 Balance Equations

A mole balance is taken on a particular component of the mixture (say, species
A) over a short length Δz of a tubular reactor of cross section Ac in a manner
identical to that in Chapter 1, to arrive at

(14-14)

Combining Equations (14-14) and the equation for the molar flux FA, we can
rearrange Equation (11-22) in Chapter 11 as

(14-15)

This equation is a second-order ordinary differential equation. It is nonlinear
when rA is other than zero or first order.

When the reaction rate rA is first order, rA = –kCA, then Equation (14-16)
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(14-16)

is amenable to an analytical solution. However, before obtaining a solution, we
put our Equation (14-16) describing dispersion and reaction in dimensionless
form by letting 

 

�
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/

 

C
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 and 

 




 

 

 

�

 

 

 

z

 

/

 

L

 

:

(14-17)

The quantity 

 

Da

 

 appearing in Equation (14-17) is called the 

 

Damköhler
number

 

 for convection and physically represents the ratio

(14-18)

The other dimensionless term is the 

 

Peclet number,

 

 Pe,

(14-19)

in which 

 

l

 

 is the characteristic length term. There are two different types of
Peclet numbers in common use. We can call Pe

 

r

 

 the reactor Peclet number; it
uses the reactor length, 

 

L

 

, for the characteristic length, so Pe

 

r

 

 

 

�

 

 

 

UL

 

/

 

D

 

a

 

. It is
Pe

 

r

 

 that appears in Equation (14-17). The reactor Peclet number, Pe

 

r

 

, for mass
dispersion is often referred to in reacting systems as the Bodenstein number,
Bo, rather than the Peclet number. The other type of Peclet number can be
called the fluid Peclet number, Pe

 

f

 

; it uses the characteristic length that deter-
mines the fluid’s mechanical behavior. In a packed bed this length is the parti-
cle diameter 

 

d

 

p

 

, and Pe

 

f
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Ud
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/

 

�

 

D
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. (The term 

 

U

 

 is the empty tube or
superficial velocity. For packed beds we often wish to use the average intersti-
tial velocity, and thus 

 

U

 

/

 

�

 

 is commonly used for the packed-bed velocity
term.) In an empty tube, the fluid behavior is determined by the tube diameter

 

d

 

t

 

, and Pe

 

f

 

 

 

�

 

 

 

Ud

 

t

 

/

 

D

 

a

 

. The fluid Peclet number, Pe

 

f

 

, is given in all correlations
relating the Peclet number to the Reynolds number because both are directly
related to the fluid mechanical behavior. It is, of course, very simple to convert
Pe

 

f

 

 to Pe

 

r

 

: Multiply by the ratio 

 

L

 

/dp or L/dt . The reciprocal of Per , Da /UL, is
sometimes called the vessel dispersion number.

14.4.2 Boundary Conditions

There are two cases that we need to consider: boundary conditions for closed
vessels and open vessels. In the case of closed-closed vessels, we assume that
there is no dispersion or radial variation in concentration either upstream
(closed) or downstream (closed) of the reaction section; hence this is a
closed-closed vessel. In an open vessel, dispersion occurs both upstream
(open) and downstream (open) of the reaction section; hence this is an
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open-open vessel. These two cases are shown in Figure 14-7, where fluctua-
tions in concentration due to dispersion are superimposed on the plug-flow
velocity profile. A closed-open vessel boundary condition is one in which there
is no dispersion in the entrance section but there is dispersion in the reaction
and exit sections.

 

14.4.2A  Closed-Closed Vessel Boundary Condition

 

For a closed-closed vessel, we have plug flow (no dispersion) to the immediate
left of the entrance line (

 

z

 

 = 0

 

–

 

) (closed) and to the immediate right of the exit

 

z

 

 = 

 

L

 

 (

 

z

 

 = 

 

L

 

+

 

) (closed). However, between 

 

z

 

 = 0

 

+

 

 and 

 

z

 

 = 

 

L

 

–

 

, we have disper-
sion and reaction. The corresponding entrance boundary condition is

At 

 

z

 

 = 0:

 

FA(0–) = FA(0+)

Substituting for FA yields

UAcCA (0�) � �AcDa  � UAcCA (0�)

Solving for the entering concentration CA(0–) = CA0:

(14-20)

At the exit to the reaction section, the concentration is continuous, and there is
no gradient in tracer concentration.

At z � L: (14-21)

Figure 14-7 Types of boundary conditions.
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These two boundary conditions, Equations (14-20) and (14-21), first
stated by Danckwerts,

 

3

 

 have become known as the famous 

 

Danckwerts bound-
ary conditions

 

. Bischoff

 

4

 

 has given a rigorous derivation of them, solving the
differential equations governing the dispersion of component A in the entrance
and exit sections and taking the limit as 

 

D

 

a

 

 in the entrance and exit sections
approaches zero. From the solutions he obtained boundary conditions on the
reaction section identical with those Danckwerts proposed.

The closed-closed concentration boundary condition at the entrance is
shown schematically in Figure 14-8. One should not be uncomfortable with the
discontinuity in concentration at 

 

z

 

 = 0 because if you recall for an ideal CSTR
the concentration drops immediately on entering from C

 

A0

 

 to C

 

Aexit

 

. For the
other boundary condition at the exit 

 

z

 

 = 

 

L,

 

 we see the concentration gradient
has gone to zero. At steady state, it can be shown that this Danckwerts bound-
ary condition at 

 

z

 

 = 

 

L

 

 also applies to the open-open system at steady state.

 

14.4.2B  Open-Open System

 

For an open-open system there is continuity of flux at the boundaries at z = 0, 

 F  A  (0  
–  ) =  F  A  (0  

+  )

(14-22)
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Figure 14-8 Schematic of Danckwerts boundary conditions. (a) Entrance (b) Exit
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At z = L, we have continuity of concentration and

(14-23)

14.4.2C  Back to the Solution for a Closed-Closed System

We now shall solve the dispersion reaction balance for a first-order reaction 

(14-17)

For the closed-closed system, the Danckwerts boundary conditions in dimen-
sionless form are

(14-24)

(14-25)

At the end of the reactor, where λ = 1, the solution to Equation (14-17) is

(14-26)

This solution was first obtained by Danckwerts5 and has been published in
many places (e.g., Levenspiel6). With a slight rearrangement of Equation
(14-26), we obtain the conversion as a function of Da and Per.

(14-27)

Outside the limited case of a first-order reaction, a numerical solution of the
equation is required, and because this is a split-boundary-value problem, an
iterative technique is required.

To evaluate the exit concentration given by Equation (14-26) or the con-
version given by (14-27), we need to know the Damköhler and Peclet num-
bers. The Damköhler number for a first-order reaction, Da = τk, can be found
using the techniques in Chapter 5. In the next section, we discuss methods to
determine Da, by finding the Peclet number.

5 P. V. Danckwerts, Chem. Eng. Sci., 2, 1 (1953).
6 Levenspiel, Chemical Reaction Engineering, 3rd ed. (New York: Wiley, 1999).
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14.4.3 Finding Da and the Peclet Number

There are three ways we can use to find Da and hence Per

1. Laminar flow with radial and axial molecular diffusion theory
2. Correlations from the literature for pipes and packed beds
3. Experimental tracer data

At first sight, simple models described by Equation (14-13) appear to
have the capability of accounting only for axial mixing effects. It will be
shown, however, that this approach can compensate not only for problems
caused by axial mixing, but also for those caused by radial mixing and other
nonflat velocity profiles.7 These fluctuations in concentration can result from
different flow velocities and pathways and from molecular and turbulent diffu-
sion.

14.4.4 Dispersion in a Tubular Reactor with Laminar Flow

In a laminar flow reactor, we know that the axial velocity varies in the radial
direction according to the Hagen–Poiseuille equation:

u(r) = 2U

where U is the average velocity. For laminar flow, we saw that the RTD func-
tion E(t) was given by

(13-47)

In arriving at this distribution E(t), it was assumed that there was no transfer
of molecules in the radial direction between streamlines. Consequently, with
the aid of Equation (13-43), we know that the molecules on the center stream-
line (r = 0) exited the reactor at a time t = τ/2, and molecules traveling on the
streamline at r = 3R/4 exited the reactor at time

7 R. Aris, Proc. R. Soc. (London), A235, 67 (1956).

Three ways to
find Da

1 r
R
---⎝ ⎠

⎛ ⎞2

�

E t( )
0      for  t τ 

2
 --- τ L

U
 ---- � ⎝ ⎠

⎛ ⎞ � 

τ

 

2

 

2

 

t

 

3

 

------      for  t τ 
2

 --- � 
⎩
⎪
⎪
⎨
⎪
⎪
⎧

 

�

t L
u
--- L

2U 1 r R�( )2
�[ ]

------------------------------------- τ
2 1 3 4�( )2

�[ ]
--------------------------------� � �

8
7
--- τ�=

 

Fogler_ECRE_CDROM.book  Page 962  Wednesday, September 17, 2008  5:01 PM



 

Sec. 14.4 Flow, Reaction, and Dispersion

 

963

 

The question now arises: What would happen if some of the molecules
traveling on the streamline at r = 3R/4 jumped (i.e., diffused) onto the stream-
line at r = 0? The answer is that they would exit sooner than if they had stayed
on the streamline at r = 3R/4. Analogously, if some of the molecules from the
faster streamline at r = 0 jumped (i.e., diffused) on to the streamline at r =
3R/4, they would take a longer time to exit (Figure 14-9). In addition to the
molecules diffusing between streamlines, they can also move forward or back-
ward relative to the average fluid velocity by molecular diffusion (Fick’s law).
With both axial and radial diffusion occurring, the question arises as to what
will be the distribution of residence times when molecules are transported
between and along streamlines by diffusion. To answer this question we will
derive an equation for the axial dispersion coefficient, 

 

D

 

a

 

, that accounts for the
axial and radial diffusion mechanisms. In deriving 

 

D

 

a

 

, which is referred to as
the Aris–Taylor dispersion coefficient, we closely follow the development
given by Brenner and Edwards.

 

8

 

The convective–diffusion equation for solute (e.g., tracer) transport in
both the axial and radial direction can be obtained by combining Equations
(11-3) and (11-15),

(14-28)

where 

 

c

 

 is the solute concentration at a particular 
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, 

 

z

 

, and 

 

t

 

.
We are going to change the variable in the axial direction 

 

z

 

 to , which
corresponds to an observer moving with the fluid
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Ut

 

(14-29)

A value of  

 

�

 

 0 corresponds to an observer moving with the fluid on the
center streamline. Using the chain rule, we obtain
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Brenner and D. A. Edwards, 

 

Macrotransport Processes

 

 (Boston: Butterworth-
Heinemann, 1993).
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between streamlines

and back and forth
along a streamline

Figure 14-9 Radial diffusion in laminar flow.
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(14-30)

Because we want to know the concentrations and conversions at the exit to the
reactor, we are really only interested in the average axial concentration ,
which is given by

(

 

z

 

, 

 

t

 

) 

 

�

 

 

 

c

 

(

 

r

 

, 

 

z

 

, 

 

t

 

)2

 

�

 

r dr

 

(14-31)

Consequently, we are going to solve Equation (14-30) for the solution concen-
tration as a function of r and then substitute the solution c (r, z, t) into Equa-
tion (14-31) to find  (

 

z

 

, 

 

t

 

). All the intermediate steps are given on the
CD-ROM R14.1, and the partial differential equation describing the variation
of the average axial concentration with time and distance is

(14-32)

where  is the Aris–Taylor dispersion coefficient:

(14-33)

That is, for laminar flow in a pipe

Figure 14-10 shows the dispersion coefficient  in terms of the ratio
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 as a function of the product of the Reynolds and Schmidt
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14.4.5A  Dispersion for Laminar and Turbulent Flow in Pipes

 

An estimate of the dispersion coefficient, 
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, can be determined from Figure
14-11. Here d
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 is the tube diameter and Sc is the Schmidt number discussed in
Chapter 11. The flow is laminar (streamline) below 2,100, and we see the ratio
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) increases with increasing Schmidt and Reynolds numbers. Between
Reynolds numbers of 2,100 and 30,000, one can put bounds on 
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 by calculat-
ing the maximum and minimum values at the top and bottom of the shaded
region.
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Figure 14-10

 
Correlation for dispersion for streamline flow in pipes. (From O. Levenspiel, 

Chemical Reaction Engineering, 2nd ed. Copyright © 1972 John Wiley & Sons, Inc. Reprinted 
by permission of John Wiley & Sons, Inc. All rights reserved.) [Note: 
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Figure 14-11 Correlation for dispersion of fluids flowing in pipes. (From O. Levenspiel, 
Chemical Reaction Engineering, 2nd ed. Copyright © 1972 John Wiley & Sons, Inc. Reprinted 
by permission of John Wiley & Sons, Inc. All rights reserved.) [Note: D � Da]
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14.4.5B  Dispersion in Packed Beds

 

For the case of gas–solid catalytic reactions that take place in packed-bed reac-
tors, the dispersion coefficient, 

 

D

 

a

 

, can be estimated by using Figure 14-12.
Here 

 

d

 

p

 

 is the particle diameter and 

 

ε

 

 is the porosity. 

 

14.4.6 Experimental Determination of

 

 D

 

a

 

The dispersion coefficient can be determined from a pulse tracer experiment.
Here, we will use 

 

t

 

m

 

 and 

 

	

 

2

 

 to solve for the dispersion coefficient Da and then
the Peclet number, Per. Here the effluent concentration of the reactor is mea-
sured as a function of time. From the effluent concentration data, the mean res-
idence time, tm, and variance, 	2, are calculated, and these values are then used
to determine Da. To show how this is accomplished, we will write

(14-13)

in dimensionless form, discuss the different types of boundary conditions at
the reactor entrance and exit, solve for the exit concentration as a function of
dimensionless time (� � t/τ), and then relate Da , 	2, and τ.

14.4.6A  The Unsteady-State Tracer Balance

The first step is to put Equation (14-13) in dimensionless form to arrive at the
dimensionless group(s) that characterize the process. Let

ψ � , 
 � , and � � 

D
/U

d p
ε

Re = dpUρ/μ

Figure 14-12 Experimental findings on dispersion of fluids flowing with mean 
axial velocity u in packed beds. (From O. Levenspiel, Chemical Reaction 
Engineering, 2nd ed. Copyright © 1972 John Wiley & Sons, Inc. Reprinted by 
permission of John Wiley & Sons, Inc. All rights reserved.) [Note: D � Da]
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For a pulse input, CT0 is defined as the mass of tracer injected, M, divided by
the vessel volume, V. Then

(14-34)

The initial condition is

At t = 0,    z > 0,    CT(0+,0) = 0,    �(0+)� 0 (14-35)

The mass of tracer injected, M is

M = UAc (0–, t) dt

14.4.6B  Solution for a Closed-Closed System

In dimensionless form, the Danckwerts boundary conditions are

At λ = 0: (14-36)

At λ = 1: (14-37)

Equation (14-34) has been solved numerically for a pulse injection, and the
resulting dimensionless effluent tracer concentration, �exit, is shown as a func-
tion of the dimensionless time Θ in Figure 14-13 for various Peclet numbers.
Although analytical solutions for � can be found, the result is an infinite series.
The corresponding equations for the mean residence time, tm , and the variance,
	2, are9

(14-38)

and

(t � τ)2E(t) dt

which can be used with the solution to Equation (14-34) to obtain

9 See K. Bischoff and O. Levenspiel, Adv. Chem. Eng., 4, 95 (1963).
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(14-39)

Consequently, we see that the Peclet number, Pe

 

r

 

 (and hence 

 

D

 

a

 

), can be found
experimentally by determining 

 

t

 

m

 

 and 

 

	

 

2

 

 from the RTD data and then solving
Equation (14-39) for Pe

 

r

 

.

 

14.4.6C  Open-Open Vessel Boundary Conditions

 

When a tracer is injected into a packed bed at a location more than two or
three particle diameters downstream from the entrance and measured some dis-
tance upstream from the exit, the open-open vessel boundary conditions apply.
For an open-open system, an analytical solution to Equation (14-13) can be
obtained for a pulse tracer input.

For an open-open system, the boundary conditions at the entrance are
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Figure 14-13 C curves in closed vessels for various extents of back-mixing as 
predicted by the dispersion model. (From O. Levenspiel, Chemical Reaction 
Engineering, 2nd ed. Copyright © 1972 John Wiley & Sons, Inc. Reprinted by 
permission of John Wiley & Sons, Inc. All rights reserved.) [Note: D � Da]10
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Then for the case when the dispersion coefficient is the same in the entrance
and reaction sections:

(14-40)

Because there are no discontinuities across the boundary at 

 

z

 

 = 0

(14-41)

At the exit

(14-42)

(14-43)

There are a number of perturbations of these boundary conditions that can be
applied. The dispersion coefficient can take on different values in each of the
three regions (

 

z

 

 < 0, 0 < 

 

z

 

 < 

 

L

 

, and z > 

 

L

 

), and the tracer can also be injected
at some point 

 

z

 

1

 

 rather than at the boundary, 

 

z

 

 = 0. These cases and others can
be found in the supplementary readings cited at the end of the chapter. We
shall consider the case when there is no variation in the dispersion coefficient
for all 

 

z

 

 and an impulse of tracer is injected at 

 

z

 

 = 0 at 

 

t

 

 = 0.
For long tubes (Pe

 
r  
 > 100) in which the concentration gradient at ± 

 
∞

 will be zero, the solution to Equation (14-34) at the exit is  11  

(14-44)

The mean residence time for an open-open system is

(14-45)

where 

 

τ

 

 is based on the volume between z = 0 and z = L (i.e., reactor volume
measured with a yardstick). We note that the mean residence time for an open
system is greater than that for a closed system. The reason is that the mole-
cules can diffuse back into the reactor after they exit. The variance for an
open-open system is

(14-46)

 

11

 

W. Jost, 

 

Diffusion in Solids, Liquids and Gases

 

 (New York: Academic Press, 1960),
pp. 17, 47.

Da
�CT

�z
---------⎝ ⎠

⎛ ⎞
z 0

 �
�

� UCT 0  � t,( )� Da
�CT

�z
---------⎝ ⎠

⎛ ⎞
z 0

+
�

� UCT 0+ t,( )��

CT 0  � t,( ) CT 0+ t,( )�

Open at the exit Da
�CT

�z
---------⎝ ⎠

⎛ ⎞
z L

 �
�

� UCT L  � t,( )� Da
�CT

�z
---------⎝ ⎠

⎛ ⎞
z L

+
�

� UCT L+ t,( )��

CT L  � t,( ) CT L+ t,( )�

Valid for Per > 100
� 1 �,( ) CT L t,( )

CT0

------------------ 1

2 ��/Per

------------------------- exp 1 ��( )2
�

4�/Per

-------------------------� �

Calculate τ for an
open-open system

tm 1 2
Per

-------�⎝ ⎠
⎛ ⎞τ�

Calculate Per for an
open–open system.

	2

τ2
----- 2

Per

-------- 8
Per

2
---------��
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We now consider two cases for which we can use Equations (14-39) and
(14-46) to determine the system parameters:

Case 1. The space time τ is known. That is, V and v0 are measured
independently. Here we can determine the Peclet number by
determining tm and 	2 from the concentration–time data and
then using Equation (14-46) to calculate Per. We can also cal-
culate tm and then use Equation (14-45) as a check, but this is
usually less accurate.

Case 2. The space time τ is unknown. This situation arises when there
are dead or stagnant pockets that exist in the reactor along with
the dispersion effects. To analyze this situation we first calcu-
late tm and 	2 from the data as in case 1. Then use Equation
(14-45) to eliminate τ2 from Equation (14-46) to arrive at 

(14-47)

We now can solve for the Peclet number in terms of our exper-
imentally determined variables 	2 and . Knowing Per, we
can solve Equation (14-45) for τ, and hence V. The dead vol-
ume is the difference between the measured volume (i.e., with
a yardstick) and the effective volume calculated from the RTD.

14.4.7 Sloppy Tracer Inputs

It is not always possible to inject a tracer pulse cleanly as an input to a system
because it takes a finite time to inject the tracer. When the injection does not
approach a perfect pulse input (Figure 14-14), the differences in the variances
between the input and output tracer measurements are used to calculate the
Peclet number:

where  is the variance of the tracer measured at some point upstream (near
the entrance) and  is the variance measured at some point downstream
(near the exit).

	2

tm
2

-----
2Per 8�

Pe r
2 4Per 4� �

--------------------------------------�

Finding the effective
reactor voume

tm
2

�	2 	in
2 	out

2��

	in
2

	out
2

Figure 14-14 Imperfect tracer input.
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For an open-open system, it has been shown12 that the Peclet number can
be calculated from the equation

(14-48)

Now let’s put all the material in Section 14.4 together to determine the conver-
sion in a tubular reactor for a first-order reaction.

Example 14–2 Conversion Using Dispersion and Tanks-in-Series Models

The first-order reaction

A B

is carried out in a 10-cm-diameter tubular reactor 6.36 m in length. The specific
reaction rate is 0.25 min�1. The results of a tracer test carried out on this reactor are
shown in Table E14-2.1.

Calculate the conversion using (a) the closed vessel dispersion model, (b) PFR,
(c) the tanks-in-series model, and (d) a single CSTR.

Solution

(a) We will use Equation (14-27) to calculate the conversion

(14-27)

where  Da � τk, and Per � UL/Da . We can calculate Per from
Equation (14-39):

(14-39)

However, we must find τ2 and 	2 from the tracer concentration data first.

12R. Aris, Chem. Eng. Sci., 9, 266 (1959).

TABLE E14-2.1.  EFFLUENT TRACER CONCENTRATION AS A FUNCTION OF TIME

t  (min) 0 1 2 3  4 5 6 7 8 9 10 12 14

C (mg/L) 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

�	2

tm
2

---------- 2
Per

--------�

   ⎯⎯→  

X 1
4q  Pe r 2 � ( ) exp 

1

 
q

 

�

 
( )

 

2  Pe r q 2 � ( ) 1 q � ( ) 2  P � e r q 2 � ( ) exp  �  exp  
----------------------------------------------------------------------------------------------------------------------------

 
��

q 1 4DDDDaaaa Per���

	2

t2
----- 2

Per

-------- 2
Per

2
---------  1 e 

Pe
 

r
 

�
 � ( ) ��

First calculate tm and
	2 from RTD data.

t   tE t ( ) td 

0

  � 
�

 V 
v

 
---

 
� �

	

 

2   t t � ( ) 2 E t ( ) td 

0

  � 
�   t 2 E t ( ) t t 2 � d 

0

  � 
�

 
� �

(E14-2.1)( )

(E14-2.2)
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Consider the data listed in Table E14-2.2.

To find 

 

E

 

(

 

t

 

) and then 

 

t

 

m

 

, we first find the area under the 

 

C

 

 curve, which is

Then

Calculating the first term on the right-hand side of Equation (E14-2.2), we find

Substituting these values into Equation (E14-2.2), we obtain the variance, 

 

	

 

2

 

.

Most people, including the author, would use Polymath or Excel to form Table
E14-2.2 and to calculate 

 

t

 

m

 

 and 

 

	

 

2

 

. Dispersion in a closed vessel is represented by

(14-39)

Solving for Pe

 

r

 

 either by trial and error or using Polymath, we obtain

Pe
 r    �   7.5

Next we calculate 
 

Da
 

 to be
 

Da

 

 

 

�

 

 

 

τ

 

k

 

 

 

�

 

 (5.15 min)(0.25 min

 

�

 

1

 

) 

 

�

 

 1.29

 

T

 

ABLE

 

 E14-2.2.  

 

C

 

ALCULATIONS

 

 

 

TO

 

 D

 

ETERMINE

 

 

 

t

 

m

 

 

 

AND

 

 

 

	

 

2

 

t (min)

 

0 1 2 3  4 5 6 7 8 9 10 12 14

 

C

 

(

 

t

 

) (mol/dm

 

3

 

)

 

0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

 

E

 

(

 

t

 

) (min

 

–1

 

)

 

0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

 

tE

 

(

 

t

 

)

 

0 0.02 0.2 0.48 0.8 0.80 0.72 0.56 0.48 0.400 0.30 0.140 0

 

t

 

2

 

E

 

(

 

t

 

) (min)

 

0 0.02 0.4 1.44 3.2 4.0 4.32 3.92 3.84 3.600 3.00 1.680 0

Here again
spreadsheets can be
used to calculate τ2

and 	2.
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Calculate Per from
tm and 	2.
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Next, calculate
Da , q, and X.
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Using the equations for 

 

q

 

 and 

 

X

 

 gives

Then

Substitution into Equation (14-40) yields

 

When dispersion effects are present in this tubular reactor, 68% conversion is
achieved.

(b)

 

If the reactor were operating ideally as a plug-flow reactor, the conversion
would be

 

X

 

 

 

�

 

 1 

 

�

 

 

 

e

 

�

 

τ

 

k

 

 

 

�

 

 1 

 

�

 

 

 

e

 

�

 

Da

 

 

 

�

 

 1 

 

�

 

 

 

e

 

�

 

1.29

 

 

 

�

 

 0.725

 

That is, 72.5% conversion would be achieved in an ideal plug-flow reactor.
(c)

 

Conversion using the tanks-in-series model: We recall Equation (14-12) to
calculate the number of tanks in series:

To calculate the conversion, we recall Equation (4-11). For a first-order reaction for

 

n

 

 tanks in series, the conversion is

 

(d)

 

 For a single CSTR,

 
So 56.3% conversion would be achieved in a single ideal tank.
Summary:  

In this example, correction for finite dispersion, whether by a dispersion model or a
tanks-in-series model, is significant when compared with a PFR.

q 1 4DDDDaaaa
Per

--------------� 1 4 1.29( )
7.5

------------------� 1.30� � �

Per q

2
------------ 7.5( ) 1.3( )

2
------------------------ 4.87� �

Dispersion Model
X 1 4 1.30( ) e 7.5 2�( )

2.3( )2  4.87 ( ) 0.3 � ( ) 2  4.87 � ( ) exp �  exp  
------------------------------------------------------------------------------------------------------

 
��

 

X

 

0.68 68% conversion for the dispersion model

 

�

PFR

Tanks-in-series
model

n t2

	2
----- 5.15( )2

6.1
----------------- 4.35� � �

X 1 1
1 ti k�( )n

-----------------------� 1 1
1 t n�( ) k�[ ]n

--------------------------------� 1 1
1 1.29 4.35��( )4.35

---------------------------------------------�� � �

X 67.7% for the tanks-in-series model�

CSTR X tk
1 tk�
-------------- 1.29

2.29
---------- 0.563� � �

Summary

PFR: X 72.5%�

Dispersion: X 68.0%�

Tanks in series: X 67.7%�

Single CSTR: X 56.3%�
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14.5 Tanks-in-Series Model Versus Dispersion Model

We have seen that we can apply both of these one-parameter models to tubular
reactors using the variance of the RTD. For first-order reactions, the two mod-
els can be applied with equal ease. However, the tanks-in-series model is math-
ematically easier to use to obtain the effluent concentration and conversion for
reaction orders other than one and for multiple reactions. However, we need to
ask what would be the accuracy of using the tanks-in-series model over the
dispersion model. These two models are equivalent when the Peclet–Boden-
stein number is related to the number of tanks in series, n, by the equation13

Bo = 2(n – 1) (14-49)

or

(14-50)

where Bo = UL/Da, where U is the superficial velocity, L the reactor length,
and Da the dispersion coefficient.

For the conditions in Example 14-2, we see that the number of tanks cal-
culated from the Bodenstein number, Bo (i.e., Per), Equation (14-50), is 4.75,
which is very close to the value of 4.35 calculated from Equation (14-12).
Consequently, for reactions other than first order, one would solve successively
for the exit concentration and conversion from each tank in series for both a
battery of four tanks in series and of five tanks in series in order to bound the
expected values.

In addition to the one-parameter models of tanks-in-series and disper-
sion, many other one-parameter models exist when a combination of ideal
reactors is used to model the real reactor as shown in Section 13.5 for reactors
with bypassing and dead volume. Another example of a one-parameter model
would be to model the real reactor as a PFR and a CSTR in series with the one
parameter being the fraction of the total volume that behaves as a CSTR. We
can dream up many other situations that would alter the behavior of ideal reac-
tors in a way that adequately describes a real reactor. However, it may be that
one parameter is not sufficient to yield an adequate comparison between theory
and practice. We explore these situations with combinations of ideal reactors in
the section on two-parameter models.

The reaction rate parameters are usually known (i.e., Da), but the Peclet
number is usually not known because it depends on the flow and the vessel.
Consequently, we need to find Per using one of the three techniques discussed
earlier in the chapter.

13K. Elgeti, Chem. Eng. Sci., 51, 5077 (1996).

Equivalency
between models of
tanks-in-series and

dispersion n Bo
2

------- 1��
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14.6 Numerical Solutions to Flows with Dispersion 
and Reaction 

We now consider dispersion and reaction. We first write our mole balance on
species A by recalling Equation (14-28) and including the rate of formation of
A, rA. At steady state we obtain

(14-51)

Analytical solutions to dispersion with reaction can only be obtained for iso-
thermal zero- and first-order reactions. We are now going to use COMSOL to
solve the flow with reaction and dispersion with reaction. A COMSOL
CD-ROM is included with the text.

We are going to compare two solutions: one which uses the Aris–Taylor
approach and one in which we numerically solve for both the axial and radial
concentration using COMSOL.

Case A. Aris–Taylor Analysis for Laminar Flow

For the case of an nth-order reaction, Equation (14-15) is

(14-52)

If we use the Aris–Taylor analysis, we can use Equation (14-15) with a caveat
that  where  is the average concentration from r = 0 to r = R
as given by 

(14-53)

where

For the closed-closed boundary conditions we have

(14-54)

For the open-open boundary conditions we have

DAB
1
r
---

� r
�CA

�r
----------⎝ ⎠

⎛ ⎞

�r
---------------------

�
2CA

�z2
------------� u r( )

�CA

�z
----------� rA� 0�

Da

U
------

d2CA

dz2
------------

dCA

dz
----------�

kCA
n

U
---------� 0�

� CA CA0�� CA

1
Per

-------d2
�

d

2

-------- d�
d

------� Da�

n
� 0�

Per
UL
Da

------- and Da= tkCA0
n 1�

�

At 
 0:�
1

Per

-------d�
d

------


 0�
+

� � 0+( )� 1�

Danckwerts bound-
ary conditions At 
 1:� d�

d

------ 0�

Fogler_ECRE_CDROM.book  Page 975  Wednesday, September 17, 2008  5:01 PM



976 Models for Nonideal Reactors Chap. 14

(14-55)

Equation (14-53) is a nonlinear second order ODE that is solved on the COMSOL
CD-ROM.

Case B. Full Numerical Solution

To obtain profiles, CA(r,z), we now solve Equation (14-51) 

(14-51)

First we will put the equations in dimensionless form by letting ,
λ = z/L, and φ = r/R. Following our earlier transformation of variables, Equa-
tion (14-51) becomes

(14-56)

Example 14–3 Dispersion with Reaction

(a) First, use COMSOL to solve the dispersion part of Example 14-2 again.
How does the COMSOL result compare with the solution to Example 14-2?

(b) Repeat (a) for a second-order reaction with k = 0.5 dm3/mol • min.
(c) Repeat (a) but assume laminar flow and consider radial gradients in

concentration. Use DAB for both the radial and axial diffusion coeffi-
cients. Plot the axial and radial profiles. Compare your results with part (a).

Additional information:

CA0 = 0.5 mol/dm3, U0 = L/τ = 1.24 m/min, Da = U0L/Per = 1.05 m2/min.
DAB = 7.6E-5 m2/min.
Note: For part (a), the two-dimensional model with no radial gradients (plug flow)
becomes a one-dimensional model. The inlet boundary condition for part (a) and
part (b) is a closed-closed vessel (flux[z = 0–] = flux[z = 0+] or Uz·CA0 = flux) at the
inlet boundary. In COMSOL format it is: –Ni·n = U0*CA0. The boundary condition
for laminar flow in COMSOL format for part (c) is: –Ni·n = 2*U0*(1–(r/Ra)2)*CA0.

Solution

(a) Equation (14-52) was used in the COMSOL program along with the
rate law

At 
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The different
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Boundary Conditions
are given in

Problem P14-19c
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rA = –kCA = –kCA0 ψ

We see that we get the same results as the analytical solution in Exam-
ple 14-2. With the Aris–Taylor analysis the two-dimensional profile
becomes a one-dimensional plug flow velocity profile. Figure E14-3.1(a)
shows a uniform concentration surface and shows the plug flow behav-
ior of the reactor. Figure E14-3.1(b) shows the corresponding cross-sec-
tion plots at the inlet, half axial location, and outlet. The average outlet
conversion is 67.9%.
The average outlet concentration at an axial distance z is found by inte-
grating across the radius as shown below

From the average concentrations at the inlet and outlet we can calculate
the average conversion as 

(b) Now we expand our results to consider the case when the reaction is
second order (–rA = ψ2) with k = 0.5 dm3/mol·min and
CA0 = 0.5 mol/dm3. Let’s assume the radial dispersion coefficient is
equal to the molecular diffusivity. Keeping everything else constant, the
average outlet conversion is 52.3%. However, because the flow inside
the reactor is modeled as plug flow the concentration profiles are still
flat, as shown in Figure E14-3.2.

CA z( ) 2�rCA r z,( )dr

�R2
----------------------------------

0

R

��

Be sure to view
documentation on

COMSOL CD-ROM
to see COMSOL

tutorial with
screen shots X

CA0 CA�

CA0

----------------------�

Figure E14-3.1 COMSOL results for a plug flow reactor with first-order reaction. 
(Concentrations in mol/dm3.)

(a) (b)
  

Load enclosed
COMSOL CD

kCA
2 kCA0

2
�
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(c) Now, we will change the flow assumption from plug flow to laminar
flow and solve Equation (14-51) for a first-order reaction.

The average outlet conversion becomes 68.8%, not much different from
the one in part (a) in agreement with the Aris–Taylor analysis. How-
ever, due to the laminar flow assumption in the reactor, the radial con-
centration profiles are very different throughout the reactor.

(d) As a homework exercise, repeat part (c) for the second-order reaction
given in part (b).

(a) (b)

Figure E14-3.2 COMSOL results for a plug flow reactor with second-order reaction. 
(Concentrations in mol/dm3.)

Figure E14-3.3 COMSOL output for laminar flow in the reactor. 
(Concentrations in mol/dm3.)

(a) (b)
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14.7 Two-Parameter Models—Modeling 
Real Reactors with Combinations
of Ideal Reactors

We now will see how a real reactor might be modeled by one of two different
combinations of ideal reactors. These are but two of an almost unlimited num-
ber of combinations that could be made. However, if we limit the number of
adjustable parameters to two (e.g., bypass flow rate, vb, and dead volume, VD),
the situation becomes much more tractable. After reviewing the steps in Table
14-1, choose a model and determine if it is reasonable by qualitatively compar-
ing it with the RTD, and if it is, determine the model parameters. Usually, the
simplest means of obtaining the necessary data is some form of tracer test.
These tests have been described in Chapter 13, together with their uses in
determining the RTD of a reactor system. Tracer tests can be used to determine
the RTD, which can then be used in a similar manner to determine the suitabil-
ity of the model and the value of its parameters.

In determining the suitability of a particular reactor model and the
parameter values from tracer tests, it may not be necessary to calculate the
RTD function E(t). The model parameters (e.g., VD) may be acquired directly
from measurements of effluent concentration in a tracer test. The theoretical
prediction of the particular tracer test in the chosen model system is compared
with the tracer measurements from the real reactor. The parameters in the
model are chosen so as to obtain the closest possible agreement between the
model and experiment. If the agreement is then sufficiently close, the model is
deemed reasonable. If not, another model must be chosen.

The quality of the agreement necessary to fulfill the criterion “suffi-
ciently close” again depends on creativity in developing the model and on
engineering judgment. The most extreme demands are that the maximum error
in the prediction not exceed the estimated error in the tracer test and that there
be no observable trends with time in the difference between prediction (the
model) and observation (the real reactor). To illustrate how the modeling is
carried out, we will now consider two different models for a CSTR.

14.7.1 Real CSTR Modeled Using Bypassing and Dead Space

A real CSTR is believed to be modeled as a combination of an ideal CSTR of
volume Vs , a dead zone of volume Vd , and a bypass with a volumetric flow rate

 (Figure 14-15). We have used a tracer experiment to evaluate the parame-
ters of the model Vs and . Because the total volume and volumetric flow rate
are known, once Vs and  are found,  and Vd can readily be calculated.

14.7.1A  Solving the Model System for CA and X

We shall calculate the conversion for this model for the first-order reaction

A B

Creativity and
engineering

judgment are
necessary for model

formulation

A tracer
experiment is used

to evaluate the
model parameters.

vb

vs

vs vb

   ⎯⎯→   
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The bypass stream and effluent stream from the reaction volume are mixed at
point 2. From a balance on species A around this point,

(14-57)

We can solve for the concentration of A leaving the reactor,

Let 
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(14-58)

For a first-order reaction, a mole balance on 
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or, in terms of 

 

�

 

 and 

 

�

 

,

(14-60)

Substituting Equation (14-60) into (14-58) gives the effluent concentration of
species A:

(14-61)

We have used the ideal reactor system shown in Figure 14-15 to predict
the conversion in the real reactor. The model has two parameters, 

 

�

 

 and 

 

�

 

. If
these parameters are known, we can readily predict the conversion. In the fol-
lowing section, we shall see how we can use tracer experiments and RTD data
to evaluate the model parameters.

Figure 14-15 (a) Real system; (b) model system.

The model system
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14.7.1B Using a Tracer to Determine the Model Parameters 
in CSTR-with-Dead-Space-and-Bypass Model

In Section 14.7.1A, we used the system shown in Figure 14-16, with bypass
flow rate  and dead volume Vd , to model our real reactor system. We shall
inject our tracer, T, as a positive-step input. The unsteady-state balance on the
nonreacting tracer T in the reactor volume Vs is

In – out = accumulation

(14-62)

The conditions for the positive-step input are

A balance around junction point 2 gives

(14-63)

As before,

Integrating Equation (14-62) and substituting in terms of � and � gives

(14-64)

vb

Tracer balance for
step input vsCT0  �  v s C Ts �  

dN
 

Ts 
dt
 ----------- V s  

dC
 

Ts 
dt
 ----------- �

CT0

CT0
CT

CTS

1

2

v0

v0

v0v

v0 v v

v

Figure 14-16 Model system: CSTR with dead volume and bypassing.

Model system

At t 0�

At t 0�

CT 0�

CT CT0�

The junction
balance

CT
vbCT0 CTsvs�

v0

---------------------------------�

Vs �V�

vb �v0�

t V
v0

-----�

CTs

CT0

-------- 1
1 ��

�
-------------  

t 
t
 -- 

⎝ ⎠
⎜ ⎟
⎛ ⎞

 �  exp  ��  
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Combining Equations (14-63) and (14-64), the effluent tracer concentration is

(14-65)

We now need to rearrange this equation to extract the model parameters, 

 

α

 

 and

 

β

 

, either by regression (Polymath/MATLAB/Excel) or from the proper plot of
the effluent tracer concentration as a function of time. Rearranging yields

(14-66)

Consequently, we plot ln[

 

C

 

T

 

0

 

/(

 

C

 

T

 

0

 

 

 

�

 

 

 

C

 

T

 

)] as a function of 

 

t

 

. If our
model is correct, a straight line should result with a slope of (1 

 

�

 

 

 

�

 

)/

 

τ

 

�

 

 and
an intercept of ln[1/(1 

 

�

 

 

 

�

 

)].

 

Example 14–4 CSTR with Dead Space and Bypass

 

The elementary reaction

A 

 

�

 

 B C 

 

�

 

 D

is to be carried out in the CSTR shown schematically in Figure 14-15. There is both
bypassing and a stagnant region in this reactor. The tracer output for this reactor is
shown in Table E14-4.1. The measured reactor volume is 1.0 m

 

3

 

 and the flow rate to
the reactor is 0.1 m

 

3

 

/min. The reaction rate constant is 0.28 m

 

3

 

/kmol

 

�

 

min. The feed
is equimolar in A and B with an entering concentration of A equal to 2.0 kmol/m

 

3

 

.
Calculate the conversion that can be expected in this reactor (Figure E14-4.1).

The entering tracer concentration is C

 

T0

 

 = 2000 mg/dm

 

3

 

.

 

T

 

ABLE

 

 E14-4.1  

 

T

 

RACER

 

 D

 

ATA

 

 

 

FOR

 

 S

 

TEP

 

 I

 

NPUT

 

C

 

T

 

 (mg/dm

 

3

 

) 1000 1333 1500 1666 1750 1800

 

t

 

 (min) 4 8 10 14 16 18

CT

CT0

-------- 1 1 ��( )  1
 

��
�

 -------------  
t

 
t
 -- 

⎝ ⎠
⎜ ⎟
⎛ ⎞

 �  exp  ��

Evaluating the
model parameters

CT0

CT0 CT�
---------------------ln 1

1 ��
------------- 1 ��

�
-------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

  t 
t
 --  �  ln�

   ⎯⎯→  

Two-parameter
model

CTO

CAO

vO

v0

vb

CTS

CT

VS

CA

CAS

2

1

Figure E14-4.1 Schematic of real reactor modeled with dead space (Vd) and 
bypass .vb( )
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Solution

 

Recalling Equation (14-66)

(14-66)

Equation (14-66) suggests that we construct Table E14-4.2 from Table E14-4.1 and
plot 

 

C

 

T

 

0

 

/(

 

C

 

T

 

0

 

 

 

�

 

 

 

C

 

T

 

) as a function of time on semilog paper. Using this table we get
Figure E14-4.2.

We can find 

 

α

 

 and 

 

β

 

 from either a semilog plot as shown in Figure E14-4.2 or by
regression using Polymath, MATLAB, or Excel.

The volumetric flow rate to the well-mixed portion of the reactor, , can be deter-
mined from the intercept, 

 

I

 

:

The volume of the well-mixed region, 

 

V

 

s

 

, can be calculated from the slope:

 

T

 

ABLE

 

 E14-4.2.  

 

P

 

ROCESSED

 

 D

 

ATA

 

t

 

 (min) 4 8 10 14 16 18

2 3 4 6 8 10

CT0

CT0 CT�
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1 ��
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�
-----------------  t 

t
--�ln�

Evaluating the
parameters � and �

CT0

CT0 CT�
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Figure E14-4.2 Response to a step input.
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We now proceed to determine the conversion corresponding to these model parameters.
1.

 

Balance on reactor volume 

 

V

 

s

 

:

 

(E14-4.1)

 

2. Rate law:

 

Equimolar feed 

 (E14-4.2)

3.

 

Combining

 

 Equations (E14-4.1) and (E14-4.2) gives

(E14-4.3)

Rearranging, we have

 

 

�

 

 

 

CAs � CA0 � 0 (E14-4.4)

Solving for CAs yields

(E14-4.5)

4. Balance around junction point 2:

(E14-4.6)

Rearranging Equation (E14-4.6) gives us

(E14-4.7)

τ V
v0

----- 1 m3

0.1 m3/min( )
------------------------------- 10 min� � �

� 7 min
τ

-------------- 0.7� �
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vsCA0 vsCAs� rAsVs� 0�
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CAs� CBs�

rAs kC 2
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vs CA0 vs CAs� kCAs
2 Vs� 0�

ts kCAs
2

The Duck Tape
Council would like

to point out the
new wrinkle: The

Junction Balance. CAs
1� 1 4ts kCA0��

2ts k
-------------------------------------------------�

In[ ] Out[ ]�

vbCA0 vsCAs�[ ] v0CA[ ]�

CA
v0 vs�
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----------------   C A 0 
v

 
s 

v
 

0

 -----  C A s ��  
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5. Parameter evaluation:

(E14-4.8)

Substituting into Equation (E14-4.7) yields

If the real reactor were acting as an ideal CSTR, the conversion would be

(E14-4.9)

(E14-4.10)

 

Other Models.

 

In Section 14.7.1 it was shown how we formulated a model
consisting of ideal reactors to represent a real reactor. First, we solved for the
exit concentration and conversion for our model system in terms of two param-
eters  �   and  �  . We next evaluated these parameters from data of tracer concen-
tration as a function of time. Finally, we substituted these parameter values
into the mole balance, rate law, and stoichiometric equations to predict the
conversion in our real reactor.

To reinforce this concept, we will use one more example.

 

14.7.2 Real CSTR Modeled as Two CSTRs with Interchange

 

In this particular model there is a highly agitated region in the vicinity of the
impeller; outside this region, there is a region with less agitation (Figure
14-17). There is considerable material transfer between the two regions. Both
inlet and outlet flow channels connect to the highly agitated region. We shall

vs 0.8 v0 0.8( ) 0.1 m3 min�( ) 0.08 m3 min�� � �

Vs �t( ) v0 7.0 min( ) 0.1 m3 min�( ) 0.7 m3� � �

ts
Vs

vs

----- 8.7 min� �

CAs
1 4ts kCA0� 1�

2ts k
-------------------------------------------�

1 4( ) 8.7 min( ) 0.28 m3 kmol min��( ) 2 kmol m3�( )� 1�

2( ) 8.7 min( ) 0.28 m3 kmol min��( )
------------------------------------------------------------------------------------------------------------------------------------------�

0.724 kmol m3��

Finding the
conversion

CA
0.1 0.08�

0.1
------------------------  2 ( ) 0.8 ( ) 0.724 ( ) � 0.979 � � 

X

 

1 0.979
2.0

 

-------------

 

�

 

0.51

 

� �

CA
1 4tkCA0� 1�

2tk
-----------------------------------------�

CA
1 4 10( ) 0.28( ) 2( )� 1�

2 10( ) 0.28( )
----------------------------------------------------------- 0.685� �

Xmodel 0.51�

XIdeal 0.66�

X 1
CA
CA0

---------� 1 0.685
2.0

-------------� 0.66� � �
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model the highly agitated region as one CSTR, the quieter region as another
CSTR, with material transfer between the two.

 

14.7.2A Solving the Model System for 

 

C

 

A

 

 and 

 

X

 

Let 

 

�

 

 represent that fraction of the total flow that is exchanged between reac-
tors 1 and 2, that is,

and let 

 

�

 

 represent that fraction of the total volume 

 

V

 

 occupied by the highly
agitated region:

Then

The space time is

As shown on the CD-ROM 14R.2, for a first-order reaction, the exit concentra-
tion and conversion are

(14-67)

and

The model system

(a) (b)

V1
V2

CA1

CA1

CA2

v0

v

v

v

Figure 14-17 (a) Real reaction system; (b) model reaction system.

v1 �v0�

Two parameters:
� and �

V1 �V�

V2 1 ��( )V�

t V
v0

-----�

CA1
CA0

1 � �tk �2 � 1 ��( ) tk�[ ]�{ }�� �
----------------------------------------------------------------------------------------�
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(14-68)

where CA1 is the reactor concentration exiting the first reactor in Figure 14-17(b).

14.7.2B Using a Tracer to Determine the Model Parameters 
in a CSTR with an Exchange Volume

The problem now is to evaluate the parameters � and � using the RTD data. A
mole balance on a tracer pulse injected at t � 0 for each of the tanks is 

(14-69)

CT1 and CT2 are the tracer concentrations in reactors 1 and 2, respectively, with
initial conditions CT10 � NT0/V1 and CT20 � 0.

Substituting in terms of �, �, and τ, we arrive at two coupled differential
equations describing the unsteady behavior of the tracer that must be solved
simultaneously.

Analytical solutions to Equations (14-71) and (14-72) are given in the
CD-ROM, in Appendix A.3 and in Equation (14-73), below. However, for
more complicated systems, analytical solutions to evaluate the system parame-
ters may not be possible.

(14-73)

By regression on Equation (14-73) and the data in Table E14-4.2 or by an
appropriate semilog plot of CT1/CT10 versus time, one can evaluate the model
parameters � and �.

Conversion for
two-CSTR model

X 1
CA1

CA0

---------�
� �tk�( ) � 1 ��( ) tk�[ ] �2�

1 � �tk� �( ) � 1 ��( ) tk�[ ] �2�
----------------------------------------------------------------------------------� �
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dt
 ----------- v 1 C T 1 v 1 C T 2 �� 14-70( )

See Appendix A.3
for method of

solution
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14.8 Use of Software Packages to Determine 
the Model Parameters

 

If analytical solutions to the model equations are not available to obtain the
parameters from RTD data, one could use ODE solvers. Here, the RTD data
would first be fit to a polynomial to the effluent concentration–time data and
then compared with the model predictions for different parameter values.

 

Example 14–5 CSTR with Bypass and Dead Volume

 

(a)

 

 Determine parameters 

 

�

 

 and 

 

�

 

 that can be used to model two CSTRs with inter-
change using the tracer concentration data listed in Table E14-5.1.

 

(b)

 

 Determine the conversion of a first-order reaction with 

 

k

 

 

 

�

 

 0.03 min

 

�

 

1

 

 and 

 

τ

 

 

 

�

 

 40 min.

 

Solution

 

First we will use Polymath to fit the RTD to a polynomial. Because of the steepness
of the curve, we shall use two polynomials. 

For  min,

 

C

 

Te

 

 

 

�

 

 2000 

 

�

 

 59.6

 

t

 

 

 

�

 

 0.642

 

t

 

2

 

 

 

�

 

 0.00146

 

t

 

3

 

 

 

�

 

 1.04 

 

�

 

 10

 

�

 

5

 

t
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(E14-5.1)

For ,

 

C

 

Te

 

 

 

�

 

 921 

 

�

 

 17.3

 

t

 

 

 

�

 

 0.129

 

t

 

2

 

 

 

�

 

 0.000438

 

t

 

3

 

 

 

�

 

 5.6 

 

�

 

 10

 

�

 

7

 

t

 

4

 

(E14-5.2)

where 

 

C

 

Te

 

 is the exit concentration of tracer determined experimentally. Next we
would enter the tracer mole (mass) balances Equations (14-71) and (14-72) into an
ODE solver. The Polymath program is shown in Table E14-5.2. Finally, we vary the
parameters 

 

�

 

 and � and then compare the calculated effluent concentration CT1 with
the experimental effluent tracer concentration CTe . After a few trials we converge on
the values � � 0.8 and � � 0.1. We see from Figure E14-5.1 and Table E14-5.3 that
the agreement between the RTD data and the calculated data are quite good, indicat-
ing the validity of our values of � and �. The graphical solution to this problem is
given on the CD-ROM and in the 2nd Edition. We now substitute these values in
Equation (14-68), and as shown in the CD-ROM, the corresponding conversion is
51% for the model system of two CSTRs with interchange:

(14-68)

TABLE E14-5.1.  RTD DATA

t (min) 0.0 20 40 60 80 120 160 200 240

CTe (g/m3) 2000 1050 520 280 160 61 29 16.4 10.0

t 80�

t 80�

Trial and error using
software packages

X 1
CA1

CA0

---------�
� �tk�( ) � 1 ��( ) tk�[ ] �2�

1 � �tk� �( ) � 1 ��( ) tk�[ ] �2�
----------------------------------------------------------------------------------� �
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Comparing models, we find

(Xmodel � 0.51) � (XCSTR � 0.55) � (XPFR � 0.7)

TABLE E14-5.2.  POLYMATH PROGRAM: TWO CSTRS WITH INTERCHANGE

tk 40 min( ) 0.03 min 1�( ) 1.2� �

X 0.1 0.8( ) 1.2( )�[ ] 0.1 1 0.8�( ) 1.2( )�[ ] 0.1( )2�

1 0.1 0.8( ) 1.2( )� �[ ] 0.1 1 0.8�( ) 1.2( ) 0.1( )2��[ ]
---------------------------------------------------------------------------------------------------------------------------�

X 0.51�

2.0

1.6

0.8

0.4

Scale:

Y: 10-3

KEY:

CT1

CTe 1.2

0.0
0.0 40.0

t (min)

80.0 120.0 160.0 200.0

(g/m3)

Figure E14-5.1 Comparison of model and experimental exit tracer concentrations.
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14.9 Other Models of Nonideal Reactors 
Using CSTRs and PFRs

Several reactor models have been discussed in the preceding pages. All are
based on the physical observation that in almost all agitated tank reactors,
there is a well-mixed zone in the vicinity of the agitator. This zone is usually
represented by a CSTR. The region outside this well-mixed zone may then be
modeled in various fashions. We have already considered the simplest models,
which have the main CSTR combined with a dead-space volume; if some
short-circuiting of the feed to the outlet is suspected, a bypass stream can be
added. The next step is to look at all possible combinations that we can use to
model a nonideal reactor using only CSTRs, PFRs, dead volume, and bypass-
ing. The rate of transfer between the two reactors is one of the model parame-
ters. The positions of the inlet and outlet to the model reactor system depend
on the physical layout of the real reactor. 

Figure 14-18(a) describes a real PFR or PBR with channeling that is
modeled as two PFRs/PBRs in parallel. The two parameters are the fraction of
flow to the reactors [i.e., � and (1 � �)] and the fractional volume [i.e., � and
(1 � �)] of each reactor. Figure 14-18(b) describes a real PFR/PBR that has a
backmix region and is modeled as a PFR/PBR in parallel with a CSTR. Fig-
ures 14-19(a) and (b) show a real CSTR modeled as two CSTRs with inter-
change. In one case, the fluid exits from the top CSTR (a) and in the other case
the fluid exits from the bottom CSTR. The parameter � represents the inter-
change volumetric flow rate and � the fractional volume of the top reactor,
where the fluid exits the reaction system. We note that the reactor in model
14-19(b) was found to describe extremely well a real reactor used in the pro-
duction of terephthalic acid.14 A number of other combinations of ideal reac-
tions can be found in Levenspiel.15

14Proc. Indian Inst. Chem. Eng. Golden Jubilee, a Congress, Delhi, 1997, p. 323.
15Levenspiel, O. Chemical Reaction Engineering, 3rd ed. (New York: Wiley, 1999), 

pp. 284–292.

TABLE E14-5.3.  COMPARING MODEL (CT1) WITH EXPERIMENT (CTe)

Two CSTRs with
interchange

A case history for
terephthalic acid
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14.10 Applications to Pharmacokinetic Modeling

The use of combinations of ideal reactors to model metabolism and drug distri-
bution in the human body is becoming commonplace. For example, one of the
simplest models for drug adsorption and elimination is similar to that shown in
Figure 14-19(a). The drug is injected intravenously into a central compartment
containing the blood (the top reactor). The blood distributes the drug back and
forth to the tissue compartment (the bottom reactor) before being eliminated
(top reactor). This model will give the familiar linear semi-log plot found in
pharmacokinetics textbooks. As can be seen in the figure for Professional Ref-
erence Shelf R7.5 on pharmacokinetics on page 453, there are two different
slopes, one for the drug distribution phase and one for the elmination phase.
More elaborate models using combinations of ideal reactors to model a real
system are described in section 7.5 where alcohol metabolism is discussed.

Model SystemReal System

E F

(a)

v0
v0

v0

v0

Model SystemReal System

E(t) F(t)

(b)

}

v0

v0

v0

v0

Figure 14-18 Combinations of ideal reactors used to model real tubular reactors.
(a) two ideal PFRs in parallel (b) ideal PFR and ideal CSTR in parallel.
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Model

E(t) F(t)

t t

(a)

V

Model

E(t) F(t)

t t

(b)

V

v0

v0

v0

v0

βv0 βv0

v0

v0

v0

v0

βv0v0

Figure 14-19 Combinations of ideal reactors to model a real CSTR. Two ideal CSTRs 
with interchange (a) exit from the top of the CSTR (b) exit from the bottom of the CSTR.

Closure  

In this chapter, models were developed for existing reactors to obtain a more
precise estimate of the exit conversion and concentration than estimates of
the examples given by the zero-order parameter models of segregation and
maximum mixedness. After completing this chapter, the reader will  use the
RTD data and kinetic rate law and reactor model to make predictions of the
conversion and exit concentrations using the tank-in-series and dispersion
one-parameter models. In addition, the reader should be able to create com-
binations of ideal reactors that mimic the RTD data and to solve for the exit
conversions and concentrations. The choice of a proper model is almost pure
art requiring creativity and engineering judgment. The flow pattern of the
model must possess the most important characteristics of that in the real
reactor. Standard models are available that have been used with some suc-
cess, and these can be used as starting points. Models of real reactors usually
consist of combinations of PFRs, perfectly mixed CSTRs, and dead spaces in
a configuration that matches the flow patterns in the reactor. For tubular reac-
tors, the simple dispersion model has proven most popular.

The parameters in the model, which with rare exception should not
exceed two in number, are obtained from the RTD data. Once the parame-
ters are evaluated, the conversion in the model, and thus in the real reactor,
can be calculated. For typical tank-reactor models, this is the conversion in
a series–parallel reactor system. For the dispersion model, the second-order
differential equation must be solved, usually numerically. Analytical solu-
tions exist for first-order reactions, but as pointed out previously, no model
has to be assumed for the first-order system if the RTD is available.

Correlations exist for the amount of dispersion that might be expected
in common packed-bed reactors, so these systems can be designed using the
dispersion model without obtaining or estimating the RTD. This situation is
perhaps the only one where an RTD is not necessary for designing a non-
ideal reactor.

RTD Data + Kinetics + Model = Prediction
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S U M M A R Y

1. The models for predicting conversion from RTD data are:
a. Zero adjustable parameters

(1) Segregation model
(2) Maximum mixedness model

b. One adjustable parameter
(1) Tanks-in-series model
(2) Dispersion model

c. Two adjustable parameters: real reactor modeled as combinations of ideal
reactors

2. Tanks-in-series model: Use RTD data to estimate the number of tanks in
series,

(S14-1)

For a first-order reaction

X � 1 � 

3. Dispersion model: For a first-order reaction, use the Danckwerts boundary
conditions

(S14-2)

where

(S14-3)

Da � τk Per � Pe f  � (S14-4)

4. Determine Da

a. For laminar flow the dispersion coefficient is

(S14-5)

b. Correlations. Use Figures 14-10 through 14-12.
c. Experiment in RTD analysis to find tm and .
For a closed-closed system use Equation (S14-6) to calculate Per from the
RTD data:

(S14-6)

The models
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For an open-open system, use

(14-47)

5. If a real reactor is modeled as a combination of ideal reactors, the model
should have at most two parameters.

6. The RTD is used to extract model parameters.
7. Comparison of conversions for a PFR and CSTR with the zero-parameter and

two-parameter models. 

 

X

 

seg

 

 symbolizes the conversion obtained from the seg-
regation model and 

 

X

 

mm

 

 that from the maximum mixedness model for reac-
tion orders greater than one.

 

Cautions:

 

 For rate laws with unusual concentration functionalities or for
nonisothermal operation, these bounds may not be accurate for certain types
of rate laws.

 

C D - R O M  M A T E R I A L

 

• Learning Resources

 

1. Summary Notes
2. Web Material

 

COMSOL CD-ROM

 

• Living Example Problems

 
1. Example 14-3 Dispersion with Reaction—COMSOL
2. Example 14-5 CSTR with Bypass and Dead Volume

	
2

tm
2

-----
2Per 8�

Per
2 4Per 4� �

----------------------------------�

VS

vS

vb

v0 v0

v0

v1

v2

v0

VD

VI VII

CSTR with bypass 
and dead volume

Two CSTRs with 
interchange

XPFR Xseg Xmm XCSTR� � �

XPFR Xmodel with Xmodel XCSTR or Xmodel XCSTR���
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• Professional Reference Shelf

 

R14.1

 

Derivation of Equation for Taylor–Aris Dispersion

 

R14.2

 

Real Reactor Modeled as two Ideal CSTRs with Exchange Volume

 

Example R14-1  Two CSTRs with interchange.

COMSOL results

�C
�t
------- U�C

�z*
------- D*

�
�

2C

�z*2
---------�

D* DAB� U2R2

48DAB

----------------�

CA1

CA1

CA2

v0

v0

v1

v1

V V
1

2
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Q U E S T I O N S  A N D  P R O B L E M S

The subscript to each of the problem numbers indicates the level of difficulty: A, least
difficult; D, most difficult.

P14-1B Make up and solve an original problem. The guidelines are given in Problem
P4-1A. However, make up a problem in reverse by first choosing a model system
such as a CSTR in parallel with a CSTR and PFR [with the PFR modeled as
four small CSTRs in series; Figure P14-1B(a)] or a CSTR with recycle and
bypass [Figure P14-1B(b)]. Write tracer mass balances and use an ODE solver
to predict the effluent concentrations. In fact, you could build up an arsenal of
tracer curves for different model systems to compare against real reactor RTD
data. In this way you could deduce which model best describes the real reactor. 

P14-2B (a) Example 14-1. How large would the error term be in Equation E14-1.4
if τk = 0.1? τk = 1? τk = 10?

(b) Example 14-2. Vary Da, k, U, and L. To what parameters or groups of
parameters (e.g., kL2/Da) would the conversion be most sensitive?
What if the first-order reaction were carried out in tubular reactors of dif-
ferent diameters, but with the space time, τ, remaining constant? The
diameters would range from a diameter of 0.1 dm to a diameter of 1 m
for kinematic viscosity v = μ/ρ = 0.01 cm2/s, U = 0.1 cm/s, and DAB =
10–5 cm2/s. How would your conversion change? Is there a diameter that
would maximize or minimize conversion in this range?

(a)

1 2 3 4

(b)

v0

v0

vR

v0

v0

vb

Figure P14-1.1 Model systems.
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(c) Example 14-3. (1) Load the reaction and dispersion program from the
COMSOL CD-ROM. Vary the Damköhler number for a second-order
reaction using the Aris–Taylor approximation (part (b) in Example 14-3).
(2) Vary the Peclet and Damköhler numbers for a second-order reaction
in laminar flow. What values of the Peclet number affect the conversion
significantly?

(d) Example 14-4. How would your answers change if the slope was 4 min–1

and the intercept was 2 in Figure E14-4.2?
(e) Example 14-5. Load the Living Example Polymath Program. Vary α and

β and describe what you find. What would be the conversion if α = 0.75
and β = 0.15?

(f) What if you were asked to design a tubular vessel that would minimize
dispersion? What would be your guidelines? How would you maximize
the dispersion? How would your design change for a packed bed?

(g) What if someone suggested you could use the solution to the flow-disper-
sion-reactor equation, Equation (14-27), for a second-order equation by
linearizing the rate law by lettering –rA =  ≅ (kCA0/2) CA = ?
Under what circumstances might this be a good approximation? Would
you divide CA0 by something other than 2? What do you think of linear-
izing other non-first-order reactions and using Equation (14-27)? How
could you test your results to learn if the approximation is justified?

(h) What if you were asked to explain why physically the shapes of the
curves in Figure 14-3 look the way they do, what would you say? What
if the first pulse in Figure 14.1(b) broke through at � � 0.5 and the sec-
ond pulse broke through at � � 1.5 in a tubular reactor in which a
second-order liquid-phase reaction

2A B � C

was occurring? What would the conversion be if τ � 5 min, CA0 � 2
mol/dm3, and k � 0.1 dm3/mol�min?

P14-3B The second-order liquid-phase reaction

A B � C

is to be carried out isothermally. The entering concentration of A is 1.0 mol/dm3.
The specific reaction rate is 1.0 dm3/mol�min. A number of used reactors (shown
below) are available, each of which has been characterized by an RTD. There are
two crimson and white reactors and three maize and blue reactors available.

(a) You have $50,000 available to spend. What is the greatest conversion you
can achieve with the available money and reactors?

(b) How would your answer to (a) change if you had $75,000 available to
spend?

(c) From which cities do you think the various used reactors came from?

Reactor 	(min) (min) Cost

Maize and blue 2 2 $25,000
Green and white 4 4 50,000
Scarlet and gray 3.05 4 50,000
Orange and blue 2.31 4 50,000
Purple and white 5.17 4 50,000
Silver and black 2.5 4 50,000
Crimson and white 2.5 2 25,000

kCA
2 k
CA

   ⎯⎯→  

   ⎯⎯→  

t
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P14-4

 

B

 

The elementary liquid-phase reaction

A B,

 

k

 

1

 

 

 

�

 

 1.0 min

 

�

 

1

 

is carried out in a packed bed reactor in which dispersion is present.
What is the conversion?

 

Additional information

 

Porosity 

 

�

 

 50% Reactor length 

 

�

 

 0.1 m
Particle size 

 

�

 

 0.1 cm Mean velocity 

 

�

 

 1 cm/s
Kinematic viscosity 

 

�

 

 0.01 cm

 

2

 

/s

 

P14-5

 

A

 

A gas-phase reaction is being carried out in a 5-cm-diameter tubular reactor
that is 2 m in length. The velocity inside the pipe is 2 cm/s. As a very first
approximation, the gas properties can be taken as those of air (kinematic vis-
cosity 

 

�

 

 0.01 cm

 

2

 

/s), and the diffusivities of the reacting species are approx-
imately 0.005 cm

 

2

 

/s.

 

(a)

 

How many tanks in series would you suggest to model this reactor?

 

(b)

 

If the second-order reaction A 

 

�

 

 B C 

 

�

 

 D is carried out for the
case of equal molar feed and with 

 

C

 

A0

 

 

 

�

 

 0.01 mol/dm

 

3

 

, what conversion
can be expected at a temperature for which 

 

k

 

 

 

�

 

 25 dm

 

3

 

/mol

 

�

 

s?

 

(c)

 

How would your answers to parts (a) and (b) change if the fluid velocity
were reduced to 0.1 cm/s? Increased to 1 m/s?

 

(d)

 

How would your answers to parts (a) and (b) change if the superficial
velocity was 4 cm/s through a packed bed of 0.2-cm-diameter spheres?

 

(e)

 

How would your answers to parts (a) to (d) change if the fluid were a liq-
uid with properties similar to water instead of a gas, and the diffusivity
was 5 

 

�

 

 10

 

�

 

6

 

 cm

 

2

 

/s?

 

P14-6

 

A

 

Use the data in Example 13-2 to make the following determinations. (The vol-
umetric feed rate to this reactor was 60 dm

 

3

 

/min.)

 
(a)

 
Calculate the Peclet numbers for both open and closed systems.

 (b)  For an open system, determine the space-time  τ   and then calculate the %
dead volume in a reactor for which the manufacturer’s specifications give
a volume of 420 dm

 

3

 

.

 

(c)

 

Using the dispersion and tanks-in-series models, calculate the conversion
for a closed vessel for the first-order isomerization

A B

with 

 

k

 

 

 

� 0.18 min�1.
(d) Compare your results in part (c) with the conversion calculated from the

tanks-in-series model, a PFR, and a CSTR.
P14-7A A tubular reactor has been sized to obtain 98% conversion and to process 0.03

m3/s. The reaction is a first-order irreversible isomerization. The reactor is
3  m long, with a cross-sectional area of 25 dm2. After being built, a pulse
tracer test on the reactor gave the following data: tm � 10 s and 	2 � 65 s2.
What conversion can be expected in the real reactor?

P14-8B The following E(t) curve was obtained from a tracer test on a reactor.

E(t) = 0.25t 0 < t < 2
= 1 – 0.25t 2 < t < 4
= 0 t > 4

t in minutes, and E(t) in min–1.

   ⎯⎯→   k
 

1

   ⎯⎯→  

   ⎯⎯→   
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The conversion predicted by the tanks-in-series model for the isothermal ele-
mentary reaction

A B

was 50% at 300 K.

 

(a)

 

If the temperature is to be raised 10˚C (

 

E

 

 = 25,000 cal/mol) and the reac-
tion carried out isothermally, what will be the conversion predicted by
the maximum mixedness model? The T-I-S model?

 

(b)

 

The elementary reactions

were carried out isothermally at 300 K in the same reactor. What is the
concentration of B in the exit stream predicted by the maximum mixed-
ness model?

 

(c)

 

For the multiple reactions given in part (b), what is the conversion of A
predicted by the dispersion model in an isothermal closed-closed system?

 

P14-9

 

B

 

Revisit Problem P13-4

 

C

 

 where the RTD function is a hemicircle. What is the
conversion predicted by

 

(a)

 

the tanks-in-series model?

 

(b)

 

the dispersion model?

 

P14-10

 

B

 

Revisit Problem P13-5

 

B

 

.

 

(a)

 

What combination of ideal reactors would you use to model the RTD?

 

(b)

 

What are the model parameters?

 

(c)

 

What is the conversion predicted for your model?

 

P14-11

 

B

 

Revisit Problem P13-6

 

B

 

.

 

(a)

 

What conversion is predicted by the tanks-in-series model?

 

(b)

 

What is the Peclet number?

 

(c)

 

What conversion is predicted by the dispersion model?

 

P14-12

 

C

 

Consider a real tubular reactor in which dispersion is occurring.

 

(a)

 

For small deviations from plug flow, show that the conversion for a
first-order reaction is given approximately as

 

X

 

 

 

�

 

 1 

 

�

 

 exp (P14.1)

 

(b)

 

Show that to achieve the same conversion, the relationship between the
volume of a plug-flow reactor, 

 

V

 

P

 

, and volume of a real reactor, 

 

V,

 

 in
which dispersion occurs is

(P14.2)

 

(c)

 

For a Peclet number of 0.1 based on the PFR length, how much bigger
than a PFR must the real reactor be to achieve the 99% conversion pre-
dicted by the PFR?

   ⎯⎯→  

A   ⎯⎯→   
k

 
1  B   ⎯⎯→   

k
 

2  C

A   ⎯⎯→   
k

 
3  D

k1 k2 k3 0.1 min 1�  at 300 K, CA0 1 mol/dm3
�� � �

tk�
tk( )2

Per

-----------�

VP

V
------ 1 kt( )

Pe
---------� 1

kDe

U2
---------�� �
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(d)

 

For an 

 

n

 

th-order reaction, the ratio of exit concentration for reactors of
the same length has been suggested as

(P14.3)

What do you think of this suggestion?

 

(e)

 

What is the effect of dispersion on zero-order reactions?

 

P14-13

 

B

 

Let’s continue Problem P13-19

 

B

 

.

 

(a)

 

What would be the conversion for a second-order reaction with 

 

kC

 

A0

 

 

 

�

 

0.1 min

 

�

 

1

 

 and 

 

C

 

A0

 

 

 

�

 

 1 mol/dm

 

3

 

 using the segregation model?

 

(b)

 

What would be the conversion for a second-order reaction with 

 

kC

 

A0

 

 

 

�

 
0.1 min

 

�

 

1

 
 and 

 
C

 
A0

 
 

 
�

 
 1 mol/dm

 

3

 
 using the maximum mixedness model?

 (c)  If the reactor is modeled as tanks in series, how many tanks are needed
to represent this reactor? What is the conversion for a first-order reaction
with 

 

k

 

 

 

�

 

 0.1 min

 

�

 

1

 

?

 

(d)

 

If the reactor is modeled by a dispersion model, what are the Peclet num-
bers for an open system and for a closed system? What is the conversion
for a first-order reaction with 

 

k

 

 

 

�

 

 0.1 min

 

�

 

1

 

 for each case?

 

(e)

 

Use the dispersion model to estimate the conversion for a second-order
reaction with 

 

k

 

 

 

�

 

 0.1 dm

 

3

 

/mol

 

�

 

s and 

 

C

 

A0

 

 

 

�

 

 1 mol/dm

 

3

 

.

 

(f)

 

It is suspected that the reactor might be behaving as shown in Figure
P14-13

 

B

 

, with 

 

perhaps (?)

 

 

 

V1 � V2. What is the “backflow” from the
second to the first vessel, as a multiple of ?

(g) If the model above is correct, what would be the conversion for a sec-
ond-order reaction with k � 0.1 dm3/mol�min if CA0 � 1.0 mol/dm3?

(h) Prepare a table comparing the conversion predicted by each of the mod-
els described above.

(i) How would your answer to part (a) change if the reaction were carried
out adiabatically with the parameter values given in Problem P13-2A(j)?

P14-14D It is proposed to use the elementary reactions

A � B C � D

C � B X � Y

to characterize mixing in a real reactor by monitoring the product distribution
at different temperatures. The ratio of specific reaction rates (k2/k1) at temper-
atures T1, T2, T3, and T4 is 5.0, 2.0, 0.5, and 0.1, respectively. The correspond-
ing values of τk1CA0 are 0.2, 2, 20, and 200.
(a) Calculate the product distribution for the CSTR and PFR in series

described in Example 13-3 for τCSTR � τPFR � 0.5τ.
(b) Compare the product distribution at two temperatures using the RTD

shown in Examples 13-1 and 13-2 for the complete segregation model
and the maximum mixedness model.

CAAAA
CAplug

-------------- 1 n
Pe
-------  t k C A 

0
 

n
 

� 1 ( )  C
    AAAA
 

0 
C
 

Aplu

 -------------- ln  ��

v0

Figure P14-13B Proposed model system

   ⎯⎯→   k
 

1

   ⎯⎯→   
k

 
2
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(c)

 

Explain how you could use the product distribution as a function of tem-
perature (and perhaps flow rate) to characterize your reactor. For example,
could you use the test reactions to determine whether the early mixing
scheme or the late mixing scheme in Example 13-3 is more representative
of a real reactor? Recall that both schemes have the same RTD.

 

(d)

 

How should the reactions be carried out (i.e., at high or low tempera-
tures) for the product distribution to best characterize the micromixing in
the reactor?

 

P14-15

 

B

 

A second-order reaction is to be carried out in a real reactor which gives the
following outlet concentration for a step input.

For 0 

 

≤

 

 

 

t

 

 < 10 min then 

 

C

 

T

 

 = 10 (1

 

�

 

e

 

�

 

.1

 

t

 

)
For 10 min 

 

≤

 

 

 

t

 

 then 

 

C

 

T 

 

= 5

 

�

 

10 (1

 

�

 

e

 

�

 

.1

 

t

 

)

 

(a)

 

What model do you propose and what are your model parameters, 

 

α

 

 and 

 

β

 

? 

 

(b)

 

What conversion can be expected in the real reactor?

 

(c)

 

How would your model change and conversion change if your outlet
tracer concentration was

For 

 

t

 

 

 

≤

 

 10 min, then 

 

C

 

T

 

 = 0 
For 

 

t

 

 

 

≥

 

 10 min, then 

 

C

 

T 

 

= 5

 

�

 

10 (1

 

�

 

e

 

–0.2(

 

t

 

�

 

10)

 

)

 

v

 

0

 

 = 1 dm

 

3

 

/min, 

 

k

 

 = 0.1 dm

 

3

 

/mol 

 

⋅

 

 min, 

 

C

 

A0

 

 = 1.25 mol/dm

 

3

 

P14-16

 

B

 

Suggest combinations of ideal reactors to model real reactors given in Prob-
lem 13-2

 

A

 

(b) for either 

 

E(θ),E(t), F(θ), F(t), or (1 – F(θ)).
P14-17B Below are two COMSOL simulations for a laminar flow reactor with heat

effects: Run 1 and Run 2. The figures below show the cross-section plot of
concentration for species A at the middle of the reactor.  Run 2 shows a min-
imum on the cross-section plot. This minimum could be the result of (circle
all that apply and explain your reasoning for each suggestion (a) through (e))
(a) the thermal conductivity of reaction mixture decreases
(b) overall heat transfer coefficient increases
(c) overall heat transfer coefficient decreases
(d) the coolant flow rate increases
(e) the coolant flow rate decreases
Hint: Explore “Nonisothermal Reactor II” on the COMSOL CD-ROM.

Figure P14-17B COMSOL screen shots
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P14-18B Load the laminar flow with dispersion example on the COMSOL CD-ROM.
Keep Da and L/R constant and vary the reaction order n, (0.5 < n < 5) for dif-
ferent Peclet numbers. Are there any combinations of n and Pe where disper-
sion is more important or less important on the exit concentration? What
generalizations can you make? Hint: for n < 1 use rA = –k ⋅ (Abs(Cn

A))
P14-19C Revisit the COMSOL Example 14-3 for laminar flow with dispersion.

(a) Plot the radial concentration profiles for z/L = 0.5 and 1.0 for a second-order
reaction with CA0 = 0.5 mol/dm3 and kCA0 = 0.7 min–1 using both the
closed-vessel and the laminar flow open-vessel boundary conditions at
the inlet. Is the average outlet conversion for the open-vessel boundary
condition lower than that which uses the closed-vessel boundary condition?
In what situation, if any, will the two boundary conditions result in sig-
nificantly different outlet concentrations? Vary Pe and Da and describe
what you find, i.e., CA0 = 0.5 mol/dm3.

(b) Repeat (a) for both a third order with and a

half-order reaction with . Compare the
radial conversion profiles for a first-, a second-, a third-, and a half-order
reaction at different locations down the reactor.

Note in COMSOL:
Open-vessel Boundary (Laminar Flow): –Ni·n = 2*U0*(1-(r/Ra).^2)*CA0
Closed-vessel Boundary: –Ni·n = U0*CA0
Concentration Boundary Condition CA = CA0
Symmetry/Insulation Condition n·N = 0

P14-20B The F curves for two tubular reactors are shown here, for a closed–closed system.

(a) Which curve has the higher Peclet number? Explain.
(b) Which curve has the higher dispersion coefficient?  Explain.
(c) If this F curve is for the tanks-in-series model applied to two different

reactors, which curve has the largest number of T-I-S (1) or (2)?
U of M, ChE528 Fall 2000 Exam II

P14-21B Consider the following system used to model a real reactor:

COMSOL Problem

kCA0
2 0.7 min 1�=

k 0.495 (mol/dm3)
1 2�

 min 1�
�

1

F  0.5

0
1.0 θ

1

2

Figure P14-20B F Curves

Figure P14-21B Model system
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Describe how you would evaluate the parameters α and β.
(a) Draw the F and E curves for this system of ideal reactors used to model

a real reactor using β = 0.2 and α = 0.4. Identify the numerical values of
the points on the F curve (e.g., t1) as they relate to τ.

(b) If the reaction A → B is second order with kCA0 = 0.5 min–1, what is the
conversion assuming the space time for the real reactor is 2 min?

U of M, ChE528 Fall 2000 Final Exam
P14-26B There is a 2 m3 reactor in storage that is to be used to carry out the liq-

uid-phase second-order reaction

A + B C

A and B are to be fed in equal molar amounts at a volumetric rate of
1 m3/min. The entering concentration of A is 2 molar, and the specific reac-
tion rate is 1.5 m3/kmol • min. A tracer experiment was carried out and
reported in terms of F as a function of time in minutes.

Suggest a two-parameter model consistent with the data; evaluate the model
parameters and the expected conversion.

U of M, ChE528 Fall 2001 Final Exam
P14-23B The following E curve was obtained from a tracer test:

(a) What is the mean residence time?
(b) What is the Peclet number for a closed-closed system?
(c) How many tanks in series are necessary to model this non-ideal reactor?

U of M, Doctoral Qualifying Exam (DQE), May 2001

   ⎯⎯→  

Figure P14-22B F curve for a nonideal reactor

Figure P14-23 E curve for a nonideal reactor
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P14-24

 

B

 

The A first-order reaction is to be carried out in the reactor with 

 

k

 

 = 0.1 min

 

–1

 

.

 
P14-25

 

B

 
Fill in the following table with the conversion predicted by each type of
model/reactor.

 

P14-26

 

B

 

The following outlet concentration trajectory was obtained from a step input
to a nonideal reactor. The entering concentration was 10 millimolar of tracer.

Suggest a model using a collection of ideal reactors to model the nonideal
reactor.

U of M, Doctoral Qualifying Exam (DQE), May 2001

 

•

 

Additional Homework Problems

CDP14-A

 

C

 

A real reactor is modeled as

 

 a combination of ideal PFRs and
CSTRs. 

 

[2nd Ed. P14-5]

 

CDP14-B

 

B

 

A real batch reactor is modeled as a combination of two ideal reactors.
[2nd Ed. P14-13]

 

CDP14-C

 

C

 

Develop a model for a real reactor for RTD obtained from a step
input. [2nd Ed. P14-10]

 

CDP14-D

 

B

 

Calculate 

 

D

 

a

 

 and 

 

X

 

 from sloppy tracer data. [2nd Ed. P14-6

 

A

 

]

 

CDP14-E

 

B

 

Use RTD data from Oak Ridge National Laboratory to calculate the
conversion from the tanks-in-series and the dispersion models. [2nd
Ed. P14-7

 

B

 

]

 

CDP14-F

 

B

 

RTD data from a slurry reactor. [3rd Ed. P14-8]

 

Ideal PFR Ideal CSTR

Ideal
laminar 

flow reactor Segregation
Maximum 
mixedness Dispersion

Tanks in 
series

 2010
t (min)

E(t)
(min–1)

Figure P14-26B C curve for a nonideal reactor
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CDP14-G

 

C

 

RTD data to calculate conversion for a second-order reaction for all
models. [3rd Ed. P14-9]

 

CDP14-H

 

B

 

RTD data from barge spill on Mississippi River. [3rd Ed. P14-10]

 

CDP14-I

 

B

 

RTD data to calculate conversion using all models. [3rd Ed. P14-11]

 

CDP14-J

 

B

 

Apply two-parameter model to multiple reactions. [3rd Ed. P14-15]

 

CDP14-New

 

New problems will be inserted from time to time on the web.

 

S U P P L E M E N T A R Y  R E A D I N G

 
1. Excellent discussions of maximum mixedness can be found in 

D

 

OUGLAS

 

, J. M., “The effect of mixing on reactor design,” 

 

AIChE Symp. Ser.
48

 

, Vol. 60, p. 1 (1964).
Z

 

WIETERING

 

, T

 

H

 

. N., 

 

Chem. Eng. Sci.

 

, 

 

11

 

, 1 (1959).

2. Modeling real reactors with a combination of ideal reactors is discussed together
with axial dispersion in

LEVENSPIEL, O., Chemical Reaction Engineering, 3rd ed. New York: Wiley,
1999.

WEN, C. Y., and L. T. FAN, Models for Flow Systems and Chemical Reactors.
New York: Marcel Dekker, 1975.

3. Mixing and its effects on chemical reactor design have been receiving increasingly
sophisticated treatment. See, for example:

BISCHOFF, K. B., “Mixing and contacting in chemical reactors,” Ind. Eng.
Chem., 58(11), 18 (1966).

NAUMAN, E. B., “Residence time distributions and micromixing,” Chem. Eng.
Commun., 8, 53 (1981).

NAUMAN, E. B., and B. A. BUFFHAM, Mixing in Continuous Flow Systems. New
York: Wiley, 1983.

PATTERSON, G. K., “Applications of turbulence fundamentals to reactor model-
ing and scaleup,” Chem. Eng. Commun., 8, 25 (1981).

4. See also

DUDUKOVIC, M., and R. FELDER, in CHEMI Modules on Chemical Reaction
Engineering, Vol. 4, ed. B. Crynes and H. S. Fogler. New York: AIChE,
1985.

5. Dispersion. A discussion of the boundary conditions for closed-closed, open-open,
closed-open, and open-closed vessels can be found in

ARIS, R., Chem. Eng. Sci., 9, 266 (1959).
LEVENSPIEL, O., and K. B. BISCHOFF, Adv. in Chem. Eng., 4, 95 (1963).
NAUMAN, E. B., Chem. Eng. Commun., 8, 53 (1981).
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This is not the end.
It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.

Winston Churchill
November 10, 1942
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