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Abstract

Ramsey Theory is the study of how specific patterns inevitably emerge
in sufficiently large systems. This paper provides an overview of three
key theorems in Ramsey Theory: Ramsey’s Theorem, Van der Waerden’s
Theorem, and Rado’s Theorem, which deal with finding patterns in math-
ematical objects such as graphs, the number line, and systems of linear
equations respectively. While each theorem is distinctly different, they
share a common objective of discerning order in chaos.
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1 Introduction

A simple yet powerful example of finding order in chaos is the pigeonhole prin-
ciple, which is at the core of much of Ramsey Theory.

Theorem 1.0.1 (Pigeonhole Principle). If there exist m pigeonholes con-
taining n pigeons, where n > m, then at least one of the pigeonholes must
contain at least 2 pigeons.
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The following diagram demonstrates the pigeonhole principle for placing
n = m+ 1 pigeons (represented by circles) into m pigeonholes (squares), where
one pigeonhole is guaranteed to contain 2 pigeons.

1 2 3 ... m

Theorem 1.0.2 (Infinite Pigeonhole Principle). If there exist a finite num-
ber of pigeonholes containing an infinite number of pigeons, then at least one of
the pigeonholes must contain an infinite number of pigeons.

This type of counting argument allows us to make conclusions about sets of
objects partitioned into a finite number of classes, namely that one of these
classes must have a certain size. One illustrative application of the pigeonhole
principle is in solving the following classic puzzle in Ramsey Theory.

Friends and Enemies Puzzle: Suppose there is a crowd of 6 people, where
any 2 people are either friends or enemies. Show that there are always either
at least 3 people who are pairwise mutual friends, or at least 3 who are pairwise
mutual enemies.

We can easily express this problem using graph-theoretic terms:

Definition 1.0.1. A graph is a pair G = (V,E), where V is a set of vertices
and E is a set of size-2 subsets of V . Each edge in E connects 2 vertices in V .

Example 1.0.1. The following graph G contains vertices V = {v0, v1, v2, v3}
and edges E = {{v0, v1}, {v1, v2}, {v2, v3}}.

v0 v1

v2 v3

Definition 1.0.2. A complete graph is a graph where for any 2 distinct
vertices v1, v2 ∈ V , there exists an edge {v1, v2} ∈ E connecting them. We
denote the complete graph on n vertices by Kn.
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Example 1.0.2. K4 is the complete graph on 4 vertices.

v0 v1

v2 v3

Definition 1.0.3. A graph is r-colored if each edge e ∈ E is assigned a color
from one of r colors.

Note that this definition is different from the usual notion of graph coloring, in
which vertices are colored instead of edges.

Example 1.0.3. The following are three examples of 2-colorings of K4, colored
red and blue.

v0 v1

v2 v3

v0 v1

v2 v3

v0 v1

v2 v3

Returning to the Friends and Enemies Puzzle, we can express the crowd of 6
as the complete graph K6. If 2 people are friends, color the edge connecting
the corresponding vertices red. Otherwise, they are enemies, so color the edge
blue. Solving the puzzle is then equivalent to proving the following statement:
A 2-colored K6, colored red and blue, must either contain a red K3 or blue K3.
In section 3.1, we show that the proof is simply a direct application of the pi-
geonhole principle to colored graphs, where edges in the graph are sorted into
red or blue pigeonholes.

Suppose we had successfully proved the above result. Then any 2-colored com-
plete graph on more than 6 vertices must also contain either a red K3 or blue
K3, since it contains K6 by definition. The following question then arises: is 6
the smallest size for a complete graph to guarantee red K3 or blue K3 subgraph,
or can we do better?

The answer to this question is precisely the definition of a Ramsey Number, as
described in Ramsey’s Theorem. The theorem states that sufficiently large,
finitely colored, complete graphs must contain a specific monochromatic sub-
graph. We first prove Ramsey’s Theorem for graphs of finite size, and then
extend it to infinite graphs and hypergraphs.
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Next, we provide a proof of Van der Waerden’s Theorem, which is concerned
with finding monochromatic substructures called arithmetic progressions in fi-
nite colorings of the set of natural numbers, N. An arithmetic progression is
defined to be a sequence of numbers with the same common difference.

Finally, we discuss Rado’s Theorem, which deals with finding monochromatic
solutions to systems of linear equations using finite colorings of N. In fact, by
representing an arithmetic progression using a system of equations, we show
that Van der Waerden’s Theorem is a specific case of Rado’s which states that
there must exist a monochromatic solution to the aforementioned system of
equations.

2 History and Philosophy of Ramsey Theory

We as the human race have always been devoted to finding structure within
chaos. For thousands of years, religions, philosophies, and disciplines have been
devoted to finding signs within naturally occurring events. Ancient Greek phi-
losophy centered around logos, the order which they believed was embedded
in the universe; the philosopher Heraclitus defined the term to encapsulate the
belief that there was a universal law to impose order on the cosmos.

In fact, we have explicit records from as far back as 3,500 years ago of peo-
ple finding specific patterns in the seemingly random. According to surviving
cuneiform text, an ancient Sumerian scholar saw in the heavens that the stars
seemed to form a lion, a bull, and a scorpion. Today, we also group the stars
into shapes, constellations like the Big Dipper, Little Dipper, or Orion. These
shapes we see in the sky at night beg the question: what are the chances that
the stars would fall in the shape of a person, or even just in a straight line?
How can it be possible that of all the configurations these astronomical bodies
could form, the stars form shapes familiar to us? Are we, as humans, projecting
a desire for order and imagining patterns where there are none, or does the
universe actually contain structure?

In fact, mathematics holds the answer. Frank Plumpton Ramsey began the
study of the eponymous Ramsey Theory, a branch of mathematics devoted to
the study of order within chaos. While Ramsey Theory contains many theorems,
the essential overarching result is that in large enough groups, structure does
emerge. This is a fascinating result; because there are so many stars in the sky,
we will be able in certainty to find lines or shapes among them.
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3 Ramsey’s Theorem

3.1 Ramsey’s Theorem for colored graphs

Definition 3.1.1. The Ramsey Number, R(s, t), is the number of vertices in
the smallest complete graph which, when 2-colored red and blue, must contain
a red Ks or a blue Kt, where we denote the complete graph on n vertices by
Kn.

Example 3.1.1. R(3,3) = 6.
As discussed in the introduction, showing that 6 is the smallest size of a crowd
that guarantees at least 3 mutual friends or 3 mutual enemies is equivalent to
showing R(3, 3) = 6, for which we will now provide a proof.

Proof. First, we show that R(3, 3) > 5 (or R(3, 3) ≥ 6) by exhibiting a complete
graph on 5 vertices that does not contain a red K3 or blue K3:

We now show that K6 must always contain a red K3 or blue K3. Recall that
this is equivalent to the statement of the Friends and Enemies Puzzle.

First, pick any vertex v and consider the edges incident to it:

v

Since there are 5 edges and only 2 possible colors for each edge, by the pigeonhole
principle, at least 3 of these edges must have the same color. Without loss of
generality, assume there are 3 blue edges connecting v to 3 other vertices.

v
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Consider the K3 subgraph generated by the 3 adjacent vertices. If all edges in
the subgraph are red, then we have found a red K3.

v

Otherwise, at least one of the edges must be blue. This edge completes a blue
K3 with the original set of 3 blue edges incident to v.

v

Therefore, R(3, 3) = 6.

This example is a specific case of the more general Ramsey’s Theorem.

Theorem 3.1.1 (Ramsey). For any two natural numbers, s and t, there exists
a natural number, R(s, t) = n, such that any 2-colored complete graph of order
at least n, colored red and blue, must contain a monochromatic red Ks or blue
Kt.

Proof. This proof will follow a similar outline to how Taylor formulated it in
[1]. It suffices to show that R(s, t) exists by proving it is upper-bounded. The
proof will be by induction.

Base Cases:

• R(s, 2) = R(2, s) = s. Either every edge is colored the same, or at least
one is colored differently. If they are all colored the same then a Ks exists,
otherwise at least a K2 exists.

• R(s, 1) = R(1, s) = 1. This holds as there is no innate difference between
coloring a vertex red or blue.

Inductive Hypothesis: Assume R(s− 1, t) and R(s, t− 1) exist.

Claim. R(s, t) ≤ R(s− 1, t) +R(s, t− 1)
First look at a 2-colouring of a complete graph with n = R(s−1, t) +R(s, t−1)
vertices. Then pick a vertex in Kn. Let’s call that vertex x.
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Define Rx such that every edge connecting a vertex in Rx to x is red. Similarly,
let Bx be the set of vertices adjacent to x such that every edge connecting a
vertex in Bx to x is blue. Since Kn is a complete graph, Bx = [n] \ (Rx ∪ {x})
and so |Rx|+ |Bx| = n−1. If |Rx| ≤ R(s−1, t) and |Bx| ≤ R(s−1, t) then since
n = R(s− 1, t) +R(s, t− 1) we must have |Rx|+ |Bx| ≤ n− 2, a contradiction.
So |Bx| ≥ R(s, t− 1) or |Rx| ≥ R(s− 1, t).

If |Bx| ≥ R(s, t− 1) and Bx induces a red Ks we are done. If Bx induces a blue
Kt−1 then Kn must contain a blue Kt since Bx ∪ {x} must induce a blue Kt.
Indeed, each edge {x, y} is blue for all y ∈ Bx, from the definition of Bx. So
Bx ∪ {x} must induce a blue Kt if Bx contains a blue Kt−1. The case for Rx is
completely symmetric.

We have shown that a 2-coloured complete graph of order R(s−1, t)+R(s, t−1)
must contain a red Ks or a blue Kt, proving that R(s, t) ≤ R(s−1, t)+R(s, t−1).
This completes our induction.

There exist multiple generalizations of Ramsey’s Theorem, for example to graphs
colored with 3 or more colors. We examine two other generalizations: Ramsey’s
for graphs of infinite size and for hypergraphs.

3.2 Infinite Ramsey’s Theorem for colored graphs

Definition 3.2.1. KN is the complete graph whose vertex set is countably
infinite.

In other words, the vertices of KN can be enumerated using the set of natural
numbers, as shown below:

0 1 2 3
...

... ... ... ...

We first show Infinite Ramsey’s Theorem for 2 colors, which will then help us
generalize to any finite number of colors.

Theorem 3.2.1 (Infinite Ramsey’s for 2 colors). Every 2-colored KN must
contain a countably infinite monochromatic complete graph.

Proof. Fix some 2-coloring of KN = (V,E), where each edge is colored either
red or blue. We will use this coloring to construct an infinite monochromatic
complete subgraph by iteratively restricting the vertices we include in the vertex
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set. The key will lie in the infinite pigeonhole principle, which will allow us to
continually choose infinite subsets of an infinite set of vertices.

Consider some vertex v0 ∈ V and all edges incident to it.

v0

...

There are infinitely many such edges, and only 2 possible colors for each edge.
Therefore, by the infinite pigeonhole principle, either the set of red edges inci-
dent to v0 is infinite, or the set of blue edges is infinite. Since these 2 cases are
symmetric, assume without loss of generality that there are infinitely many red
edges incident to v0.

Let S0 be the infinite set of vertices connected to v0 by a red edge. Pick some
vertex v1 ∈ S0 and consider the edges incident to v1 and some other vertex in
S0.

v0

...

v1

...

There are infinitely many such edges since S0 is infinite, and only 2 possible
colors for each edge. Again, by the infinite pigeonhole principle, there must
either be an infinite set of red edges or of blue edges. For example, assume that
there are infinitely many blue edges incident to v1 and some other vertex in S0.

Let S1 be the infinite set of vertices in S0 connected to v1 by a blue edge. Note
that all vertices in S1 are also connected to v0 by a red edge, since S0 ⊃ S1.
Pick some vertex v2 ∈ S1 and consider the edges incident with v2 and some
other vertex in S1.
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v0

...

v1

...

v2

...

There are again infinitely many such edges and only 2 possible colors for each
edge, so by the infinite pigeonhole principle, there must either be an infinite set
of red edges or of blue edges. For example, assume red.

Let S2 be the infinite set of vertices in S1 connected to v2 by a red edge. Note
that all vertices in S2 are also connected to v1 by a blue edge and to v0 by a
red edge, since S0 ⊃ S1 ⊃ S2.

We can continue this procedure of picking a successive vertex and applying the
infinite pigeonhole principle to generate an another infinite subset of vertices
indefinitely because KN is infinite. This will result in an infinite set of vertices
V ∗ = {v0, v1, v2, . . .}.

Let E∗ = {{v0, v1}, {v0, v2}, . . . , {v1, v2}, . . .} be the set of edges connecting the
vertices in V ∗. Observe that the color of each edge in E∗ is determined by the
vertex with the smaller index. For {va, vb} ∈ E∗ where a < b, vertex va is chosen
first, so only the vertices connected to va by a red (or blue, depending on which
color corresponded to the infinite set) edge are included in the set Sa. Since vb is
chosen at a successive step, then vb ∈ Sb−1 ⊂ . . . ⊂ Sa, so vb must be connected
to va by a red (or blue) edge. The color of edge {va, vb} is thus determined by va.

Therefore, all edges {va, vb} ∈ E∗ where va is the vertex with the smaller index
must have the same color. Color each vertex va ∈ V ∗ with the color correspond-
ing to these edges: V ∗ = {v0, v1, v2, . . .}. The set V ∗ contains infinitely many
vertices, and each vertex has 2 possible colors. By the infinite pigeonhole prin-
ciple, V ∗ must contain either an infinite set of red vertices or of blue vertices.
Call this set M .

The graph induced by the vertices in M is a subgraph of KN. Furthermore,
this subgraph must be complete, since each successive vertex vb ∈ V ∗ is always
connected to all of the previous vertices va ∈ V ∗ for a < b. Hence, the subgraph
induced by M is a countably infinite monochromatic complete graph, as desired.

We can now generalize Infinite Ramsey’s Theorem for 2 colors to r colors.
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Theorem 3.2.2 (Infinite Ramsey’s for r colors). Every r-colored KN must
contain a countably infinite monochromatic complete graph, where 1 ≤ r <∞.

Proof. Proof by induction on r.

Base cases:

• r = 1: The theorem holds trivially, since a 1-colored KN is itself a count-
ably infinite monochromatic complete graph.

• r = 2: The theorem holds by Infinite Ramsey’s Theorem for 2 colors,
shown previously.

Inductive Hypothesis: Assume that for some r such that 1 ≤ r < ∞, every
r-colored KN contains a countably infinite monochromatic complete graph. We
show that the theorem holds for r + 1.

Suppose KN is colored with r+ 1 colors c1, c2, . . . , cr+1. Take all edges that are
colored one of c1, c2, c3, . . . , cr−1 and color them all cr. We now have a 2-coloring
of KN, where each edge is colored either cr or cr+1. By Infinite Ramsey’s for 2
colors, KN must contain a monochromatic countably infinite complete subgraph.
In the new coloring, this subgraph must be colored either:

1. cr+1: In this case, the edges are also colored cr+1 in the original coloring of
KN, so they form a countably infinite monochromatic complete subgraph.
Therefore, the inductive hypothesis holds for r + 1.

2. cr: The edges colored by cr in the new coloring are colored by one of
c1, c2, . . . , cr in the original coloring of KN. Since these edges form a count-
ably infinite complete r-colored graph, by the inductive hypothesis, this
graph must contain a countably infinite monochromatic subgraph. Thus,
KN contains a countably infinite monochromatic subgraph, as desired.

In both cases, the inductive hypothesis holds for r + 1 colors. Conclude that
for any finite number of colors r, every r-colored KN must contain a countably
infinite monochromatic complete graph.

Infinite Ramsey’s Theorem for 2 colors can be used to generate a second proof
of the finite case, shown here.

Second Proof of Ramsey’s Theorem. Recall the theorem statement: For
any two natural numbers, s and t, there exists a natural number, R(s, t) = n,
such that any 2-colored complete graph of order at least n, colored red and blue,
must contain a monochromatic red Ks or blue Kt.

Proof. For contradiction, assume that for some s, t ∈ N, there is a 2-colored Kn

without a red Ks or blue Kt for all n ∈ N. In other words, we can always find
an n large enough such that for every complete graph on at least n vertices,
there exists a 2-coloring that does not contain a red Ks or blue Kt. Hence,
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R(s, t) =∞. We then have an infinite sequence of 2-colorings of K2,K3,K4, . . .
which don’t contain a red Ks or blue Kt. We denote this sequence of colorings
by C(K2), C(K3), C(K4), . . ..

The idea of the proof is to use these colorings to color KN such that it has no
red or blue countably infinite monochromatic complete subgraph, which would
contradict Infinite Ramsey’s Theorem for 2 colors. The graph KN that we will
color is shown below.

v0 v1 v2 v3
...

... ... ... ...

Let KN = (V,E), where V = {v0, v1, v2, . . .}.

First, consider edge {v0, v1} ∈ E. There are infinitely many colorings in the
sequence C(K2), C(K3), C(K4), . . ., and each colors {v0, v1} in one of 2 ways. By
the infinite pigeonhole principle, there must either be infinitely many colorings
that color {v0, v1} red, or that color it blue. Assume for example that there
are infinitely many colorings where {v0, v1} is red, and remove all colorings
where {v0, v1} is blue. The sequence of colorings is still infinite, since we’ve
only removed a finite number of colorings.

v0 v1 v2 v3
...

... ... ... ...

Next, consider edge {v1, v2} ∈ E. There are infinitely many colorings in the
sequence, and 2 possible colors for {v1, v2} in each coloring. Again, by the infi-
nite pigeonhole principle, there must be infinitely many colorings where {v1, v2}
is red, or where it is blue. For example, assume blue. Remove the finitely
many colorings where {v1, v2} is red, and also remove C(K2), since K2 does not
contain a third vertex v2. The sequence of colorings is again still infinite.
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v0 v1 v2 v3
...

... ... ... ...

Repeat this procedure for edge {v2, v3}. By the infinite pigeonhole principle,
there must either be infinitely many remaining colorings that color {v2, v3} red,
or that color it blue. For example, assume red, and remove C(K3) and the
colorings where {v2, v3} is blue.

v0 v1 v2 v3
...

... ... ... ...

We can continue this process of coloring each edge indefinitely since the se-
quence of colorings will always stay infinite after removing a finite number of
them. This will result in some 2-coloring of KN. Moreover, this coloring does
not contain a red Ks or blue Kt, since it is constructed from colorings that do
not contain a red Ks or blue Kt.

v0 v1 v2 v3
...

... ... ... ...

By Infinite Ramsey’s Theorem for 2 colors, any 2-colored KN must contain a red
or blue monochromatic countably infinite complete subgraph. This subgraph
then contains a red Ks or blue Kt, but the coloring that we’ve constructed for
KN does not contain either. We have reached a contradiction, which concludes
the proof.

3.3 Infinite Ramsey’s Theorem for colored hypergraphs

We can further generalize Infinite Ramsey’s Theorem for ordinary graphs to
hypergraphs.

12



Definition 3.3.1. A hypergraph is a pair H = (V,E), where V is a set of
vertices and E is a set of subsets of V . Each hyperedge in E can connect any
number of vertices in V .

Example 3.3.1. The following hypergraph H contains vertices
V = {v0, v1, v2, v3, v4} and hyperedges E = {{v0, v1}, {v1, v3, v4}, {v0, v2}}.

v0 v1

v2 v3 v4

Example 3.3.2. An ordinary graph is a hypergraph where each hyperedge
connects exactly 2 vertices.

v0 v1

v2 v3

v0 v1

v2 v3

Definition 3.3.2. Let H(k) denote the set of all size-k hyperedges of a
hypergraph H.

Example 3.3.3. In Example 2.4.1, H(2) = {{v0, v1}, {v0, v2}} and H(3) =
{{v1, v3, v4}}.

As with ordinary graphs, there is a notion of r-colored sets of hyperedges, where
each hyperedge is colored with one of r colors.

Example 3.3.4. The following is a 2-coloring of the hypergraph in Example
2.4.1: H(2) = {{v0, v1}, {v0, v2}} and H(3) = {{v1, v3, v4}}.

v0 v1

v2 v3 v4
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Definition 3.3.3. Let HN denote the countably infinite complete hyper-
graph. Its vertices can be enumerated using the natural numbers, and it con-
tains every possible hyperedge.

Theorem 3.3.1 (Infinite Ramsey’s for Hypergraphs). If H
(k)
N is r-colored,

where 1 ≤ r < ∞ and 1 ≤ k < ∞, then HN contains a countably infinite
subhypergraph H ′N such that H ′N

(k) is monochromatic.

Proof. Proof by induction on the size of hyperedges, k. Note that this differs
from the proof of Infinite Ramsey’s for ordinary graphs, which uses induction
on the number of colors r.

Base cases:

• k = 1: H
(1)
N is simply the infinite set of vertices of HN, which is colored

with a finite number of colors r. By the infinite pigeonhole principle,

H
(1)
N must contain a monochromatic infinite set of vertices H ′N

(1), where
H ′N ∈ HN is the complete hypergraph induced by those vertices. The
theorem then holds for k = 1.

• k = 2: H
(2)
N is the set of size-2 hyperedges of HN. As shown in Exam-

ple 2.4.2, these edges are precisely the ordinary edges that make up the
countably infinite complete graph, KN. Thus, this case is equivalent to
Infinite Ramsey’s Theorem for ordinary graphs for r colors, which states
that KN must contain a monochromatic countably infinite complete sub-

graph. Hence, H
(2)
N must contain a monochromatic infinite set of edges

H ′N
(2), where H ′N ∈ HN is the complete hypergraph induced by those edges.

The theorem then holds for k = 2.

Inductive Hypothesis: Assume for some k that if H
(k)
N is r-colored, then HN

contains a countably infinite subhypergraph H ′N such that H ′N
(k) is monochro-

matic. We show that this statement holds for k + 1.

Fix an r-coloring C0(e) of the hyperedges e ∈ H
(k+1)
N , and set H0 := HN.

Pick some vertex v0 in H0, and define a new hypergraph G0 := H0 − v0 (the

hypergraph H0 with one vertex removed). Color G
(k)
0 with r colors using the

following mapping: for each size-k hyperedge e ∈ G(k)
0 ,

C1(e) = C0(e ∪ {v0})

Thus, the color of e is defined by the color of the size-(k+1) hyperedge connect-
ing the vertices in e with vertex v0 in H0. By the inductive hypothesis, since

G
(k)
0 is r-colored, then G0 must contain a countably infinite subhypergraph H1

such that H
(k)
1 is monochromatic in the coloring C1.

Next, pick a vertex v1 in H1, and define a new hypergraph G1 := H1−v1. Color

G
(k)
1 with r colors using the following mapping: for each edge e ∈ G(k)

1 ,

C2(e) = C0(e ∪ {v1})

14



Again, by the inductive hypothesis, G1 must contain a countably infinite sub-

hypergraph H2 such that H
(k)
2 is monochromatic in the coloring C2.

This procedure can be repeated indefinitely since each hypergraph is infinite,
resulting in an infinite sequence of r-colored vertices V = {v0, v1, v2, . . .} and an
infinite chain of subhypergraphs H0 ⊃ H1 ⊃ H2 ⊃ . . . where each vi is in the
hypergraphs Hj where j ≤ i . The color assigned to each vertex vi is the same

as the color of the monochromaic set H
(k)
i+1, which was generated using vi.

There are infinitely many vertices in the set V , and finitely many possible colors
for each vertex. By the infinite pigeonhole principle, there must be a monochro-
matic infinite subset V ′ ⊂ V .

Observe that by the definition of each coloring Ci, all size-(k+ 1) hyperedges in
the original hypergraph HN whose only vertex outside of Hi is vi−1 must have
the same color. For instance, if vi−1 is red, then any size-(k + 1) hyperedge
in Hi consisting of vertex vi−1 with k vertices from the set {vi, vi+1, vi+2, . . .}
must also be colored red. Thus, since V ′ is monochromatic, every size-(k + 1)
hyperedge connecting vertices in V ′ must have the same color. In other words,
the countably infinite hypergraph H ′N formed on the set of vertices V ′, H ′N

(k+1),
is monochromatic, as desired.

The infinite case of Ramsey’s Theorem for hypergraphs can be used to prove
the case for complete hypergraphs of finite size. We do not show the proof here,
as it is very similar to the second proof of Ramsey’s for finite ordinary graphs
shown in section 2.3.

4 Van der Waerden’s Theorem

A year before Ramsey published his theorem, Bart Leendert van der Waerden
published his seminal paper in which he proved what would soon become known
as Van der Waerden’s Theorem.

Theorem 4.0.1 (Van der Waerden’s Theorem). For all positive integers, k
and r, there exists a natural number W(k,r) such that, if the set of natural num-
bers 1,2,...,W(k,r) is r-colored, then it must contain at least one monochromatic
k-term arithmetic progression.

First, we must define color focusing, as it will be used frequently in proofs of
different Van der Waerden’s cases.

Definition 4.0.1. In an r-coloring of the natural numbers, t different k-term
arithmetic progressions are color focused if

• they are monochromatic,

• none have the same color,
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• their (k + 1)th terms are equal. This term is called the color focus.

We use color focusing when one number in a sequence must be colored a certain
color to prevent a monochromatic progression.

Example 4.0.1. Suppose we are trying to prevent a monochromatic progression
of length 4 in the following 2-colored sequence: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13}. Then 13 is the color focus because it is the fourth term of each
monochromatic arithmetic progression 1, 5, 9 and 4, 7, 10. Hence, coloring 13
either red or blue forces a 4-term monochromatic progression.

Before proceeding with the proof of the general case of Van der Waerden’s, we
consider the following the example.

Example 4.0.2. W (3, 2) = 9
To find W (3, 2) we must find a set of natural numbers {1, 2, ...,W (3, 2)} which
when 2-colored must contain a monochromatic 3-term arithmetic progression.

We first set a lower bound: W (3, 2) ≥ 8 because we can find a coloring of
{1, 2, 3, 4, 5, 6, 7, 8} without a 3-term arithmetic progression: {1, 2, 3, 4, 5, 6, 7, 8}.

Then we must find an upper bound: we need to prove that W (3, 2) ≤ 9. If we
can do that, then we know 8 < W (3, 2) ≤ 9, so W (3, 2) = 9. We can do this
by looking at all the 2-colorings of {1, 2, 3, 4, 5, 6, 7, 8, 9}, as Taylor did [1]. All
these 2-colorings can be reduced to a smaller amount of cases by focusing on
the first four numbers: {1, 2, 3, 4}. {1, 2, 3, 4} can be colored in sixteen ways,
half of which color 1 red and the other half of which color 1 blue:

{1, 2, 3, 4} {1, 2, 3, 4}

{1, 2, 3, 4} {1, 2, 3, 4}

{1, 2, 3, 4} {1, 2, 3, 4}

{1, 2, 3, 4} {1, 2, 3, 4}

{1, 2, 3, 4} {1, 2, 3, 4}

{1, 2, 3, 4} {1, 2, 3, 4}

{1, 2, 3, 4} {1, 2, 3, 4}

{1, 2, 3, 4} {1, 2, 3, 4}

Only look at the cases where 1 is colored blue, as the other half are symmetric.
We may also ignore the colorings of {1, 2, 3, 4} that already contain a monochro-
matic 3-term arithmetic progression. This leaves us with five cases:
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�����{1, 2, 3, 4} �����{1, 2, 3, 4}

{1, 2, 3, 4} �����{1, 2, 3, 4}

�����{1, 2, 3, 4} �����{1, 2, 3, 4}

{1, 2, 3, 4} �����{1, 2, 3, 4}

{1, 2, 3, 4} �����{1, 2, 3, 4}

{1, 2, 3, 4} �����{1, 2, 3, 4}

{1, 2, 3, 4} �����{1, 2, 3, 4}

�����{1, 2, 3, 4} �����{1, 2, 3, 4}

Looking at the first remaining case, {1, 2, 3, 4}, we can now look at the full
sequence:

{1, 2, 3, 4, 5, 6, 7, 8, 9}

Since coloring 5 red would create a red 3-term arithmetic progression ({3, 4, 5}),
we must color it blue:

{1, 2, 3, 4, 5, 6, 7, 8, 9}

Then, we color 8 red to prevent a blue 3-term arithmetic progression ({2, 5, 8}):

{1, 2, 3, 4, 5, 6, 7, 8, 9}

.
Similarly, 6 must be colored blue and 7 must be colored red to avoid a red
({4, 6, 8}) and blue ({5, 6, 7}) 3-term arithmetic progression respectively:

{1, 2, 3, 4, 5, 6, 7, 8, 9}

Now we see no matter what we color 9 it will create a monochromatic 3-term
progression ({7, 8, 9} or {1, 5, 9}). The other four cases follow similarly:

{1, 2, 3, 4, 5, 6, 7, 8, 9} forces {1, 2, 3, 4, 5, 6, 7, 8, 9}

{1, 2, 3, 4, 5, 6, 7, 8, 9} forces {1, 2, 3, 4, 5, 6, 7, 8, 9}

{1, 2, 3, 4, 5, 6, 7, 8, 9} forces {1, 2, 3, 4, 5, 6, 7, 8, 9}

{1, 2, 3, 4, 5, 6, 7, 8, 9} forces {1, 2, 3, 4, 5, 6, 7, 8, 9}

Therefore, we have shown that 8 < W (3, 2) ≤ 9, so W (3, 2) = 9.

We now provide a proof of Van der Waerden’s Theorem.
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Proof. We will prove that W (k, r) exists by showing it is bounded using induc-
tion on k, as Taylor did in his paper on Ramsey Theory [1]. We already know
that we can find a natural number W (1, r). We now assume that for any q ≤ k
and any l we can find W (q, l). We now show that W (k+ 1, r) exists for every r.

Claim. For any t, such that t ≤ r, there exists a natural number W (t, k, r) such
that whenever the set, {1, 2, ...,W (t, k, r)} is r-colored, it must contain either a
monochromatic (k+1)-term arithmetic progression or t color focused monochro-
matic k-term arithmetic progressions together with their color focus.

We prove this claim by induction on t. We have previously assumed that we can
find a natural number W (k, r). Since there exists one monochromatic k-term
arithmetic progression in {1, 2, ...,W (k, r)} it must be color focused and its fo-
cus must be its (k+1)th-term. The arithmetic progression’s (k+1)th-term must
be less than or equal to 2W (k, r). Therefore, {1, 2, ..., 2W (k, r)} must contain
a color focused monochromatic k-term arithmetic progression together with its
color focus. So W (1, k, r) = 2W (k, r).

Now, we assume that W (t, k, r) exists and we must prove the existence of W (t+
1, k, r). Begin by taking the natural number X = 2W (t, k, r)W (k, rW (t,k,r)). We
may then split the interval [1, X] into blocks, each of order W (t, k, r). We label
each block Bi where i denotes the blocks position in [1, X]. Now we have:

[1, X] = {1, 2, ...,W (t, k, r)} ∪ {W (t, k, r) + 1,W (t, k, r) + 2, ..., 2W (t, k, r)}∪
... ∪ {X − (W (t, k, r)− 1), X − (W (t, k, r)− 2), ..., X}

= B1 ∪B2 ∪ ... ∪B2W (k,rW (t,k,r))−1 ∪B2W (k,rW (t,k,r))

Now consider an r-coloring of {1, 2, ..., X}. There are rW (t,k,t) ways in which a
set of order W (t, k, r) can be r-colored, so each block, Bi, must be colored in
one of these rW (t,k,t) ways.

If, when the interval [1, X] is r-colored, and of the blocks of order W (t, k, r)
contain a monochromatic (k + 1)-term arithmetic progression, we are done. So
we assume that each block contains a t color focused monochromatic k-term
arithmetic progression.

From the definition of W (k, rW (t,k,r)), the set of natural numbers
{1, 2, ...,W (k, rW (t,k,r))} must contain a monochromatic k-term arithmetic pro-
gression when rW (t,k,r)-colored. Our r-coloring of
{1, 2, ...,W (t, k, r)W (k, rW (t,k,r))} induces an rW (t,k,r)-coloring of the set of
blocks, B1, B2, ..., B2W (k,rW (t,k,r)), since each block has size W (r, k, r) and thus

is r-colored in one of rW (t,k,r) ways. Therefore, the first W (k, rW (t,k,r)) blocks
must contain a monochromatic k-block arithmetic progression. That is, there
must exist k identically colored blocks: Ba, Ba+d, Ba+2d, ..., Ba+(k−1)d, whose
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indices form an arithmetic progression. Since each block is of order W (t, k, r)
we may assume that they all contain t color focus, since otherwise once of the
blocks must contain a monochromatic (k + 1)-term arithmetic progression and
we would be done.

Now label each element of {1, 2, ..., X}, bx,y where x denotes the index of the
block the element is in and y denotes that elements position in Bx. We denote
the t color focused monochromatic k-term arithmetic progression in Ba as:

Pa,1 = ba,α, ba,α+δ, ba,α+2δ, ..., ba,α+(k−1)δ,

Pa,2 = ba,µ, ba,µ+ν , ba,µ+2ν , ..., ba,µ+(k−1)ν ,

...

Pa,t = ba,φ, ba,φ+ψ, ba,φ+2ψ, ..., ba,φ+(k−1)ψ.

These progressions each have their color focus at ba,f . That is,

ba,α+kδ = ba,µ+kν = · · · = ba,φ+kψ = ba,f

Since all of the k blocks Ba, Ba+d, Ba+2d, ..., Ba+(k−1)d, are identically colored
there must exist k-term arithmetic progressions:

Pa,1 = ba,α, ba,α+δ, ba,α+2δ, ..., ba,α+(k−1)δ,

Pa+d,1 = ba+d,α, ba+d,α+δ, ba+d,α+2δ, ..., ba+d,α+(k−1)δ,

...

Pa+(k−1)d,1 = ba+(k−1)d,α, ba+(k−1)d,α+δ, ba+(k−1)d,α+2δ, ..., ba+(k−1)d,α+(k−1)δ,

Pa,2 = ba,µ, ba,µ+ν , ba,µ+2ν , ..., ba,µ+(k−1)ν ,

...

Pa+(k−1)d,2 = ba+(k−1)d,µ, ba+(k−1)d,µ+ν , ba+(k−1)d,µ+2ν , ..., ba+(k−1)d,µ+(k−1)ν ,

...

Pa+(k−1)d,1 = ba+(k−1)d,φ, ba+(k−1)d,φ+ψ, ba+(k−1)d,φ+2ψ, ..., ba+(k−1)d,φ+(k−1)ψ.

such that

χ(Pa,1) = χ(Pa+d,1) = · · · = χ(Pa+(k−1)d,1),

χ(Pa,2) = χ(Pa+d,2) = · · · = χ(Pa+(k−1)d,2),

...

χ(Pa,t) = χ(Pa+d,t) = · · · = χ(Pa+(k−1)d,t)
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where χ(Pi,j) denotes the color of the elements of the progression Pi,j . Together,
each of the t progressions in each of the k blocks produce t + 1 color focused
monochromatic k-term arithmetic progression. Indeed, consider the following
k-term arithmetic progressions,

F1 = ba,α, ba+d,α+δ, ba+2d,α+2δ, ..., ba+(k−1)d,α+(k−1)δ

F1 = ba,µ, ba+d,µ+ν , ba+2d,µ+2ν , ..., ba+(k−1)d,µ+(k−1)ν

...

F1 = ba,φ, ba+d,φ+ψ, ba+2d,φ+2ψ, ..., ba+(k−1)d,φ+(k−1)ψ

Since each of the terms in Fi were taken from Pj,i where
j ∈ {a, a+ d, ..., a+ (k − 1)d}, each Fi must be monochromatic. That is,

ba+kd,α+kδ = ba+kd,µ+kν = · · · = ba+kd,φ+kψ

This element is in X since X = 2W (t, k, r)W (k, rW (t,k,r)) and each element
we have used so far we have taken from the first W (t, k, r)W (k, rW (t,k,r)) ele-
ments. Thus, each of the t monochromatic k-term arithmetic progressions we
have produced, F1, F2, ..., Ft have their color focus at ba+kd,α+kδ = ba+kd,µ+kν =
· · · = ba+kd,φ+kψ = ba+kd,f . Clearly bi,f must be the same color in every block
in the monochromatic k-term arithmetic progression. Therefore, the color fo-
cuses of the blocks, Ba, Ba+d, ..., Ba+(k−1)d, also form a monochromatic k-term
arithmetic progression. These terms, along with other t monochromatic k-term
arithmetic progressions, ba,f , ba+d,f , ...ba+(k−1)d,f , must have a different color
to each F1, F2, ..., Ft, since otherwise a monochromatic k + 1 term arithmetic
progression would have been formed in one of the Ba, Ba+d, ..., Ba+(k−1)d, from
the definition of a color focus. Thus, ba+kd,f is the color focus for the t + 1
monochromatic k-term arithmetic progressions. Therefore, X = W (t + 1, k, r)
and our claim is proved.

Since we have thatW (t, k, r) must exist for all t ≤ r we have thatW (r, k, r) must
exist. That is, we can always find r color focused k-term arithmetic progres-
sions or a monochromatic (k + 1)-term arithmetic progression in the r-colored
set of natural numbers {1, 2, ...,W (r, k, r)}. If there exists a monochromatic
(k + 1)-term arithmetic progression in this set we are done, so we assume a
monochromatic (k + 1)-term arithmetic progression does not exist. Since we
have only used r colors to color this set of natural numbers, the color focus
of all the r arithmetic progressions must be colored with one of the r colors.
Therefore the color focus must have the same color as one of the r k-term arith-
metic progressions. Together with the color focus this arithmetic progression
then forms a monochromatic (k + 1)-term arithmetic progression. Therefore,
by induction for all positive integers, k and r, there exists a natural number
W (k, r) so that, if the set of natural numbers {1, 2, ...,W (k, r)} is r-colored,
there is at least one monochromatic k-term arithmetic progression.
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5 Rado’s Theorem

As discussed above, Van Der Waeden’s Theorem concerns monochromatic arith-
metic progressions. We can re-express these arithmetic progressions as systems
of equations. Suppose x1, x2, ..., xn are an arithmetic progression; this can be
represented by the system

x2 − x1 = x3 − x2

x3 − x2 = x4 − x3
...

xn−1 − xn−2 = xn − xn−1
which, in matrix form, is equivalently

1 −2 1 0 0 ...
0 1 −2 1 0 ...
.
.
.
0 0 ... 1 −2 1





x1
x2
x3
.
.
.
xn


= ~0

In other words, we see that Van Der Waerden’s Theorem concerns itself with a
particular matrices C such that C~x = ~0. We now seek to characterize all matri-
ces C such that C~x = 0 has a monochromatic solution. Intuitively, systems of

equations impose restrictions upon numbers, and we want to see what restric-
tions are necessary in order to find ”enough order” for monochromatic sets to
emerge. Rado’s Theorem, which is the focus of this section, answers the ques-
tion: which systems of homogeneous linear equations have a monochromatic
solution no matter the coloring?

5.1 Regularity and the Columns Condition

Before we can state Rado’s Theorem, we must introduce some terminology to
describe systems of equations under colorings. Since Rado’s Theorem concerns
itself with monochromatic solutions, we need a property which succinctly de-
scribes the existence of such:

Definition 5.1.1. A system of equations with is r-regular if, for any r-coloring
(coloring with r colors) of its solution space, it has a monochromatic solution.
A system is regular if it is regular for all r.

Example 5.1.1. For instance, the system
[
1 −2

] [x1
x2

]
= [0] is not regular.

To prove a system is not regular, it suffices to find a coloring of the integers
such that no solution to the system is monochrome.
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Consider the 2-coloring where odd numbers are colored blue and even numbers
are colored the opposite of half their value. Formally, if 2k is the largest power
of 2 that divides into an integer n, color n blue if k even and red if k odd. Note
that any solution to the system satisfies x1 = 2x2, meaning x1 and x2 will have
opposite colors by definition, precluding a monochromatic solution. Since the
system is not 2-regular, it therefore is not regular.

The point of Rado’s Theorem is to determine when a system always has a
monochromatic solution, i.e. what conditions a system must satisfy to be regu-
lar. We therefore introduce the Columns Condition, a condition which Rado’s
Theorem will show is both necessary and sufficient for regularity.

Definition 5.1.2. An mxn matrix C = [c1...cn], where the ci are column
vectors, satisfies the Columns Condition if its columns can be partitioned
into C1 ∪ C2 ∪ ... ∪ Ck with all Ci nonempty such that:

1. The elements (column vectors) in C1 sum to 0; i.e.
∑
ci∈C1

ci = ~0

2. for all j > 1 the sum of the elements in Cj (i.e.
∑
ci∈Cj

ci) is expressible
as a linear combination of elements in C1 ∪ ... ∪ Cj−1.

Example 5.1.2. We take the simple example of C =
[
1 −2

]
from before and

show it does not satisfy the Columns Condition.

Immediately, it is evident that there does not exist C1 such that
∑
ci∈C1

ci = ~0;
[1] 6= [0], [−2] 6= [0], [1] + [−2] = [−1] 6= [0]. Therefore, C does not satisfy the
Columns Condition.

5.2 General Rado’s Theorem

We have now introduced both concepts necessary for Rado’s Theorem: regular-
ity and the Columns Condition. We now formally state Rado’s Theorem.

Theorem 5.2.1 (Rado’s Theorem). A system C~x = ~0 is regular if and only
if it satisfies the columns condition.

The above examples, Examples 4.0.1 and 4.0.2, demonstrate Rado’s Theorem.

Since the system
[
1 −2

] [x1
x2

]
= [0] is not regular, it cannot satisfy the Columns

Condition; and indeed, as we showed, it does not. It is often more useful to
think about satisfaction of the Columns Condition implying regularity since
that is more easily verifiable; i.e. since the system does not satisfy the Columns
Condition, it cannot be regular.

5.3 One Dimensional Rado’s Theorem

We will not prove the above general version of Rado’s Theorem. Instead, we
will state and then prove a special case, where the system involves only one
equation; i.e. C is a 1xn matrix for some n. It is simpler, but still underscores
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the same proof techniques and concepts.

We first note that for a 1xn matrix, the Columns Condition can be simplified.
Let such a matrix be [c1...cn] where ci are integers and [ci] are the 1x1 col-
umn vectors. As explicated above, the Condition requires the existence of a
partitioning C1 ∪ ... ∪ Cn of the column vectors such that:

1. There exists a non empty subset C0 of the column vectors which sums
to the zero vector. Since the column vectors here are 1x1 vectors, this is
equivalent to a non empty set of the ci summing to 0.

2. For all j > 1, the elements of Cj are expressible as a linear combination
of elements in C1 ∪ ... ∪ Cj−1. Note that this is trivially always the case;
any element of a Cj is a 1x1 vector [ci] which can be written as the linear
combination of any group of other 1x1 vectors.

Thus, the Columns Condition for a 1xn matrix [c1...cn] reduces to the existence
of a nonempty set of the ci summing to 0. We can now state the special 1D
case of Rado’s Theorem.

Theorem 5.3.1 (1D Case of Rado’s Theorem). Let c1, c2, ...cn be nonzero
integers. Then the equation

c1x1 + c2x2 + ...cnxn = 0

is regular if and only if some nonempty subset of the ci sums to zero.

In order to prove this theorem, we need two lemmas.

Lemma 1. Let [x] denote the set 1, 2, ...x. Take any integers k, r, s. There
exists an integer n(k, r, s) such that for any r-coloring of [n(k, r, s)], there exist
integers a and d with {a, a+d, ...a+d(k−1)}∪{sd} ⊆ [n(k, r, s)] monochromatic.

Proof. Before beginning the proof, we take a moment to digest the statement of
Lemma 1. Lemma 1 is a strengthening of Van Der Waerden; for any r-coloring,
length k, and integer s, there exists an arithmetic sequence of length k such
that it and s times its common difference are the same color. We now proceed
with the proof.

As directed, take any integers k, r, s. We will prove Lemma 1, i.e. the existence
of n(k, r, s), by induction on r.

Base Case: r=1. By definition of a 1-coloring, all the integers are colored the
same color. a = 1, d = 1 produces {1, 1 + 1, ..., 1 + 1(k − 1) = k} ∪ s ∗ 1 ⊆
[max(k, s)] which must be monochrome since there is only once color. Hence,
n(k, 1, s) = max(k, s) suffices and therefore such a n(k, 1, s) exists.

Inductive Hypothesis: Assume the Lemma holds for r−1. We show that it holds
for r.

23



For simplicity, let n = n(k, r − 1, s), which we know exists by induction. Take
any r-coloring of the integers. By Van Der Waerden’s Theorem, we know there
exists a and d such that

{a, a+ d, ...a+ d(kn)}

is monochrome. Call its color red. We have two cases:

1. There exists red jsd for 1 ≤ j ≤ n. If this is the case, then consider
{a, a + jd, ...a + (k − 1)jd}. Each element is of the form a + ijd for
i ≤ k − 1; hence, a + ijd < a + knd and so each element is contained in
our original red set {a, a + d, ...a + d(kn)} and is therefore red. Hence,
{a, a + jd, ...a + (k − 1)jd} ∪ {sjd} is monochromatic, which proves this
case (for instance, one can take n(k, r, s) = W (kn+ 1, r), where we recall
W (kn+ 1, r) is the Van Der Waerden Number of kn+ 1 and r.

2. Alternatively, there does not exist red jsd for any 1 ≤ j ≤ n. Therefore
consider the set {sd, 2sd, ..., nsd} = sd[n]. Since none of these elements
are red, this set is r−1-colored. We’re now going to create a r−1-coloring
of [n] by coloring x ∈ [n] with the color of xsd ∈ sd[n]. Recalling that
n = n(k, r−1, s), we know there exists a, d such that {a, a+d, ..., a+d(k−
1)} ∪ {sd} ⊆ [n] is monochrome; for any r-1 coloring, a and d must exist
by the definition of n(k, r − 1, s). Therefore, {s(a), sd(a + d), ..., sd(a +
d(k−1))}∪{sd(sd)} ⊆ sd[n] is the same color by definition of our coloring.
Hence, we have proved this case.

Thus, we have concluded our proof by induction.

We use this Lemma 1 to prove a second, and final, lemma.

Lemma 2. For all nonzero integers s and t,

sx+ ty = sz

is regular.

Proof. Take any nonzero s and t. Consider any r and any r-coloring. By
Lemma 1, we know there exists n(t+ 1, r, s) such that there exists a and d with
{a, a + d, ...a + td} ∪ {sd} ⊆ [n(t + 1, r, s)] monochrome. Thus, a, a + td, sd all
the same color. Noting that s(a) + t(sd) = s(a + td), we see that x = a, y =
sd, z = a + td is a monochromatic solution. Hence the system sx + ty = sz is
regular.

Now we are ready to prove the 1D Case of Rado’s Theorem. Recall that we
must show that a system c1x1 + ...+ cnxn = 0 is regular iff there is a nonempty
set of the ci summing to 0.

Proof. Our proof has two parts: showing that the Columns Condition (the
existence of a nonempty set of ci summing to 0) is sufficient and showing it is
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necessary for regularity. We begin with sufficient.

Suppose the Columns Condition holds. There exists a set of ci summing to 0;
WLOG, we take c1 + ...+ ck = 0 for some k ≥ 1.

Note that if k = n, then letting x1 = ... = xn = 1 gives c1x1 + ... + cnxn =
c1 ∗ 1 + ... + cn ∗ 1 = 0; assigning all xi to 1 is a solution, and moreover, a
monochromatic one.

Now we consider k < n. We construct a monochrome solution; let x1 = x and
x2 = ... = xk = z and xk+1 = ... = xn = y. Then our system becomes

c1x+ (c2 + ...+ ck)z + (ck+1 + ...+ cn)y = 0.

Since c1 + (c2 + ...+ ck) = 0, the system is equivalently

c1x− c1z + (ck+1 + ...+ cn)y = 0

Rearranging terms yields

c1x+ (ck+1 + ...+ cn)y = c1z

By Lemma 2, we know that there exists a monochrome solution in x, y, z to
the system; thus, by definition of x, y, z, we have a monochrome solution in
x1, ..., xn to the system and it is thus regular, since the r-coloring was arbitrary.
Thus, we have shown the Columns Condition is sufficient for regularity. Now
we prove the converse.

Suppose the system c1x1 + ... + cnxn = 0 is regular. Now take a prime p s.t.
p >

∑
|ci| and, using p− 1 colors, color N such that x ∈ N is colored by the last

non-zero digit in the base p representation of x.

It is obvious to note that if d is the last nonzero digit base p of some integer x,
then x = d or x = 0 mod p; if p divides x then x = 0 mod p by definition, and
if not, then d is the last digit of x base p and x = d mod p.

Since by supposition the system is regular, we know there must exist a monochro-
matic solution x1 = x′1, ...xn = x′n (all colored with color d′). We can divide
through by pl where pl is the greatest power dividing into each x′i, resulting in
x′′i such that x′i = plx′′i . The x′′i are all the same color still; the division only
removes 0’s base p and leaves the same last nonzero digit d′. They also still
comprise a solution since c1x

′′
1 + ...+ cnx

′′
n = 0/pl = 0. WLOG, we can assume

that p does not divide into x′′1 , ...x
′′
k and does into x′′k+1, ..., x

′′
n; we know that

k ≥ 1, i.e. that there exist x′′i such that p does not divide into x′′i since otherwise
we could have divided out a larger power of p.

Since the x′′i are solutions to the system, we have

c1x
′′
1 + ...+ cnx

′′
n = 0 mod p
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We also know x′′1 = ... = x′′k = d′ mod p and x′′k+1 = ... = x′′n = 0 mod p, so

d′(c1 + ...+ ck) + 0 + ...+ 0 = 0 mod p

meaning that p divides c1+ ...+ck. However, we selected p such that p >
∑
|ci|;

thus p > c1 + ... + ck and in order for p to divide into the sum, the sum must
equal zero. Thus we have c1 + ... + ck = 0 as desired; the Columns Condition
must hold, which concludes our proof.
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