A SURVEY OF DISCRETE MATHEMATICS IN MACHINE
LEARNING

SAMUEL DORCHUCK, AMY KIM, AND ABIGAIL MOSER

ABSTRACT

The fundamental objective of this paper is to provide a survey of discrete mathe-
matical concepts used in various Machine Learning algorithms, with a wide range
of applications. To meet that objective, this paper will review fundamental tech-
niques such as Markov chains and graph searching, as well as introduce advanced
concepts such as VC-Dimension, Epsilon-Nets, and Hidden Markov Models. The
reader should expect to encounter intuitively described proofs, digestible yet de-
tailed algorithmic descriptions and complexity analysis, and closed-form expressions
and recursive formulas.

CONTENTS
(1) TIbrOdUCHION «.eviiiiiiiiiiiii ettt Page 1
(2) Linear Classifiers & The Perceptronccoccevveerveiioieniienienincen. Page 2
(3) Neural Networks: Error-Back Propagation & Gradient Descent . Page 8
(4) VC Dimension & Epsilon Netsccocevviriieniieniiniiinienienneee. Page 13
(5) Markov Decision Processescc.ccoovevviioiiiniieniiiiiiiieniciieeea Page 19
(6) Hidden Markov Modelsccccoovieiiiiiiiiniiiiiiiiiiecccccee Page 24

1. INTRODUCTION

A burgeoning scientific field with numerous applications across countless domains,
Machine Learning is most commonly perceived as a powerful but opaque black-box
tool. At its core, however, Machine Learning is math. The fundamentals of
Machine Learning are deeply rooted in discrete mathematics. Familiar
concepts such as Markov Models, probability theory, graph searching, and dis-
cretization of continuous functions appear repeatedly in the algorithms that power
the modern revolution of Machine Learning. Throughout this paper, we will de-
mystify some of these algorithms by analyzing several key mathematical concepts.

For the purposes of this paper, we define Machine Learning as a field of study
focused on developing algorithms that possess the ability to improve
their performance through experience or data. This paper will focus on
two fundamental types of Machine Learning algorithms: (1) predictive algorithms
and (2) decision-making processes. Predictive algorithms attempt to predict future
outcomes with a model developed and refined using data, and are often seen in
contexts such as financial forecasting or risk analysis. Decision-making processes
involve an agent with a goal, outlining a way for the agent to “learn” how best to
operate by receiving feedback from its environment, and can be applied to anything
1

2 SAMUEL DORCHUCK, AMY KIM, AND ABIGAIL MOSER
from self-driving cars to Natural Language Processing.

The first half of this paper will focus on predictive algorithms. Beginning with
one of the oldest examples of Machine Learning, we will examine the Perceptron
in Section 2 to understand the process of classification. Here, we will prove that
the Perceptron Algorithm converges under all circumstances, and we will discuss
the running time of convergence in terms of the input data set. In Section 3,
we will turn to the modern tool of choice for prediction - neural networks. This
section will rigorously examine the gradient descent and error-back propagation
algorithms, which have been largely responsible for the tremendous growth in im-
portance and use of neural networks in the last two decades. Gradient Descent
allows us to calculate the weights of neural network that minimize the loss function
of the network, provided we are given a gradient of the loss for each weight. Error
Back-Propagation allows us to efficiently compute the gradients of the loss function
for each weight in the neural network. Section 4 will introduce the VC-dimension,
a discrete-mathematical concept used to analyze the complexity of these prediction
algorithms.

In the second half of the paper, we turn to decision-making processes and examine
methods which improve a machine’s ability to autonomously interact with its en-
vironment. In Section 5, we will explore the mathematical foundations of Markov
Decision Processes and the closely related Value Iteration Algorithm, to illustrate
how computers optimize decisions in a given environment. In particular, the Value
Iteration Algorithm allows us to find an decision-making strategy that optimizes
our rewards in an environment described by a Markov Decision Process. Lastly, we
turn to Hidden Markov Models in Section 6, to examine how computers can begin
to understand and interact with the world when they can only partially observe the
details of their environment.

Throughout this paper, our central goal is to eliminate the common misconception
of Machine Learning’s complexity by breaking each algorithm down to its founda-
tional mathematical roots. At its core, this paper emphasizes that mathematics is
the language by which we explain the world around us, a concept that persists even
into the digital world.

2. LINEAR CLASSIFIERS & THE PERCEPTRON

2.1. Binary Linear Classifiers [1]. A key capability of Machine Learning is the
ability to learn how to classify an object. When we classify something, we use its
characteristics to identify which class it belongs to. For example, given a photo-
graph of a pet, we can create a classifier to determine whether the photo is of a
dog, or of a cat. Generally, the objects we hope to classify might be photographs,
emails, or even songs, which can be hard to define numerically. In order to make
these problems tractable, we will represent the characteristics of a given object as
an input vector, € R? and we will represent the resulting class as an output
y € R. Broadly, a classifier is a process or algorithm that, given input «, predicts
the resulting class y. While classification can extend to multiple classes, this paper
will focus on binary classifiers wherein y € {—1,1}.

A SURVEY OF DISCRETE MATHEMATICS IN MACHINE LEARNING 3

Classifiers come in many forms, but perhaps the simplest to understand, and the
most critical for a strong understanding of Machine Learning, is the linear classifier,
which will be the focus of this section. Linear classifiers are relatively powerful
alone, and form the basis for a multiplicity of more advanced Machine Learning
methods.

Definition 2.1. A linear classifier is characterized by a vector @ € R? and a scalar
offset 8y € R. A binary linear classifier 6,60y maps an input vector € R? to a
predicted output value y, € {—1,1} by taking a linear combination of the elements
of x:

(2.1) Yy, = sign(0” x + 6)

We can think of 8,6 as a hyperplane dividing R? into two half-spaces. Here we see
the essence of classification by a binary linear classifier: the half space on the same
side of 6,6 as the normal vector is the positive half space, where the positively
classified points reside, while the half space on the opposite side is negative, and
the points there are classified as negative. Combining this notion with the above
equation, an input @ for which 87 + 6, > 0 is classified as positive, otherwise @
is classified as negative.

In classification problems, we are generally given a set of data points
Dy = {(@,yW), .., (™, y")}

where each () is the vector representation of the characteristics of the ith data
point, and 3 is the true classification of the object. Our goal will be to find a
binary linear classifier 8,6, that does the best job at classifying the data points
correctly, which we can use to classify points that we haven’t seen before. This
process of finding a good classifier based on our data is called training.

Having described our classification problem, one might wonder how we define suc-
cess for a classifier. We’ve said that we want to find a classifier that does the “best
job” at classifying the data points correctly — we will now formalize this concept.

Definition 2.2. Given a dataset D,,, the training error Eg g, of a classifier 8, 6,
is defined as

(2.2) g 1 i 1if sign(87x® + 65) =y £y
. 6,00 = —

7Y — |0 else
Observe that the training error on an individual data point is equal to 1 when it
is incorrectly classified by the linear classifier, and 0 when it is correctly classified
by the linear classifier. Thus, the training error for a linear classifier represents the
average number of classification errors over the entire dataset. The best classifier
for a given dataset, and the classifier that we want to find, will be the classifier that
minimizes the training error.

Now that we have an understanding of the general process of training and the
criteria by which we evaluate a classifier for a given dataset, we can introduce a
simple algorithm which, under some conditions, will reliably find a good classifier.

4 SAMUEL DORCHUCK, AMY KIM, AND ABIGAIL MOSER

2.2. The Perceptron Algorithm [3]. Although the Perceptron is largely obso-
lete in modern Machine Learning, it lays the groundwork for the kind of mathe-
matical reasoning used in Machine Learning, and is often considered one of the first
examples of a Machine Learning algorithm. The following pseudocode outlines the
Perceptron algorithm, run on the dataset D,,.

Algorithm 1 Perceptron: Find @ and 0y in 7 iterations

0 = [00...0]T
0o =0
fort =1to 7 do
for i =1ton do
if y(i)(BT:B(i) +6y) <0 then
0 =0+ yDg®
0o = 0o +y?
end if
end for
end for
return 6,6,

The Perceptron algorithm runs for some predetermined number of iterations 7. On
each iteration, the algorithm runs through each point in the dataset, and checks if
the current linear classifier 8, 6y correctly classifies object ¢. If the point is classified
correctly, then no change is made to the current classifier. However, if object ¢ is
misclassified, then 0, 6 are shifted such that they are closer to correctly classifying
object i. The algorithm terminates either after 7 iterations, or if none of the points
are misclassified by a given classifier (i.e. if we find a good separator before the Tth
iteration).

It turns out that the Perceptron can produce the best possible classifier for a dataset
in a finite amount of time, as long as the dataset can be separated at all.

Definition 2.3. A dataset D,, is linearly separable if there exists some classifier
0,6} such that

(2.3) y DO T2 +03) >0vV1<i<n

i.e. all predictions made by the classifier on the training set are correct. Such a
classifier 0%, 6} is called a perfect separator.

Example 2.4. Consider the dataset {([1,1],1),[—1, —1], —1} in the in the R? plane.
This dataset is clearly linearly separable — an example of a perfect separator is
illustrated in Figure 1.

We claim that the Perceptron can return a perfect separator for a linearly separable
dataset. We call this property convergence. It turns out, however, that due to the
simplicity and power of the Perceptron algorithm, we can prove something stronger
than convergence. We will show that under a certain set of conditions, we can find
an upper bound on the number of iterations it takes for Perceptron to converge
(produce a perfect separator).

A SURVEY OF DISCRETE MATHEMATICS IN MACHINE LEARNING 5

O

FIGURE 1. An example of a linearly separable dataset. Here, red

points correspond to negative points (i.e. points such that y = —1),
and green points correspond to positive points (i.e. points such
that y = 1).

Before we can prove this property, called the Perceptron Convergence Theorem, we
will define a term that allows us quantify how well a linear separator classifies a
point.

Definition 2.5. The margin (%) of a data point (az(i), y(i)) with respect to a linear
separator 0,6, is

o 072" +6

We use [|6]| here to represent the magnitude of the classifier. Note that the term
% represents the distance from x((which can be visualized as a point in

R?) to the classifier (which can be visualized as a hyperplane in R?). The margin
then represents the positive distance from the point to the classifier if the point is
classified correctly, and the negative distance if the point is classified incorrectly.

We can extend the concept of the margin of an individual point to the margin of
an entire dataset.

Definition 2.6. The margin v of the dataset D,, with respect to a linear separator
0,0, is defined as the minimum margin over every point in the dataset:

) T (4)
(2.5) ~ = min <y(z) . 0“"||0|+90>

Thus, only when all objects in the dataset are classified correctly will the margin
of D,, be positive. In this case, the margin will represent the distance between the

6 SAMUEL DORCHUCK, AMY KIM, AND ABIGAIL MOSER

hyperplane
defined by [)
o*

¢ A

margin y

FIGURE 2. Minimum margin v between the linear separator de-
fined by 6" and all points

hyperplane and the closest point in the dataset, as illustrated in Figure 2. We are
now ready to state the full theorem.

Theorem 2.7. (Perceptron Convergence) Given data set D,, such that:
(1) There exists some linear classifier 0% for which the margin of D, with
respect to 0™ is v > 0, and
(2) [|le@|| < RV1 <i<n,

the Perceptron algorithm will make at most (%)2

mistakes before convergence.

Note that for the purpose of this theorem and the corresponding proof, we will
incorporate the offset 6y into 8, such that the separator is (d + 1)-dimensional.

Proof. Let o) represent the separator after the perceptron algorithm has made
k misclassifications. Note that the algorithm initializes 0¥ = 0. We will show
that the angle between the perfect separator 8* and O(k), illustrated in Figure 3,
decreases on every iteration of the perceptron algorithm until 8* = 0™ for some
final step n.

hyperplane
defined by
o* misclassified
points

r

angle i

hyperplane
defined by
el

FIGURE 3. Angle between the perfect separator, 8%, and the sep-
arator after k mistakes, o)

A SURVEY OF DISCRETE MATHEMATICS IN MACHINE LEARNING 7

The cosine of the angle between 6 and G(k), is defined as the dot product of the
two vectors:

ok) . g*
* o)y _ Y "~ Y
os(8% 070 = g g7

(®) . g*
(2.6) _ (an"*?)(He(lk)')

The first term can be decomposed by splitting 8%) into the previous separator
0*=1 and yDx() as defined by the perceptron update step. This assumes that
the kth mistake occurs on the ith data point, (.

o) . g* (g(k—l) + y(i)w(i)) .0*

e 167
k=1 g% ygl . g*
= * + *
167 167
o(k—1) . g*
Z T lo*l +7
1671

The last step follows from the definition of the margin of a dataset. Now, notice
that we can repeatedly apply this decomposition:

o) .g* gk—1) . g*

2 % +
1671 1671
9(k—2) . g*
22— T+
67|
- o . g*
> 7++
67|
o) . g*
(2.7) —ae = kY
1671

Using condition (2) of the theorem, we can similarly decompose the second term:

1 1
1002 [jo%k=1) 4 (g (]2
B 1
10D |12 4 25D gR=D) () 4 || ||2
>_ 1
~||e*D|2 4 R2
1 1
> >
TOM|2 + R2 + ...+ R2 T kR?
1 1
2.8 _— > .
2 0@ = ViR

Finally, we can substitute the inequalities (2.8) and (2.7) into our original equation
(2.6), using the fact that cosine can have a value no larger than 1. Further note
that when the cosine between the two linear separators is equal to 1, the two align

8 SAMUEL DORCHUCK, AMY KIM, AND ABIGAIL MOSER

with each other perfectly. Simplifying, we obtain

cos(0*,0%)) > L~ (ﬁ)

1> YRy
- R

< (22

k< (7) .
Therefore, the Perceptron algorithm makes at most k = (%)2 misclassifications
before the angle between the Perceptron-yielded classifier and the perfect separator
is such that the Perceptron-yielded classifier makes no mistakes. [

Now armed with the knowledge of linear classifiers and one method by which they
are computed, one has the necessary background knowledge to launch into more
complicated and powerful classification algorithms.

3. NEURAL NETWORKS: ERROR BACK PROPAGATION & GRADIENT DESCENT

3.1. Introduction to Neural Networks [2]. So far, we have been looking at
the types of Machine Learning problems that can be solved using linear classifiers:
given a set of dimensions, or variables, how can we construct a particular model
that optimizes our predictive power? While incredibly important and very powerful,
however, linear classifiers are limited by their functional form. Often, in Machine
Learning, we are faced with problems where we do not know what our variables will
be, or even what kind of model we might want to use. For these dynamic problems,
neural networks, with their flexible structure, are an invaluable tool.

We begin by defining the components of a neural network.

FIGURE 4. Diagram of a neuron with weights w, offset wg, and
activation function f.

Definition 3.1. A neuron is a function that maps an input vector & € R™ to a
single output a, as illustrated in Figure 4. We characterize a neuron by a vector of
weights w € R™ and an offset wy € R, which is used to calculate the pre-activation
z = wlx + wy. The pre-activation is then passed through an activation function
f : R = R, to produce the output a = f(z). The output of the neuron can be
written as:

(3.1) a= f(wlz +wp)

Example 3.2. We've already seen one example of a neuron-like function — a binary
linear classifier. Recall that in Section 2, we looked at binary linear classifiers in R,

A SURVEY OF DISCRETE MATHEMATICS IN MACHINE LEARNING 9

characterized by the model y, = sign(67z + ;). Note that this closely resembles
the structure of the neuron — in fact, if we choose weights w = 0, offset wy = 6y,
and f to be the sign function, we have a neuron that replicates the behavior of a
binary linear classifier.

A neuron describes a function that “learns” one piece of information about an
input. As promised, however, neural networks are much more powerful than simple
linear classifiers. As a first step, we can combine neurons to produce a vector of
outputs, representing multiple pieces of information about an input.

f) 0 = f(z2)
0
g’
T
@ .
2%, ?00))2
f() an f(zn)

FIGURE 5. Diagram of a layer of a neural network with weights
W, offset wq, and activation function f.

Definition 3.3. A layer of a neural network is a function that maps an input
vector & € R™ to an output vector a € R"™. We can visualize this as a combination
of n neurons, as depicted in Figure 5. Accordingly, we can combine the weights
w1, Wa, ..., Wy of each neuron into a matrix W € R™ x R™ and combine the offsets
wo,1,Wo,2, ---, Wo,», Of each neuron into a vector wg € R™, to produce preactivation
vector z = W'z + wg. We can then apply the activation function pointwise to
each preactivation, to produce output vector a. We can now denote the output of
the layer as:

ax f(z1) w1l +wh
T 2

(3.2) a= a:Q = f(:Z2) =f b :c T) = f(WTz + wp)
a-n f(zn) wnTw. + w6L

Finally, we can put together multiple layers of neurons to form a neural network.
This allows us to continually extrapolate information from our data, then extrapo-
late information from the results of the previous layer, resulting in a finely-tuned,
extremely powerful network.

10 SAMUEL DORCHUCK, AMY KIM, AND ABIGAIL MOSER

Wl wl 1. W?2: w? 2(. WL wk Ly,
- ; Wq 1) al 3 Wy L2 f20) N L f20) oF

Layer 1 Layer 2 Layer L

FIGURE 6. Diagram of a neural network with L layers.

Definition 3.4. A neural network is a connected series of layers, where we use
the output a! of layer [as the input to layer I + 1. This is depicted visually in
Figure 6. We specify the weights, offsets, and activation function for each layer
with a superscript, so we say that layer has input a'~', weights W', offset wq!,
preactivation z!, and activation function f'. We can now denote the output of layer
[as:

(3.3) a' = f{WTa""" + wo')

FIGURE 7. XOR Classification in R2.

Example 3.5. Let’s look at an example of a slightly more challenging problem.
The XOR classification problem, as illustrated in Figure 7, cannot be solved by a
linear classifier in R?, but it can be solved using a simple neural network. Here,
our input x is a point [z1,72] € R%. Qualitatively, XOR requires us to compare
the signs of our two inputs. In a neural network, we can achieve this by extracting
the sign of each input in the first layer, then comparing them in the second layer,
providing a second level of analysis which is not possible with a linear classifier.
This neural network is illustrated in Figure 8, and we can see that it produces
output
a? = |22| = [sign(w1) — sign(x2)|

This output will be equal to 0 if 1 and x5 have the same sign, and 1 if they have
different signs, as required.

Now that we have defined this new type of model, we need to determine a way
to set the weights which correspond to each layer of the network. Note that the

A SURVEY OF DISCRETE MATHEMATICS IN MACHINE LEARNING 11

f

Y

FIGURE 8. A neural network for the XOR classification problem
in R2. Note that all offsets are set to zero.

activation function also plays a key role - we will not discuss choosing an activation
function here, but the choice will depend on the type of data we have, and the
problem we are trying to solve. For example, logarithmic activation functions tend
to be used when we are seeking to output a probability. In order to introduce an
algorithm for determining the optimal weights, we will first look at optimization
techniques.

3.2. Gradient Descent [2]. Recall that the goal of our neural network is to output
a prediction given our input data. In order to evaluate how “good” our prediction is,
we need some way of measuring the penalty, or the “loss” of an incorrect prediction.

Definition 3.6. A loss function L(y,a) describes how much we training error is
incurred for predicting output a, when the actual output should have been y. Then,
a neural network is considered optimal if it has a minimized total loss summed over
all data points in the data set.

We want to train a model that minimizes this loss. This is fairly easy when our loss
function is simple, and our data has very few dimensions: we know from multivari-
able calculus that a function can be minimized or maximized over several variables
by taking first order derivatives and setting them to zero. As our datasets get larger,
however, we run into problems with this technique. Taking partial derivatives of
the loss function for each data point in a large dataset is incredibly computationally
intensive, and additionally, it is often the case that our loss function is too compli-
cated for us to actually calculate the derivative. We introduce a popular method to
find the minimum point of a multi-dimensional function, called Gradient Descent,
which discretizes the continuous problem of optimization, and makes it computa-
tionally tractable.

Below, we describe the pseudo-code for the Gradient Descent Algorithm. In short,
the Gradient Descent Algorithm optimizes the weights w of a Neural Network
by repeatedly taking steps in the opposite direction of the gradient of the loss
function. The goal of Gradient Descent is to find the weights of a Neural Network
that minimize the loss function over some data set.

12 SAMUEL DORCHUCK, AMY KIM, AND ABIGAIL MOSER

Algorithm 2 Gradient Descent: Determining parameters w to minimize loss
L(w,y) with initial value w;,;;, step-size 1, and accuracy parameter e

Wo = Winit

t=0

while |L(w;,y) — L(w¢—1,y)| > € do
t=t+1
wi = wi 1 — NVl

end while

return w;

Intuitively, at every timestep of the Gradient Descent algorithm, we are stepping
in the direction of greatest decrease in the loss function, until we get close enough
to the minimum. The step size parameter 1 controls how big of a step we take, and
the accuracy parameter € controls how close we want to get to the true minimum.
When 7 is too large, it is possible to overstep the true minimum, and when it is too
large, it is possible to never reach the minimum, so this must be a carefully chosen
value. We will not discuss how to choose 7 in this paper, but this is useful intuition
to understand the nuances lurking in this algorithm. Epsilon can be thought of as
a margin of error, and is up to the algorithm user to determine the level of error
they are willing to tolerate. Unfortunately, we still have to calculate the gradient
of the loss function at each step, V,,L, which is a vector of the partial derivatives
of L with respect to each component of w.

Note, however, that since this algorithm only evaluates the gradient at a specific
point, we can easily approximate the gradient local to that point, which is incredibly
useful if we have a complicated loss function. Furthermore, if we have a large
dataset, we can use a technique called stochastic gradient descent, which allows us
to pick a random point at every time step instead of running the algorithm on the
entire dataset every time. It turns out that this randomized method still does a very
good job of approximating the optimal value, while requiring far less computational
power.

Algorithm 3 Stochastic Gradient Descent: Determining parameters w to minimize
loss L(w,y) with initial value w;,;, step-size n, and accuracy parameter €

Wo = Winit

t=0

while |L(w;,y) — L(wi—1,y)| > € do
t=t+1
Pick random point w; in w
wy = w1 — NV, L

end while

return w;

3.3. Error Back-Propagation [2]. In the context of a neural network, we will
often have a set of “training data”: recall from Section 2 that this is a sample set of
data with inputs x4, ®s3, ..., T, which we can combine into a matrix X, and their
associated outputs yi1,¥ys, ..., Yn, which we can combine into a vector y. We use

A SURVEY OF DISCRETE MATHEMATICS IN MACHINE LEARNING 13

our training data to optimize the weights (by reducing the error) of, or “train” our
neural network, so that we can use our network to reliably predict outputs given
data where the actual output is unknown. We can use stochastic gradient descent,
optimizing over the weights of each layer, to train our network.

The difficult part will be calculating the gradient of the loss L(N N (z; W), y), where
NN (x; W) represents the output of the neural network with input & and weights
W, with respect to the weights of all the layers. We will start by calculating the
gradient of loss with respect to the last layer, W, by applying the chain rule.

oL 0L 8aL_ 0zL
OWL — 9al 9zL WL

L . .
Note that 2 = WETal=1 so g‘;L = a’~!. This is true for any layer, so we can

write the partial derivative of loss with respect to layer [, rearranging to match
dimensions, as

oL -1 (oL)T
— = Q —_—
oWl 02!
Now it remains to find %. We can again apply the chain rule:

OL 0L Oda 09z% far? datt 9zt Oal

0zl Oal 0zL 0al-! 0zL-1 ™7 9zi+1 9Jal 92!
Again, since zF = WHTa*=1 we have 8%51 =Wkiforalll<k< L. %: depends
solely on f*, so given the function f* and the entry zf , we can calculate all the

(3.4)

entries in this matrix. Finally, the last part of the equation, 88(1—%, depends on the
loss function and the output of the neural network. Putting it all together and
rearranging to match dimensions:

oL Oa! —_ daltt dal=t . dal OL

0zl 0zl 2T gplT " 9zL dal

Combining this with Equation 3.4, we obtain a closed-form expression for the gra-
dient of loss with respect to any layer (.

oL _ l_l(aal ey dalt? dat—t . dal IL)T

oWl

(3.5)

(3.6) 021 0z T gal—1 0zL dal

At each step of the stochastic gradient descent algorithm, we update the weights
by first doing a forward pass to compute all of the @ and z values at each layer, and
eventually the final output and the corresponding loss. Then we work backwards,
using error back-propagation to compute the gradient of the loss with respect to the
weights in each layer. This can be thought of intuitively as “assigning blame” to
the weights in each layer; that is, how much did that layer contribute to the overall
loss. We use this gradient to complete the gradient descent step on our chosen
random point, then start all over again with another random point. Eventually, we
obtain a neural network that minimizes loss given our training dataset.

4. VC DIMENSION & EPSILON NETS

4.1. VC Dimension [6; 9]. Having introduced a series of Machine Learning mod-
els, including linear classifiers and neural networks, it is critical that we have some
means of quantifying how powerful these models are. The Vapnik—Chervonenkis

14 SAMUEL DORCHUCK, AMY KIM, AND ABIGAIL MOSER

(VC) dimension is one such way of quantifying the capacity (power, com-
plexity, expressive power, flexibility) of a binary classification model.
Recall that a binary classification model is a model which classifies objects into one
of two classes (e.g. +1 or -1). Capacity is somewhat of a vague notion, so it helps
to think of it as the following verbal descriptions:

Ability to handle complexity

Representational power

How complicated of a pattern or relationship the classifier can express
How well the classifier generalizes

Using the VC dimension, we have place a quantitative value on these notions for a
given model.

First, we will define the concept of shattering.

Definition 4.1. A binary classification model shatters a set of points in R? if for
all assignments of labels (negative or positive) to those points, there exists some
parameter vector 6 such that the model correctly classifies every point.

Example 4.2. We will break down this definition visually through a series of
examples. The following dataset of two points is shattered by sign(6; 21 46222 +60),
a linear classifier in R2. First, notice the assignments of true values: there are always
2™ assignments when objects are classified in a binary fashion.

FIGURE 9. A graphical illustration of D;.

We construct a dataset D; of all 2™ assignments of truth values to two points in
R?, as illustrated in Figure 9. Having enumerated each possible training set, we
can now show that D; can be shattered by drawing linear separators which are
perfect separators. Since D; consists only of two points, and thus there are only
4 assignments of truth values we must consider, we can easily and visually draw
classifiers by hand. However, in more complicated cases (e.g. more complicated
neural networks as our model or larger datasets) we must use a machine and an
algorithm which determines the proper linear separator (if it exists) in each case.
We could use any of the algorithms discussed in the previous parts of this paper,
including the Perceptron, Gradient Descent, and Error Back Propagation.

In this simple example, it is clear that the dataset can be shattered by a linear
classifier, as depicted by Figure 10. However, there are many scenarios under which
this is not the case.

A SURVEY OF DISCRETE MATHEMATICS IN MACHINE LEARNING 15

% N N

FicUure 10. Constructing linear classifiers using the parameter
values 0, 0y to perfectly separate the data between +1 (green) and
-1 (red).

Example 4.3. Consider a model which is a circle centered at the origin, where the
only changeable parameter is the radius, . This model always has normal vector
pointing inwards. Can this model shatter the following two points, enumerated in
Figure 11, in R2?

F1GURE 11. The 2™ assignments of truth values to two other points
in R2. Define this dataset D-.

We now seek to determine a classifier for each possible training dataset which
contains only the positively classified points inside the circle (in the direction of the
positive normal to the circle), and the negatively classified points outside.

S A
P [

FIGURE 12. Attempting to construct circular classifiers which per-
fectly separate the data between +1 (green) and -1 (red).

However, unlike the previous example, we cannot do so! According to Figure 12,
we see the following successful cases. When both points are classified positively,
the circle can encompass both, with normal vector pointing inwards. When both
points are classified negatively, we have a small circle which doesn’t encompass
either point, such that outside the circle represents the negative class. Finally,

16 SAMUEL DORCHUCK, AMY KIM, AND ABIGAIL MOSER

when there is one positive point and one negative point where the positive point is
closer to the origin, the circle’s perimeter splits the two points into two sub-planes,
with the positive point encapsulated by the circle. Now, it is clear why the second
assignment of values to points in the above image cannot be classified by this type
of model - there is no way to encompass only the positive (green) point by the
circle, but not the negative point. As a result, we say that the circle centered at
the origin with inward pointing normal vector does not shatter Ds.

Having concluded these two informative examples, we have laid the groundwork to
define VC Dimension.

Definition 4.4. The VC Dimension of a model f is the maximum number of
points that can be arranged such that some instance of f can shatter them.

It is key to observe that the definition mentions any arrangement of points; that
is, it suffices to show that a single arrangement of points forces us to be unable
to find a classifier, thus making that quantity of points un-shatterable, and thus
a non-inclusive upper bound for the VC-Dimension. Given this definition, we can
look to the previous example 4.3. Since the circular function cannot shatter the Do
which has two points, we say that the VC Dimension of our origin-centered circle
is 1. It is true by observation that this model can shatter a single data point, but
simply encompassing the point, if positive, by the circle, otherwise not. Thus, 1
point is the maximum number of points that can be arranged such that the circular
origin-centered model cannot shatter them.

Let us shift focus to a more generalized example, connecting the previous Perceptron
algorithm and linear classifiers to the VC-Dimension.

Example 4.5. Recall that the Perceptron yields a binary linear classifier of the
form:

f(.’E; 9) = Sign(91x1 + 021’2 + ...+ 9d+1xd+1 + 90),

for N = d + 1 points in R We will now introduce a theorem regarding the
VC-Dimension of a classifier of this form.

Theorem 4.6. The VC Dimension of a linear classifier of the form f(x;0) =
sign(thetaixy + 0229 + ... + Ogi12441 + 00) on N = d + 1 points in R? is equal to
exactly d+ 1.

Proof. In order to show that the VC-Dimension, dy ¢, is exactly equal to d + 1, we
will prove two bounds: (1) dy¢ > d+ 1, and (2) dye < d + 1, thus implying that
dye=d+1.

(1) dye > d+ 1. It suffices to show that there exists a set of d + 1 points such that
f(z;0) can produce any pre-specified {+1, 11} assignment of values. Since each of
the n+ 1 input vectors z(¥) is a vector in R%, we can construct an (n+1) by (n+41)

A SURVEY OF DISCRETE MATHEMATICS IN MACHINE LEARNING 17

input matrix X.

- 4 11 0 o0 0

xf
110 ..0

x3
10 1 0

X: =
i 10 0 1

The first coordinate of each row is 1 in order for the bias term 6y to be produced.
By observing the matrix X, we notice that it is invertible, because its columns are
all linearly independent. As a result, we guarantee that f(x;#) shatters any d + 1
points by choosing the 6, 8y which guarantees sign(6yx1 4 02z2+ ...+ 04112441 + 6o)
always equals y. First write the combination of § and 6y as the matrix 6" for sim-
plicity. Now, choose 6’ = X1y such that X6 = y implies sign(X6') = y. Thus
due to X’s invertibility, we have shown that f(z;6) shatters at least d 4+ 1 points.

(2) dye < d+1. Now, we must show that no d+2 points can be shattered by f(x;8).
That is, there is some assignment of y values to d + 2 points in (d + 1)-dimensional
space which are not separable by f(x;6). First, observe that this requires the set
of points to be linearly dependent, since we have more points than dimensions in
our matrix X. This means that at least one () can be constructed as a linear
combination of the other x vectors.

We can formalize this relationship as: 2 = ZZ oy a;z(9 such that not all a; are
0. Since every assignment of y values to each point must be perfectly classified by
f(z;0) in order for the dataset to be shatterable, we can choose any assignment of
y values to show that this fails. Choose y) = -1 and 3y = sign(a;) = sign(f1z; +
029 + ... + 04417941 + 0p). We proceed by calculating sign(67 ("), which is the
predicted value of yu), to show a contradiction. We can rewrite as follows:

Yi)ea = sign(672)

= Sign(z a;0Tz)
i#]
>0

= yia Ay =-1.

To summarize the above math, the sign of a; and the sign of #7z(") are by defini-
tion equivalent, so multiplying the two quantities yields a positive number. Thus,
the prediction on data point j must be positive, so the assignment of truth values
to each y where y(9) = —1 is not perfectly separable by the linear classifier with
d + 1 parameters. Thus, there exists an assignment of d 4+ 2 points not separable
by f(z;0), so dye < d+1.

Combining (1) and (2) which state respectively that dy¢c > d+ 1 and dye < d+1,
we have only one remaining quantity for the VC-Dimension of f(x;#), which is
d+ 1. In other words, the VC-dimension of a linear classifier is proportional to the

18 SAMUEL DORCHUCK, AMY KIM, AND ABIGAIL MOSER

data dimension, and equals the number of parameters of the classifiers. Note that
although the data is in R?, there is one additional parameter, 6y, contributing to
the increase of 1 in the VC-Dimension. O

Recall our initial definition of capacity, which states that a model’s capacity is a
function of its representational power, and how complicated of a relationship the
classifier can express. It is therefore intuitive that a linear model has capacity (as
quantified by VC-Dimension) proportional to the number of parameters, or degrees
of freedom!

4.2. Epsilon Nets [5]. In Machine Learning, we often deal with very large train-
ing datasets, which require a lot of computational power, even with the efficient
algorithms we have already discussed. One way that we can reduce the computa-
tional complexity of a problem is by randomly sampling some of the points in our
data. However, in predictive problems, especially for classification problems, we
want to make sure that we sample enough points to get a representative picture of
the data. For instance, in the previous section we discussed the XOR classification
problem. We can easily see (in Figure 7) that we have four "types” of points: the
two positive quadrants and the two negative quadrants. So when we’re sampling
from a dataset used for the XOR problem, we would want to make sure we sample
enough points to be reasonably certain that we get a point from each of the four
"groups”. We call a representative sample of points an epsilon net, i.e. a set of
points that cover all sufficiently large ”groups”.

Definition 4.7. An e-net is a sample N of sample space X and set space S, such
that N intersects all sets that contain at least €| X| points.

The question is, how do we calculate the number of points to sample for an arbitrary
model? It turns out that we can use the VC dimension of a model to solve this
problem.

Theorem 4.8. If sample space X with set space S has VC Dimension d, then a
uniform random sample N of size O(%1n(1/e€)) is an e-net with probability at least
1/2.

Proof. First, set s := ¢ 4in(1/€). This will be the number of points we want to
sample for N. Instead of directly sampling s points, however, we’ll try to sample
set A with twice as many points as we need — i.e. pick |A| = 2s random points.
Then pick half of the points in A at random to be in N. The remaining points will
be set M = A\ N. We'll also assume that all sets have size at least €| X| (if there
are any small sets, we can simply ignore them).

Now we’ll define two important events:

E7 = There exists a set S* € S that does not intersect N
E5 = There exists a set S* € S that does not intersect N
and that intersects M at least k := 1/2es times

Claim 1: LP[E,] < P[E;) < P[E).
Note that P[E;] < P[F4] is immediate. Furthermore, this claim is true if N is

an epsilon net: by definition, an epsilon-net must intersect all sets of size at least
€|X|, so if N is an epsilon-net, then N cannot fail to intersect any set S, and so

A SURVEY OF DISCRETE MATHEMATICS IN MACHINE LEARNING 19
iP[E1] = P[Ey] = 0. So it remains to show that this is true if NV is not an epsilon net.

Now fix set S* such that S* does not intersect N. Let y := |M N S*|, the number
of points in M that lie in S*. Note that we can simply show Ply > k] > %, since
this implies that the probability of Es is at least 1/2 of the probability of E;.

Recall that |M| = s. If we select a random point from X, the probability that the
point is in S* is at least e. Since we draw s points independently to create M,
Ely] (the expected number of points in M that lie in S*) is at least €-s = 2k. Using
Chernoff bounds, we can simplify our expression to obtain:

Ply >] > Ply > JE[y]) > 1 — exp(~1/8E]y)

Note that E[y] = ¢-d1n(1/€), so we can choose constant ¢ large enough that this is
bounded by 1/2.

Claim 2: For every fixed choice of A, we have P[E,|A] < 1.

Once we fix A, we only need to consider sets in A. Formally, we only consider
sets S’ € {S; N A|S; € S}. Note that this new set system still has VC dimension
bounded by d.

Next, consider some specific S’ € A. Es requires that there are at least k points in
S’, and also that the points we choose for N don’t come from S’. Then there are
at most (QSs_k) ways to choose N such that Fs is true, and (2;) ways to choose N
in general. So we can write:

2s—k
B[E,|A, §') < <(fs)) < exp(—k/2) = (1/¢) /4
Finally, note that since our set system has VC dimension bounded by d, we can
bound the number of sets S’ from above by (122)? = (12cIn(1/e)/€)? (again, we
won’t prove this here). We can now apply the union bound:

P[E,|A] < [number of sets S'] - P[Fy|A, §'] < (1/€) ¥4 . (12¢In(1/€) /e)?
< (126(1/e)? - (1/6)C/)!

We can pick arbitrary C large enough that this is bounded by 1/4. So we have
P[E4] < 2P[E2] < 2(1/4) = 1/2, as required. O

With the introduction of VC-Dimension and Epsilon Nets, we have introduced both
a method to quantify the complexity of a classifier and a method to calculate the
number of points to sample for a model. Using these tools, we can tune our Machine
Learning models to precisely as powerful as desired.

5. MARKOV DECISION PROCESSES

5.1. Introduction to Decision-Making Processes and Markov Models [8].
At this point in the paper, we shift from analyzing predictive algorithms and their
complexity to examine decision-making processes. In short, decision-making
processes enable a machine to learn how to optimize a utility func-
tion through repeated interactions with an environment. Therefore, any
decision-making process requires feeding a machine a utility function and allowing

20 SAMUEL DORCHUCK, AMY KIM, AND ABIGAIL MOSER

the machine to interact with some environment for some time. Through experi-
ence, the machine will identify possible decisions, obtain a reward for selecting an
optimal action, and reinforce its proclivity to select the same action in the future.
That is, when the machine experiences a positive reward for taking some action,
they will continue to take that action when in the same circumstance in the future,
and they will avoid actions that yield lesser or negative rewards.

Markov Models are a common structure taught in any introductory discrete math-
ematics course, and are often used to simulate decision-making processes.

Definition 5.1. A Markov Model is a discrete-time stochastic process satisfying
the following condition, which we call the Markov Property:

(51) P(St+1|81782,...8t) :P(St+1|5t).

That is, the conditional probability of future states depends only on the current
state.

We begin by introducing the Markov Chain, which is an example of a type of
Markov Model.

Definition 5.2. A Markov Chain is a temporal sequence of states, in which tran-
sitions between each state occurs based on a probability distribution. A Markov
Chain is characterized by:

e S: A finite set of possible states, where s; represents the state at time .
e T: A stochastic state transition matrix, where the jth entry in the ith row
T;j = P[s¢11 = j|s¢ = i] represents the probability of transitioning from
state ¢ at time ¢ to state 7 at time ¢ + 1.
Additionally, the Markov Chain is an example of a Markov Model, and so it must
also satisfy the Markov Property.

0.2

:
o

FIGURE 13. Above is a standard Markov Chain highlighting the
stochastic transitions between states. In this example, the Markov
Property means tomorrow’s weather depends only on today’s
weather, and not on last week’s blizzard!

0.6

Example 5.3. Consider the Markov Chain illustrated in Figure 13, which can be
defined by the following components:

e The set of states S = {Rainy, Sunny}
e The transition matrix

A SURVEY OF DISCRETE MATHEMATICS IN MACHINE LEARNING 21

0.2 0.8
T= [0.6 0.4]

With some intuition for Markov Chains and Markov Models, we can now define
several properties of Markov Chains.

Definition 5.4. A Markov Chain is autonomous and fully observable, because
one can simply completely observe the process and current state, but cannot take
actions to modify the state. As we will see in the next two sections, various types of
Markov Models emerge as we vary the user’s ability to take actions, obtain rewards,
and observe the state of the system. This is illustrated in Table 1.

Types of Markov Models

System is Autonomous | Markov Chain Hidden Markov Model

System is Controlled Markov Decision Process | Partially Observable MDP

TABLE 1. Types of Markov Models, categorized by whether the
model is autonomous or controlled, and fully observable or partially
observable.

5.2. Markov Decision Processes [8]. In a Markov Chain, an agent may observe
the current state. In Markov Decision Processes (MDPs), an agent may also choose
an action and receive an immediate reward for that action. Furthermore, in MDPs,
the actions chosen by the agent affect the probability distribution of the next state.

Definition 5.5. A Markov Decision Process (MDP) is a type of Markov Model.
It is characterized by:

e S, a finite set of states

e A, a finite set of actions

e §:5x A — S, a stochastic state transition function for each state-action
pair

e R: S5 x A— R, areward function for each state-action pair

Example 5.6. At this point, it may be helpful to illustrate a problem which can
be cast into an MDP. In robotics, path planning is a crucial task in which the robot
interacts with the environment, observes its current state, and obtains rewards
based on reaching a certain state. Figure 14 illustrates the path planning task for
a robot in a simple environment. We can introduce a stochastic element in the
transitions by noting that a robot is most likely, with 0.8 probability, to move in
the direction of its action, with a small 0.1 probability of malfunction causing it to
move in either adjacent direction. Note that it is possible the robot may attempt
to move into a wall: if the robot moves into a wall, it simply remains in the same

22 SAMUEL DORCHUCK, AMY KIM, AND ABIGAIL MOSER

F1GURE 14. Above is a path planning problem highlighting states,
actions, and rewards.

state. Now, we can cast the path planning example problem into a Markov Decision
Process:

L4 S:{SO7SI7827S3}
e A = { Up, Down, Left, Right }
e i(s,a):
— 6(So,UP) =[0.1, 0.8, 0.1, 0.0]. That is, moving up from Sy causes the

robot’s next state to be S; with probability 0.8, So with probability
0.1 (malfunction to go right), and Sy with probability 0.1 (malfunction
to go right, hits wall, stays in place)
- 0(S51,UP) =10.0, 0.9, 0.0, 0.1]
—10if s =5
e R(s,a) = ¢ +100 if s = S3

0 otherwise

Therefore, we have effectively cast the robot path planning problem into a Markov
Decision Process, complete with a stochastic transition function, a series of actions,
and rewards.

Definition 5.7. In an MDP, a policy is a function 7 : S — A that prescribes which
action the agent will take from a given state. Given an environment model of an
MDP, our goal is to determine an optimal policy 7* that maximizes the
total reward earned by the agent over all time periods. This is called the
agent’s lifetime reward.

When defining lifetime reward, we encounter an obstacle - if an agent has a series
of actions that yield a positive reward, then the agent can repeat those actions
forever to obtain an infinite reward! To resolve this issue, we introduce the concept
of discounting. The principle behind discounting is simple - rewards obtained more

A SURVEY OF DISCRETE MATHEMATICS IN MACHINE LEARNING 23

immediately should have a higher weight than the same reward obtained in the
future.

Definition 5.8. A discount factor v € [0, 1) is a factor applied to all future rewards
so as to enforce a finite reward for an infinite lifetime MDP. A reward r, obtained
t periods in the future, is then discounted by ~*.

Lastly, let us introduce notation used for the remainder of this section. As a
reminder, subscripts are used to indicate the time step; therefore, s; is the state
in the 1st time step, as is the action taken in the 2nd time step, and r3 is the
immediate reward received from taking action ag in state s3 during the 3rd time
step, ie R(ss, as).

Definition 5.9. A value function V™ : S — R maps a starting state sg to the total
lifetime reward accrued by executing policy 7 at each time step, i.e. the value of
the policy from state sq.

(5.2) V™(s0) =10 +yr1 +2re 4+ . = Zyt * T

5.3. The Value Iteration Algorithm [8]. Now that we have defined the lifetime
reward of a policy for a given state, our goal is to find the optimal policy, that is,
the optimal decision for our agent in each state. Fundamentally, our algorithm to
determine the optimal policy 7*(s) is as follows:

1. Examine all possible policies 7 from s

2. Select the policy 7* with the greatest value. Expressed as a formula:

7 = argmax V" (s)

As such, we have shown how to extract the optimal policy from a series of Value
Functions for all possible policies. Therefore, in order to find the optimal policy of
an agent in the MDP environment, we are interested in only one Value Function -
the optimal Value Function V*. Let us definite the optimal Value Function V*:

V* = max V7 (s)

Then, our algorithm to find the optimal value function V*(s) is as follows:

1. Examine all possible actions a’ in set of actions A

2. Compute 7, the expected immediate reward for action o’ in state s

3. Compute I, the expected lifetime reward for the next state s’, assuming our
agent acts optimally from state s’ onwards

4. Select the action that maximizes r + [.

(53) V*(s) = max[R(s, ;) + V" (5(s,)]

Equation (5.3) is the formal statement of Bellman’s Equation. In short, Bellman’s
Equation states that the optimal value of a state is the immediate reward for that
state, plus the expected discounted reward of the next state. Note that our above
definition then relies on a pre-computed optimal Value Function V*. When imple-
menting, this recursive definition of the optimal value function requires dynamic
programming to compute efficiently and effectively.

24 SAMUEL DORCHUCK, AMY KIM, AND ABIGAIL MOSER

The most common algorithm to compute the optimal value function of an MDP
is known as Value Iteration. In this algorithm, we iteratively update our optimal
value function, stopping when the updates become negligible. Expressed in pseudo-
code format, the Value Iteration algorithm is as follows:

Algorithm 4 Value Iteration: Calculate Optimal Value Function V*
A = 2¢
t=20
VseS:Vi(s)=0
while A > e do
Vi (s) = maxgealR(s, ') +2V; (3(s,)]
A= V() = Vi (9)
t=t+1
end while
return V"

Armed with the Value Iteration Algorithm, we can now efficiently compute the
optimal Value Function V* for each state using the recursive power of Dynamic
Programming. By definition V*, we can now extract the optimal policy from the
optimal Value Function using a one-step lookahead process. That is,

" = argmax[R(s, a’) +7V7(3(s,a))]

Recall that our goal was to find the optimal policy 7*, which is the best move the
agent can make in each state in order to optimize its lifetime reward. Therefore,
we have constructed a series of algorithms by which a machine interacting with an
environment can find an optimal series of decisions. The basis for this ability is for
the machine to iteratively interact with its environment in the Value Iteration Al-
gorithm, and deduce optimal policies after calculating optimal values for each state.

In summary, Markov Decision Processes represent a powerful means to abstract
decision problems, and provide a robust method for optimal decision-making by a
machine. The foundation of this powerful capability is rooted in random walks over
Markov Models, probability theory, and recursion.

6. HIDDEN MARKOV MODELS

6.1. Hidden Markov Models [7]. So far, we have been introduced to Markov
models with fully observable states. Both Markov Chains and Markov Decision
Processes learn by observing the sequence of states — they can directly use this in-
formation to make predictions and draw conclusions about the system. In contrast,
a Hidden Markov Model (HMM), while still satisfying the Markov Property, does
not allow us to directly observe the state at any point in time. We are, however,
given access to a series of related observations, where each observation depends on
the current state. Therefore, an HMM requires an additional input of an observa-
tion model, which highlights the probability of each observation for any given state.

Definition 6.1. A Hidden Markov Model is a type of Markov Model. It is char-
acterized by:

A SURVEY OF DISCRETE MATHEMATICS IN MACHINE LEARNING 25

S: A finite set of states, where s; represents the state at time ¢.

e V: A finite set of observations, where o; represents the state at time ¢.

T: A stochastic state transition matrix where Ty; = P(si41 = j|s¢ = 9), as
in a Markov Chain.

e O: A stochastic observation matrix where the jth entry in the ith row
O;j = P(o, = j|s; = i) represents the probability of observing observation
J at time ¢ given that we are at state q.

Example 6.2. At this point, it is worthwhile to provide an example of a Hidden
Markov Model. First, let us refresh our weather Markov Chain example from Figure
13. Now, let us say that we are unable to directly detect the state - in this case,
the day’s weather - because we are a motivated Marine guarding the President’s
underground bunker. However, we are able to observe the President walking by
each morning either carrying an umbrella or wearing a baseball cap. Naturally,
the President’s attire choices are conditionally dependent on the weather outside,
but not perfectly correlated; for example, the President may be wearing a ball cap
not to protect from the sun but because the second greatest organization known to
mankind (behind the United States Marine Corps), the New York Yankees, have a
game tonight. In this example, the components of the HMM are as follows:

e The set of states S = {Rainy, Sunny}
e The set of observations O = {Umbrella, Ball-Cap}
e The stochastic state transition matrix
0.2 0.8
0.6 0.4

e The stochastic observation matrix:
Umbrella Ball-Cap

O:[0.9 0.1 }Rainy

0.4 0.6 Sunny

6.2. Inference Tasks on Hidden Markov Models [7]. Given a Hidden Markov
Model, there are known algorithms to solve a series of fundamental inference tasks:

(1) Filtering: Given, the available sequence of observations, what is
our belief about the current hidden state? Our goal with filtering
is to compute our current belief state, a probability distribution across all
possible states at time t given a series of observations from time step 1 to
time step t. Expressed mathematically, we want to find

]P)(St|01, 02, ..., Ot) = P(St|01:t).

In our weather HMM example from above, the filtering inference task is
computing the probability the weather is rainy or sunny outside today,
given the past week’s observations of the President’s umbrella or ball cap
accessories. Filtering is a fundamental inference task and solved using a
single forward pass to calculate a belief state, as we describe in the next
section.

(2) Smoothing: Given the available sequence of observations, what
is our belief about a past hidden state? Our goal with smoothing is

26 SAMUEL DORCHUCK, AMY KIM, AND ABIGAIL MOSER

to compute the belief state for time k < ¢ using all observations from time
step 1 to time step t. Expressed mathematically, we want to find

P(sg|o1,02,...,0¢) = P(sg|o1.¢) such that k < ¢.

In our weather HMM example from above, the smoothing inference task is
to compute the belief state of last Tuesday’s weather, given the past week’s
observations of the President’s umbrella or ball cap accessories. Smooth-
ing is a challenging inference task and is most commonly solved using the
Forward-Backward Algorithm.

(3) Prediction: Given the available sequence of observations, what is
our belief about a future hidden state? Prediction is an inference task
in which we project our current belief state in order to compute a future
belief state for time k > ¢, given observations from time step 1 to time step
t. Expressed mathematically, the structure for prediction is very similar to
that of smoothing. We want to find

P(sk|o1,02,...,0¢) = P(sg|o1.¢) such that k > ¢.

In our weather HMM example from above, the prediction inference task is
computing the belief state for tomorrow’s weather, given the past week’s
observations. Once we have found the current belief state for time t, any
prediction inference relies solely on the transition model applied to the cur-
rent belief state. Therefore, solving prediction for HMMs is equivalent to
prediction in Markov Chains.

(4) Most likely explanation: Given the available sequence of obser-
vations, what is the most likely sequence of states to have caused
those observations? Commonly called decoding, this task requires com-
puting a sequence of states that are the most likely to correspond to the
sequence of observations. Decoding is most commonly accomplished via
the Viterbi Algorithm and finds numerous applications in speech recogni-
tion and computational linguistics.

Lastly, it is worth mentioning that serious effort has been made to develop al-
gorithms for a machine to learn the transition or observation models of a Hidden
Markov Model. Although this paper will not dive into these advanced methods, the
reader may choose to research parameter learning in the Expectation-Maximization
(EM) Algorithm or for specific application to HMMs, the Baum-Welch Algorithm.

6.3. Derivation of Forward-Algorithm for Filtering [7]. Given the above def-
initions of inference tasks to be performed on a Hidden Markov Model, we now turn
to constructing and analyzing their corresponding algorithms. We will first exam-
ine the most fundamental inference task of a Hidden Markov Model. Given that
we are unable to directly determine the state of the system, we need a method to
determine the current state we believe the system is likely to be in — the belief state
at time t denoted as p;. As such, we will now apply fundamental rules of Prob-
ability Theory — such as Bayes’ Rule, the Chain Rule, and the Markov Property
(5.1) — to establish the Forward-Algorithm used for the inference process of filtering.

A SURVEY OF DISCRETE MATHEMATICS IN MACHINE LEARNING 27

First, we recall the mathematical definition of the filtering inference task, given by
(6.1) Pt = P(s¢]o1.t) = P(s¢|o1, 09,00—1, 0t).
Now, we apply Bayes’ Rule with a normalizing constant, as follows:

P(s¢|o1, 09,00-1,0t) =1 - P(of|s¢, 01:4-1) - P(s¢]01:4-1).

Then, by our definition of the observation model, the observation at time ¢ depends
only on the state at time ¢, given by the equalities

I[D(St|01:t) =n-]P)(Ot|5ta 01:t71) “P(s¢lor:t-1) =1 - P(Ot‘st) : P(5t|01:t71)~
At this point, we note that the first term of our equation, P(o;|s;) is directly obtain-
able from the observation model of the HMM! Therefore, we simply need to solve

for the second term, by expanding the second probability term using a marginal
distribution over all possible prior states s;_1 as follows:

d
(6.2) P(s¢|o1:4-1) = ZP(St’ St—1 =1ilo1:4-1).
i=1

Again, we apply Probability Chain Rule within the summation to separate our two
events:
d d
(6.3) Y Plsi,si-1 =ilors—1) = D _P(selsi-1 = 1,014-1) - P(se—1 = ifor4—1).
i=1 i=1

Once again, we examine the conditional dependencies in a Hidden Markov Model
to simplify our formula. By the Markov Property, the current state s; depends only
on the prior state s;_1, which allows us to simplify the first term of (6.3) as follows:

d d
(6.4) D P(selsio1 =i,014-1) = 3 P(si|sr1 =1).
=1 =1

Substituting (6.4) back into (6.3), we will now undo the marginalization, as follows:

d
(6.5) ZP(sﬂst,l =1) - P(st—1 = io1.4-1) = P(s¢|st-1) - P(st—1|01:4-1)-
i=1

At this point, we can assert that the first term of (6.5) can clearly be obtained from
the transition matrix. Similarly, the second term is simply the definition of the goal
of the filtering process, but for a lower ¢ value. That is,

P(st—1]o1:¢-1) = P—1-
Therefore, we have constructed a recursive definition for our belief state at time ¢,
relying on a belief state at time ¢ — 1. Then, so long as our Hidden Markov Model
has a base case belief state at time ¢ = 0, before our observations begin, we can use

a sequence of observations to compute our current belief state, with the following
update step:

(6.6) pr =n-Plog|st) - P(stfst—1) - Pe—1.
Using recursion, we can compute the belief states for each time step ¢’ for which we
have obtained an observation, culminating in our current belief state. This process

is frequently called the Forward Algorithm because it makes a single forward pass
to compute each belief state for each time step.

28 SAMUEL DORCHUCK, AMY KIM, AND ABIGAIL MOSER

In addition to deriving a closed form formula for the filtering inference task, Hidden
Markov Models allow us to calculate the current belief state using an elegant matrix
representation. Above, we defined T, the stochastic transition matrix. In addition
to T, we will create a diagonalized observation matrix Dy_1, corresponding to the
observation at time step ¢t — 1.

We construct D¢_1, a diagonal matrix whose ith row/column entry is P(o;—_1|s¢—1 =
i). That is, we take the column of O corresponding to the observation at time ¢ —1,
0;_1, and construct a diagonal matrix D¢_; from that column vector.

Then, in a HMM, the current belief state at time ¢, given a series of observations is
(6.7) Pt = nthlTTf)tfl-

This derivation of the forward algorithm for filtering reminds us of our theme
throughout this paper: even complex tasks in a Machine Learning pipeline can
be reduced down to their mathematical foundations.

A SURVEY OF DISCRETE MATHEMATICS IN MACHINE LEARNING 29

REFERENCES

. Kaelbling, Leslie (2019, February). Linear Classifiers. 6.036: Machine Learning. Lecture,
Cambridge, MA.

. Kaelbling, Leslie (2019, March). Neural Networks. 6.036: Machine Learning. Lecture, Cam-
bridge, MA.

. Kaelbling, Leslie (2019, February). The Perceptron. 6.036: Machine Learning. Lecture,
Cambridge, MA.

. Kaelbling, Leslie (2019, March). Reinforcement Learning. 6.036: Machine Learning. Lecture,
Cambridge, MA.

. Mustafa, Nabil, et. al. “A Simple Proof of Optimal Epsilon Nets.” Combinatorica, Springer
Verlag, 2017.

. Rothvoss, Thomas. “Probabilistic Combinatorics.” University of Washington, 2019.

. Shrobe, Howard. (2020, October). Hidden Markov Model Inference. 6.877: Principles of
Autonomy and Decision Making. Lecture, Cambridge, MA.

. Shrobe, Howard. (2020, October). Markov Decision Processes. 6.877: Principles of Autonomy
and Decision Making. Lecture, Cambridge, MA.

. Sontag, Eduardo D. “VC Dimension of Neural Networks.” Northeastern University, August
1998.

