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1 Introduction

To show the existence of a combinatorial object, there are two conventional approaches: the con-
strictive and non-constructive method. Constructive methods show the existence of the object by
giving an actual construction, e.g. the proof of the four-color theorem [AH76], the construction
of a large independent set [Car79; Wei81], etc. On the other hand, non-constructive methods use
external tools to prove existence without giving a concrete example. For example, the Pigeonhole
Principle shows that there must be two people sharing the same birthday among a group of 367
people. In this survey, we introduce the probabilistic method, which is a non-constructive method
pioneered by Paul Erdős.

The key idea of the probabilistic method is that in order to show some combinatorial object
C with a desired property P exists, we can show that under an appropriate randomized pro-
cess R for constructing C, the property P is satisfied with positive probability. In other words,
Pr (C constructed by process R has property P) > 0 guarantees that there exists a combinatorial
object C that has property P. An intuitive explanation to the validity of the approach is to think
of the probability that P occurs as the ratio of the number of objects with the desired property P
over the total number of randomized constructions. If this ratio is positive, one is guaranteed that
there must be at least one construction that exhibits property P.

In this survey, we first introduce the common tools and techniques that are frequently used in
the probabilistic method. In Sections 3 to 8, we introduce the Union Bound, the Moment Method,
the Chernoff Bound, and the Local Lova̋sz Lemma. These probabilistic analysis tools are powerful
in proving probabilistic bounds in combinatorial problems, which enables the probabilistic method
to have a wide range of applications. We explore some of its applications to hypergraph coloring,
Ramsey Theory, the crossing number, etc.

One of the main advantages of the probabilistic method is that it can prove the existence of a
combinatorial object that is computationally hard to find, such as a large clique, a large cut, or
a proper coloring of a graph. Therefore, following the existence proof, the question of whether it
is possible to find such a construction within reasonable time complexity arises. It turns out that
oftentimes, under some additional constraints or looser conditions, we can indeed give an efficient
algorithmic procedure, typically within polynomial time, to find such a construction. In Sections 9
to 11, we discuss such constructive procedure.
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2 Probability Review

We start with a short introduction to the very basics of probabilistic concepts. We expect the
readers to be familiar with these concepts, and will not provide rigorous proofs for these concepts
in this survey.

Definition 1. A probability space is a triple (Ω,Σ,Pr) where

1. Ω is a non-empty set, which represents all possible outcomes;

2. Σ is the σ-algebra of Ω, that is, a collection of subsets of Ω that is closed undertaking com-
plements and countable unions and intersections;

3. Pr is a function mapping Σ → [0, 1] with Pr(Ω) = 1. Pr is countably additive i.e. for any
two disjoint events σ1, σ2 ∈ Σ, we have Pr(σ1) + Pr(σ2) = Pr(σ1 ∪ σ2). Specially, for each
outcome ω ∈ Ω, we define Pr(ω) = Pr({ω}).

In this survey, we focus on finite probability space, which means that Ω is finite, and Σ = 2Ω

is the collection of all subsets of Ω. An element of Σ is called an event. For an event σ, Pr(σ) =∑
ω∈σ Pr(ω) represents the probability of σ.
Following such definition, we notice that,

Pr(σ1 ∪ σ2) = Pr(σ1) + Pr(σ2)− Pr(σ1 ∩ σ2) ≤ Pr(σ1) + Pr(σ2), (1)

and in fact, more generally,

Proposition 2. (Subaddidivity of probabilities, the Union Bound)

Pr(σ1 ∪ σ2... ∪ σn) ≤
∑
i∈[n]

Pr(σi). (2)

The formal proof of this proposition will be given shortly in Section 3. Note that the Union
Bound requires no independence among events.

Definition 3. (Conditional probability) Given events A and B, the event A | B is the event that
A occurs given that B have already occurred. Furthermore, it follows that

Pr(A | B) =
Pr(A ∩B)

Pr(B)
(3)

Definition 4. Two events σ1, σ2 ∈ Σ are independent if Pr(σ1 ∩ σ2) = Pr(σ1) · Pr(σ2).

Definition 5. (Random variables) Given a probability space with sample space Ω, A random vari-
able X is a measurable function X : Ω → S from the sample space Ω to another measurable space
S.

Definition 6. For an event E, the associated indicator variable Iσ is defined by

IE(ω) =

{
1 ifω ∈ σ
0 ifω /∈ σ.

(4)
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Definition 7. In a finite probability space, the expectation of a random variable X is

E(X) =
∑
ω∈Ω

Pr(ω)X(ω).

Proposition 8. (Linearity of expectation) For any two random variables X and Y , real numbers
a and b,

E(a ·X + b · Y ) = a · E(X) + b · E(Y ). (5)

Note that, for any indicator variable Iσ, by definition, E(Iσ) = Pr(σ). Often times, we calculate
the expected value of a random variable X by expressing it as a sum of indicator variables, that is
X =

∑n
i=1 Iσi . Then by linearity of expectation,

E(X) =

n∑
i=1

E(Iσi) =

n∑
i=1

Pr(σi) (6)

Throughout the survey, we will present several applications of the probabilistic method to
hypergraph coloring. Therefore, we now give the definition of hypergraph.

Definition 9. A hypergraph is a pair (V,E) where

• V is a set, whose elements will be called hypernodes (sometimes referred as nodes or vertices)

• E is a set, whose elements will be called hyperedges (sometimes referred as edges.) Each
hyperedges is a collection of hypernodes in V .

Furthermore, we call a hypergraph k-uniform if and only of every of its hyperedge consists of
exactly k hypernodes.

3 Union Bound

Oftentimes when we want to show an existence of a property (e.g. a proper coloring, a perfect
matching, etc.), we can formulate the desired property as an intersection of events. For example,
the proper coloring of a graph G = (V,E) can be viewed as the intersection of |E| events – each of
which corresponds to the event that an edge is proper colored. The perfect matching of a graph
G = (V,E) can also be viewed as the intersection of |V | events – each of them corresponds to the
event that a vertex is involved in exactly 1 edge of the matching.

To show an existence of a property, we can define a randomized process and show that the
property is satisfied with positive probability. And since we can view the property as an intersection
of events, we can show instead that these events occur simultaneously with positive probability.
One way to show this is to use probabilistic bound tools which allow us to bound the probability
of events in different settings.

Perhaps one of the most straightforward probabilistic bound tools is the Subadditivity of Prob-
abilities, as known as the Union Bound (Proposition 2). For any set of events, the union bound says
that the probability that at least one event occurs is upper bounded by the sum of the probability
of each individual event.
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Proposition 2. (Subaddidivity of probabilities, the Union Bound)

Pr(σ1 ∪ σ2... ∪ σn) ≤
∑
i∈[n]

Pr(σi). (2)

Proof. We can prove the union bound by induction. For the case n = 1, it is clear that Pr(σ1) ≤
Pr(σ1). Then for n = 2, 3, · · · , say we have already proved the union bound holds for smaller n,
given that

Pr(σ1 ∪ σ2) = Pr(σ1) + Pr(σ2)− Pr(σ1 ∩ σ2) (7)

we have

Pr

(
n⋃
i=1

σi

)
= Pr

(
n−1⋃
i=1

σi

)
+ Pr(σn)− Pr

(
σn ∩

n−1⋃
i=1

σi

)
(8)

≤ Pr

(
n−1⋃
i=1

σi

)
+ Pr(σn) (9)

≤

(
n−1∑
i=1

Pr(σi)

)
+ Pr(σn) (10)

=

n∑
i=1

Pr(σi) (11)

so the union bound holds for any positive n.

Corollary 10. For any n “bad events” σ1, · · · , σn, if the sum of their probability is strictly less
than 1, then with positive probability all of them can be avoided.

Proof. For events σ1, · · · , σn, if
∑n

i=1 Pr(σi) < 1, by the union bound, we have Pr(
⋃n
i=1 σi) ≤∑n

i=1 Pr(σi) < 1, and by taking complement we have Pr(
⋂n
i=1 σi) > 0.

In practical, the bad events usually have some underlying dependency which is difficult to
observe, let alone compute the probability. The main advantage of the union bound is that it does
not concern the dependency of bad events; however, there is a trade-off. The Union Bound is in
fact a weak bound, meaning that it often does not give the best result. Using more complicated
bounds or more analytical skills often lead to stronger results. Nevertheless, the Union Bound be
used to derive some decent results as we will discuss shortly.

3.1 Hypergraph 2-Coloring

Recall the definition of hypergraphs in Definition 9. The Hypergraph 2-Coloring Problem asks
that, given a hypergraph, whether it is possible to color each hypernode with Red or Blue which
results in no monochromatic hyperedge.

The problem of deciding whether a k-uniform hyperpergraph is 2-colorable has been heavily
researched, and is known to be NP-Complete [Lov73]. However, under certain scenarios, we can
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use probabilistic method to conclude 2-colorability without knowing much about the underling
structure of a hypergraph. In particular, the first example we give in this section is that if a
uniform hypergraph does not have too many edges, it is always 2-colorable.

Theorem 11. Let k be a positive integer and H be a k−uniform hypergraph with m edges. If
m < 2k−1, then H is 2-colorable. [Erd47]

Proof. Let H’s hyperedges be e1, e2, ..., em. Define a randomized process as follows. For every
hypernode of H, color it independently and uniformly with Red or Blue – with probability 1/2
each. In other words, we can think of this process as independently tossing a fair coin once for each
hypernode. If the coin lands Heads, color the node Red and if the coin lands Tails, color the node
Blue.

For each i ∈ [m], denote Mi to be the bad event where edge ei is monochromatic (being all red
or all blue). Notice that Pr(Mi) = 21−k because the probability of ei being all red or all blue is 2−k

each.
Now we apply the Union Bound,

Pr

 ⋃
i∈[m]

Mi

 ≤ ∑
i∈[m]

Pr(Mi) = m · 21−k < 1

which is equivalent to

Pr

 ⋂
i∈[m]

Mi

 = 1− Pr

 ⋃
i∈[m]

Mi

 > 0.

Therefore, with positive probability, none of the bad events Mi happens i.e. none of the edge
is monochromatic. This implies that there is an color assignment that creates no bad events, i.e.,
all edge is not monochromatic. This is equivalent to saying that H is 2-colorable.

3.2 Ramsey Number

Another topic that we will explore throughout the survey is the Ramsey Number.

Definition 12. For any positive integers m,n, the Ramsey Number of (m,n), denoted by R(m,n),
is the smallest positive integer k such that every red-blue edge-coloring of Kk is guaranteed a red
Km subgraph or a blue Kn subgraph.

Example 13. R(3,3) = 6.

Proof. First of all, we notice that the coloring of K5 shown in figure 1 does not contain any
monochromatic K3 subgraph.

Next, we need to show that any red-blue edge coloring of K6 contains a monochromatic K3.
Let’s say the K6 has vertices {A,B,C,D,E, F}. Consider all five edges involving A. By Pigeonhole
Principle, at least three edges must have the same color. Without loss of generality, we can assume
AB,AC,AD are red. If at least one of BC,CD,DB is red, this will create a red K3. On the other
hand, if all BC,CD,DB are blue, this will create a blue K3. In any case, a monochromatic K3 is
guaranteed. See figure 1 as coloring examples.
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Figure 1: Shown on the left is a coloring of K5 avoiding any monochromatic K3 subgraph, and
shown on the right is the demostration of our proof on K6. Note that when AB,AC,AD are all
red, any red coloring of BC,CD,DB creates a monochromatic K3 but coloring them all blue also
creates a monochromatic K3.

The close form of R(m,n) has not been exactly determined. In fact, even the small case of
R(5, 5) and R(6, 6) is not known at the moment. For this reason, mathematicians now focus on
bounding the Ramsey Number instead of trying to determine the exact value. It turns out that
with a very simple tool like the Union Bound, we can achieve a decent lower bound to the Ramsey
Number.

Theorem 14 (Ramsey, [Spe75]). Let n, k be positive integers such that
(
n
k

)
· 21−(k2) < 1. Then

R(k, k) > n.

Proof. To show that R(k, k) > n, it is enough to show that there exists a Red-Blue edge-coloring
of Kn for which there is no monochromatic subgraph Kk.

Define a randomized process as follows. We independently and uniformly color each edge with
Red or Blue – with probability 1/2 each. For any particular Kk in G, the probability of it being

monochromatic is 21−(k2) because the probability of all
(
k
2

)
edges being all red or all blue is 2(k2)

each. Furthermore, there are exactly
(
n
k

)
distinct Kk in G. The Union Bound implies that the

probability of at least one of Kk is monochromatic is at most
(
n
k

)
· 21−(k2) < 1. This implies that

the probability of having no monochromatic Kk is > 0, which means that there exists a Red-Blue
edge-coloring of Kn with no monochromatic Kk. This proves R(k, k) > n.

With Theorem 14, we can determine a lower bound of R(k, k) by fixing k and determining a

positive integer n such that
(
n
k

)
· 21−(k2) < 1. For example, if k = 3, we can determine that n = 3,

yielding lower bound R(k, k) > 3. Similarly, if k = 4, we can determine n = 6, yielding the lower
bound R(4, 4) > 6.

3.3 Hitting Set

Definition 15. Given sets S1, S2, ..., Sm. We call a set H a hitting set if H ∩ Si 6= φ for every
i ∈ [m]. We say that H hits every Si.

With the above setting, we shall consider the scenario that the universe is [n]. In other words,
we assume that S1, S2, ..., Sm are k-element subsets of [n] and the hitting set is also a subset of [n].
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Without any prior knowledge, it is trivial that a set H1 = [n] of size n is a hitting set because
each Si is a subset of H1 = [n]. Another less trivial hitting set is any arbitrary H2 ⊆ [n] with size
n − k + 1. This is because for any set Si, we have |Si| + |H2| = n + 1 > n. By the Pigeonhole
Principle, Si and H2 must share an element. Finally, another example of a hitting set is H3 of size
m which consists of one element from each of S1, ..., Sm.

The key observation is that it is easy to find a large hitting set such as H1, H2, H3 as discussed
a moment earlier. However, the difficult problem is whether it exists a small hitting set. Using the
union bound, we can give an upper bound to the size of the smallest hitting set in the logarithmic
of m.

Theorem 16. Given k−element sets S1, S2, ..., Sm ⊆ [n]. There exists H ⊆ [n] such that H∩Si 6= φ
for every i ∈ [m] and |H| ≤ dn logm

k e.

Proof. Let l = dn logm
k e. Construct a multiset H ⊆ [n] with l elements by the following randomized

process: picking l elements one by one uniformly and independently from [n] with repetition.
For each j ∈ [m], denote Bj to be the event that H ∩ Sj = φ. Notice that each element of H is

not in Bj with probability 1− |Sj |n . It follows that

Pr(Bj) = Pr (H ∩ Sj = φ) =

(
1− k

n

)l
< e−kl/n ≤ e− logm =

1

m

where we use the fact that (1− 1
x)x < e−1. By the Union Bound, we have

Pr

 ⋃
j∈[m]

Bj

 ≤ ∑
j∈[m]

Pr(Bj) < m · 1

m
= 1

It follows that with positive probability, none of the bad Bj occur which corresponds to H∩Sj 6=
φ for every j ∈ [m]. Thus, there exists a construction of sized-l multiset H that hits every Sj ’s.
We can remove the repeating elements of H to obtain a hitting set of size at most l.

We will circle back to the hitting set problem in the Section 9, where we give a procedure of
finding the actual hitting that is smaller than dn logm

k e.

4 The First Moment Method

The moment method uses moments (i.e. expected values of powers) of a random variable to bound
the probability that the random variable is significantly more, or less, than its expected value. In
other words, it bridges the expected value and the probability of a random variable. Often times,
the expected value of a random variable is easier to calculate given the linearity of expectation,
which, unlike probability, exerts no restriction on the dependence relationship between events.

For the purpose of this survey, we are only concerned with finite probability space, which is
usually the context for application of the probabilistic methods in combinatorial problems. In this
section, we introduce the First Moment Method, which is a simple, yet powerful and fundamental
tool of the probabilistic method that concerns E(X). And in the next section, we introduce the
Second Moment Method, which concerns second-order moments E(X2).
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Theorem 17. (First Moment Principle) Let X be a random variable with finite expectation. Then
for any µ ∈ R, if E(X) ≤ µ, then Pr(X ≤ µ) > 0.

Proof. As mentioned, in this survey we only prove this result for finite probability space. Let S
denote a finite set of all possible values of X. By definition, E(X) =

∑
i∈S i× Pr(X = i). In other

words, E(X) can be expressed as the weighted average of all possible values of X.
We proceed by contradiction. We assume, for the contrary, E(X) ≤ µ and Pr(X ≤ µ) = 0.

That is, X only takes on values strictly greater than µ. Then, it follows that

E(X) =
∑
i∈S

i · Pr(X = i) =
∑
i>µ

i · Pr(X = i) >
∑
i>µ

µ · Pr(X = i) = µ
∑
i>µ

Pr(X = i) = µ, (12)

which contradicts our assumption.

We have proved that X takes some value that is at most E(X) with positive probability, and
symmetrically X also takes some value that is at least E(X) with positive probability. Using a
similar proof idea, one can show the following three corollaries.

Corollary 18. If E(X) ≥ µ, then Pr(X ≥ µ) > 0.

Corollary 19. If E(X) < µ, then Pr(X < µ) > 0.

Corollary 20. If E(X) > µ, then Pr(X < µ) > 0.

The key result from the First Moment Method is that: if we show that the expected value of a
random variable is small or large, then the First Moment Method guarantees that there exists an
object in the probability space on which this variable is small or large. This is very useful to help
us prove existence when using probabilistic methods.

Sometimes, in addition to the existence of an object, we also want to know how unlikely is it
that the random variable significantly exceeds its expected value:

Theorem 21. (Markov’s Inequality) Let X be a non-negative random variable and a > 0, then

Pr(X ≥ a) ≤ E(X)

a
. (13)

Proof. For the purpose of this survey, we only prove this result for finite probability space. Let S
denote a finite set of all possible values of X. Combining the definition of E(X) and the fact that
X is non-negative,

E(X) =
∑
i∈S

i · Pr(X = i) ≥
∑
i≥a

i · Pr(X = i) ≥ a · Pr(X ≥ a). (14)

Notice that Markov’s inequality specifically concerns non-negative random variables, which is
often the case in the combinatorial context, especially when we want to count the number of certain
structures.

Next, we present two applications of the First Moment Method in the hypergraph 2-coloring
problem and the crossing number problem to showcase its power in probabilistic methods.
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4.1 Hypergraph 2-Coloring

We revisit the hypergraph 2-coloring problem introduced in Section 3.1. Recall Equation 6, where
we expressed the expected value of a random variable as the sum of (often simpler to calculate)
indicator random variables. This is particularly powerful because it avoids dealing with the depen-
dence relationship between events, and allows us to apply the First Moment Method. To illustrate
this idea, we now provide an alternative proof of Theorem 11 using the First Moment Method and
the linearity of expectation.

Theorem 11. Let k be a positive integer and H be a k−uniform hypergraph with m edges. If
m < 2k−1, then H is 2-colorable. [Erd47]

Proof. (Alternative proof of Theorem 11) Let H’s hyperedges be e1, e2, ..., em. Consider the same
randomized process as before: for every hypernode of H, color it independently and uniformly with
Red or Blue – with probability 1/2 each.

For each hyperedge ei, denote by Ii as the indicator variable of the event that ei is monochro-
matic, i.e. Ii = 1 if ei is monochromatic, and 0 otherwise. Recall that Pr(ei is monochromatic) =
Pr(Ii = 1) = 21−k, then it follows that E(Ii) = 1× Pr(Ii = 1) + 0× Pr(Ii = 0) = 21−k.

Let I =
∑m

i=1 Ii denote the total number of monochromatic edges in H. By linearity of expec-
tation and given that m < 2k−1, E(I) =

∑m
i=1 E(Ii) = m× 21−k < 1. By Corollary 19 and the fact

that I is a non-negative integer, Pr(I < 1) = Pr(I = 0) > 0.
Therefore, with positive probability, H has no monochromatic hyperedge, i.e., all edges are

2-colored. This is equivalent to saying that H is 2-colarable.

4.2 Crossing Number

Another application of the probabilistic method is a remarkably simple proof of a lower bound on
the crossing number (as we define below) given by Alon [AS16]. This lower bound leads to yield
very simple proofs for some theorems in incidence geometry.

Definition 22. (Immersion, Crossing number, Planner graph) An immersion of a graph G = (V,E)
into the plane R2 is a representation of G on the plane in which points are associated with vertices
V and simple arcs are associated with edges s.t.

• The endpoints of the arc associated with edge (u, v) are the points associated with u and v.

• No arcs include points associated with other vertices.

The crossing number of an immersion of a graph is the number of crossings in this immersion.
That is, the number of pairs of arcs that intersect at non-endpoints.

The crossing number of G, denoted by cr(G), is the minimal crossing number over all possible
immersion of G into R2.

A planar graph is a graph G such that cr(G) = 0.

Some illustrative examples of the definitions above can be found in Figure 2.

Theorem 23. Let G be a simple graph that |E| ≥ 4|V |. Then cr(G)≥ |E|3
64|V |2 .
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Figure 2: Three different immersions of the same graph G. The first immersion has the crossing
number 1 while the second immersion has the crossing number 3 (crossings are highlighted with
red squares). The third immersion has no crossings, so cr(G) = 0 and G is a planar graph.

Proof. First, we give a trivial lower bound of cr(G). Consider an immersion of G. If for each
crossing where e1 and e2 intersect, we remove e1 or e2 from the immersion, then the crossing
is removed. Eventually, we are left with a planar graph where the number of edges is at most
|E| − cr(G). Since this is a planar graph, by Euler’s formula, |E| − cr(G) ≤ 3|V |. Therefore, we
reach a trivial lower bound that

cr(G) ≥ |E| − 3|V |. (15)

Consider an immersion G̃ of G with cr(G) crossings. Define a randomized process as follows.
For every vertex of G, select it uniformly and independently with probability p into S, which is
a random subset of V . We will decide the value of p later. Let G〈S〉 denote the subgraph of G
formed by S, and for simplicity, let H = (VH , EH) denote G〈S〉, H̃ denote G̃〈S〉. Let VH̃ , EH̃ , c

denote the vertices, the edges, and the number of crossings in H̃ respectively.
Applying the trivial bound in Equation 15 and by definition of crossing number, we know

c ≥ cr(H) ≥ |EH̃ | − 3|VH̃ |. (16)

Notice that E(|VH̃ |) = p · |V |, E(|EH̃ |) = p2 · |E|, E(c) = p4 ·cr(G). This is because, for example,
to calculate E(|EH̃ |), for each edge e = (u, v) ∈ E, let Ie be the indicator variable for the event
e ∈ EH . Then, by linearity of expectation and the fact that each vertex is chosen independently,

E(Ie) = Pr(u ∈ S) · Pr(v ∈ S) = p2.

Adding indicator variables together across all edges, we have

E(|EH̃ |) =
∑

e∈E(G)

E(Ie) = p2|E|.

Similarly, to calculate E(c), we know that for a crossing to remain in H̃, all 4 vertices of the 2 edges
that intersect at the crossings need to be selected. Thus, E(c) = p4 · cr(G).

Now, Equation 16 can be expressed as p4 · cr(G) ≥ p2 · |E|− 3p · |V |. Let p = 4|V |
|E| . By the given

condition that |E| ≥ 4|V |, we know p ∈ (0, 1] is indeed a valid probability value, then

cr(G) ≥ 1

p4
(p2|E| − 3p|V |) =

|E|
p2
− 3|V |

p3
=
|E|3

16|V |2
− 3|E|3

64|V |2
=
|E|3

64|V |2
. (17)
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In fact, the crossing number is on the order of Ω( |E|
3

|V |2 ), exactly as we proved above. Notice that

in the above proof, we start with a trivial lower bound, and a randomized construction process
in which random variables are impacted by the randomized construction parameter p to different
orders. Combining this fact and the linearity of expectation, we see that the differences in orders
magnify the effect of the trivial lower bound. This is one particularly powerful aspect of the
probabilistic method.

5 The Second Moment Method

In this section, we introduce the Second Moment Method, which concerns second-order moments
E(X2). First, we illustrate the significance of higher-order moments with the following example.
Let’s say there are two games of gambling. The first one is to win $1 with probability 0.5 and to
lose $1 with probability 0.5. The second one is to win $99 with probability 0.01 and to lose $1 with
probability 0.99.

Through the lens of expected values, these two games are indifferent – both have $0 expected
payoff. What distinguishes between these two games is the variance, which loosely measures how
much the distribution deviates from the mean. Specifically, the first game has variance 1 and the
second game has variance 99. For this reason, the risk-seeking players would prefer the second
game, and the risk-averse players would prefer the first game.

The major takeaway from this example is that not only the expected value of a random variable
E(X) is useful in probabilistic bound, but also is the variance, which concerns the second moment
E(X2).

In particular, the variance, Var(X) = E((X − E(X))2) = E(X2) − E(X)2, can tell us how
concentrated the distribution is around its mean. A distribution with low variance will have most
values packed around its mean; thus, it is unlikely to have a value far away from the mean. On
the other hand, a distribution with high variance means the distribution is more spread-out; thus,
it is more likely that some values are far away from the mean. The following inequality formally
illustrates this concept – the variance does play a significant role in bounding the probability that
a value is far away from the mean.

Theorem 24 (Chebychev’s Inequality). Let X be a random variable with mean µ and variance
σ2. Then for any k > 0,

Pr (|X − µ| ≥ k) ≤ σ2

k2
.

Proof. Construct a random variable Y where Y = (X−E(X))2. By definition E(Y ) = Var(X) = σ2.
In addition, notice that Y ≥ 0.

Recall from Markov’s Inequality. We have

Pr (|X − µ| ≥ k) = Pr((X − E(X))2 ≥ k2) = Pr
(
Y ≥ k2

)
≤ E(Y )

k2
=
σ2

k2

as wished.

We will illustrate the use of Chebychev’s Inequality through the example of distinct-sum sets.
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5.1 Distinct-Sum Sets

Definition 25. A set S ⊆ Z+ is distinct-sum iff any pair X,Y of distinct subsets of S, it follows
that

∑
x∈X x =

∑
y∈Y y

One example of an n-element distinct-sum set is {20, 21, ..., 2n−1}. This is because all subset
sums are positive integers from 1 to 2n − 1 (can think of this as a binary expression.) This set has
the largest element 2n−1. Furthermore, if we consider any n-element distinct-sum set, the largest
element must be at least 2n/n. This is because otherwise, every subset sum must be less than
2n, causing at least two distinct subsets to have the same sum by the Pigeonhole Principle. With
this observation, the question of determining the tightest lower bound of the largest element of
any n-element distinct-sum set arises. Although the problem still remains open today, an approach
using Chebychev’s Inequality gives a decent lower bound.

Theorem 26. Let n ≥ 5 be a positive integers. Let X be a distinct-sum set of positive integers
with |X| = n. Then

max
x∈X

x >
2n+1

3
√

3n
.

Proof. Let X’s elements be x1 < x2 < .. < xn. Also let S(X) be the set of all 2n distinct sums of

X. We will prove by contradiction. Assume, for the contrary, that xn ≤ M when M = 2n+1

3
√

3n
. It

follows that xi ≤M + 1− i for every i ∈ [n]. Given n ≥ 5, it follows that

∑
i∈[n]

x2
i ≤

∑
i∈[n]

(M + 1− i)2 < nM2 − 2n+2

9
=

22n+2

27
− 2n+2

9

Consider the following randomized process. For each i ∈ [n], independently and uniformly
choose αi from {0, 1}. Denote the random variable S =

∑
i∈[n] αixi. Notice that all 2n constructions

of S happen uniformly and they correspond to 2n distinct sums of X. Thus, the distribution of S
is uniform over S(X).

Since we choose each αi’s independently, we have

Var(S) =
∑
i∈[n]

Var(αixi) =
∑
i∈[n]

x2
i

4
≤ 22n

27
− 2n

9
.

Now we apply Chebychev’s Inequality with k = 2n

3 .

Pr (|S − E(S)| < k) = 1− Pr (|S − E(S)| ≥ k) ≥ 1− Var(S)

k2
≥ 2

3
+

1

2n
.

We notice further that

Pr (|S − E(S)| < k) <
2k + 1

2n
=

2

3
+

1

2n

because there are at most 2k+ 1 possible values of S that lies within the range of k from E(S) and
the probability that S being those values is at most 2−n each. Combining two inequalities, we have
reached the contradiction.
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6 Chernoff Bound

In many situations, we need to deal with the sum of random variables, such as the total number of
heads in coin flip sequences and the total number of red edges in randomly colored graphs. Some-
times, we can calculate the expected value of the sum rather easily using linearity of expectation,
but what is more helpful is a tool to show how unlikely that the actual value deviates much from
the expected value.

The Chernoff bound is such a tool. It is a strong and useful probability bound that is commonly
used in bounding tail probabilities of the sum of independent Bernoulli random variables. In this
section, we introduce and prove the Chernoff bound, and present its application on balanced graph
coloring.

Theorem 27. (Chernoff Bound) Let X1, X2, · · · , xn be independent Bernoulli random variables
i.e. Xi ∼ Bernoulli(pi), and X = X1 +X2 + · · ·+Xn. Let µ = E[X] =

∑
i pi, we have

Pr (X ≥ (1 + δ)µ) ≤
[

eδ

(1 + δ)1+δ

]µ
and

Pr (X ≤ (1− δ)µ) ≤
[

e−δ

(1− δ)1−δ

]µ
Proof. Recall Theorem 21, the Markov’s inequality, and apply it to etX , for real number a we have

Pr(X ≥ a) = Pr
(
etX > eta

)
≤ E[etX ]

eta

And by optimizing the probability over t > 0, we have

Pr(X ≥ a) ≤ min
t>0

e−ta
∏
i

E[etXi ]

Similarly,

Pr(X ≤ a) ≤ min
t>0

eta
∏
i

E[e−tXi ]

Note that E[etXi ] = (1− pi)e0 + pie
t = 1 + pi(e

t − 1) ≤ ep(et−1), so

E[etX ] =
∏
i

E[etXi ] ≤ e(
∑
i p)(et−1) = eµ(et−1)

Then for δ > 0 taking t = ln(1 + δ) and a = (1 + δ)µ in equation 6 yields

Pr(X ≥ (1 + δ)µ) ≤ 1

(1 + δ)(1+δ)µ
· eδµ =

[
eδ

(1 + δ)1+δ

]µ
And similarly, by taking t = ln(1− δ) and a = (1− δ)µ in equation 6 yields

Pr(X ≤ (1− δ)µ) ≤ 1

(1− δ)(1−δ)µ · e
−δµ =

[
e−δ

(1− δ)1−δ

]µ

13



The Chernoff bound proven in Theorem 27 is tight, but too complex to use in many scenarios.
To simplify, we bring in the inequality 2δ

2+δ ≤ ln(1 + δ), and obtain the following looser but simpler
bounds that are often used:

Corollary 28. (Variant of the Chernoff Bound)

Pr(X ≤ (1− δ)µ) ≤ e−
δ2µ
2 , for 0 ≤ δ ≤ 1 (18)

Pr(X ≥ (1 + δ)µ) ≤ e−
δ2µ
2+δ , for 0 ≤ δ (19)

In fact, by limiting δ not to exceed 1 and the union bound, we can have an even simpler form:

Pr(|X − µ| ≥ δµ) ≤ 2e−
δ2µ
3 , for 0 ≤ δ ≤ 1 (20)

6.1 Hypergraph 2-coloring

In addition to studying whether a hypergraph is 2-colorable, another interesting feature to inves-
tigate in hypergraph 2-coloring is how balanced a coloring is, which means that in each edge, we
want the number of hypernodes colored Red not differ much from the number of hypernodes colored
Blue. In this section, we apply the Chernoff bound to show how balanced the coloring of some
hypergraphs can be.

Definition 29. In a hypergraph H whose vertices are colored with two colors, for all hyperedge
e, the discrepancy of e is defined as the absolute value of the difference between the numbers of
vertices of e in each color.

For example, if a hyperedge has five vertices colored with red, blue, red, red and blue, then its
discrepancy is |3− 2| = 1.

Then, we define disc(H) to measure how balanced we can construct a 2-coloring for H.

Definition 30. Say the discrepancy of a hypergraph H under one of its 2-colorings is the maximum
discrepancy over all hyperedges. We define disc(H) to be the minimum discrepancy of H over all
of its 2-colorings.

Clearly, for k-uniform hypergraph H, we have disc(H) ≤ k all the time, and disc(H) < k
if and only if H is 2-colorable i.e. we can color the vertices so that none of the hyperedges are
monochromatic.

Theorem 31. Let H be a k-uniform hypergraph with k hyperedges, and then disc(H) ≤
√

8k ln(k).

Proof. First, note that when k ≤ 8, we have disc(H) ≤ k <
√

8k ln(k), so considering all k ≥ 9 is
sufficient.

We can color all vertices of H randomly with red and blue each with probability 1
2 . For each

hyperedge, Nr, the number of red vertices it contains is the sum of k Bernoulli random variables
each with probability 1

2 . Clearly, µ = E[Nr] = k
2 .

Then, we apply the Chernoff bound (Equation20) with δ =

√
8 ln(k)
k , and we have

14



Pr (|Nr − µ| ≥ δµ) ≤ 2e−
δ2µ
3 = 2e−

· 8 ln(k)
k
· k2

3 = 2k−
4
3

Given that k > 8, we have

Pr

(∣∣∣∣Nr −
k

2

∣∣∣∣ ≥√2k ln(k)

)
≤ 2k−

4
3 <

1

k

and the expected number of hyperedges that have |Nr − k
2 | ≥

√
2k ln(k), by the linearity of

expectation, is

Pr

(∣∣∣∣Nr −
k

2

∣∣∣∣ ≥√2k ln(k)

)
· k < 1

Therefore, with positive probability, the number of such edges is 0 i.e. the number of red vertices
is in k

2 ±
√

2k ln(k) for all hyperedges of H, so the discrepancy of H is at most
√

8k ln(k).

Hence, disc(H) ≤
√

8k ln(k) for all k ≥ 1.

7 Alteration

While the Union Bound, the First Moment Method, the Second Moment Method, and the Chernoff
Bound are all useful tools to help us calculate the probability of the existence of an object, yet
sometimes, the random construction only guarantees the existence of an object that almost satisfies
our demands, but not completely. In such cases, we may conduct some alteration to modify the
object in a judicious way to get what we exactly need.

7.1 Stability Number

The idea of the stable set and the stability number (as defined below) are important graph prop-
erties, and are closely related to other graph property parameters such as clique, vertex coloring,
etc. Problems related to stable set are widely studied since they have practical applications in
areas like information retrieval, scheduling, and computer vision among many others. Currently,
the maximal stable set problem is considered NP-hard and thus hard to approximate.

We now give a lower bound on the stability number, and hope to use this example to epitomize
first, how alteration works, and second, the idea introduced in Section 4.2 where a weak bound gets
amplified through probabilistic method to achieve a tighter bound.

Definition 32. A stable set of a graph G(V,E) is a set of pairwise non-adjacent vertices. That is,
a subset S ⊆ V that no two vertices v1, v2 ∈ S are connected in G.

The stability number of a graph G(V,E), denoted by α(G), represents the largest possible size
of a stable set of G. In other words, α(G) equals max{|S||S is a stable set}.

Notice that by definition, the statement that S is a stable set of G is equivalent to saying that
S is a clique of G, the complement of G.

Theorem 33. Let d ≥ 1 be a real number, and G be a graph that |V | = n, |E| = nd
2 . Then the

stability number α(G) ≥ n
2d .
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Proof. Instead of directly proving that a subset S of V of size at least n
2d is a stable set with

positive probability, we prove an equivalent statement. We prove that there exists a set S where in
the subgraph G〈S〉, |V (G〈S〉)| is greater than |E(G〈S〉)| by at least n

2d . Then, with an alteration
step in which we remove one endvertex of each edge in G〈S〉, we reduce |E(G〈S〉)| to be 0, and
|V (G〈S〉)| to be at least n

2d , which is a valid stable set.
Define a randomized process as follows. For every vertex of G, choose it uniformly and inde-

pendently with probability p = 1
d into S ⊆ V . We determine the value of p later.

Let X and Y denote the number of vertices and the number of edges in G〈S〉 respectively. Then
from the given conditions, E(X) = p|V | = pn, and E(Y ) = p2|E| = p2 nd

2 , since for an edge (u, v)
to be in G〈S〉, both u and v need to selected into S. By linearity of expectation,

E(X − Y ) = E(X)− E(Y ) = pn− nd

2
p2.

This quadratic function of p reaches its maximum value n
2d at p = 1

d . Given d ≥ 1, p ∈ (0, 1]
is a valid probability. Set p = 1/d, then E(X − Y ) = n

2d . By the First Moment Method, there
exists a subset S ⊆ V such that X − Y ≥ n

2d . As discussed, in the alteration step, for each edge
(u, v) ∈ E(G〈S〉), we delete u or v from S. Then the remaining set of vertices S′ ⊆ S contains no
edges, and has size |S′| ≥ X − Y ≥ n

2d . This is equivalent to saying that S′ is a stable set, and the
stability number α(G) is at least |S′|, which is at least n

2d .

In fact, if for each v ∈ V (G), denote by d(v) be the degree of v, then by constructing a
randomized process on |V |! orderings of V and applying the First Moment Method, we can achieve
a tighter lower bound on stability number:

α(G) ≥
∑
v∈V

1

d(v) + 1
.

And, the relationship between stable set and clique indicates that, G contains a clique of size at
least

∑
v∈V

1
|V |−d(v) .

7.2 Ramsey Number

To reinforce the idea of alteration, we return to the Ramsey Number problem introduced in Section
3.2, and present a better lower bound for the diagonal Ramsey numbers R(k, k) using alteration.

Theorem 34. Let n, k be positive integers, then R(k, k) > n−
(
n
k

)
· 21−(k2).

Proof. We define the alteration procedure as follows. In an uncolored Kn called G, color each edge
independently and uniformly with Red or Blue - with probability 1/2 each. Initialize a set D = ∅.
We sequentially go over every Kk of G: if it is monochromatic, choose any vertex from that Kk

and add it to D. Let G′ = G\D, which represents deleting vertices in D from G. It follows that
|V (G′)| = |V (G)|− |D| = n−|D|. Since for each Kk in G, it must have at least one vertex added to
D and deleted from G, we know that G′ contains no monochromatic Kk. By definition of Ramsey
number, R(k, k) > |V (G′)| = n− |D|.

To complete the proof, we next show that there exists some random coloring that yields |D| ≤(
n
k

)
· 21−(k2). For each C being a Kk in G, denote by IC as the indicator variable of the event that
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C is monochromatic, i.e. IC = 1 if C is monochromatic, and 0 if not. Let X =
∑

C being Kk of G IC
represent the total number of monochromatic Kk in G. Then |D| ≤ X, because we add 1 vertex
to D for each monochromatic Kk.

Recall from the proof for Theorem 14, E(IC) = Pr(C is monochromatic) = 21−(k2), and the
number of Kk in G is

(
n
k

)
by definition. Therefore,

E(X) = number of Kk in G · IC =

(
n

k

)
· 21−(k2).

By the First Moment Method, some random coloring yields X ≤
(
n
k

)
·21−(k2). It follows that in this

coloring, |D| ≤ X ≤
(
n
k

)
· 21−(k2), which completes the proof.

In fact, we can further optimize the lower bound of R(k, k) by determining the largest positive

integer n (as a function of k) such that
(
n
k

)
· 21−(k2) < 1. With this optimization, it follows that

R(k, k) >

(
1

e
√

2
+ o(1)

)
· k · 2k/2

8 Lovász Local Lemma

So far, we have made no assumption about the independence of events. We can notice that the
Union Bound is effective mostly when events are disjoint or almost disjoint, so that the sum of
probability over all events is less than 1. On the other hand, when computing expected values,
we often make use of the linearity of expectation which does not concern the independence among
random variables. In this section, we introduce the Lovász Local Lemma [EL74] which allows us to
deal with local dependency, meaning that each depends on few other events. There are two majors
variations of the Lovász Local Lemma: the general and symmetric form. We will discuss both
variations along with their applications.

8.1 General Lovász Local Lemma

Definition 35. Given events A1, A2, ..., An. We call G = (V,E) a dependency graph iff

• V = {A1, A2, ..., An}

• For each i ∈ [n], Ai is totally independent of all events but those N+(Ai). In other words, Ai
is independent of S for any S ⊆ V \N+(Ai)

where N+(Ai) is the set of Ai and all neighbors of Ai in G.

Theorem 36. (General Lovász Local Lemma) Let A1, ..., An be events with dependency graph G.
Suppose that there exists p1, ..., pn ∈ (0, 1) which for any i ∈ [n],

Pr (Ai) ≤ pi ·
∏

(i,j)∈E(G)

(1− pj) . (21)

Then

Pr

∧
i∈[n]

Ai

 ≥ ∏
i∈[n]

(1− pi) > 0. (22)
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Proof. For any S ⊆ [n], denote AS =
∧
s∈S As. Also denote N (i) = {j ∈ [n] | (Ai, Aj) ∈ E (G)}.

In other words, N (i) is the set of indices of neighbors of Ai in G. The proof proceeds through the
following claim.

Claim 37. For any i ∈ [n] and S ⊂ [n] \ {i}, we have Pr
(
Ai | AS

)
≤ pi.

Proof. We will prove the claim by strong induction. Let H (k) represent the following statement:
for any i ∈ [n] and S ⊂ [n] \ {i} such that |S| = k, we have Pr

(
Ai | AS

)
≤ pi.

The base case k = 0 is trivially true since for any i ∈ [n], Pr (Ai) ≤ pi ·
∏

(i,j)∈E(G) (1− pj) ≤ pi.
For the induction step, assume that H (0) , ...,H (k − 1) are true. Let i ∈ [n] and S ⊂ [n] \ {i}

such that |S| = k. Partition S into R ∪ T for R = S ∩ N (i) and T = S \ N (i). Also denote
R = {r1, ..., rm} for some m ≤ |S| = k.

Our goal is to show that Pr
(
Ai | AS

)
= Pr

(
Ai | AR AT

)
≤ pi. Notice that

Pr
(
Ai | AR AT

)
=

Pr
(
AiAR | AT

)
Pr
(
AR | AT

) ≤ Pr
(
Ai | AT

)
Pr
(
AR | AT

) =
Pr (Ai)

Pr
(
AR | AT

)
where the last equality follows from the fact that Ai is independent from AT .
The numerator is

Pr (Ai) ≤ pi ·
∏

(i,j)∈E(G)

(1− pj) = pi ·
∏

j∈N(i)

(1− pj)

and the denominator is

Pr
(
AR | AT

)
=
∏
i∈[m]

Pr
(
Ari | AT∪{r1,...,ri−1}

)
≥
∏
i∈[m]

(1− pri) =
∏
j∈R

(1− pj) ≥
∏

j∈N(i)

(1− pj)

where the first equality follows from a chain of Bayes Rule, and the first inequality follows from
the assumption the induction hypotheses H (|T |+ 1) , ...,H (|T |+m− 1). This can be done since
|T |+m− 1 = |T |+ |R| − 1 ≤ k − 1.

It follows that Pr
(
Ai | AS

)
= Pr

(
Ai | AR AT

)
≤ pi. This completes the induction step and the

proof of Claim 37.

Finally, we now can conclude that

Pr

∧
i∈[n]

Ai

 = Pr
(
A[n]

)
=
∏
i∈[n]

Pr
(
Ai | A[i−1]

)
≥
∏
i∈[n]

(1− pi) > 0

where the second equality follows from the Bayes Rule, and the first inequality follows directly from
the Claim 37.

Now that we have proved the General Lovász Local Lemma, we present its applications. We start
with a fairly straightforward example, followed by revisiting the Hypergraph 2-Coloring problem
and strengthening our previous result.
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Theorem 38. Let A1, ..., An be events with dependency graph G. Suppose that for every i ∈ [n],
we have Pr(Ai) < 1/2 and

∑
(i,j)∈E(G) Pr(Aj) ≤ 1/4. Then with positive probability, no event Ai

occurs.

Proof. We use the General Lovász Local Lemma. We assign pi = 2 ·Pr(Ai). First, we need to verify
that pi lies in [0, 1) which is true since Pr(Ai) < 1/2. Then, we need to show that this assignment
satisfies the algebraic condition for the General Lovász Local Lemma as in Equation 21. We verify
this by showing that

pi ·
∏

(i,j)∈E(G)

(1− pj) = 2 Pr(Ai) ·
∏

(i,j)∈E(G)

(1− 2 Pr(Aj))

≥ 2 Pr(Ai) ·

1− 2 ·
∑

(i,j)∈E(G)

Pr(Aj)


≥ 2 Pr(Ai) ·

(
1− 2 · 1

4

)
= Pr(Ai).

Therefore, directly following the General Lovász Local Lemma, we conclude that with positive
probability, no event Ai occurs.

Recall Theorem 11 where we showed that a hypergraph is always 2-colorable if the number of
hyperedges is not too large. However, the number of hyperedges can be massive despite having
small number of hypernodes. The following theorem presents another aspect of the hypergraph
2-colorability under constraints on parameters including the size and the number of neighbors of
hyperedges.

Theorem 39. Given positive integers k, l. Let H be a hypergraph which each edge contains at least
k hypernodes. In addition, for each hyperedge, the sum of sizes of its neighbors is at most l. If
e
(
1 + l

k

)
≤ 2k−1, then H is 2-colorable.

It also is worth noting that if H is k-unifrom and every hyperedge is adjacent to at most d
others, we will find that l = dk is a valid choice. Thus, the condition e

(
1 + l

k

)
≤ 2k−1 is equivalent

to e (1 + d) ≤ 2k−1, which is the result we got from Theorem 41 using Symmetric Lovász Local
Lemma. Thus, this result is stronger than Theorem 41

Proof. For every hyperedge A, denote N(A) to be the set of A’s neighbor, i.e. hyperedges that
intersect with A. Also denote |A| to be the number of hypernodes contained in A. Now the second
condition has become

∀A ∈ E(H),
∑

B∈N(A)

|B| ≤ l.

Denote a randomized process as follows. For each hypernode, uniformly and independently
color it with Red or Blue – with probability 1/2 each. For each edge A ∈ E(H), we denote MA to
be the bad event that edge A is monochromatic. It follows that Pr(MA) = 21−|A| ≤ 21−k.

We notice for any hyperedge A, the event MA is totally independent of all MB which A∩B = φ.
Thus, in the dependency graph, MA is only adjacent to those MB’s where A ∩B 6= φ.
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We will use the General Lovász Local Lemma. For any bad event MA, we assign p(MA) = |A|
l+|A|

which correctly lies within (0, 1). Also note that p(MA) ≥ k
k+l and 1− p(MA) ≥ e−|A|/l. It follows

that

p(MA) ·
∏

B∈N(A)

(1− p(MB)) ≥ k

k + l
·
∏

B∈N(A)

e−|B|/l =
k

e(k + 1)
≥ 21−k ≥ Pr(MA).

The General Lovász Local Lemma implies that with positive probability, no bad event occurs.
This is equivalent to having no monochromatic edge. Thus, H is 2-colorable.

8.2 Symmetric Lovász Local Lemma

We have already proven the General Lovász Local Lemma, but applying the general version requires
us to construct appropriate p’s, which is not convenient in most cases. In this section we introduce
the symmetric version of Lovász Local Lemma by simply setting all pi to be equal, and assuming
that all Pr(Ai) can be bound using the same bound p.

Theorem 40. (Symmetric Lovász Local Lemma) Let A1, · · · , An be events in a probability space,
for p ∈ [0, 1] and integer d, if we have

1. For each i ∈ [n], Pr (Ai) ≤ p

2. For each i ∈ [n], Ai is independent of all but at most d other events.

3. ep(d+ 1) ≤ 1, where e = exp (1) is the Euler’s number.

then Pr
(⋂

i∈[n] Āi

)
> 0

Proof. We apply the General Lovász Local Lemma in which we have that Pr(Ai) ≤ p ≤ 1
e(d+1) , so

Pr(Ai) ≤
1

d+ 1
· 1

e
<

1

d+ 1

(
1− 1

d+ 1

)d
Then we set pi = 1

d+1 for i in[n], and note that
∑

j|(i,j)∈E(G) 1 ≤ d, so we can get

Pr(Ai) ≤
1

d+ 1

(
1− 1

d+ 1

)d
≤ pi ·

∏
(i,j)∈E(G)

(1− pj)

Then, by the General Lovász Local Lemma, we have

Pr

⋂
i∈[n]

Ai

 ≥ ∏
i∈[n]

(1− pi) > 0
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8.3 Hypergraph Coloring

We are going to prove a special case of Theorem 39 using Symmetric Lovász Local Lemma on
hypergraph color-ability.

Theorem 41. Let H be a k-uniform hypergraph in which each hyperedge intersects at most d other
hyperedges. Then, H is 2-colorable if e(d+ 1) ≤ 2k−1 where e = exp(1) is the Euler number.

Proof. We can prove the theorem by applying the Symmetric Lovász Local Lemma directly as
following

1. For each hyperedge i, we set the random event Ai to be that the hyperedge is monochromatic.
Clearly there are only two monochromatic colorings over all 2k colorings and Pr(Ai) ≤ p =

1
2k−1 .

2. Each random event Ai is independent of all other random events but at most d other events
whose hyperedges intersect with i.

3. If e(d+ 1) ≤ 2k−1, we have ep(d+ 1) ≤ 1.

Then by the Symmetric Lovász Local Lemma, we have the probability that none of the hyper-
edges are monochromatic, to be positive. Therefore, there must be one such coloring.

Moving forward to constructive methods. In previous sections, we focus on the non-
constructive side of the probabilistic methods, in which we prove the existence of an object without
giving an explicit example. For the rest of the paper, we will shift our focus to the question of how
to construct an object whose existence can be guaranteed by the probabilistic method. The most
naive way is to exhaustively enumerate every possible construction, and select the one that has the
desired property. But this is unrealistic and unnecessarily complicated in most cases. For example,
if we enumerate all possible 2-coloring of a hypergraph on its n vertices, we need to do 2n rounds of
searching and this is very inefficient. It turns out that we can often efficiently (in polynomial time)
find such object under some additional constraints or in looser settings. In upcoming sections, we
will discuss three ways of construction: the Greedy Algorithm in Section 9, the Beck’s Algorithm
in Section 10, and the Derandomization Method in Section 11.

9 Greedy Algorithms

The first constructive method we introduce is the Greedy Algorithm. Although there is no formal
definition of the term, one can interpret it as trying to grab as much as we can from the opportunity
that presents in front of us. The following example illustrates this idea.

Example 42. Alice is going on a game show. Bob is the host who has a series of integers in his
mind. Bob then reveals the numbers one by one to Alice who can choose either to keep the number
or pass it. However, there is an additional rule that the sum of Alice’s numbers must not exceed
10. At the end of the game, Alice will take home the amount of money equal to the sum of her
numbers. How will Alice tackle on this game?
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One strategy that Alice can employ is a greedy approach: always keep the number if the sum
does not exceed 10. In fact, this is a decent strategy given that Alice has no prior knowledge of
Bob’s series of number. Thus, it would be the best for Alice to act upon what is currently offered
in front of her.

For example, it Bob’s numbers are (3, 1, 2, 5, 4), Alice will keep 3, 1, 2, 4 – earning $10. On the
other hand, if the numbers are (3, 9, 3, 6, 9, 3), Alice will keep 3, 3, 3 – earning $9. In these scenarios,
the greedy strategy is optimal, meaning that Alice cannot earn more even if she knew the entire
series before hand. In the first scenario, Alice can never earn more than $10 because the rule forbids
Alice to keep the numbers whose sum up more than 10. In the second scenario, Alice cannot earn
$10 because the numbers in the sequence are multiple of 3.

On the other hand, consider the scenario when Bob’s numbers are (3, 1, 5, 2, 4). Alice will keep
3, 1, 5 – earning $9. In this scenario, the greedy strategy is not optimal because Alice can actually
earns $10 from keeping 3, 1, passing 5, and keeping 2, 4. Thus, greedy strategy does not always
give the optimal solution.

Even worse, consider the unfortunate scenario when Bob’s numbers are (1, 10, 10, 10, 10). Em-
ploying greedy strategy, Alice can earn only $1 from keeping 1, while the optimal solution is to
earn $10 by passing the first 1 and keeping any of the following 10’s. Thus, greedy strategy can
sometimes perform very poorly, though this rarely happens.

The major takeaway from this example is that the Greedy approach does not always give the
optimal solution. In fact, most of the time it will not. However, we can expect that most of the
time, the greedy approach to give a good enough solution while the scenario where it gives a bad
solution rarely happens.

It also turns out that oftentimes, the greedy approach gives a construction which is as good as
what we derive from probabilistic method.

9.1 Hitting Set Problem

Theorem 43. Given k−element sets S1, S2, ..., Sm ⊆ [n]. There exists an algorithm for finding the
hitting set H with |H| ≤ dn logm

k e that runs in in O (mk log n) time.

Proof. We claim that the following greedy algorithm finds the desired hitting set H.

Algorithm 1 : Greedy-Hitting-Set(S1, S2, ..., Sm)

1: S ← {S1, S2, ..., Sm}
2: H ← φ
3: while S 6= φ do
4: x← the element of [n] \H that has the most occurrences in S
5: Add x to H
6: Remove every Si ∈ S such that x ∈ Si
7: Output H

First of all, notice that this algorithm always terminates because for each round of the while
loop, we remove at least one element from S, which allows at most m rounds of looping.

Notice that at each round, we add one element to H. Therefore, when the algorithm terminates,
the size of H is indeed the number of rounds of the while loop.
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For each r ∈ Z+, let tr be the size of S before entering round r, which is the same as the size
of S at the end of round r− 1. With this notation, we have t1 = m as it represents initial S before
entering the while loop. Finally, let the x determined in Line 4 of round r denoted by xr.

Now we notice that once the while loop terminates, H becomes a hitting set. This is because
each Si ∈ S removed at round r has xr in common with H.

For each round r, we begin with |S| = tr and |H| = r − 1. The total number of occurrences of
[n] \H in S is exactly |S| · k = trk. This means the occurrences of xr in S must be at least

trk

|[n] \H|
=

trk

n− r + 1
≥ trk

n
.

This means in round r, we remove at least trk/n elements from S. This yields

tr+1 ≤ tr −
trk

n
= tr ·

(
1− k

n

)
< tr · e−k/n.

Therefore, for any round r,

tr+1 < t1 · e−rk/n = m · e−rk/n.
Notice that when r = dn logm

k e, we have tr+1 < 1, which means tr+1 = 0, i.e., S = φ. This means

the while loops never runs more than dn logm
k e rounds before reaching S = φ and then terminate.

Since |H| is the number of rounds of the while loop, the proof is complete.

Recall that Theorem 16 guarantees that the hitting set H with size at most dn logm
k e exists.

Thus, the above greedy algorithm gives the construction of a hitting set which is as good as
guaranteed by the probabilistic method.

10 Beck’s Algorithm

After introducing the greedy algorithm as an example of constructive methods, we now return
to the hypergraph coloring example, and show how constructive methods shed light on the topic.
Recall that in Theorem 41, we proved that if a hypergraph satisfies certain conditions, then a proper
2-coloring exists. Then, the question that naturally arises is, given a hypergraph that satisfies the
condition e(d+ 1) ≤ 2k−1, how to construct the proper 2-coloring on the hypergraph. It turns out
that under a slightly looser constraint, we can find such coloring in polynomial time. The algorithm
was first given by [Bec91] and is considered a significant breakthrough in the hypergraph 2-coloring
problem. The version of Beck’s algorithm that we are going to present is revised in [Alo91].

Beck’s algorithm consists of two passes. In the first pass, we independently and uniformly color
each hypernode with Red or Blue. There is no constraints imposed at the moment, meaning that
it is acceptable in this stage to have monochromatic edges. We will show that with the random
coloring, we can guarantee a useful underlying structure with constant probability.

Since it is possible to have some monochromatic hyperedges as a result from the random col-
oring, the second pass of the algorithm is dedicated to fixing those edges. Specifically, we will
choose not-so-many hypernodes to be recolored in such a way that guarantees that there will be
no monochromatic edge after the recoloring.

We define some terminologies that are essential to the proof in Section 10.1, introduce the first
pass in Section 10.2, and conclude the proof with the second pass in Section 10.3.
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Figure 3: Shown above is an example of a graph G (left) along with its four examples of 1,2-trees
(middle) and three examples of 2,3-trees (right). Each 1,2-tree and 2,3-tree satisfies properties
specified in Definition 44 and Definition 45 respectively.

10.1 Definitions

Definition 44. Given an undirected graph G with distance function dG. We call C a 1,2-tree of
G if it satisfies the following three conditions. (See Figure 3)

1. V (C) ⊆ V (G)

2. For any (a, b) ∈ E(C), we must have dG(a, b) = 1 or 2.

3. C is a connected tree

Definition 45. Given an undirected graph G with distance function dG. We call T a 2,3-tree of
G if it satisfies the following three conditions. (See Figure 3)

1. V (T ) ⊆ V (G)

2. For any two arbitrary vertices a, b ∈ V (T ), we must have dG(a, b) ≥ 2. It is worth noting that
(a, b) is not necessarily an edge of T .

3. For any (a, b) ∈ E(T ), we must have dG(a, b) = 2 or 3

4. T is a connected tree

The main result we present in this section is the following theorem.
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Theorem 46. Given fixed n ≥ 2 and d, and suppose that some 0 < α < 1 satisfies

4ed3 < 2n(1−H(α)), H(α) = −α log2 α− (1− α) log2 (1− α), (23)

and
2e(d+ 1) < 2αn, (24)

then there is a randomized algorithm that finds a proper 2-coloring of a n-uniform hypergraph H
with N edges in which no edge intersects more than d other edges in expected NO(1) time.

10.2 The First Pass

The first step towards the algorithm is to color every hypernode independently and uniformly with
Red or Blue. At this stage, we do not impose any constraint on coloring (some edges can be
monochromatic) as we will fix that up in the second pass.

After the random coloring, we will call an edge bad if it contains at most αn vertices of one
color, and let B denote the set of bad edges. We can see that the probability that a particular edge
is bad is

2 ·
∑

0≤i≤αn

(
n

i

)
· 2−n ≤ 2 · 2n(1−H(α)) = p,

which follows from the connection between entropy and binomial coefficients that can be proved
with the subadditivity of entropy. We start with showing some important properties of 1,2-trees
and 2,3-trees.

Lemma 47. Given a graph G with a 1,2-tree C. Let T be the maximal 2,3-tree whose vertices
are within vertices of C, i.e. V (T ) ⊆ V (C). Then for every p ∈ V (C) \ V (T ), there must exists
q ∈ V (T ) such that (p, q) ∈ E(G).

Proof. For a vertex u and a real number r, we say u ≥G r-away from T iff dG(u, v) ≥ r for every
v ∈ V (T ). To prove this lemma, we first need to introduce two following miniclaims.

Claim 48. If p ∈ V (C) \ V (T ) and p ≥G 2-away from T , then p ≥G 4-away from T .

Proof. Suppose, for the sake of contradiction, that there exists a vertex q ∈ V (T ) which dG(p, q) ≤
3. In addition, p ≥G 2-away from T implies dG(p, q) ≥ 2; therefore, dG(p, q) = 2 or 3. This
essentially means we can add edge (p, q) to T to become a larger 2,3-tree, which contradicts the
maximality of T .

Claim 49. If p, q ∈ V (C) \ V (T ) such that p ≥G 4-away from T and (p, q) ∈ E(C), then q ≥G 4-
away from T .

Proof. Since (p, q) ∈ E(C), we must have dG(p, q) ≤ 2. Take arbitrary r ∈ V (T ). It follows that
dG(p, r) ≥ 4. From triangle inequality, it follows that dG(q, r) ≥ dG(p, r)− dG(p, q) ≥ 2. Since this
holds for arbitrary r ∈ V (T ), this implies q ≥G 2-away from T . Applying Claim 48, we can boost
q to be ≥G 4-away from T .
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Now it’s time to finish off the proof. Given p ∈ V (C) \ V (T ). Assume, for the contrary, that
dG(p, q) ≥ 2 for every q ∈ V (T ). This is equivalent to saying that p ≥G 2-away from T . Since
V (T ) ⊆ V (C) and C is a connected tree, there must me a path (p, p1, p2, ..., pf ) in E(C) where
p, p1, p2, ..., pf−1 ∈ V (C) \ V (T ) and pf ∈ V (T ).

With the assumption that p ≥G 2-away from T , we apply Claim 48 to boost it to p ≥G 4-away
from T . We then iteratively apply Claim 49 with (p, p1), (p1, p2), ..., (pf−2, pf−1) ∈ E(C) to get
pf−1 ≥G 4-away from T . However, (pf−1, pf ) ∈ E(C) implies dG(pf−1, pf ) ≤ 2. Since pf ∈ V (T ),
we reach a contradiction.

Lemma 50. With probability at least 1/2, every 2,3-tree of G whose vertices are in B has size at
most log(2N)

Proof. Build a new graph G′ where V (G′) = V (G) and (p, q) ∈ E(G′) iff dG(p, q) = 2 or 3. The
maximum degree of G′ is most d3. Notice that any 2,3-tree of G must be also be a connected tree
in G′.

We now set u = log(2n). A result from [Knu69] implies that for any vertex v ∈ G′, there are

at most 1
(d3−1)u+1

(
d3u
u

)
≤ (ed3)u sized-u trees in G′ that contains v. Therefore, there are at most

N(ed3)u sized-u trees of G′. We also notice that for any sized-u tree T in G′, the probability of
V (T ) ⊆ B is at most pu. Thus, the expected number of sized-u 2,3-trees of G is at most∑

T = sized-u tree of G′

Pr (V (T ) ∈ B) ≤ pu ·
(
number of sized-u tree of G′

)
≤ N(eDp)u < 1/2

given the condition 1. Finally, we apply Markov’s Inequality.

Pr (G has at least 1 sized-u 2,3-trees) < 1/2

which is equivalent to saying that the probability of having no sized-u 2,3-trees of G is at least
1/2.

Our goal in the first pass is to show the following lemma.

Lemma 51. With probability at least 1/2, every 1,2-tree of G whose vertices are in B has size at
most (d+ 1) log(2N)

Proof. Consider the scenario which every 2,3-tree of G whose vertices are in B has size at most
log(2N) – this happens with probability at least 1/2 according to CLemma 50..

Let C be an arbitrary 1,2-tree of G whose vertices are entirely in B. Also let T be the maximal
2,3-tree whose vertices are entirely in C. So we have |T | ≤ log(2N).

By Lemma 47, every vertex in V (C) \ V (T ) is a neighbor (in G) to some vertex in V (T ).
Since each vertex has at most d neighbors in G, we must have |V (C) \ V (T )| ≤ d · |V (T )|. Thus,
|V (C)| = |V (T )|+ |V (C) \ V (T )| ≤ (d+ 1) · |V (T )| ≤ (d+ 1) · log(2N).

In conclusion, with probability at least 1/2, every 1,2-tree of G whose vertices are entirely in B
must have size at most (d+ 1) · log(2N).
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10.3 The Second Pass

Given the coloring from the First Pass, we can make the following assumption.

Assumption 52. There is no 1,2-tree of size greater than (d + 1) · log(2N) all of whose vertices
in B.

This is because the probability of this happening is at leas 1/2. So we can repeat the first pass
to achieve this in expected O(1) rounds. In the Second Pass, we fix the coloring by recoloring all
the hypernodes that belong to the bad edges in such a way that each edge is non-monochromatic.

We call a hyperedge dangerous if it contains at least αn vertices that belong to bad edges, and
let D denote the set of dangerous edges. By definition, bad edges are also dangerous, and thus
B ⊆ D. In fact, with this definition, we only need to focus on dangerous edges. This is because:

Claim 53. A non-dangerous edge will remain non-monochromatic no matter how we recolor.

Proof. For an edge e /∈ D, on the one hand, e /∈ B, and thus it has at least αn Red vertices,
and at least αn Blue vertices. On the other hand, since it is non-dangerous, it has less than αn
vertices that belong to bad edges. In other words, less than αn vertices gets recolored, and thus
after recoloring, there must still be at least 1 Red and 1 Blue vertices in e. That is, e remains
non-monochromatic.

Therefore, we now narrow our attention to recolor in such a way that makes sure all dangerous
edges are non-monochromatic. We first prove that such a proper 2-coloring exists.

Lemma 54. Given the Assumption 52, there exists a proper 2-coloring by recoloring all the hyper-
nodes that belong to the bad edges.

Proof. Notice that we need to recolor at least αn hypernodes in each hyperedge. Therefore, the
probability that a particular dangerous edge becomes monochromatic is at most 21−αn. In addition,
each dangerous edge shares a vertex with at most d others. By the Symmetric Lova̋sz Local Lemma,
along with the condition in Equation 24, a proper 2-coloring must exist.

Next, we show how to find such a proper 2-coloring. In fact, we exhaustively enumerate all
possible ways to color the hypernodes that belong to the bad edges, and we prove that we can
do this in polynomial time. We first divide B into a set of non-overlapping maximal 1,2 tress
C1, C2, ...Cm, such that⋃

i∈[m]

Ci = B, and Ci ∩ Cj = ∅ for i ∈ [m], j ∈ [m], i 6= j

To do this, we use a greedy-like approach. Starting with a random vertex in B, we iteratively add
new vertices in such a way that it maintains a valid 1,2-tree. Each new vertex can be determined
via a Breadth First Search in the dependency graph G. If we cannot add any more vertex, it
becomes a maximal 1,2-tree in B. We repeat this process until there is no vertex left in B. The
final result is such partition given above.

Lemma 55. For a dangerous edge e ∈ D, in the hypergraph it only intersects edges from one such
maximal 1,2-tree Ci.
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Proof. We prove by contradiction. If, for the contrary, a dangerous edge e intersects edges from
two distinct maximal 1,2-tree. That is, in the hypergraph, e intersects u ∈ C1 and v ∈ C2. It
follows that e is adjacent to u and v in G, dG(e, u) = dG(e, v) = 1

Then, dG(u, v) ≤ dG(e, u) + dG(e, v) = 1 + 1 = 2. This means that we can add edge v to C1, or
add u to C2, to become larger 1,2 trees, which contradicts the maximality of Ci.

Following Lemma 55, we can now recolor the points that belong to the edges of each Ci sep-
arately, and in such a way that makes sure all dangerous edges intersecting edges in Ci are non-
monochromatic. Recall that the First Pass guarantees |Ci| ≤ (d + 1) · log(2N), it follows that
enumerating all possible 2-colorings for each Ci takes

O(2|Ci|) = O(2O((d+1) log 2N ) = O(2O(logN)) = NO(1) (25)

time. Therefore, by enumerating all possible 2-colorings for each Ci separately, we can find the
proper 2-coloring in polynomial time.

As a final note, recall that we make the Assumption 52 by claiming that we can repeat the
first pass until there is no 1,2-tree of size greater than (d+ 1) · log(2N) all of whose vertices in B.
However, it seems to be impossible to check the size of every 1,2-tree in polynomial time. Luckily,
there is a way to circumvent it.

Notice that we only need the size of each Ci to be at most (d+1) · log(2N). Therefore, we can do
the First Pass, generate and check the size of each Ci’s. If some Ci is larger than (d+ 1) · log(2N),
we repeat the first pass; otherwise we start the recoloring process. Each first pass is successful with
probability at least 1/2, thus we only need expected O(1) repetitions of the first pass.

11 Derandomization

As we have mentioned, the naive algorithm of enumerating across the probability space to find one
object with the desired property has unbounded time complexity and may not even terminate. In
this section, we introduce derandomization, a technique that derandomizes a derived randomized
algorithm into a deterministic and fast algorithm. That is, an algorithm that is guaranteed to
terminate in polynomial time. This could significantly help with the construction process for an
object instance.

Proposition 56. (Randomized Algorithm) Let A be a randomized algorithm that runs in t(n) time
using a random bit sampler. Note that t(n) is an upper bound on the number of random bits used
in the algorithm. Therefore, let x = {0, 1}n be the input to A, and r = {0, 1}t(n) be t(n) random
bits, we can write A(x; r) for A’s output of input x under random bits r. Then we have

Pr (A(x; r) accepts) =
1

2t(n)

∑
r∈{0,1}t(n)

[A(x; r) accepts] (26)

We can enumerate all possible r and run A(x; r) to simulate the random algorithm and make
sure we accept x if A accepts x with positive probability. However, this enumeration technique
takes O(2t(n)t(n)) time which is exponential.

Proposition 57. (Derandomization) If A is a probabilistic polynomial-time algorithm that runs
in t(n) using r(n) random bits. There is a corresponding deterministic algorithm which runs in
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2r(n)t(n). Therefore, if t(n) = O(poly(n)) and r(n) = O(log n), we have a polynomial derandom-
ization version for A.

11.1 Application on Graph Cut problem

We first define the cut and the size of a cut of undirectional graphs.

Definition 58. For an undirectional graph G = (V,E), a cut of the graph is a division of the vertex
set V into C = (S, T ) i.e. S ∩ T = ∅ and S ∪ T = V . The size of a cut is the number of edges
across S and T , which is

size(C) = size(S, T ) =
∑

(u,v)∈E|(u∈S∧v∈T )∨(u∈T∧v∈S)

1

Then let’s consider how large the cut we can obtain from a graph G.

Theorem 59. For a graph G = (V,E), there is a cut with size at least |E|2 .

Proof. We can randomly assign vertices into S and T each with probability 1
2 . Then for each edge

e, the probability it is cut is equal to the probability that its two ends are assigned to different set,
which is of probability 1

2 . By the linearity of expectation, E[size(S, T )] = |E| · 1
2 = |E|

2 . According

to the first moment method, with positive probability, size(S, T ) ≥ |E|
2 . Hence such cut must

exist.

The theorem is easily proven using probabilistic method, which also naturally gives a randomized
algorithm for construction. That is, to sample |V | random bits indicating each vertex to be assigned

to S or T , and then compute the size of the cut, and repeat until we get a cut of size at least |E|2 .
The algorithm runs in O(|V | + |E|) and requires |V | random bits, and derandomizing it with

enumeration takes O(2|V ||E|) time. To obtain a polynomial derandomized algorithm, we need to
reduce the number of random bits used to O(log(|V |)).

Definition 60. (Pairwise-Independent) A collection of n random bits, x1, x2, · · · , xn is called
pairwise-independent iff every pair of bits xi, xj is independent, i.e. Pr(xi) = Pr(xi|xj) for any
i 6= j.

Recall that for each edge (u, v), if the random bits for u and v are independent with each other,
Pr((u, v) is cut) = 1

2 . Thus, if we use xi to assign node i and x1, · · · , xn are pairwise-independent,

we can conclude that E[size(S, T )] = |E|
2 .

Hence, it is sufficient to construct n pairwise-independent random bits x1, · · · , xn from O(log n)
bits.

Proposition 61. Let k = blog2 nc + 1, and B(i) to be an vector of i’s first k binary bits i.e.
i =

∑k−1
j=0 2jB(i)j. Then let R = [r0r1 · · · rk−1] be a vector of k random bits. We construct the

pairwise-independent random bits as

xi = RTB(i) mod 2
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Clearly, for all i ≥ 1, xi ∼ Bernoulli(1
2). This is because B(i) must have at least one none-zero

bit, and consider the lowest non-zero bit that flips the outcome with probability 1
2 (because the

corresponding random bit has probability 1
2 to be 1).

Then note that the event xi 6= xj is equivalent to the event (xi + xj) mod 2 = 1 and (xi + xj)
mod 2 = [RT (B(i)−B(j))] mod 2.

Further, (B(i)−B(j)) mod 2 must have at least one none-zero bit, similarly, (xi+xj) mod 2 ∼
Bernoulli(1

2).
Therefore, no matter what distribution xj has, the distribution of xi is still Bernoulli(1

2), which
proves the pairwise-independency of x1, · · · , xn.

We have got a derandomized algorithm of finding a cut of size at least |E|2 .

1. Enumerate all possible value combinations of k random bits r0, · · · , rk−1.

2. For each assignment, construct x1, · · · , xn using Proposition 61.

3. Check if the resulted cut has size ≥ |E|2 , and output the cut if so.

This algorithm runs in O(2k|E|) = O(|V | · |E|), and is a deterministic polynomial construction.

12 Final Remarks

The probabilistic method is a powerful non-constructive method that elegantly proves the existence
of some object with desired property. Shown in the early sections, oftentimes the probabilistic
method relies on probability bounds as common tools to calculate the probability. In later sections,
we also discuss the inspired exciting research on the construction process to find an object with
desired property, whose existence is guaranteed by the probabilistic method.

Despite its initial usage in combinatorics and graph theory, the probabilistic method now ex-
tend its applications to areas such as number theory, linear algebra, theoretical computer science,
information theory, etc. A number of longstanding open problems, such as bounds on the Ram-
sey Number, stability number, the largest element of distinct-sum sets, etc, continue to motivate
ongoing important research.
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