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ABSTRACT. Origami patterns have been applied in spatial structures to make
stiff shell structures as well as flexible transformable systems. Folding a pla-
nar sheet into a 3D configuration changes the stiffness and the behavior of
the sheet. In this paper we discuss a scalable analytical model for simulat-
ing origami structures, and we use eigenvalue band-gaps to optimize both the
flexibility and stiffness of the system. We focus our study on rigid, flat fold-
able tubes and investigate the influence that different parameters have on the
stiffness characteristics.

1. Introduction

Rigid foldable origami consists of stiff panel elements connected by flexible fold
or hinge elements. The premise of these origami patterns is that they can fold
and unfold without deforming the panel elements, which makes these systems es-
pecially useful for large-scale structural applications where thickened panels can be
connected with more flexible hinge elements [14, 15]. In reality, rigid origami struc-
tures can experience deformations that do not correspond to rigid folding and thus
the stiffness behavior of such systems is of great interest [11, 17]. Amongst various
origami patterns, the Miura-ori folding pattern has gained substantial interest in
the past years because it allows flat and rigid folding of a sheet [7, 8, 11, 17, 3, 12],
and recently Miura like patterns have also been used to create tubular structures
that are also flat and rigid foldable [13, 16, 9].

Furthermore, optimization for folding systems has also been a topic of interest in
recent years. For example, Fuchi and Diaz [2] have shown an optimization algo-
rithm that uses a ground structure approach to find a folding pattern with desired
geometric properties and a minimum number of crease lines. Other research has
optimized bistable compliant mechanisms to design retractable structures that re-
quire minimal force for deployment [10]. Optimization for the stiffness of origami
structures, however, has not yet been explored in detail.

In this paper we discuss ideas for optimizing the stiffness of rigid foldable struc-
tures. Stiffness modeling is especially important in optimization problems [4]. In
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F1cURE 1. Construction of a rigid and flat foldable origami tube:
(a) definition of a single Miura cell, (b) folding definition for the
Miura cell, (¢) dihedral angle ¢ vs. tube length as a percent(%) of
the maximum extension length for tubes with 8 = 55°, § = 70°,
and 6§ = 85°. The tube with § = 55° is shown folded at ¢ =
2°,35°,90°, and 170°

this paper we improve upon an established model [11], and create a scalable model
that takes into account the elastic modulus and thickness properties of the flexible
material. We explore methods for modeling the bending of prescribed origami folds,
bending of the more stiff origami panels, and shear and tensile stretching of these
panels. We study the global stiffness of the Miura inspired tube structures [13] by
investigating the eigenvalues and corresponding eigen-modes of the stiffness matrix.
The first six eigen-modes correspond to rigid body motion in 3 dimensional space,
the next mode corresponds to the rigid folding motion, and subsequent modes rep-
resent structural deformation. We use constraints on the pattern to ensure that it
remains flat and rigid foldable, and we then modify the geometry to show optimal
cases for structural stiffness and flexibility. By varying geometric parameters we
can minimize or maximize the seventh and/or subsequent eigenvalues of the struc-
ture. Minimizing an eigenvalue makes the structure more flexible, and easier to fold,
whereas maximizing an eigenvalue makes the structure stiffer. Similarly, eigenvalue
band-gap maximization can be used to simultaneously control two eigen-modes.
This procedure can be used to minimize the rigid folding eigen-mode, making the
structure easier to fold and deploy, while at the same time it would maximize the
bending modes causing the structure to be stiffer for external loadings.

The paper is organized as follows: Section 2 discusses the geometric properties of
the rigid flat foldable origami tubes studied in this paper; Section 3 presents nu-
merical methods for simplified scalable modeling of origami systems; the general
stiffness properties of the tubes is discussed in Section 4; Section 5 provides optimal
cases for the origami tube structures; and Section 6 presents concluding remarks.
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2. Rigid and flat foldable origami tubes

In this work we restrict our study to a simple subset of the origami tubes that
is available in the literature. Fig. 1 shows the definition of a Miura cell in our
study. The acute vertex angle 6 along with the dimensions a and b are sufficient
to define the Miura cell, and the dihedral angle ¢ can be used to define the folded
configuration of the cell. The Miura cell is then repeated, and reflected to create a
tube. For example, Fig. 1 (c) shows a tube that is 10 panels (5 cells) long and is
folded in different configurations. The tube is flat foldable in both directions, and
the total extended length of the tube Lg,: can be calculated as:

tan () sin(¢/2)

sin(#)/1 + tan(0)2 sin(¢/2)2

where N is the number of panels repeating in the direction of a. The maximum
(full) length (Lpyy) that the tube can reach (when ¢ = 180°) stays constant if the
parameters a and N are fixed, and the total area of the panels will also remain
constant if the parameters a and b are fixed. Fig. 1 (c¢) shows how different
structures (6 = 85°;60 = 70°;andd = 55°) expand at different rates when related to
the dihedral angle. Thus, it is also useful to consider the percentage of the the full
extended length when comparing the configuration of different structures, as this
quantity gives a physical definition of the deployment of the structure.

(21) LEXT = Na

3. Modeling of origami structures

When performing structural optimization, it is especially important that the
mechanics of the analytical models are properly defined. If not, it is common for
the optimization procedure to find local minima that are artifacts of the numer-
ical model. In this section we describe the numerical modeling of thin sheets in
origami systems. A previously established model [11] is used as a basis, and sev-
eral improvements are discussed. We incorporate scaling effects for the structure
and make the panel stiffness dependent on the thickness (t), the elastic modulus
(E), and Poisson’s ration (v) of the material. The formulation for fold modeling
is also updated, and a ratio is used to relate the bending stiffness of panels to the
bending stiffness of a fold. The model provides an improved basis for origami stiff-
ness simulation, while keeping the formulation simple and modeling the origami
components (panels and folds) as individual elements. The simplicity of this model
makes it a good option for origami optimization, but we also acknowledge that it
is not an ideal substitution to a detailed finite element (FE) model composed of
nonlinear shell elements. The stiffness matrix (K) for the origami structure incor-
porates stiffness parameters for 1) panels stretching and shearing (Kg); 2) panels
bending (Kg); and 3) bending of prescribed fold lines (Kr). The global stiffness
matrix is constructed as follows:

cl"TkKs o o][cC

(3.1) K=1|Jz| |0 Kz 0||Js

where the compatibility matrix (C) and Jacobian matrices (Jp and Jg) relate the
stiffness of elements to the nodal displacements as discussed in detail in Sections 3.1
to 3.1. Each node has three degrees of freedom (x, y and z displacement), and the
stiffness matrix is of size (Ngof X Naos), with Ngo,¢ representing the total number
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FIGURE 2. Model schematics for:(a) bars simulating panel stretch-
ing and shear, (b) rotational hinge for panel bending, (c) rotational
hinge simulating bending along a prescribed fold line

of degrees of freedom in the system. The mass for each panel is calculated from the
panel volume and the material density p. A mass matrix M for the entire structure
is constructed by distributing 1/4 of the panel mass to each of the connecting nodes.

3.1. Panel stretching and shearing (Bar modeling). The stiffness of pan-
els for in-plane, axial and shear loads is simulated using the indeterminate bar frame
shown in Fig. 2 (a). A general formulation for bar elements is used with: an equi-
librium matrix (A) relating internal bar forces (t) to nodal forces (f) as At =f; a
compatibility matrix(C) relating bar nodal displacements (d) to bar extensions (e)
as Cd = e; and finally a diagonal matrix (Kg) relating the bar extensions to the
local forces as Kge = t. As further described in [11], using the static-kinematic
duality that C = AT, the linear system for stretching and shear of the panels (i.e.
the bars) is represented as the first row of Equation 3.1. The crossed bar frame
(Fig. 2 (a)) has six bars connected only at the four corner nodes of the origami
panel. This crossed bar geometry was chosen since individual bar properties can be
defined, such that the entire frame behaves as an isotropic panel. The bar stiffness
parameters (i.e. components of Kg) are defined for each bar as:

EA
(3.2) Kg=—"12
Lp

where Lpg,, is the bar length, and the bar area, Ag, is defined differently for the
horizontal (X Bars), vertical (Y Bars), and diagonal bars (D Bars). Appendix A
contains a detailed discussion on how the bar areas are defined to achieve isotropic
material behavior for the entire panel. The model exhibits realistic tensile and shear
stiffness behavior when a Poisson’s ratio of v = 1/4 is used in the formulation.

3.2. Panel bending modeling. The stiffness of the panels in bending is
simulated as an angular constrain between two adjacent facets of the panel. Fig. 2
(b) shows a model schematic of a panel bending along the diagonal 1-3. For small
deformations the choice of the diagonal does not affect the kinematics, however it
affects the stiffness formulation [12]. Similar to previous research we formulate our
model assuming that bending occurs along the shorter diagonal, since the bending
energy will be lower along the shorter path. An angular constraint F is formulated
based on the dihedral bending angle o. As shown in [11], the angle can be calculated
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by using cross and inner products of the vectors a, b, and ¢ that are based on the
nodal coordinates of the panel p. The constraint can be defined as:

(3.3) F = sin(a(p))

and a corresponding Jacobian for the panel bending Jp is calculated as:
1 oF

3.4 do= —— —dp; = Jpd

(3.4) @ cos(w) Op; P b

where d are the displacements of the panel nodes. The second row of Equation
3.1 incorporates the panel bending by using the Jacobian matrix with the diagonal
matrix Kp to incorporate the stiffness corresponding to each panel.

Assuming the in-plane stiffness of the paper is high enough to prevent local buckling,
then the panel is expected to bend with curvature only in one direction, as discussed
in [1]. This phenomena is especially similar to the bending of thin sheets with
restrained edges that has been studied in some detail over the past years [6, 5, 18].
The bending energy of thin sheets with restrained edges is somewhat higher, since
tensile forces develop over the sheet’s surface, and flexural deformations become
restricted to a small length, that is focused near the bending ridge (i.e. the diagonal
1-3 in Fig. 2 (b)). Due to this phenomena, the elastic energy of the panel bending

scales approximately as k(Lso/ t)l/ 3 where k is the bending modulus of the sheet,
Et3

defined as k = 5(1=02) [6]. We choose to calculate the individual panel stiffness
as:
Et*  (L\'*
. K = R -
(3:5) B C312(1—y2) ( t >

since this incorporates the effect of the Lo/t ratio in restricting the bending of a
thin sheet. The factor C'p is set to 0.794 based on approximations from numerical
results in [5]. This methodology has not been validated for origami systems so
the authors believe that future experimental studies can better verify the scaling
properties of thin panels in origami and can substantiate the constant Cz. The
definition in Equation 3.5, tends to be stiffer than if we were to assume constant
curvature bending of the sheet.

3.3. Fold bending modeling. Modeling of the fold component of the origami
structure is in many ways similar to the model for bending of panels. Realistic
origami behavior does not allow for significant out of plane deformations along fold
lines as discussed by [1], and thus it is sufficient to use a simplified approach to
model the origami fold as a rotational spring along a line. Fig. 2 (c) shows the
model for a fold spanning between nodes 2 and 3 that connects two panels (1-2-3-4
and 2-5-6-3). The length of the fold is Lp and the stiffness is expected to scale
linearly with this length since curvature and bending energy are expected to exist
only on the infinitesimally small width of the fold. The same constraint formulation
presented in 3.2 is used to formulate two independent fold elements from the two
vector sets: (1) a, b, and ¢ and (2) -a, d, and e. This approach distributes the
stiffness of the fold to all relevant nodes on the two adjacent panel elements.

The actual behavior and stiffness of origami folds is not well understood yet. For
now we assume only elastic deformations occur, and we assume that the folds are
less stiff then the bending of panels. A factor Rpp is introduced to relate the
stiffness between the bending of a fold with length Lr = 1 and the bending of a
panel with a diagonal of Ly = 1. For our analyses we use Rpp = 1/10, however
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FIGURE 3. Normalized mode shapes #7 to #10 of tube structure
with 6 = 55° and a = b = 1 when it is deployed to ¢ = 90°. Note:
the undeformed configurations of the tube are shown as dotted
lines.

the value of this quantity should be further investigated. For the fold stiffness, we
obtain an equation similar to (3.5), that scales linearly with Lp:

Lp Et3 1\?
. K = _— R —
(36) r=Rrp=5-Cp 12(1 — 12) (t)

4. Stiffness properties of tube structures

Eigenvalue analyses are used to study the stiffness and flexibility of the origami
structures. The linear dynamics system is used to solve the underlying eigenvalue
problem formulated as:

(41) K’Ui = )\iM’Ui, 1= 1, ...,Ndof

where )\; is the i'" eigenvalue and v; is the corresponding eigen-mode of the struc-
ture. A base case of the analysis is shown in Fig. 3 for a tube where § = 55° and
N =10, and a = b = 1. The thickness of the material is ¢ = 0.01, the Young’s
modulus is E = 10%, the Poisson’s ratio is v = 1/4, the density is p = 1, and the
factor relating fold to panel stiffness is Rpp = 1/10. The first six eigen-modes
correspond to rigid body motion of the structure in 3 dimensional space so they
are omitted in our study. Fig. 3 shows the eigen modes corresponding to the 7t"
to 10" eigenvalues of the structure when deployed to a configuration with ¢ = 90°.
The rigid folding motion corresponds to the 7" mode of the structure where the
system can fold and unfold without deforming the panel elements, and thus defor-
mation occurs primarily in the more flexible fold elements. The 8t mode is a type
of “squeezing” mode, where one end of the structure is folded while the other end is
unfolded. This mode results in bending of the fold and the panel elements, however,
the panels do not stretch or shear, and thus the total energy is only slightly higher
than that of the 7*" eigen-mode. Subsequent modes contain stretching and shearing
of the panels which requires much higher energy than the bending deformations.
Fig. 4 (a) shows the behavior of the eigenvalues for the structure in Fig. 3
compared to the dihedral angle ¢. There is substantial mode switching for higher
modes and at the extreme ends of the spectrum. The mode switching is a result
of the changing geometry of the structure, for example, when the structure reaches
a nearly flattened state ¢ ~ 180°, bending of the structure globally (mode #10 at
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FIGURE 4. (a) Eigenvalue spectrum for the base tube structure
(0=55°a=b=1, N=10,t=0.01, E =105 v =1/4, p =1,
and Rpp = 1/10) through the deployment (¢ = 0° — 180°), (b)
eigenvalue spectrum for the structure now with Rpp = 1,/1000, (c)
eigenvalue spectrum for the structure now with ¢ = 0.001.

¢ = 90°) becomes easier than folding of the structure. Fig. 4 (b) shows the effect
of reducing the factor Rrp, when keeping all other parameters of the analysis the
same. The fold elements become, much more flexible, and the 7" and 8" eigen-
values drop. Since the 7*" mode depends only on the fold elements, its eigenvalue
drops more substantially and the gap A7 and Ag is effectively enlarged. In practice
this type of behavior can be achieved through making the panels out of thick rigid
material, while making the folds from thinner and more flexible material e.g. cloth.
In Fig. 4 (c¢) we show the behavior of the structure with the thickness reduced to
t = 0.001, but all parameter are kept the same as before. Reducing the thickness
of the material reduces the axial and shear stiffness linearly, but the bending stiff-
ness of the panels and folds is reduced at a much higher rate (tQ%). Due to this
both the 7*" and 8" eigenvalues drop substantially. Note that since the mass and
axial/shear stiffness both vary linearly with the thickness, modes 9 and higher are
not substantially influenced by this change.

5. Optimization for tube structures

For practical applications, architects and engineers may want to improve the
stiffness characteristics of origami structures by minimizing or maximizing certain
eigenvalues of the structure. Minimizing an eigenvalue would make the structure
more flexible in the corresponding mode and maximizing it would make the struc-
ture stiffer. For example, it would be beneficial to minimize the 7t eigenvalue thus
making the structure easier to deploy, but it would also be beneficial to increase the
8*" and subsequent modes to make the structure stiffer for other loading scenarios.
This can be achieved by performing optimization to maximize the ratio Ag/A7 or
the gap (As — A7). The ratio Ag/\7 is a good theoretical benchmark where the 8%
eigenvalue is the highest in relation to the 7', while the gap (\s — A7) is a more
practical solution where there is the largest physical space between the two eigen-
values. In this study we choose to focus on the gap (Ag — A7), but using the ratio
could also be used to provide interesting results. To gain a better understanding of
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FIGURE 5. Structure definitions and configurations that maximize
the gap (Ag — A7) for tube with @ = b =1 and N = 10 (a) Dihedral
angle (¢) vs. Acute vertex angle (), (b) Percent (%) of full ex-
tended length vs. Acute vertex angle (6). Note: logarithmic scale
used

the tube stiffness and the influence of the geometric parameters, we perform sev-
eral optimization cases by using only one variable to modify the structure geometry
and one variable to define the configuration. For all of our optimization examples
a generalized objective function and constraints are:

(9,1&21,%,)1(\1,(1))5 = (As — A7)
(5.1) s.t. Lpau(a,N) =aN = L,

V(a,b,t,N) = 4abtN =V,

where ( is the band-gap, Lpy; is the full extension length, and V is the volume
of a given tube. These quantities are constrained to be the same as those of the
analysis in Section 4, so V5 = 0.40 and Ls = 10.

5.1. Optimization with respect to the acute vertex angle 6. The first
optimization case uses the acute vertex angle 6 as the design variable to define the
structure, and since this has no effect on the length or volume, all other quantities
defining the structure are kept the same. Fig. 5 (a) shows the gap (As — A7) with
respect to the dihedral angle ¢ and 6. In the early and late phases of the deployment
(¢ < 10° and 160° < ¢) there are locations of local minima and maxima, and these
can be attributed to the mode switching that occurs in those regions. In the medium
range of deployment, there is a smoother variation in magnitude of the gap (Ag— A7)
and lines show the configuration at which the maximum gap can be obtained for
each structure (#). Structures with high 6 perform better (have a higher gap) when
¢ is lower, and the optimal dihedral angle grows as 6 decreases. However, Fig. 5
(a) is somewhat misleading since for each structure, the angle ¢ corresponds to a
different configuration in the expansion sequence as shown in Fig. 1 (c).
Alternatively, Fig. 5 (b) shows the gap instead defining the configuration as a
percentage (%) of the full extended length (Lp,;;). When using this measure, it is
apparent that the structures (regardless of #) reach their optimal point at about 95%



TOWARD OPTIMIZATION OF STIFFNESS AND FLEXIBILITY OF RIGID, FLAT-FOLDABLE ORIGAMI STRUCTURES

—O— Max A A, gap for structure (b) | > | —O— Max A—A, gap for structure (V)

227 = 14 347
o 1.6 g
g 138 &13 21.0
Z14 103 5 1y
o 5 12.4
a AR 8.62
a12 )
5 4.72 E 10 6.49
E : 3.19 s
£
Z =
208 = )

7 1.62
20 40 60 80 20 40 60 80

a. Configuration: % of full extended length b. Configuration: % of full extended length

FIGURE 6. Structure definitions and configurations that maximize
the gap (As — A7) for structure where § = 55° (a) and N = 10:
Percent (%) of full extended length vs.dimension b, (b) and a =
10/N: Percent (%) of full extended length vs. Number of panels

(N)

expansion. The gap for structures with 8 > 80° is especially low in early phases
of the deployment, since in those phases, these tubes are susceptible to bending
modes and mode switching. Furthermore, tubes with lower 6 have a higher gap
for all configurations with respect to the expansion. This is because panel bending
in mode #8 becomes more pronounced for lower 6, and thus Ag, and gap become
higher. In other words, mode #8 occurs with little panel bending when 6 is high,
and thus the energy and g are lower.

5.2. Optimization with respect to panel dimension b. For Fig. 6 (a) the
base structure (6 = 55°)is used again and dimension b is used as the design variable
to study its effect on the gap (As—A7). The number of panels and variable a are kept
the same, and thus the thickness of the panels is defined as ¢t = 0.01/b to maintain
a constant volume for the structure. The results for this analysis, when using the
expansion length to define the configuration are shown in Fig. 6 (a). Again, all
structures reach their optimal point when in a configuration that is close to fully
extended (80%-97%). Furthermore, structures where the dimension b is lower and
the thickness ¢ is higher have a higher gap (As — A7). This phenomena can be
attributed to two factors: 1) the panel and fold stiffness with 23 as ¢ increases
and Ag increases more since it engages both fold and panel elements, and 2) smaller
panels are stiffer than larger panels, note that the rotational hinge stiffness (defined
through Jp) varies with respect to L3.

5.3. Optimization with respect to the number of panels N. A final
optimization case uses the number of panels (N) as the design variable, a is re-
defined as a = 10/N to satisfy the constraints V; and L, and all other tube
parameters are kept the same. Fig. 6 (b) shows the results for this analysis. The
structures with more panels tend to have only a slightly higher band gap than
structures with the same parameters, but less panels. With more panels the length
Lo is reduced and the energy of each panel in bending decreases as Lé/ 3, however
since more panels are added the total energy in for mode #8 and Ag increase slightly.
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6. Conclusions

This paper first describes a computational method for modeling the stiffness
characteristics of origami structures. We introduce simplified scalable measures
for the stretching, shear and bending of thin elastic sheets, as well as the stiffness
of more flexible prescribed fold lines. The computational method is used to per-
form elastic eigenvalue analyses to study the behavior of rigid, flat, foldable tube
structures that are derived from the Miura-ori pattern. The energies of different
eigen-modes are studied, and optimization is performed to maximize the band-gap
between the 7" and 8" modes, as this makes the structure more flexible for de-
ployment, yet stiffer for other loading cases. To increase the band gap, a trivial
solution would be to make the folds out of much more flexible material than the
panels, thus making the rigid folding mode very soft. Alternatively, designers may
choose to: 1) use structures with lower acute vertex angle 6, 2) use a smaller tube
height b and instead make the material proportionally thicker, or 3) use more panels
over the length of the structure. The analysis techniques and optimization methods
described in this paper are intended to enable researchers to optimize stiffness in
origami systems.

Appendix A. Bar element definitions

The indeterminate bar frame shown in Fig. 2 (a) can be defined such that it will
exactly exhibit Poisson effects for tensile loading in both directions (i.e. isotropic
behavior). This can be achieved when the bar areas of Equation 3.2 are defined as:

H? —vW?
Al A =
( ) X _Bars tQH(].*l/Q)
W2 —vH?
(A2 Avpers =l =)
V(H? + W)/
A. Ap pars =t 2
(A.3) b-B SEW I =12

for the horizontal (X Bars), vertical (Y Bars), and diagonal bars (D Bars) respec-
tively. The variable H is the height, and W the width of the panel. Fig. 7 (a)
shows the frame model defined with W = H =1, ¢ = 0.01, E = 1000, » = 1/3 and
subjected to a tensile patch test. Fig. 7 (b) shows the same frame model subjected
to a shear patch test. In shear loading, the model behavior is highly dependent on
the chosen Poisson’s ratio. As can be observed from Equation A.3, when a low v
is used, the diagonal bars have a low area and this results in the frame having a
low shear stiffness. The converse is also true, and this relation is opposite to the
realistic shear behavior of isotropic materials. However, when v is set to 1/3 the
frame model behaves exactly the same in shear as a homogeneous, isotropic block
of material. The diagonal bars each carry a force of F//2 in the x direction, and a
lateral displacement occurs based on the bar stiffness definition (i.e. Equations 3.2
and A.3). When v = 1/3 the bar frame displacement exactly matches the lateral
displacement of a solid block with dimensions W x H X t loaded in pure shear,
analytically defined as:

FH
Ad A, = =2
(A4) GWi
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FIGURE 7. Bar model for simulating panel stretching and shear:
(a) tensile patch test of model (original configuration shown with
dashed line) (b) shear patch test of model

where F' is the total shear force, and G is the shear modulus that can be defined
as G = ﬁ for a homogeneous, isotropic, linear elastic material. With v = 1/3,
the frame is scale independent for shear loadings, and furthermore if the problem
in Fig. 7 (c) is re-meshed, then the frame model converges to the same solution
as any generic FE approach. However, since only a single six-bar frame is used to
model each panel, the shear stiffness of the panel is over-estimated by this model
(similarly to FE approaches). In reality, the shear patch test converges to higher
displacement than the exact solution from Equation A.4, since in addition to the
shear deformations, tensile deformations also occur over the width and height of
the patch. Using a lower Poisson’s ratio we can artificially reduce the shear stiffness
of the frame, so we choose to instead use v = 1/4, since at this ratio a single bar
frame exhibits approximately the same shear deformation the patch test performed
on a mesh of 2500 finite elements.
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