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Abstract. In this paper, we introduce and consider primary use cases of the

polynomial method in the context of incidence geometry, expanding on ideas

in Dvir’s survey paper [1]. By looking at problems that vary from directly
being modeled around incidences to those that have less obvious initial ties to

incidence theory, we observe the potential results that can be achieved by using

the polynomial method. We also consider the significance of these bounds in
historical and practical contexts.
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1. Introduction

The polynomial method is a technique that introduces polynomials into problems
with no immediately obvious connection to polynomials. The technique relies on a
few simple but key observations about polynomials and their zeros. The polynomial
method has been a hot topic in math research this last decade for providing simple
solutions to longstanding open problems. The problems examined in this paper
are from incidence geometry, the study of possible combinatorial configurations
between geometric objects such as lines and points.

An incidence describes an intersection between two geometric objects. For ex-
ample, a line can be incident to a plane, or a line can be incident to another line.
This paper primarily concerns incidences between different lines and incidences be-
tween points and lines. Figure 1 illustrates an example of both types of incidences,
with `1 and `2 illustrating an example of two incident lines. Although Figure 1 only
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Figure 1. The intersection of `1 and `2 is an incidence, as is the
intersection of p1 and `3.
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Figure 2. The intersection of `1, `2, and `3 at P is a joint.

shows an incidence involving two lines, multiple lines can be incident at the same
point.

The first problem we examine in this paper involves incidences between at least
three non-coplanar lines in R3. The point at which these lines are incident is called
a joint, as illustrated in Figure 2. A simple question one can ask about joints is
what is the maximal number of joints that can arise in N lines. This question is
deceptively simply stated, but was actually considered quite hard. In fact, there
were a long line of papers that proved incremental improvements to an upper bound
with very complicated proof methods [1]. The problem was finally fully answered
by Guth and Katz only very recently using the polynomial method. In this paper
we show how to introduce polynomials into this problem and how to obtain a tight
upper bound on the number of joints in N lines.

The second problem this paper discusses, at first glance, appears unrelated to
incidences. It involves distinct distances determined by a set of points. For example,
the set of points P = {p1, p2, p3, p4} in Figure 3 form a square. Then it is simple
to see that P contains 2 unique distances. One question posed by Erdős, which
is still an open problem, asks what is the minimum number of distinct distances
determined by a set of points in the real plane? An almost optimal lower bound
was obtained by Guth and Katz using the polynomial method[2].



THE POLYNOMIAL METHOD IN INCIDENCE GEOMETRY 3

x

y

p1(−1, 1) p2(1, 1)

p3(−1,−1) p4(1,−1)

Figure 3. The set P = {p1, p2, p3, p4} determines 2 unique distances.

The proof of Guth and Katz’s bound involves a clever way of reducing the prob-
lem into an incidence counting problem in R3. They showed that a specific upper
bound for the number of incidences between N lines in R3 implies the desired lower
bound for distinct distances in points in R2. This problem of upper bounding inci-
dences in lines is similar to the joints problem, with the addition that points where
only two lines intersect are also counted. Then some ideas in the two proofs will
be related. Again, the polynomial method is used to obtain the the upper bound,
specifically through a novel technique called “polynomial cell partitioning.” Poly-
nomial cell partitioning is used to partition R3 into “cells” using polynomials, and
the number of incidences in each cell can be bounded using old, familiar bounds
on incidences. In this paper, we show how polynomial cell partitioning is obtained,
how it is used to obtain the desired bound on the number of incidences, and how
this implies the desired bound on the Erdős distinct distance problem.

The organization of the paper is as follows. Section 2 develops the main com-
ponents of the polynomial method. Section 3 proves the tight upper bound for
the number of joints given by the polynomial method. Section 4 introduces the
Erdős distinct distance problem and shows how to reduce it to an incidence count-
ing problem. We introduce the incidence bound proposed by Guth and Katz and
how it implies the distinct distance bound. Finally, Section 5 completes the proof
of the bound given by Guth and Katz by showing how to bound the number of
incidences in R3 using polynomial cell partitioning. We also show how polynomial
cell partitioning gives an upper bound for incidences in R2 as a warm-up to the
proof of the bound in R3.

2. Preliminaries

The problems in this paper involve sets of points in the real plane. For sets
of points, a common way to introduce polynomials into the problem is finding a
polynomial that vanishes on those points. The core of the polynomial method is
bounding the attributes of the polynomial in a clever way that allows us to bound
the original problem. Such attributes include the degree of the polynomial and the
number of zeros.

In this section we develop these ideas which are in the background of the poly-
nomial method. We show that given a finite set of points, we can find a small



4 BRYAN CHEN, JULIA WU, EMILY XIE

degree polynomial vanishing on those points. We are only interested in non-zero
polynomials, where we say a polynomial is non-zero if it has at least one non-zero
coefficient.

Theorem 2.1. A non-zero univariate polynomial g(x) can have at most deg(g) real
zeros.

This bound is a well known fact, so no proof is given. It applies to univariate
polynomials, which is sufficient for most of the paper. A variant of this bound for
multivariate polynomials is introduced in Section 5.

If we can find a way to define a polynomial g such that all the points in a finite
set S are zeros of g, we can bound the size of S by the degree of g. We show we
can define such a polynomial g with a small degree given some finite set of points.
We present the theorem for finite sets of points in Rn, but we will only use it for
points in R2.

Theorem 2.2. Let S ⊂ Rn be a finite set. If |S| <
(
n+d
d

)
, then there exists a non

zero polynomial g ∈ R[x1, ..., xn] of degree ≤ d such that g(p) = 0 for all p ∈ S.

This theorem holds for any finite field F, but for our applications in this paper
we only see sets over the reals. The idea of the proof is that given a set of points
S ⊂ Rn where |S| <

(
n+d
d

)
, we consider the family of polynomials with n variables

g(x1, ..., xn) with degree d. If we plug in each point p ∈ S, we can write g(p) = 0
and obtain a system of |S| linear homogeneous equations in the coefficients of g.
We find that g has more coefficients than |P |, meaning our system of equations has
more variables than equations, which implies a non-zero solution for g.

Proof. Given a finite set S ⊂ Rn, we consider the vector space of the polynomials
over Rn that have n variables and fixed degree d such that |S| <

(
n+d
d

)
. These

polynomials have form g(x1, ..., xn). We can see g has
(
n+d
d

)
monomials using a

simple bars and stars argument. Restricting these polynomials to our set S gives a
linear map g 7→ (g(s1), g(s2), ..., g(s|S|)) ∈ R|S| whose domain has dimension

(
n+d
d

)
,

and whose range has dimension |P | <
(
n+d
d

)
. Then our linear map has a non trivial

null space, implying there is a nonzero polynomial g that vanishes on S. �

Corollary 2.3. There exists a constant C depending only on the dimension n such
that for any finite set S ⊂ Rn, there exists a degree d ≤ C|S|1/n polynomial that
vanishes on S.

Proof. Plugging in C|S|1/n into the expression
(
n+d′

d′

)
, we obtain(

n+ d′

d′

)
≥ c′ · dC|S|

1/n + ne!
dC|S|1/ne!n!

> c′ · (C|S|1/n)n

n!

= c′ · C
n|S|
n!

.

This quantity is at least |S| for C > (n!)1/n/c′, which depends only on n since c′

is just a small constant to round C|S|1/n. Then by Theorem 2.2, there exists a
polynomial of degree d ≤ C|S|1/n that vanishes on S. �
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Figure 4. This N ×N ×N grid of lines has N3 joints.

The result from this theorem satisfies our need to find a vanishing polynomial g
of small degree on any given set of points S ⊂ Rn. Since we can then bound the
number of zeros of g, we can bound the number of points |S|. This idea is the main
component of the polynomial method, but in general the polynomial method always
requires some additional algebraic claims that depend on the specific problem. This
will become more apparent after seeing how the polynomial method works in the
context of the joints problem in the next section.

3. The Joints Problem

The first problem we examine through the lens of the polynomial method is the
joints problem. The joints problem concerns the intersections of lines in R3.

Definition 3.1. Let L be a set of lines in R3. A joint w.r.t the arrangement L is
a point p ∈ R3 through which pass at least three, non coplanar, lines.

A basic question we can ask is what the maximal number of joints possible in an
arrangement of lines L is. This question was first posed in the 90’s in the context
of computer graphics algorithms [1] [3]. The initial paper posing this question
proved that the number of joints in a set of lines L is upper bounded by c|L|7/4
for some constant c. There were a long line of papers incrementally improving this
exponent using various complicated techniques until the question was ultimately
solved completely by Guth and Katz using the polynomial method in 2015.

Theorem 3.2 (Guth-Katz). Let L be a set of lines in R3 and J be the set of joints
defined by L. Then, |J | ≤ C · |L|3/2 for some constant C.

We can see that this bound is optimal by considering an N ×N ×N grid of lines,
as shown in Figure 4. In other words, let L be the union of the following three sets,
each containing N2 lines:

Lxy = {(i, j, t)|t ∈ R}, i, j ∈ [N ]

Lyz = {(t, i, j)|t ∈ R}, i, j ∈ [N ]

Lzx = {(i, t, j)|t ∈ R}, i, j ∈ [N ]
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Then |L| = 3N2, and each point in [N ]3 is a joint. Then we have that the number of
joints is c|L|3/2, for c = 1

3 . Thus, we cannot give a smaller upper bound than the one
given by Guth and Katz without making the bound invalid for some configurations.

The proof of the Guth Katz Theorem illustrates the power of the polynomial
method. As mentioned in the previous section, the polynomial method generally
requires additional algebraic claims dependent on the problem. For the proof of the
Guth Katz theorem, we must restrict polynomials to the given set of lines L. To
this end, we need to introduce some properties about the restrictions of polynomials
to lines.

Definition 3.3. Let g ∈ R[x1, . . . , xn] be a degree d polynomial and l be a line in
R
n. Parameterizing l as l = a+ tb, where a, b ∈ Rn, t ∈ R, the restriction of g to

l is h(t) = g(a+ tb).

This first property allows us to bound the degree of the restriction of a polynomial
to a line.

Lemma 3.4. Let g ∈ R[x1, . . . , xn] be a polynomial, l be a line in Rn, and h be
the restriction of g to l. Then, deg(h) ≤ deg(g).

Intuitively, deg(h) ≤ deg(g) since restricting the domain of a polynomial to a line
could not yield a more expressive polynomial.

This next property allows us to bound the number of points a line can intersect
a polynomial in.

Lemma 3.5. Let g ∈ R[x1, . . . , xn] be a polynomial, l be a line in Rn, and h be
the restriction of g to l. Then, l intersects g in at most deg(g) points.

Proof. From Lemma 3.4, deg(h) ≤ deg(g). Then, l contains deg(h) ≤ deg(g) roots
of h. Since a root of h is also a root of g, l contains ≤ deg(g) roots of g. So, l
intersects g in at most deg(g) points. �

The final property allows us to represent the coefficients of the restriction in
terms of gradients.

Lemma 3.6. Let g ∈ R[x1, . . . , xn] be a polynomial. Consider a line in R
n,

l = a+ tb where a, b ∈ Rn. As in Definition 3.3, h(t) = g(a+ tb) is the restriction
of g to l. Then, the coefficient of t in h(t) is 〈∇g(a), b〉.
Proof. To find the coefficient of t in h, we can take the derivative of h w.r.t. t and
evaluate this derivative at t = 0. That is, we want to find

∂

∂t
h(t)

∣∣∣
t=0

=
∂

∂t
g(a+ tb)

∣∣∣
t=0

.

In order to evaluate this, we must find the partial derivatives of g. We can use the
gradient of g to represent all the partial derivatives of g:

∇g =
[
∂g
∂x1

∂g
∂x2

. . . ∂g
∂xn

]
.

Then, using the chain rule, we get

∂

∂t
g(a+ tb) =

∂g

∂x1

∂x1
∂t

+ . . .+
∂g

∂xn

∂xn
∂t

=
∂g

∂x1
b1 + . . .+

∂g

∂xn
bn

= 〈∇g(a+ tb), b〉.
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Evaluating at t = 0, we obtain our desired result

〈∇g(a+ tb), b〉 = 〈∇g(a), b〉.

�

This lemma will allow us to determine what the gradient of g is from the restricted
polynomial, which will be used to show a contradiction in the proof of the Guth
and Katz bound.

Proof of Theorem 3.2. We use a proof by contradiction to show Guth and Katz’s
bound on the number of joints. We assume that the number of joints is larger
than the bound C · |L|3/2 given in the theorem, i.e. |J | > C · |L|3/2 and consider
the minimal degree nonzero polynomial g that vanishes on J . Then, we will show
that g must also vanish on all lines in L. Finally, we will find a polynomial that
contradicts either the minimality of g or the nonzero property of g, which implies
that the Guth-Katz bound holds.

First, notice that lines that contain fewer than |J|
2|L| joints contribute at most

|L| · |J|2|L| = |J|
2 joints altogether. So, we can ignore these lines, since this would

reduce |J | by at most a factor of 1
2 .

Consider a nonzero polynomial g(x, y, z) of minimal degree that vanishes on
J . In other words, g is the smallest degree polynomial with at least one nonzero
coefficient such that each joint in J is a root of g. Theorem 2.2 shows that a nonzero
polynomial g with deg(g) ≤ 3|J |1/3 that vanishes on J exists (this can be verified
by replacing S with J , n with 2, and d with 3|J |1/3 in the theorem).

Given this polynomial g, we now show that each line contains strictly more than

deg(g) joints. Since each line contains at least |J|
2|L| joints and deg(g) ≤ 3|J |1/3, it

suffices to show that |J|2|L| > 3|J |1/3.

Simplifying,

|J |
2|L|

> 3|J |1/3

⇐⇒ |J |2/3 > 6|L|

⇐⇒ |J | > 63/2|L|3/2

That is, |J|2|L| > 3|J |1/3 is equivalent to |J | > 63/2|L|3/2. By the initial assumption

|J | > C · |L|3/2, the latter is true by choosing C large enough. So, each line contains
strictly more than deg(g) joints.

Given this, we will show that g vanishes on all lines in L. To do this, we
will consider the restriction of g to a line and show that this resulting restricted
polynomial vanishes on the line, which implies that g vanishes on the line.

Consider a line l ∈ L and parameterize it as l = a+ tb, where a, b ∈ R3, t ∈ R.
Restrict g to the line l using the univariate polynomial f(t) = g(l) = g(a+ tb).

We now show that f vanishes on l by contradiction. Assume f does not vanish
on l. Then, by Lemma 3.5, l intersects g in at most deg(g) points, so l contains at
most deg(g) roots of g. However, l must contain strictly more than deg(g) roots
of g. So, we have a contradiction, and thus f must vanish on l. The the same
reasoning can be applied for each line l ∈ L to show that g vanishes on all lines in
L.
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Finally, we will consider a single joint and three of the non-coplanar lines that
pass through that joint. Then, we will use the fact that g vanishes on these three
lines to show the existence of a polynomial that contradicts some property of g that
we know to be true.

Consider a joint p ∈ J , and let l1, l2, l3 be three non-coplanar lines that pass
through p. Since l1, l2, l3 are non-coplanar, their respective tangent vectors u1, u2, u3 ∈
R

3 are linearly independent. As before, we can parameterize li as li = p+ tui and
restrict g to li using the polynomials hi(t) = g(li) = g(p + tui), where t ∈ R, for
i = 1, 2, 3. Since g vanishes on all three lines, hi(t) evaluates to 0 at all points on l.
That is, hi(t) evaluates to 0 at any point in its domain. This implies that hi(t) is
the zero polynomial, so all coefficients of hi are 0. In particular, the coefficient of t
is 0 in hi. Applying Lemma 3.6, the coefficient of t in hi(t) is 〈∇g(p), ui〉 = 0. Since
u1, u2, u3 are linearly independent, they form a basis of R3. Then, ∇g(p) = 0.

The same reasoning can be applied to all joints p ∈ J to show that∇g(p) vanishes
on J . In addition, deg(∇g) < deg(g). So, the three partial derivatives of g are all
polynomials of smaller degree than g that vanish on J .

There are now two cases: ∇g(p) contains a nonzero polynomial (i.e. at least one
of the partial derivatives of g is a nonzero polynomial), and ∇g(p) consists only
of zero polynomials (i.e. all partial derivatives of g are the zero polynomial). We
must find a polynomial that contradicts some known property of g in both cases.

Case 1: If ∇g(p) contains a nonzero polynomial, then g is not a minimal degree
polynomial that vanishes on J . So, we have a contradiction for the minimality of
g.

Case 2: If ∇g(p) contains only zero polynomials, then g has no nonzero partial
derivatives. Then, g must be a constant polynomial. Since g is constant and
evaluates to 0 at some point, then g must be the zero polynomial. Then we also
have a contradiction for the nonzero property of g.

So, when J > C · |L|3/2, we can always find a contradiction for some property
of the nonzero polynomial g of minimal degree that vanishes on J . Thus, we must
have |J | ≤ C · |L|3/2. �

This bound given by Guth and Katz is exciting because it solves a hard problem,
which at first glance appears easy due to its simple problem statement. In the next
section we examine another hard problem which is simple to state.

4. Erdős Distinct Distance Problem

The next problem we consider is the Erdős distinct distance problem, which
seeks to lower bound the number of distinct distances defined by a set of points
S in R2. Erdős posed several distance problems, of which the most famous is the
distinct distance problem. These problems helped guide and shape the field of inci-
dence geometry. We include this specific problem in our analysis of the polynomial
method because its discussion involves several different types of uses of polynomials
and illustrates a variety of techniques in the polynomial method. Furthermore, the
Erdős distinct distance problem is still open, so it reveals the need for more refine-
ments and ongoing research in the field of incidence geometry and the polynomial
method.

Erdős initially posed the distinct distince problem in a 1946 paper, when he
observed that a square grid of n points determines cn/

√
log(n) distinct distances,
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for some constant c. He conjectured that this bound was sharp, but proving this
bound still remains an open problem.

In the most recent breakthrough, Guth and Katz showed that the number of
distinct distances can be lower bounded by cn/ log(n), almost obtaining the opti-
mal bound conjectured by Erdős. This result was remarkable not only because it
obtained the sharp exponent, but also because Guth and Katz used the polynomial
method to prove the bound.

The lower bound shown by Guth and Katz is tight up to a factor of
√

log(n).

Theorem 4.1 (Guth-Katz). Let S be some set of points in R
2 and dist(S) =

{||p− q||
∣∣p, q ∈ S}. Then

|dist(S)| ≥ c|S|
log(|S|)

.

The way Guth and Katz proved this result involved transforming the distance
counting problem to an incidence counting problem between lines in R3, using a
reduction via the framework established by Elekes and Sharir[6].

After reducing the problem, Guth and Katz showed the corresponding desired
bound on the number of incidences between N lines in R3 using the polynomial
method. In this section we show this reduction and introduce the desired incidence
bound. The method of reducing the problem involves studying the problem in the
terms of rigid motions of the plane.

First, note that the problem of counting distinct distances between pairs of
points in S is equivalent to counting the number of repeated distances, since we can
simply take the complement with respect to the total number of pairs of distances
to obtain the number of unique distances. We are now interested in quadruples of
points a, b, c, d ∈ S where ||a− b|| = ||c− d||.

Consider the problem in a new framework of rigid motions, which are transfor-
mations in R2 involving only translations and rotations. Note that for any four
points a, b, c, d ∈ S, we have that ||a − b|| = ||c − d|| if and only if the segment ab
can be transformed via some rigid motion to be the same as the segment cd, i.e.
∃T : R2 → R

2 such that T (a) = c and T (b) = d, as shown in Figure 5.
Note that any rigid motion T can be expressed by three parameters: two for the

translation and one for the rotation. Thus, if R is the set of possible rigid motions
in R2, then it is a three-dimensional space in terms of the parameters used to define
rigid motions. For each a, b ∈ S, define La,b = {T ∈ R|T (a) = b} as the set of all
rigid motions that map a to b. Each La,b will be some one-dimensional shape in
R since specifying a starting and ending point for each rigid motion removes two
degrees of freedom. This can be seen by observing that once a is translated to b, a
can still be rotated freely around b. Also denote L as the set of all La,b for a, b ∈ S.

Consider the intersection of some two La,c and Lb,d at a point T ∈ R. This
point represents a rigid motion, and since it is the intersection we have T ∈ La,c
and T ∈ Lb,d. This means that T (a) = c and T (b) = d, which implies ||a − b|| =

||c−d|| since we have a rigid transformation that now maps ab to cd. In the reverse
direction, any repeated distance implies the existence of an intersection between
two lines La,c and Lb,d at a common rigid motion. Thus, an incidence between two
lines in L represents a bijection with a repeated distance, as shown in Figure 6.

Our goal is to find some parameterization of the rigid motions such that the La,b
are actually lines in our 3D space R. This allows us to count the number of distinct
distances in our original set S by bounding the number of incidences between the
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Figure 5. A rigid motion doesn’t change the length of the segment

Figure 6. The same rigid motion T has T (a) = c and T (b) = d

lines L. This is the fundamental basis of our reduction from a distance counting
problem in R2 to an incidence problem in R3.

Given this goal, we first proceed with analysis of our reduction to gain intuition
on what we require of our parameterization. Consider the set Q(S) = {(a, b, c, d) ∈
S4
∣∣||a − b|| = ||c − d||}, the set of points corresponding to repeated distances. By

applying the Cauchy-Schwarz Inequality over all pairs of pairs of points determining
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Figure 7. The rotation point f is located arbitrarily along Eab

distances ||a− b|| and ||c− d||, we can obtain the inequality

|dist(S)| ≥ |S|4

|Q(S)|
Thus, to show that the number of distinct distances satisfies

|dist(S)| ≥ c|S|
log(|S|)

we can instead focus on bounding the number of repeated distances by showing

|Q(S)| ≤ c′|S|3 log(|S|)
which is equivalent to bounding the number of incidences

|I(L)| = |{(l, l′) ∈ L2|l ∩ l′ 6= φ}|.
We now construct a parameterization that causes the La,b to actually be lines

in R. The key intuition is to parameterize the angle of rotation θ so that it scales
linearly with the possible transformations from some a to b. First, note that we
can essentially ignore rigid motions that are pure translations. Any three points in
S uniquely define a 4-tuple in Q(S) since an a and b define a translation, with c
then defining d under this translation. This means there are at most |S|3 4-tuples
in Q(S) arising from pure translations, so they already fit under our |S|3 log(|S|)
desired asymptotic bound.

We now consider rigid motions that are comprised of nonzero rotations. Note
that this is equivalent to rotations around a specific point. These can then be
defined by some counter-clockwise rotation by some θ ∈ (0, 2π) around some fixed
point f = (fx, fy). Note that for any such rigid motion mapping point a to point b,

the fixed point f must lie on the perpendicular bisector of ab, as shown in Figure
7.

We define our rigid motions with the parameterization ρ : R → R
3 where ρ(T ) =

(fx, fy,
1
2 cot( θ2 )). The core idea is to show that for any fixed motion T mapping

point a to point b, all three coefficients will scale linearly along the perpendicular
bisector of ab, denoted as Ea,b.



12 BRYAN CHEN, JULIA WU, EMILY XIE

Lemma 4.2. For each a, b ∈ S, we have that ρ(La,b) is a line in R3.

Proof of Lemma 4.2. Looking at 4afm, where m is the midpoint of ab, we can

calculate cot

(
θ

2

)
=
||f −m||
||a−b||

2

⇒ 1
2 cot( θ2 ) = ||f−m||

||a−b|| .

Now, let d = (dx, dy) be some unit vector parallel to Ea,b. Since f must lie on
Ea,b, we can express f = m + ||f −m|| · d = m + td, where t = ||f −m|| denotes
how far f is from m.

We then have ρ(La,b) = {(mx,my, 0) + t(dx, dy, ||a − b||−1)
∣∣t ∈ R}, which is a

line. �

Now that we have completed our reduction, we are primarily interested in bound-
ing the number of incidences between N lines in R3. A successful bound for the
number of incidences I(L) in terms of the number of points in our set S is

|I(L)| ≤ c|S|3 log(|S|),
as this would give the desired bound for the number of distinct distances. The

number of lines is equal to the number of pairs of points in S, i.e. |L| =
(|S|

2

)
≤ |S|2.

Then the following theorem shown by Guth and Katz gives us exactly the bound
we desire.

Theorem 4.3 (Guth-Katz). Let L be a set of N lines in R3 such that no more than√
N lines intersect at a single point and no plane or doubly ruled surface contains

more than
√
N lines. Then the number of incidences of lines in L, |I(L)|, is at

most cN1.5 logN for some constant c.

Note that setting N = |S|2 gives our desired bound. The theorem excludes
certain scenarios of lines, and below we explain why it is possible to discard those
cases.

First, if more than
√
N = |S| lines intersect at a single point, then by the

Pigeonhole Principle we can find some two pairs (a, b) and (a, b′) where b 6= b′ such
that La,b ∩ La,b′ 6= φ. This means ∃T such that T (a) = b and T (a) = b′, which

contradicts the fact that b 6= b′. Thus, no more than
√
N lines intersect at a single

point.
Second, if more than

√
N = |S| lines are contained within a single plane, then

we can again find two pairs (a, b) and (a, b′) such that T (a) = b = b′ and b 6= b′ as
before. This is because due to our lines’ parameterization, no two lines are parallel,
since each parameterization is uniquely defined by each line segment ab. Thus, no
more than

√
N lines are contained in a single plane as well.

Finally, we consider doubly ruled surfaces. This case is more complex and beyond
the scope of this paper, but it is handled in great detail by Guth and Katz[6].

We have shown that by applying Theorem 4.3, we can achieve our aforemen-
tioned required bound |Q(S)| ≤ c|S|3 log(|S|), which gives our desired bound that

|dist(S)| ≥ c|S|
log(|S|) via a reduction to a 3D incidence problem. The next section

shows how to bound incidences using the polynomial method and ultimately how
to prove Theorem 4.3.

5. Bounding Incidences via Polynomial Cell Partitioning

Showing the bound on the number of incidences in R
3 given in Theorem 4.3

involves partitioning R3, then bounding the number of incidences in each of the
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Figure 8. Hypersurface H bisects sets S1 (green points), S2 (blue
points), and S3 (red points) simultaneously.

“cells” created by the partition. In order for this to be possible, we require some
way to partition R3 in a “balanced” way, meaning there are not too many lines in
each cell and not too many cells. Guth and Katz showed that such a partition is
possible, and that the partition can be created using a hypersurface.

Definition 5.1. A hypersurface is a set H = {x ∈ Rn|h(x) = 0}, where h(x) is
a polynomial in n variables x1, ..., xn of arbitrary degree d.

In other words, a hypersurface is an n − 1 dimension subspace of Rn. It is a
generalization of a hyperplane, except a hyperplane is restricted to being defined
by a degree 1 polynomial. We say the degree of a hypersurface H is the degree of
the defining polynomial h(x).

Guth and Katz showed that we can partition Rn using a low degree hypersurface
that satisfies the other properties of a balanced partition mentioned above.

Theorem 5.2 (Polynomial Cell Partition). Let S ⊂ R
n be a finite set and let

t ≥ 1. Then there exists a hypersurface H that decomposes Rn into ≤ C1t cells,
where hypersurface H has degree d ≤ C2t

1/n and each cell contains at most |S|/t
points from S for constants C1, C2.

The idea for the proof of the Polynomial Cell Partition Theorem is to bisect the set S
using a hypersurface H1. We obtain two subsets of S, and we bisect both of them at
the same time with one hypersurface H2. Figure 8 illustrates an example of a single
hypersurface, which is just a curve in R2, bisecting multiple sets simultaneously.
We continue this process and iteratively bisect each of the i subsets of S using
one hypersurface Hi. Each time, the number of cells doubles, and the number of
elements in each cell is halved. After completing this process n times, we have
hypersurfaces H1, H2, ...,Hn. We can take the union of all the hypersurfaces to
obtain a single hypersurface H whose degree d ≤ deg(H1)+deg(H2)+ ...+deg(Hn)
is small.

Then, the central idea to the proof of the Polynomial Cell Partition is that we
can bisect multiple subsets of S at the same time using a single hypersurface. The
following theorem allows us to do this and also bounds the degree of the bisecting
hypersurface.
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Theorem 5.3 (Discrete Polynomial Ham Sandwich). Let S1, ..., St ⊂ R
n be t

finite sets of points with t <
(
n+d
d

)
. Then there exists a degree d hypersurface H

that bisects each of the sets Si, i ∈ [t].

This theorem is an adaptation of The Polynomial Ham Sandwich Theorem, which
claims that t open sets can be bisected with a single hypersurface. The Polynomial
Ham Sandwich is used to prove the Discrete Polynomial Ham Sandwich, so we first
begin with some discussion of the regular Polynomial Ham Sandwich Theorem.

5.1. Polynomial Ham Sandwich. The polynomial ham sandwich (abbreviated
PHS) is an application of the polynomial method that allows us to bisect multiple
open sets using a single hypersurface. The polynomial ham sandwich theorem
was preceded by ham sandwich theorems, which involved multiple simultaneous
bisections using hyperplanes rather than hypersurfaces. Historically, the “folklore”
ham sandwich theorem makes the following claim:

Theorem 5.4 (Folklore Ham Sandwich). Every three bounded open sets in R3 can
be simulataneously bisected using a single plane.

We will first outline the practical implications of the Folklore Ham Sandwich
Theorem before proceeding to generalizations and proofs. If we consider a real-
world scenario where R3 is the observable universe and the three sets are viewed as
two slices of bread and one slice of ham, then the Folklore Ham Sandwich Theorem
states that if two friends wanted to split this sandwich equally (in terms of each
ingredient), then one straight cut of a knife is always sufficient to split each in half.
This is true regardless of orientation of the ingredients as well as how irregular the
shapes get, since in this setting they can always be mathematically represented by
bounded, open sets.

Now, we consider a generalization of the Folklore Ham Sandwich Theorem which
leads us to the claim of the main Ham Sandwich theorem. We define a hyperplane
H ∈ Rn as defined by some degree one polynomial h in n variables, consisting of the
set {x ∈ Rn|h(x) = 0}. We also define the two sides of the hyperplane in different
contexts:

Definition 5.5. A hyperplane H defines two sides of Rn, denoted by H+ and H−,
where

H+ = {x ∈ Rn|h(x) > 0}
H− = {x ∈ Rn|h(x) < 0}

Definition 5.6. For any bounded open set of points U ∈ Rn, define the following
intersections that allow us to split the set according to the two sides of a hyperplane:

U ∩H+ = {x ∈ U |h(x) > 0}
U ∩H− = {x ∈ U |h(x) < 0}

We can now define the generalized ham sandwich theorem.

Theorem 5.7 (Ham Sandwich). Let U1, U2, . . . , Un ∈ Rn be bounded open sets.
Then there exists a hyperplane H such that for each i ∈ {1, 2, . . . , n}, the two sets
Ui ∩H+ and Ui ∩H− have equal volume.

To prove this, we will use the following theorem:
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Theorem 5.8 (Borsuk-Ulam). Let Sn ∈ Rn+1 be the n-dimensional unit sphere,
and let f : Sn → Rn be a continuous map such that ∀x ∈ Sn, f(−x) = −f(x).
Then ∃x such that f(x) = 0.

The proof of the Borsuk-Ulam theorem can be found using topology, as shown
in Matoušek [5].

Proof of Theorem 5.7. Since scaling the coefficients in our polynomial h doesn’t
change the defined hyperplane H, WLOG we can scale down our polynomial h(x) =
h0 + h1x1 + h2x2 + . . . + hnxn such that

∑n
i=0 h

2
i = 1. This makes the vector of

coefficients vh = (h0, h1, . . . , hn) a unit vector, i.e. vh ∈ Sn.
Now, define a function f : Sn → Rn as:

f(vh) = (|Ui ∩H+| − |Ui ∩H−|)i∈{1,2,...,n}
Then, we have f(−vh) = −f(vh), since flipping the sign of the input vector flips

the sides of the hyperplane. In addition, f is continuous, since small changes in
vh result in slight changes in the angle of the hyperplane so that the difference in
volumes has no discontinuities. By applying the Borsuk-Ulam theorem, ∃vh such
that f(vh) = 0, which makes |Ui∩H+| = |Ui∩H−| for all i ∈ {1, 2, . . . , n}. Thus, we
have shown there is some polynomial that bisects all the given sets simultaneously.

�

We can also extend the ham sandwich theorem to apply to more than just n sets
by utilizing hypersurfaces rather than just hyperplanes. Recall that a hypersurface
is defined similarly to a hyperplane, except that the defining polynomial h is no
longer restricted to just a degree of one.

The result involves an extension of our results from Theorem 2.2:

Theorem 5.9 (Polynomial Ham Sandwich). Let U1, U2, . . . , Ut ∈ Rn be bounded

open sets, where t <
(
n+d
d

)
. Then there exists a degree d hypersurface H such that

for each i ∈ {1, 2, . . . , t}, the two sets Ui ∩H+ and Ui ∩H− have equal volume.

Proof of Theorem 5.9. This proof is analogous to the proof of Theorem 5.7. Note
that a degree d polynomial of n variables has at most

(
n+d
d

)
coefficients, by a stars-

and-bars combinatorial argument. We can then again identify each hypersurface
with its unit vector of coefficients and define a function f that maps to the volume
difference of each set’s two sides with respect to the hypersurface. The constraint
t <

(
n+d
d

)
allows us to append extra zeros into the mapping result of f so that our

domain and range of f : Sa → Rb have a = b, i.e. a = b =
(
n+d
d

)
. This allows

us to apply the Borsuk-Ulam theorem in a similar fashion, proving the generalized
PHS. �

5.2. Discrete PHS. In order to adapt the Polynomial Ham Sandwich Theorem
to obtain the The Discrete Polynomial Ham Sandwich Theorem (Theorem 5.3),
we first modify our definition of bisection to apply to discrete sets. We say that
a hypersurface H = {x ∈ Rn|h(x) = 0} bisects a set S if both sets S− = {x ∈
S|h(x) < 0} and S+ = {x ∈ S|h(x) > 0} have size at most |S|/2. In other words,
at most half the points in S are in {h > 0} and at most half the points are in
{h < 0}. Our loosened definition of bisection allows for h to vanish on an arbitrary
number of points in S.

The proof of the Discrete Polynomial Ham Sandwich is an exercise in real analy-
sis. The idea is to take ε-balls around each element in each of sets Si. The union of
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the ε-balls in Si is an open set Ui. Then with t open sets we can apply the regular
Polynomial Ham Sandwich and obtain a bisecting hypersurface H. By making the
ε-balls smaller and smaller, we get progressively closer to the original discrete sets
S1, ..., St.

Proof of Discrete Polynomial Ham Sandwich. Let us denote Ui,ε as the union of the
epsilon neighborhoods around each point in Si. If we take open sets U1,ε, ..., Ut,ε,
we can apply the PHS to obtain a bisecting hypersurface Hε. We can define a
sequence ε1, ..., εi that converges to 0, e.g.

εi =
1

2i
.

For each εi we apply PHS to obtain a hypersurface Hεi that bisects the open
sets that are the εi neighborhoods of each S1, .., St. Then we have a sequence of
hypersurfaces Hεi that are defined by polynomial hεi . We can scale the polynomial
without changing the sign, i.e. if we multiply each coefficient by some constant,
the same points in h(x) > 0 will still be in the scaled h′(x) > 0. We can write
the coefficients of the scaled polynomial as a vector, so we obtain a sequence of
unit vectors h̄εi that still define the same hypersurfaces Hεi . These unit vectors
lie on the unit sphere, which is compact. Then by compactness, there exists a
subsequence of the unit vectors h̄εki

that converges uniformly to a limit h̄. Let h be
the polynomial with coefficients from vector h̄. We claim that h bisects S1, ..., St,
i.e. the hyperplane H defined by h bisects S1, ..., St. We show this by contradiction.

Suppose H does not bisect S1, ..., St. Then for some Si we can write WLOG

|S+
i | >

|Si|
2
,

i.e. more than half the points in Si are in {h > 0}. By continuity, we can choose
some very small δ such that h > δ on the δ-ball around each point in S+

i . Since
h̄εki

converged uniformly to h̄, we can find ki large enough that hεki
> 0 on the δ

ball around each point in S+
i . By making ki large, we can make it so that εki < δ.

Then hεki
> 0 on more than half of the εki balls in Ui,εki

, the εki neighborhood of
Si, a contradiction. �

Now that we have shown the Discrete Polynomial Ham Sandwich, we can use it
to obtain our Polynomial Cell Partition Theorem.

5.3. Polynomial Cell Partitioning Proof. The Polynomial Cell Partition The-
orem (Theorem 5.2) claims that we can choose some t ≥ 1 and partition Rn such
that there are at most C1t cells, each cell has at most |S|/t points from a finite set
S ⊂ Rn, and that the partition is created by a single hypersurface H of degree at
most C2t

1/n for constants C1, C2. The proof involves iteratively applying the Dis-
crete PHS Theorem. We choose the number of times we apply the Discrete PHS
so that our partition satisfies the desired conditions.

To obtain the bound on the degree of the hypersurface H, we use the bound on
the degree of the hypersurface given by the Discrete PHS. If we fix n, where we
are working with space Rn, then as the the number of sets t grows, we can always
find a degree d ≤ C|S|1/n hypersurface that bisects each of the t sets. This can be
shown using an identical argument as in the proof of Corollary 2.3.
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Proof of Polynomial Cell Partition Theorem. Applying the discrete PHS the first
time, we obtain a hypersurface H1 of degree d1 ≤ c1 · 11/n that bisects the single
set |S| into 2 sets of size at most |S|/2 each (plus some points on the boundary).
Applying PHS again on these two sets, we obtain a degree d2 ≤ c2·21/n hypersurface
H2 that bisects both sets. This gives 4 cells with boundary in the hypersurface
H ′ = H1 ∪H2 which has degree at most d1 + d2 since it is defined by the product
of polynomials defining each hypersurface. Each cell has at most |S|/4 points
from S. If we continue partitioning ` = log2 t times, we obtain ` hypersurfaces
H1, H2, ....,H` with each Hj having degree dj ≤ cj · 2j/n and such that their union
H = ∪j∈[`]Hj gives a partition into roughly t cells containing at most |S|/t points
each. The degree of H is bounded by the sum∑̀

j=1

cj2
j/n ≤ Ct1/n.

�

The Polynomial Cell Partition Theorem is crucial for showing the Guth Katz
bound on the number of incidences in R3. Their proof involves partitioning R3

and bounding the number of incidences in each cell, then the number of incidences
on the boundaries of the cells, the hypersurface. Polynomial cell partitioning can
also be used to bound the number of incidences between points and lines in R2,
providing an alternate proof to a well-established theorem that we introduce in the
next section.

5.4. Szemerédi Trotter Bound on Incidences in R2. The following bound on
the number of incidences between a set of points P and a set of lines L in R2 was
given by Szemerédi and Trotter.

Theorem 5.10 (Szemerédi Trotter ). Given a finite set of lines L and a finite set
of points P in R2, we can bound the number of incidences I(P,L)

|I(P,L)| ≤ C(|P | · |L|)2/3 + |L|+ |P |,
for some constant C.

The original proof they gave was messy and complicated [1]. We will give a
proof using polynomial cell partitioning that is much simpler, and the proof idea
will serve as a warm-up to the proof of the Guth and Katz bound on the incidences
in R3 as the ideas will be similar.

The idea of the proof is to use polynomial cell partitioning to partition R2 into
cells. We bound the number of incidences in each cell and on the hypersurface that
created the cells. In order to bound the number of incidences in cells and on the
hypersurface, we need the following three lemmas. The first lemma extends the
result of Lemma 3.5 to our framework of hypersurfaces. The second lemma bounds
the number of lines that can be contained in the hypersurface. The third lemma is
a simple bound on the number of incidences between L and P and will be applied
in each cell.

Lemma 5.11. Given any line ` ⊂ R
2 and hypersurface H ⊂ R2 with degree d.

Then either ` ⊆ H or |` ∩H| ≤ d.

Proof. Either the restriction of ` to the polynomial h defining hypersurface H is
uniformly zero, implying ` ⊆ H, or |` ∩ h| = |` ∩H| ≤ d by Lemma 3.5. �
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Lemma 5.12. Given hypersurface H ⊂ R2 with degree d, there are at most d lines
contained in H.

This lemma is only true in two dimensions, but it can be generalized to higher
dimensions by replacing the word “lines” with “hyperplanes.” The proof of the
lemma is a proof by contradiction.

Proof. Suppose there are d + 1 distinct lines in H. Since d + 1 is finite, we can
choose some line ` not contained in H that is not parallel to any of the d+ 1 lines
in H. Then ` intersects each of the d+1 lines, meaning ` intersects H at least d+1
times, contradicting Lemma 5.11. �

Lemma 5.13 (Cauchy Schwartz Bound). Given a finite set of lines L and points
P in R2, we can bound the number of incidences I(P,L)

|I(P,L)| ≤ |P | · |L|1/2 + |L|.

Also,

|I(P,L)| ≤ |L| · |P |1/2 + |P |.

Proof. We prove the first equation |I(P,L)| ≤ |P | · |L|1/2+ |L|. We express |I(P,L)|
using the indicator function 1p∈`, which is equal to 1 if p ∈ ` for a point p ∈ P and
line ` ∈ L, and 0 otherwise. We write

|I(P,L)| =
∑
`∈L

∑
p∈P

1p∈`.

In order to bound this, we use the Cauchy Schwartz inequality, which says( k∑
p=1

ap · bp
)2
≤ (

k∑
p=1

a2p) · (
k∑
p=1

b2p).

Setting ap = 1, bp =
∑
p∈P 1p∈`, if we square our expression for the number of

incidences then by Cauchy Schwartz we have

|I(P,L)|2 =
(∑
`∈L

∑
p∈P

1p∈`

)2
≤ |L| ·

∑
`∈L

(∑
p∈P

1p∈`

)2
= |L| ·

∑
p1,p2∈P

∑
`∈L

1p1∈` · 1p2∈`

= |L| ·
( ∑
p1=p2∈P

∑
`∈L

1p1∈` · 1p2∈` +
∑

p1 6=p2∈P

∑
`∈L

1p1∈` · 1p2∈`
)
.

The first expression
∑
p1=p2∈P

∑
`∈L 1p1∈` · 1p2∈` is equivalent to the expression

|I(P,L)| =
(∑

`∈L
∑
p∈P 1p∈`

)2
. For the second expression, where p1 6= p2, we can

view this as for every pair of points, we are checking if those two points are on a line.
Otherwise, the value in the sum is 0. For every unique pair of points, they can only
be on at most one line ` ∈ L. Otherwise, if they were both incident to another line,
the two lines would be the same line. Then the expression

∑
p1 6=p2∈P

∑
`∈L 1p1∈` ·

1p2∈` is upper bounded by
∑
p1 6=p2∈P 1, which is upper bounded by |P |2.
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So our entire expression is upperbounded:

|I(P,L)|2 ≤ |L| · (|I(P,L)|+ |P |2)

≤ |L|2 + 2|L| · |P |2,

where we use the following claim:

Lemma 5.14.

|I(P,L)| ≤ |P |2 + |L|.

Before we prove Lemma 5.14, we note that our bound

|I(P,L)| ≤ |L|2 + 2|L| · |P |2

implies the desired bound in Lemma 5.13. The second equation |I(P,L)| ≤ |L| ·
|P |1/2 + |P | uses an identical argument, where the roles of p and ` are swapped. �

Proof of Lemma 5.14. First we count lines that have at most one point in P on
them. These lines contribute at most |L| incidences (at most when all lines in L
fall in this category). The rest of the lines have at least 2 points in P on each
line. The total incidences on these lines is ≤ |P |2, otherwise there would exist
some point p ∈ P that lies on > |P | lines. Each of those lines would have another
point in P on them by assumption, which implies there are more than |P | points,
a contradiction. �

Now that we have our three lemmas, we are ready to prove the Szemerédi Trotter
Theorem (Theorem 5.10).

Proof of Theorem 5.10. First we assume that |P |1/2 � |L| � |P |2. Otherwise the
bound follows from Lemma 5.13. Next we apply the Polynomial Cell Partition
Theorem with t to be chosen later. We obtain cells C1, C2, ..., Ct with each cell

having at most |P |t points. Note that the polynomial cell partition theorem says
we will have C1t cells, but we say we have t cells since the C1 term will just be
absorbed into the constant later. To see this, one can replace our usage of t with C1t
throughout this proof where it applies and find that it does not change our proof
except some constants. The polynomial cell partition also gives us a hypersurface
H of degree d ≤ C2t

1/2.
We bound the number of incidences in the cells then the number of incidences

on the hypersurface. To do this, we introduce some notation. Let P0 = P ∩H be
the points on the hypersurface, L0 = L ∩H be lines that intersect H, Pi = P ∩Ci
be points that are in cell Ci, and Li = L ∩ Ci be lines that intersect cell Ci. Note
that lines can be overcounted, i.e. the same line can appear in multiple Li and also
L0. This overcounting does not matter since we only seek an upper bound. Then

I(P,L) ≤ I(P0, L0) +

t∑
i=1

I(Pi, Li).

To bound the number of incidences in the cells,
∑t
i=1 I(Pi, Li), we apply the

Cauchy Schwartz Bound (Lemma 5.13) to each cell. This gives

I(Pi, Li) ≤
|P |
t
· |Li|1/2 + |Li|.
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To bound the overall sum
∑t
i=1 I(Pi, Li), we need to bound sums

∑t
i=1 |Li| and∑t

i=1 |Li|1/2. We observe that each ` ∈ Li is not contained in H since if ` ⊆ H, it
would not intersect cell Ci. Then by Lemma 5.11, each line in Li can intersect at
most d ≤ C2t

1/2 cells since the line must cross H to move from one cell to another.
Then

∑t
i=1 |Li| ≤ C2t

1/2|L|. This, combined with the Cauchy Schwartz inequality,

where we choose ai = |Li|1/2 and bi = 1 gives the bound
∑t
i=1 |Li|1/2 ≤ C|L|1/2t3/4.

Combining everything, we obtain

t∑
i=1

I(Pi, Li) ≤ C ′
[ |P |
t
t3/4|L|1/2 + t1/2|L|

]
= C ′[t−1/4|P ||L|1/2 + t1/2|L|.]

Now that we have bounded
∑t
i=1 I(Pi, Li), we now want to bound I(P0, L0). To

do so, first split L0 into two sets: let L′0 be the set of lines contained in H and let
L′′0 be the set of lines not contained in H (but intersect H at some points). By
Lemma 5.11, each line in L′′0 can intersect H in at most d ≤ C2t

1/2 points. Then,

|I(P0, L
′′
0)| ≤ C2t

1/2|L′′0 | ≤ C2t
1/2|L|.

By Lemma 5.12, |L′0| ≤ d ≤ C2t
1/2.

Using the Cauchy Schwartz Bound (Lemma 5.13), we get

|I(P0, L
′
0)| ≤ |L′0||P0|1/2 + |P0| ≤ t1/2|P |1/2 + |P |

Since we initially assumed that |P |1/2 << |L|, we can write this bound as

|I(P0, L
′
0)| ≤ C ′′[t1/2|L|+ |P |].

Then,

|I(P0, L0)| = |I(P0, L
′
0)|+ |I(P0, L

′′
0)|

≤ C2t
1/2|L|+ C ′′[t1/2|L|+ |P |]

≤ C ′′′[t1/2|L|+ |P |].

Adding |I(P0, L0)| and
∑t
i=1 |I(Pi, Li)|, we get

|I(P,L)| = |I(P0, L0)|+
t∑
i=1

|I(Pi, Li)|

≤ C ′′′[t1/2|L|+ |P |] + C ′[t−1/4|P ||L|1/2 + t1/2|L|]

≤ C[t1/2|L|+ |P |+ t−1/4|P ||L|1/2].

Finally, in order to obtain the desired bound on |I(P,L)|, we set

t =
|P |4/3

|L|2/3
.

Since we initially assumed |L| << |P |2, we have t ≥ 1. So, we are done. �
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5.5. Bounding Incidences in R3. The proof of the Szemerédi Trotter Theorem
uses ideas that will be used in our proof of Theorem 4.3, which upper bounds
the number of incidences in N lines in R3. The bound given by Guth and Katz
is cN1.5 logN for some constant c. The proof is extremely simple using the fol-
lowing lemma, which lets us bound the number of incidences with at least k lines
intersecting at that point.

Lemma 5.15. Let L be a set of N lines in R
3 with the same conditions as in

Theorem 4.3. Let I≥k(L) denote the set of points that have at least k lines in L
passing through them. Then for every k ≥ 2,

|I≥k(L)| ≤ cN
1.5

k2
,

for some constant c.

We will prove this lemma after we first show how the Guth Katz bound follows
from Lemma 5.15. Let I=k(L) be the set of points with exactly k lines from L
passing through them.

Proof of Theorem 4.3. By hypothesis, no more than
√
N lines intersect at a single

point. Also, each point in set I=k(L) contributes
(
k
2

)
≤ k2 incidences. Thus, we

can write the number of incidences I(L) as

|I(L)| ≤

√
N∑

k=2

|I=k(L)| · k2.

We can rewrite the sum, using the observation that |I=k(L)| = |I≥k(L)|−|I≥k+1(L)|.
Next we apply Lemma 5.15 to upper bound it. We obtain

√
N∑

k=2

|I=k(L)| · k2 =

√
N∑

k=2

(|I≥k(L)| − |I≥k+1(L)|) · k2

≤ c′
√
N∑

k=2

|I≥k(L)| · k

≤ c′
√
N∑

k=2

c′′
N1.5

k2
· k

= c′c′′N1.5 ·

√
N∑

k=2

1

k

≤ cN1.5 logN,

as desired, where we absorb constants c′, c′′, and the implied third constant into
one constant c in the last step. �

Then the proof of the Guth Katz bound on the number of incidences between
lines inR3 follows quite simply from Lemma 5.15. The more difficult task is proving
our lemma. To do this, we prove separately the two cases: when k ≥ 3 and when
k = 2.
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To make our exponents easier to work with, we will scale the condition in our
lemma by a factor of

√
N . So, we will prove the following scaled version of Lemma

5.15.

Lemma 5.16. Let L be a set of N2 lines in R3 such that no more than N lines
intersect at a single point and no plane or doubly ruled surface contains more than
N lines. Let I≥k(L) denote the set of points that have at least k lines in L passing
through them. Then for every k ≥ 2,

|I≥k(L)| ≤ CN
3

k2
,

for some constant C.

5.6. The k ≥ 3 case. Note that the only surface that contains at least 3 distinct
lines through each of its points is a plane (or a union of planes) [7]. So, the k ≥ 3
case does not require any conditions on doubly ruled surfaces, and thus the only
assumption we need is that no plane contains more than N lines in L. We also
know k < N since Theorem 4.3 requires that no more than N lines pass through a
single point.

We will use proof by contradiction to show the Guth Katz bound. The outline
is as follows.

Using the polynomial cell partition theorem, we partition the points in I≥k(L)
into cells whose boundary is a low-degree hypersurface. Then, we split our problem
into two cases: a cellular case and an algebraic case. The cellular case corresponds
to when the majority of the points in I≥k(L) are inside the cells. In this case, we
can apply the S-T Theorem in the 3-dimensional case in each cell and sum the
resulting bounds. This proof will be similar to the cell partition proof of the S-T
Theorem. The algebraic case corresponds to when the majority of the points in
I≥k(L) are on the boundary separating the cells. In this case, the proof will be
similar to the joints problem proof. We will show that the hypersurface contains
many lines in L, and that each of these lines contains many points. Then, we can
use the assumption that k ≥ 3 to analyze two special cases of lines. In both of
these cases, we will use an argument similar to the joints problem proof to reach a
contradiction.

We will make two regularity assumptions in order to make our proofs simpler.
We can remove these assumptions through proof by induction as shown by Guth
and Katz [6].

1. Each point in I≥k(L) has at most 2k lines in L passing through it.

2. Each line in L is incident to at least c · k|I≥k(L)|
|L| lines for some constant c.

Let S = I≥k(L). Assume for the sake of contradiction that S ≥ C · N
3

k2 for some
constant C to be chosen later.

We use the 3-dimensional case of the Polynomial Cell Partition Theorem (The-
orem 5.2) and choose t so that the hypersurface H has degree d = 3(Nk ). We can

also assume that k � N , since otherwise the bound |S| ≤ C · N
3

k2 follows trivially.
Since k � N , we then have that d ≥ 1. By the Polynomial Cell Partition Theorem,

each cell contains at most |S|t ≤ c · |S|d3 points for some constant c. Recall that in
order for a line to intersect a cell, it must cross H. By Lemma 5.11, a line not
contained in H can intersect H in at most deg(H) = d points. So, each line in L
can intersect at most d cells.
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Let SH = S∩H and SC = S \SH . By the pigeonhole principle, either |SC | ≥ |S|2
(the cellular case) or |SH | ≥ |S|2 (the algebraic case).

We begin with the cellular case, when the majority of the points in S are con-
tained inside the cells.
The cellular case

Assume |SC | ≥ |S|2 . We will find a contradiction to this assumption, thus showing
that the cellular case actually cannot happen and that we will actually always be
in the algebraic case. To do this, we will upper bound the number of points in SC
and show that this upper bound is smaller than the assumed lower bound of |S|2 .

We will first prove a corollary that follows nicely from the S-T Theorem. This
corollary will allow us to bound the number of points in SC in each cell.

Corollary 5.17. Let P and L be sets of points and lines in R2. Let Pk be the set
of points in P that have at least k lines passing through them, where k ≥ 2. Then
for some constant C,

|Pk| ≤ C
( |L|2
k3

+
|L|
k

)
.

Proof. Each point in Pk has at least k lines passing through it, so each point
contributes at least k incidences. So, we have that |I(Pk, L)| ≥ k|Pk|. Then, by
Theorem 5.10 (the S-T Theorem),

k|Pk| ≤ |I(Pk, L)| ≤ C((|Pk| · |L|)2/3 + |L|+ |Pk|).
for some constant C. We thus know that at least one of the following statements
must be true:

1. k|Pk| ≤ C(|Pk| · |L|)2/3
2. k|Pk| ≤ C|L|
3. k|Pk| ≤ C|Pk|

We consider each case.

Case 1:

k|Pk| ≤ C(|Pk| · |L|)2/3

|Pk|1/3 ≤ C ·
|L|2/3

k

|Pk| ≤ C ·
|L|2

k3

So, the bound holds in this case.
Case 2:

k|Pk| ≤ C|L|

|Pk| ≤ C ·
L

k

So, the bound holds in this case.
Case 3:

k|Pk| ≤ C|Pk|
k ≤ C

Every pair of lines can only intersect in at most one point. Then, |L| lines

can intersect in at most
(|L|

2

)
unique points. This means that at most

(|L|
2

)
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points can have at least k lines passing through them (since k ≥ 2). Then,
|Pk| ≤ C|L|2, so the bound holds in this case as well.

Since the bound holds in all three cases, we are done. �

We can now use this corollary to bound the total number of points in all cells.
Let Li be the set of lines in L that pass through the ith cell. Using the assumption

that |SC | ≥ |S|2 and applying Corollary 5.17 to each cell i to get

(5.18)
|S|
2
≤ |SC | ≤

∑
i

(
|Li|2

k3
+
|Li|
k

)
.

Since each line can pass through at most d cells, we must have∑
i

|Li| ≤ d|L|.

Recall that each cell contains at most Pi ≤ c · |S|d3 points for some constant c. Then,
from our first regularity assumption (that each point has at most 2k lines passing
through it), we have

max
i
|Li| ≤ 2k|Pi| ≤ c ·

2k|S|
d3

.

Then, ∑
i

|Li|2 ≤
∑
i

(
(max

j
|Lj |)|Li|

)
= max

i
|Li|

∑
i

|Li|

≤ c · 2k|S|
d3
· d|L|

= c · 2k|S|N2

d2

Using our bound in Equation 5.18, we have

|S|
2
≤
∑
i

(
|Li|2

k3
+
|Li|
k

)

≤ c · 2k|S|N2

k3d2
+
d|L|
k

= c · 2|S|N2

k2d2
+
dN2

k

Recall we set d = 3 · Nk . Then,

|S|
2
≤ c · 2|S|N2

k2d2
+ 3 · N

3

k2
= c · 2|S|

9
+ 3 · N

3

k2
≥ (2c · C

9
+ 3) · N

3

k2
.

Choosing C to be large enough and c to be small enough,

|S|
2
≥ C

2
· N

3

k2
> (2c · C

9
+ 3) · N

3

k2
≥ |S|

2
.

This is clearly a contradiction. This implies that we can never have |SC | ≥ |S|2 , and
so we are always in the algebraic case.
The algebraic case

In the algebraic case, we now have |SH | ≥ |S|2 .
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The cellular case proof showed that we cannot actually have |SC | ≥ |S|2 . We can
replace the denominator in this bound with any constant c to get a contradiction to

|SC | ≥ |S|c , since this would only change the constants involved. This means that

we cannot have |SC | ≥ |S|c for any constant c, so we must have |SC | ≤ |S|c for any

constant c. To achieve this, we just need to set d = D · Nk for some constant D > 3
(as we set D = 3 previously).

Since |SC | ≤ |S|
c for any constant c, we can have |SH | ≥ (1 − ε)|S| for any

constant ε. If we take ε to be small enough, we can remove points that are not on
H, since this will not change the bound on |S|. Then, we can reduce the algebraic

case, where we know |SH | ≥ |S|
2 , to the case where all points in S are in SH , i.e.

S ⊂ H, so all points in S are on H.

So, |S| is a set of points with |S| ≥ C · N
3

k2 . All points in S lie on the hypersurface

H with degree d ≤ D · Nk . In addition, k ≥ 3 lines in L pass through each point in

S, where |L| = N2.
Choosing C large enough and using the second regularity assumption (that each

line in L is incident to many lines, i.e. has many points in S on it), we get that the

number of points in S ⊂ H on each line in L is at least c · k|S||L| .

≥ c · C · N
3

k|L|
= c · C · N

k
> 10 ·D · N

k
≥ 10d

for some constant c. Then by Lemma 5.11, each line in L must be completely
contained in H. So, L ⊂ H.

By the assumption k ≥ 3, we know each point in S has 3 lines passing through
it. Split the points in S into two categories:

1. Critical points: points through which 3 non-coplanar lines pass (a joint).
2. Flat points: non-critical points through which 3 planar lines pass through.

Similarly, split the lines in L into two corresponding categories:

1. Critical lines: lines that contain at least 5d critical points.
2. Flat lines: lines that contain at least 5d flat points.

Since each line contains at least 10d points, each line must be either critical or flat
by the pigeonhole principle. Then, also by the pigeonhole principle, there must be

either ≥ N2

2 critical lines or ≥ N2

2 flat lines.
This divides the problem space nicely into two cases:

Case 1: There are ≥ N2

2 critical lines. In this case, we will use a proof very similar
to the joints problem proof to find a contradiction to to the total number
of lines in L.

Case 2: There are ≥ N2

2 flat lines. In this case, we will use a similar proof to find
a contradiction to the condition that no plane contains more than N lines
in L.

If we can find some contradiction in both cases, then we are done, since these

contradictions mean that S cannot contain too many points, i.e. |S| ≤ C · N
3

k2 . We
now consider each case.

Case 1: There are ≥ N2

2 critical lines.
Recall the joints problem proof. There, we showed that if a polynomial g(x, y, z)

vanishes on a joint p, then ∇g also vanishes on p. We want to make a similar
statement about H = {h(x, y, z) = 0} and ∇h.
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Express the gradient of h as

∇h =
[
∂h
∂x

∂h
∂y

∂h
∂z

]
=
[
fx fy fz

]
.

By Lemma 3.4, fx, fy, fz all have degree ≤ deg(h) = d.
If H contains a joint p ∈ H, then ∇h must also vanish on p. Note that each

critical point is a joint w.r.t. L ⊂ H. Then, ∇h vanishes on all critical points. Since
each critical line contains at least 5d critical points, ∇h vanishes on all critical lines
as well.

Because H contains all lines in L, h vanishes on all lines in L. Then, since ∇h
vanishes on all critical lines, H shares all critical lines with each of the hypersurfaces
defined by its partial derivatives:

Fx = {fx(x, y, z) = 0}, Fy = {fy(x, y, z) = 0}, Fz = {fz(x, y, z) = 0}.

Since at least half the lines in L are critical, H shares the majority of lines in L
with each hypersurface Fx, Fy, Fz.

Since we want to find a contradiction to the number of lines in L, we can upper
bound the number of lines that H shares with Fx, Fy, Fz and show that this upper
bound is smaller than N2. To do this, we will first show that two hypersurfaces
that do not have a common factor share an upper bounded number of lines. Then,
we will show that h does not share a common factor with at least one of its partial
derivatives to conclude that the number of lines H shares with its partial derivatives
is upper bounded.

Lemma 5.19. Let G1 = {g1(x, y, z) = 0} and G2 = {g2(x, y, z) = 0} be two
hypersurfaces such that g1 and g2 do not have a common factor. Then, G1 ∩ G2

contains at most deg(g1)deg(g2) lines.

To prove this claim, we will need Bezout’s Theorem.

Theorem 5.20 (Bezout). Let f(x, y), g(x, y) ∈ R[x, y] be two polynomials without
a common factor. Then, f and g have at most deg(f)deg(g) common roots.

Since the proof of Bezout’s Theorem involves resultants, it is beyond the scope
of this paper, and can be found in Guth’s lecture [8].

Proof of Lemma 5.19. Consider a plane A ∈ R3 and parameterize it as A = au +
bv+c, where u, v, c ∈ R and a, b ∈ R. Consider the restrictions ĝ1(u, v) and ĝ2(u, v)
of g1 and g2 to A. Recall by Lemma 3.4 that deg(ĝ1) ≤ deg(g1) and deg(ĝ2) ≤
deg(g2). Since g1 and g2 do not share a factor, ĝ1 and ĝ2 must not either. Then,
by Theorem 5.20 (Bezout’s Theorem), ĝ1 and ĝ2 have at most deg(ĝ1)deg(ĝ2) ≤
deg(g1)deg(g2) common roots.

Note that g1 and g2 vanish on all points on their respective hypersurfaces G1

and G2. Then, g1 and g2 both vanish on points in G1 ∩ G2, which means that ĝ1
and ĝ2 also both vanish on points in G1 ∩G2. In addition, we know ĝ1 and ĝ2 both
vanish on A. Thus, each intersection p of A with a line in G1 ∩G2 is a root of both
ĝ1 and ĝ2. Since A intersects each line in G1 ∩G2 at a distinct point, each line in
G1∩G2 contributes a common root to ĝ2 and ĝ2. So, the number of lines contained
in G1 ∩G2 is bounded by deg(g1)deg(g2). �

In order to use Lemma 5.19, we must satisfy the condition it requires, namely
that h does not share a factor with its partial derivatives. If h has repeated factors,
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then we can factor it as

h = Πiri(x, y, z)
αi ,

where there is at least one i such that αi ≥ 2. Note that we are interested in the
zeros of h and not their multiplicity. Additionally, we want the degree of h to be
small, so it is okay to reduce the degree of h. Since removing repeated factors of h
(i.e. removing factors so that αi = 1 for all i in the factoring of h) does not change
what the zeros of h are and reduces deg(h), we can assume WLOG that h has no
repeated factors. If h does not have repeated factors, then it must not share any
common factors with at least one of fx, fy, fz.

WLOG, assume that h does not share any factors with fx. By Lemma 5.19,
H and Fx share at most deg(h)deg(fx) ≤ deg(h)2 = d2 lines. Recall that in the
algebraic case, d ≤ D · Nk . So, by choosing D small enough and because k ≥ 3, H

and Fx share at most d2 = D2 · N
2

k2 < N2

2 lines. Recall that H and Fx, Fy, Fz share

all critical lines. This means that there are < zN
2

2 lines in L, which contradicts

|L| = N2.

Case 2: There are ≥ N2

2 flat lines.
We will prove this case by finding a contradiction to the assumption that no

plane contains more than N lines. The proof will follow a similar argument to the
proof of Case 1.

Recall from the first case that h and its gradient ∇h vanish on all critical points
and that we showed h does not share a common factor with at least one of its
partial derivatives. We want to say something similar about flat points and some
polynomials.

To do so, we first define what it means for a polynomial to be plane-free.

Definition 5.21. A polynomial g is plane-free if no irreducible factor of g has
degree 1.

Then, we can say the following about flat points and some group of 9 polynomials.

Lemma 5.22. There exist 9 polynomials π1, . . . , π9 ∈ R[x, y, z], each with degree
at most 3d, such that:

1. Each flat point is a root of all 9 polynomials πi.
2. If h(x, y, z) is plane-free, then h does not share a factor with at least one

of the 9 polynomials πi.

This lemma is proved by Guth and Katz [6].
The first part of Lemma 5.22 implies that each polynomial πi vanishes on every

flat point. Then, each corresponding hypersurface Πi = {πi(x, y, z) = 0} contains
every flat point. Since each deg(πi) ≤ 3d and each flat line contains at least 5d flat
points, all flat lines are contained in each hypersurface Πi. This is analogous to the
statement from the first case that all critical lines are contained in the hypersurfaces
Fx, Fy, Fz.

We can factor h into its plane-free component and non plane-free component as
follows:

h(x, y, z) = hp(x, y, z)hn(x, y, z),

where hp contains all the degree 1 irreducible components of h and hn is plane-
free. Then, the hypersurface Hp = {hp(x, y, z) = 0} is the union of all the planes
contained in H.
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By Lemma 5.22, hn does not share a common factor with some πj . Then by
Lemma 5.19, Hn = {hn(x, y, z) = 0} and Πj share at most

deg(hn)deg(πj) ≤ d(3d) = 3d2

lines. Recall that L ⊂ H, soH contains all flat lines. Since we know Πj also contains

all flat lines, H and Πj must share at least ≥ N2

2 lines. Note that H = Hp ∪Hn.

Then, H and Hp share at least ≥ N2

2 − 3d2 lines. Recall d ≤ D · Nk . Choosing D
small enough and because k ≥ 3, we have that H and Hp share at least

≥ N2

2
− 3D · N

2

k2
≥ cN2

lines for some constant c.
Note that deg(hp) ≤ deg(h) = d, so hp contains at most d degree 1 components.

Then, Hp contains at most d planes. Then, by the pigeonhole principle, there must

be at least ≥ cN2

d > N lines in some plane. This contradicts our assumption that
no plane contains more than N lines, so we are done.

5.7. The k = 2 case. We will prove the k = 2 case using contradiction. Let
S = I≥2(L) be the set of points of intersection of at least 2 lines in L. We want

to show that |S| ≤ C1
N3

k2 , but for the k = 2 case, k is small enough that it can be

absorbed into the constant. Then our contradiction assumption will be |S| > C ·N3

for some large constant C to be chosen later.
The idea of the proof is to find a polynomial f of low degree that vanishes on

each line in L. Then each line in L is contained in the hypersurface H defined
by our vanishing polynomial. We factorize the polynomial as the product of four
polynomials f1, f2, f3, f4, chosen carefully so that each polynomial has a specific
property. They define corresponding hypersurfaces H1, H2, H3, H4 such that H =
H1∪H2∪H3∪H4. We then consider that each line in L is in one of the H1, H2, H3,
or H4. Then incidences are either between lines in the same hypersurface or between
lines in different hypersurfaces. We consider both cases, showing the bound Lemma
5.16 holds in both, thus arriving at a contradiction.

Then in order to complete the proof, we need to show that it is possible to find a
low degree polynomial that vanishes on set L. The following lemma shows we can
find a degree d ≤ |N |1/2 polynomial that vanishes on N lines.

Lemma 5.23. Let `1, `2, ..., `t be t lines in R
3. Then there exists a non-zero

polynomial of degree d ≤ 10t1/2 that vanishes on all lines `i. In other words, the
restriction of the polynomial to all lines is identically zero.

The proof of Lemma 5.23 is almost the same as the proof of Theorem 2.2.

Proof of Lemma 5.23. A polynomial f(x, y, z) inR3 of degree 10t1/2 has
(
10t1/2+3

3

)
>

10t1.5 monomials and, therefore, coefficients. Each constraint of the form f |`i ≡ 0,
which says that f vanishes on `i, gives at most deg(f) + 1 ≤ 10t1/2 + 1 homo-
geneous linear equations in the coefficients of f . Each of those linear equations
comes from the vanishing of one of the coefficients of the univariate restriction to
the line `i. Then there are more coefficients than equations, so there is a non-trivial
solution. �

Unfortunately Lemma 5.23 is not strong enough for our purposes, as we will
need a much smaller degree polynomial that vanishes on L. We can use this lemma,
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however, to prove the existence of a vanishing polynomial of smaller degree. This
depends on the fact that L is not an arbitrary set. We assumed for our proof that
|S| > CN3, so L is a set of lines with many intersections. In fact, we can conclude
that some fraction of lines must have at least CN/10 points of intersection on
them. Absorbing the 1/10 into our constant C and throwing away some fraction
of lines, we can assume WLOG that each line in L has at least CN distinct points
of intersection on it. With this additional hypothesis, we can prove there exists a
much lower degree vanishing polynomial.

Lemma 5.24. Suppose c is a large enough constant. Let L be a set of N2 lines
in R3 such that each line in L intersects at least cN other lines in distinct points.
Then, there exists a non-zero polynomial of degree d ≤ N√

c
that vanishes on all lines

in L.

Proof. We take a random subset L′ of L by choosing each line to be included in
L′ independently with probability 1/C. Also, with high probability, each line in
our original set L will still intersect at least N/2 lines in L′. By Lemma 5.23, we

can find a polynomial f(x, y, z) of degree 10
√
L′ ≤ CN/

√
C that vanishes on L′.

Polynomial f must also vanish on L since the restriction of f to each line in L has
at least N/2 > deg(f) zeros when C is large. �

Now that we have our low degree polynomial that vanishes on N lines, we are
ready to begin our proof of the k = 2 case of Lemma 5.16.

Proof of k = 2 case. Suppose, for contradiction, that |S| > C · N3 for some large
constant C to be chosen later.

By Lemma 5.24, we can find a polynomial f(x, y, z) of degree d ≤ N/
√
c such

that f vanishes on all lines in L. We can write f =
∏
i fi(x, y, z), where fi are

irreducible polynomials. We can assume that f is square free, meaning no fi is
repeated (otherwise if there were repeated fi’s, we could remove the duplicates and
the remaining product polynomial would still vanish on all lines in L). Then if we
let F be the hypersurface defined by f(x, y, z), F is the union of the hypersurfaces
Fi defined by the different fi’s. Also if we denote di as the degree of fi, we can
write d =

∑
i di.

We split the fi’s into 4 groups: let fpl be the product of all fi’s that are degree
one, which correspond to Fi’s which are hyperplanes; let fdr be the product of of the
doubly-ruled components; let fsr be the product of the singly-ruled components; let
fnr be the product of the remaining fi’s that are non-ruled components. We also let
Fpl, Fdr, Fsr, Fnr be the hypersurfaces defined by the polynomials fpl, fdr, fsr, fnr
respectively.

Since f was defined to vanish on L, each line ` ∈ L is contained in F . Then each
line ` ∈ L must be contained in one of the irreducible factors of F. Then we can
split our set of incidences S into two cases: incidences between lines in different
factors of F and incidences between lines in the same factor.

We first consider incidences between lines in diferent factors. We consider WLOG
that a line ` in factor Fpl is, by construction of our factors, not contained in the
other factor hypersurfaces Fdr, Fsr, Fnr. Then since ` is not contained in Fi for
i ∈ {dr, sr, nr}, by Lemma 5.11, ` can intersect hypersurface Fi in at most d points.
Then ` can only intersect lines in Fi in at most d points. The total incidences
between lines in different factors is then bounded by |L|d ≤ N2 ·N/

√
c ≤ CN3, for
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some constant C. Then now we only need to consider incidences between lines in
the same factor.

We consider each of the factors then. For the Fpl factor, which is the union of
planes, we use the hypothesis that there are at most N lines in each plane. Then we
have at least N2 intersections in each plane. Since there are at most d ≤ N planes
in Fpl due to the bound on the overall degree of F , the total number of incidences
in Fpl is at most N3. The same argument works for the incidences in Fdr since by
hypothesis there are at most N lines in every doubly-ruled surface. The last two
factors to examine are Fsr and Fnr.

To examine incidences in Fsr and Fnr, we will introduce two lemmas, one about
singly ruled surfaces and the other about non-ruled surfaces, without proof. The
proofs for the two lemmas can be found in [6]. The first lemma bounds intersections
in a singly ruled surface.

Lemma 5.25. Let S ⊂ R3 be a singly ruled surface. Then, every line in S, with
the exception of at most 2 lines, can intersect at most deg(S) other lines in S.

If there were 3 lines in S that had more than deg(3) intersections with other
lines in S, then S would be doubly ruled. Using this lemma, we know that each
singly ruled hypersurface Fi ⊂ Fsr, meaning each Fi included in the union of
hypersurfaces that comprise Fsr, can have at most two “exceptional” lines that
can have up to |L| = N2 intersections each. Then each Fi can have at most 2N2

incidences contributed by their two “exceptional” lines. There are at most d ≤ N
components Fi, so “exceptional” lines contribute at most N3 incidences. Each non-
“exceptional” line in Fi contributes at most deg(Fi) ≤ d ≤ N intersections. Then
overall, lines in Fsr contribute at most CN3 incidences.

Lastly, we consider incidences in Fnr, comprised of the union of the non-ruled
surfaces in F . To do this, we need the following lemma that bounds the number of
lines in a non-ruled surface.

Lemma 5.26. A non-ruled surface S ⊂ R3 can contain at most deg(S)2 lines.

This means that Fnr can contain at most d2 ≤ N2/C lines. We assume that
there are more than AN3 incidences contributed by lines in Fnr, where A is a large
constant to be chosen later. We can choose constants A and C to be as large
as we want. We can argue using induction to bound the number of incidences in
Fnr. Specifically, we assume that Lemma 5.16 holds for (N − 1)2 lines, then use
the assumption on the lines of Fnr. We omit the details here, but it requires a
careful choice of constants A and C, and can be found in [6]. Then since there
are ≤ CN3 incidences contributed by lines in each factor Fpl, Fdr, Fsr, Fnr, which
together contain all lines in L, we are done with the k = 2 case.
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