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Abstract

By extending the Lawrence-Sullivan model of the free-DGLA of the interval we
will proceed in constructing a similar model for the 2-cell, known to exist by
a general recursive argument of Sullivan. We will use a recursive technique to
show the existence of such a model with special properties. The goal is to find
an explicit formula for the differential of the 2-cell. Although this task is still
far from being finished, we do have several results. In particular, we will write
an explicit formula for δn when 0 ≤ n ≤ 4 and show that one can always choose
δn = 0 for all odd n > 1. As for even n values, we find an explicit form for a
part of the solution and suggest a way in which this could be extended to a full
solution.
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1 Introduction 

This project is intended to further the search for a free-DGLA model of the 
2-cell with appropriate symmetries and differential that extends the (unique) 
model that was found for the interval [LS]. Sullivan [TZS] gave a general iter­
ative procedure by which a model of a complex can be constructed; it is even 
"canonical" in some sense given a little extra structure, although very diffi­
cult to practically compute. Without the additional structure, there are many 
choices available at each stage, but it is known that for any choice of differential 
exact up to order n, there exists an extension to all higher orders making it 
exact. In this project we stipulate additional requirements for the differentiaL 
Specifically we are trying to find an explicit formula for the differential of the 
2-cell which: 

• 	 represents the boundary of the cell to first order; 

• 	 displays the inherent symmetries of the 2-cell; 

• 	 is exact, meaning that its differential is 0, so that it can be extended to 
a differential on the whole Lie algebra with P = 0. 

All these demands will be properly defined in the following sections. 

We will work with a very simple 2-cell model (see the bi-gon drawn above) which 
is simple enough for calculation, but at the same time general enough so that it 
could be extended to every 2-cell complex using gluing and splitting formulae. 
The connection between the original complex and the simpler complex will be 
given by the BCH formula [L.S]. 

2 Preliminary definitions and terms 

2.1 General DGLAs 

We say that L is a graded Lie algebra if it is a Z graded vector space endowed 
with a bilinear operation (Lie bracket) [.,.J: L x L---+L satisfying: 
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• (1) (Graded symmetry) [b, a] = −(−1)|a||b|[a, b];

• (2) (Jacobi identity)

(−1)|a||c|[a, [b, c]] + (−1)|b||a|[b, [c, a]] + (−1)|c||b|[c, [a, b]] = 0

The bracket needs also to be additive with respect grading. That is, if a and b
are homogeneous elements of L then |[a, b]| = |a|+ |b|, where |x| is the grading
of a homogeneous element x.

A differential on L is a linear mapping ∂ : L−→L which satisfies:

• (3) (Leibnitz rule) ∂[a, b] = [∂a, b] + (−1)|a|[a, ∂b].

• (4) (Exactness) ∂2 = 0.

Additionally, we require that the differential reduces the grading by 1, meaning
that for a homogeneous element a ∈ L there holds |∂a| = |a| − 1.

A space L endowed with the structure described will be called a differential
graded Lie algebra or DGLA for short.

2.2 The Adjoint operation

For an element a ∈ L, the adjoint ada acts by ada(b) = [a, b], for all b ∈ L.
A very useful notation which will be used extensively is a capital letter A for
ada . In this notation we write Ab = [a, b] and apply from right to left as with
the usual composition: ABc = A(Bc). For example, graded symmetry in this
notation is Ab = (−1)|a|+|b|Ba for all a, b ∈ L.

Some operators X : L−→L have a well-defined grading, by which is meant the
grading shift induced by this operator: |X(a)| = |X|+ |a| for all homogeneous
a ∈ L. Such operators will be called homogeneous. It is easy to see that
for a homogeneous a ∈ L there holds |A| = |a| and also that |∂| = −1. With
the Lie bracket of homogeneous operators defined by the signed commutator
[X,Y ] = XY − (−1)|X||Y |Y X , another graded Lie algebra can be generated by
∂ and operators A = ada for a ∈ L.

We can now express (2) and (3) in a more compact form: for all a, b, c ∈ L:

• (2′ ) (Jacobi) [Ab, c] = [A,B]c
(
ad[a,b] = [ada, adb]

)
• (3′ ) (Leibnitz) [∂b, c] = [∂,B]c (ad∂b = [∂, adb])
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2.3 Bases for free Lie algebras

Definition 1 Suppose X a finite set of symbols with Z grading. Denote by
Lie(X) the free Lie algebra generated by X , and by Lien(X) the span of all
brackets of n (nt necessarily distinct) symbols from X (with n− 1 brackets).

We will construct a way using which we can describe all elements in Lie(X).

Definition 2 An element x ∈ Lie(X) will be called simple is it can be written
as a single iterated bracket expression of generators. This presentation will be
called a simple presentation.

In essence, we say that an element is simple if it can be written as an expression

with no addition symbols. For example
[
[x1, x2] ,

[
[x2, x3] , [x1, x4]

]]
is simple

while x1 + [x2, x3] and [x1, x2 + x3] are not.

Note that it is always possible to express x ∈ Lie(X) as a linear combination
of simple elements: simply use the linearity of the Lie bracket until there are
no addition symbols appearing in the scope of any bracket.

Further note that the set of simple elements could be defined recursively as the
set generated from X using only the Lie bracket, i.e. the smallest subset that
includes X and is closed under Lie multiplication. This observation will enable
us to prove statements on simple elements using induction.

Definition 3 For a simple element x we define its length, denoted by l(x),
to be the number of generators appearing in a simple presentation of x. Equiv-
alently l(x) is the unique natural number n for which x ∈ Lien(X).

Another way of defining the length (which clarifies that length is well defined
for free Lie algebras) is by recursion:

Set l(g) = 1 for all generators g ∈ X and define l([x, y]) = l(x) + l(y).

It is clear that the three definitions are the equivalent.

Definition 4 Elements of the form

a = [g1, [g2, [. . . [gn−1, gn]] . . .]]

with a1, . . . , an ∈ X will be called canonical elements. This includes the
case of n = 1 where a ∈ X itself and thus all generators are also considered
canonical.
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It is clear that a canonical element is also simple and has l(x) = n.

• The generators gn−1 and gn will be said to be in the center of the
canonical element a. These are the elements which lay in the inner most
bracket when a is written as a single nested bracket. If a is a generator
itself, we will say that it has the generator a at it’s center.

• A linear combination of canonical elements will be called a canonical
sum.

Lemma 5 For a simple element x ∈ Lien(X) one can choose the following
presentations:

• One can express x as a canonical sum of elements, all of which have the
same length n.

• If a generator g appears in x, then one can choose a canonical sum in
which g is at the center of all the canonical elements.

We will give the general proof after the following example. Say X= {x1, . . . , x5}
all with grading 0.

[[[x1, x2], x3], [x4, x5]]

= [[X1, X2], X3][x4, x5] = ([X1, X2]X3 −X3[X1, X2]) [x4, x5]

= ((X1X2 −X2X1)X3 −X3(X1X2 −X2X1)) [x4, x5]

= (X1X2X3 −X2X1X3 −X3X1X2 +X3X2X1)) [x4, x5]

= [x1, [x2, [x3, [x4, x5]]]]− [x2, [x1, [x3, [x4, x5]]]]− [x3, [x1, [x2, [x4, x5]]]]

+[x3, [x2, [x1, [x4, x5]]]]

which is a canonical sum of elements with x5 at their center.

Proof Let x ∈ Lien(X) be a simple element. If there isn’t a particular gen-
erator g that we wish to have in the center, just pick g to be any generator
appearing in x. We use induction on n.

If n = 1 then x = g is canonical and with g in its middle.

Assume by induction that all simple elements of length k < n containing g
have a representation as a canonical sum of elements with length k and with g
at their center.

For n > 1 one has x = [b, c] with b and c simple elements and l(b), l(c) ≤ n−1.
WLOG g appears in c, otherwise we will use the commutation rule of the Lie-
bracket.
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b is a simple element and can therefore be written as an iterated bracket of
l(b) = m symbols, say b1, . . . , bm . By the Jacobi relation (applied repeat-
edly), the operator B = adb can be written as a similar iterated bracket of the
operators B1, . . . , Bm . Since the bracket of operators is defined by signed com-
mutators, [A,B] = AB − (−1)|A||B|BA, this iterated bracket can be expanded
as a signed sum of 2m−1 products of B1, . . . , Bm ; in each product all the m
symbols appear but in different orders. Thus x has been expressed as a signed
sum of 2m−1 elements of the form

Y1 . . . Ymc

By the induction hypothesis, c can be expressed as a linear combination of
canonical elements with length l(c) and g at their center. By linearity of the
bracket, it remains only to note that if z is a canonical element with g at its
center, then Y1 . . . Ymz is also a canonical element with g at its center and with
length l(z) +m. Lastly note that n = l(b) + l(c) = m + l(c) and thus all the
elements in our canonical sum have length n.

Remark 6 Since every element in Lie(X) can be represented as a sum of
simple elements, the lemma shows that it can also be expressed as a canonical
sum. One can thus choose a basis for Lien(X) consisting only of canonical
elements with length n.

Example 1: X = {x} with |x| = 0. ∀n > 1 Lien(X) = 0 as [x, x] = 0.

Example 2: X = {x} with |x| = 1. Lie2(X) has basis [x, x]. Lie3(X) = 0
as by Jacobi [x, [x, x]] = 0 and in fact ∀n > 2 Lien(X) = 0.

Example 3: X = {x, y} with |x| = 1 and |y| = 0. Lie2(X) = ⟨[x, x], [x, y]⟩,
Lie3(X) = ⟨[x, [x, y]], [y, [x, y]]⟩ by taking y at the center. As for the term
[y, [x, x]] one has [y, [x, x]] = −[[x, x], y] = −[X,X]y = −2X2y = −2[x, [x, y]].

2.4 Relations

Even in a free Lie algebra, there are relations amongst simple elements generated
by graded symmetry and Jacobi; some of them are at first sight non-trivial.

The few ideas presented below can be extended to higher lengths. For a, b ∈ L
one has:

(1) If a is of even grading then [a, a] = 0.

(2) If |a| ≡ |b|mod 2 then ABAb = −BABa.
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(3) If b is of odd grading then ABb = −2BBa

Proof (1) Using graded symmetry: [a, a] = −[a, a] =⇒ [a, a] = 0

(2) Since |[a, b]| = |a|+ |b| ≡ 0mod 2 and using (1) and Jacobi one gets

0 = [Ab,Ab] = [A,B]Ab (2.1)

For evenly graded elements this is

0 = (AB −BA)Ab = ABAb−BAAb = ABAb+BABa (2.2)

and for odds 0 = (AB +BA)Ab = ABAb+BAAb = ABAb+BABa.

(3) The element Bb is evenly graded and therefore, regardless of a’s grading,
one gets

ABb = −[Bb, a] = −(BB +BB)a = −2BBa (2.3)

2.5 Projections

Let L be a graded Lie algebra and A⊕B = L (as vector spaces). We will define
the projection onto A with zero space B and go over some of its properties.

Definition 7 For every x ∈ L there is a unique representation x = xA + xB
where xA ∈ A and xB ∈ B . Define the projection PA : L−→A by:

PA(x) = xA (2.4)

We call PA the projection of L onto A and B is its kernel. Note that
even though the kernel B does not appear in the notation, it is important to
remember what is this space. Whenever we will use projections we will be sure
to specify what is B , unless it is clear from the context.

As is expected of a projection, PA is linear and PA = P 2
A .

Conversely, a linear projection P naturally divides L into the direct sum A⊕B
where B = Ker(P ), A = Im(P ) and P |A = idA .

Lemma 8 If A is a sub Lie algebra and B is an ideal then the projection PA
is a Lie algebra homomorphism.
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3 

Proof By definition, PA is linear. Now let's look at PA([X,y]). Express x as 
a sum x XA + XB where XA PA(X) E A and XB E B and do the same for 
y. Using bilinearity 

(2.5) 

and since B is an ideal we have 

(2.6) 

Also, since A is closed under Lie-multiplication we know that [XA, YA] E A and 
therefore 

o 

Model of the bi-gon 2-cell 

We will attempt to construct a DGLA model of the bi-gon 2-celL 

e 
Namely, as a free Lie algebra, it will have one generator for each different 0-, 
1- and 2-cell, a generator corresponding to a d-cell having grading d - 1. 

We want to define a differential on the generators such that the first order term 
(the length-1 term) is the geometric boundary: 

50e = b a 509 e +! 
50! a - b 

Furthermore, we want the model to be compatible with that of the interval 
found in [LSJ. That is, each edge of the bi-gon should give a natural sub-DGLA 
which is the model associated with that edge as an interval. 
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The model for the interval had three generators a, b and e with gradings -1, 
1 and 0 respectively corresponding to the three geometric cells. The boundary 

satisfied 
1 1 

8a= -Aa 8b --Bb 8e = Eb + E (b - a)
2 ' 2 ' e -1 

which first order term had 

80a = 80b 0 , 80e b - a 

3.1 Description/Specifications 

Our free DGLA L is generated by 5 generators: 

• vertices a and b with -1 grading; 

• edges e and f with 0 grading; 

• 2-cell 9 with 1 grading. 

This is our generating set X and we will denote L Lie(X) as our modeL 

From compatibility with the differential on the two embedded intervals in the 
bi-gon, the differential on the first four generators is given by: 

1 1 
8a= 2[a,a]; 8b=-2[b,b] 

representing the flatness of the vertices, and 

8e ~ Bn En(b a) +Eb; 8f = ~ Bn Fn(a b) + Fa 
~n! ~n! 
n=O n=O 

where Bn are the Bernoulli numbers whose generating function is 

~Bnxn _x_=l 
~ n! eX - 1 
n=O 

with Bo I, Bl = -!, B3 = i, B4 3~'··· and Bn = 0 for all odd n> l. 

In order to have a complete model for the 2-cell DGLA we need only to find a 
differential for 9 (meaning a suitable element x = 8g E Lie(X)) satisfying the 
three demands: 
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• ∂g represents the boundary of the cell to first order (see §3.2);
• ∂g displays the inherent symmetries of the 2-cell (see §3.3);
• ∂g is exact, meaning that given a choice of x = ∂g with grading 0, ∂ can

be uniquely extended to a linear map on Lie(X) satisfying the Leibnitz
rule, and that as such, we require ∂x = 0 – this condition suffices to
ensure that ∂2 = 0 on all of Lie(X) (see §3.2).

3.2 The differential

Using projections one can break ∂ down to simpler pieces:

∂ = δ0 + δ1 + δ2 + . . . (3.1)

Definition 9 We look at the partition Lie(X) =
⊕∞

n=1 Lien(X). Given a
differential ∂ define the mapping δn on the generating set X as PLien+1(X) ◦ ∂ .
Extend δn ’s definition to the rest of Lie(X) by recursion using the Leibnitz
rule. We call these maps the partial differentials of ∂ .

One should note the following:

• δn is a mapping Liem(X) −→ Liem+n(X).

• A sum of mappings that obey Leibnitz, itself obeys the rule.

• By definition, ∂ =
∑

n∈N δn on a generating set. The previous fact ensures
that the sum of δ ’s and ∂ are indeed equal on all of Lie(X).

Exactness requires that ∂2 = 0. By linearity it is sufficient that ∂2x = 0 for
simple elements x ∈ Lie(X). Furthermore, the Leibnitz rule applied twice gives

∂2[x, y] = ∂
(
[∂x, y] + (−1)|x|[x, ∂y]

)
= [∂2x, y] + (−1)|∂x|[∂x, ∂y] + (−1)|x|

(
[∂x, ∂y] + (−1)|x|[x, ∂2y]

)
= [∂2x, y] + [x, ∂2y]

so that exactness is guaranteed by ∂2x = 0 on generators.

One can describe exactness in an equivalent manner using the decomposition
of ∂ above. On a generator x ∈ X , exactness requires

(δ0 + δ1 + . . .)2x = ∂2x = 0 (3.2)

Now by projecting the two sides on the space Lien(X) one gets the equivalent
system of equations

(δ0δn + δ1δn−1 + . . .+ δnδ0)x = 0 (3.3)
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Another way to write the latter equation is

δ0δnx = −δ1δn−1x− . . .− δnδ0x (3.4)

which gives us a recursive relation that we will use to find the partial differential
δnx of x given that we know δ0x and δnδ0x for all n.

Since we already know the existence of the model for the interval [LS], the
problem reduces to finding ∂g for which ∂2g = 0. Note that δ0g = e + f so
that δnδ0g = δn(e+ f) is known for all n, from the model of the interval. Thus
iterative construction is in principle possible – see §3.5 for a discussion of the
existence of a solution δng at each step.

3.3 Symmetries

We wish our model of the 2-cell to preserve certain symmetries of the original
2-cell. In particular, the differential of g should be invariant under symmetry
transformations, such as replacing the names of the vertices in a structure
preserving manner.

It is clear that the symmetry group of our 2-cell is Z2 × Z2 and that it is
generated by the following automorphisms:

• Horizontal flip: fix a and b; exchange e ↔ (−f); and g 7→ (−g). Name
this transformation ϕ.

• Rotation 180: exchange a↔ b; e↔ f ; and fix g . Name this ρ.

There is of course a Vertical flip also, but it can be acquired by the composition
of the two former ones. This means that it is enough if we make sure that
invariance under ϕ and ρ is maintained.

Invariance of ∂g under the automorphism implies

ϕ(δng) = δn(ϕ(g)) = −δng

and ρ(δng) = δn(ρ(g)) = δng . These demands will prove to exclude a number
of previously possible basis elements from appearing in δng .

3.4 Alternative basis

Since our result must be symmetric in the various generators, we would benefit
from using an alternative and equivalent formulation.
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The alternative generating set X is the set containing

s = b− a , t = b+ a

n = e− f , p = e+ f

g

which clearly generates the same Lie algebra L. The symmetries then act as:

ϕ : fix t, s and n; negate p and g.

ρ : fix t, p and g; negate s and n.

This further means that all simple elements are eigenvectors of ϕ, ρ with eigen-
value ±1.

ϕ(x) = (−1)#g(x)+#p(x)x, ρ(x) = (−1)#n(x)+#s(x)x

where #g(x) is the number of g symbols appearing in x and so on. One can
use the simple action of ϕ, ρ to eliminate certain possibilities for δng . We will
find that the only simple elements appearing in δng are such that they have
the same eigenvalue as δng itself. This follows from the next lemma.

Lemma 10 Let ψ be a symmetry transformation and x ∈ Lie(X) such that
ψ(x) = (−1)mx. If a1, . . . , an are linearly independent eigenvectors of ψ with
eigenvalue ±1 and λi, i = 1, . . . , n scalars such that x =

∑n
i=1 λiai then

λi ̸= 0 =⇒ ψ(ai) = (−1)mai

Proof Denote mi such that ψ(ai) = (−1)miai .

0 = ψ(x)− (−1)mx =
n∑
i=1

λi(ψ(ai)− (−1)mai) =
n∑
i=1

((−1)mi − (−1)m)λiai

By linear independence one has ((−1)mi −(−1)m)λi = 0 and therefore if λi ̸= 0
we must have

(−1)mi = (−1)m

which completes the proof.

Corollary 11 All canonical elements (in the alternative basis) appearing in a
representation of δng must have odd #g +#p and even #n+#s.

Proof This is follows directly from the previous lemma and the fact that
ϕ(δng) = δnϕ(g) = −δng and ρ(δng) = δnρ(g) = δng .
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Remark 12 The differential δm on the generating set X is given by

δ0s = 0 , δ0t = 0

δ0n = 2s , δ0p = 0

δ0g = p

δ1s = −1

2
Ts , δ1t = −1

4
(Tt+ Ss)

δ1n = −1

2
Tn , δ1p = −1

2
Tp

and as for higher partial differentials, for all m ≥ 2

δms = δmt = 0

δmn =
2Bm
2mm!

∑
{π : [m]7→{N,P} : even#N(π)}

π(1) . . . π(m)s

δmp =
2Bm
2mm!

∑
{π : [m]7→{N,P} : odd#N(π)}

π(1) . . . π(m)s

where [m] = {1, 2, . . . ,m} and #N(π) denotes the number of times that N
appears in π .

In fact there is no need to specify the formulae for m = 0 directly since for
all generators one can see that this is just the case of m = 0 in the general
formulae above.

Proof Firstly one has δ0g , by definition.

For s and t one can use graded symmetry (commutativity in this case) to get

∂s = ∂b− ∂a = −1

2
([b, b]− [a, a]) = −1

2
[b+ a, b− a] = −1

2
Ts

∂t = ∂b+∂a = −1

2
([b, b]+[a, a]) = −1

4
([b+a, b+a]+[b−a, b−a]) = −1

4
(Tt+Ss)

and, by projecting these results on the respective Liem space, one gets the
aforementioned formulae.

Since δ0e = −δ0f = b − a = s, one gets the result for δ0n and δ0p, using
linearity.

Now for n = 1 one can check the definitions and find that

δ1e =
1

2
E(b+ a) = −1

2
Te
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and similarly δ1f = −1
2Tf . Therefore linearity of both δ1 and −1

2T shows that

δ1(e± f) = −1

2
T (e± f)

Substituting for the alternative basis of n and p completes the proof.

Finally for n ≥ 2. Calculating for e and f first, one finds

δme =
Bm
m!

Ems =
Bm
m!

(
P +N

2

)m
s =

Bm
2mm!

(P +N)ms

=
Bm
2mm!

∑
π∈{N,P}m

π(1) . . . π(m)s

and

δmf = −Bm
m!

Fms = −Bm
m!

(
P −N

2

)m
s = − Bm

2mm!
(P −N)ms

=
Bm
2mm!

∑
π∈{N,P}m

(−1)#N(π)+1π(1) . . . π(m)s

Now taking the sum (or difference) of these two expressions we get only the
elements with odd (or even) number of N terms in them and an additional
factor 2.

3.5 Existence

For the rest of this section we will use the grading to further decompose
Lien(X), writing Liemn (X) for the part graded by m. Note that since |g| = 1
and |∂| = −1, thus |∂g| = 0.

Following Sullivan [TZS], we will now explain why it is always possible to extend
a differential exact to order n iteratively to one exact to all orders. In particular,
given δig ∈ Lie0i+1(X) for all (i < n) for which

(δ0δm + δ1δm−1 + . . .+ δmδ0) g = 0 ∀m < n

that it is always possible to find δng ∈ Lie0n+1(X) for which

δ0δng = y := − (δ1δn−1 + . . .+ δn−1δ1) g − δn(e+ f)

In other words, we must explain why the element on the right hand side, which
we will denote by y , lies in Im(δ0) considering δ0 : Lie

0
n+1(X)−→Lie−1

n+1(X).
This follows from the following two lemmas.

Lemma 13 y ∈ Ker(δ0)
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Proof Consider the operator D = δ0 + . . . + δn−1 . This has grading −1 and
D , D2 commute as operators. By construction of δ0, . . . , δn−1 ,

D2 =

n−1∑
i,j=0

δiδj = (δ1δn−1 + . . .+ δn−1δ1) +
∑
i+j>n

δiδj

so that [D,D2]g = 0 becomes

[δ0, δ1δn−1 + . . .+ δn−1δ1]g +

n−1∑
k=1

n−1∑
i,j=0
i+j=n

[δk, δiδj ]g +

n−1∑
i,j,k=0
i+j>n

[δk, δiδj ]g = 0

As before, every element of Lie(X) can be decomposed by length, so that
[δk, δiδj ]g is a combination of simple elements of length i + j + k + 1 > n + 1
for all terms coming from the two sums. Those terms of length at most n + 1
leave

[δ0, δ1δn−1 + . . .+ δn−1δ1]g = 0

In other words,

δ0 (δ1δn−1 + . . .+ δn−1δ1) g = (δ1δn−1 + . . .+ δn−1δ1) δ0g

= (δ1δn−1 + . . .+ δn−1δ1) (e+ f)

By exactness of the models on the two intervals contained in the bi-gon, namely
⟨a, b, e⟩ and ⟨b, a, f⟩,

(δ1δn−1 + . . .+ δn−1δ1)e = −(δ0δn + δnδ0)e

and similarly for f , so that

δ0 (δ1δn−1 + . . .+ δn−1δ1) g = −(δ0δn + δnδ0)(e+ f) = −δ0δn(e+ f)

since δ0(e+ f) = 0, as required.

Lemma 14 The short sequence Lie0n(X)
δ0−→Lie−1

n (X)
δ0−→Lie−2

n (X) is exact
for n > 1.

In fact, more generally, for any fixed n > 1, the complex Liemn (X) with differ-
ential induced by the boundary δ0 , has trivial homology; see [TZS].

Since we have shown that y ∈ Ker(δ0) there exists x ∈ Lie0n+1 such that δ0x =
y as desired. Lastly, we are looking for models that respect the symmetries
described above. Therefore we wish to find a solution that is compatible with
the above requirements.
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Lemma 15 Suppose that for all m < n, δmg was compatible with the sym-
metries of the cell, that is, ρ (δm(g)) = δm(g) and ϕ (δm(g)) = −δm(g). Then
ρ(y) = y and ϕ(y) = −y . Furthermore, there exists z ∈ Lie0n+1 such that
δ0z = y and

ρ(z) = z , ϕ(z) = −z

Proof Let ψ be one of the symmetries of the 2-cell. It is easy to see that for
every generator x ̸= g one has ψδmx = δmψx, for all m ∈ N. For m < n, by
hypothesis ψδmg = δmψg and so ψ and δm commute on all generators.

We will show that the two compositions agree on all Lie(X). Both are linear,
and thus it is sufficient to check the equality on simple elements. Suppose by
induction that z and w are such that make δm and ψ commute. Since ψ is a
homomorphism and does not change grading

ψδm[z, w]=ψ([δmz, w]+(−1)|z|[z, δmw])=[ψδmz, ψ(w)]+(−1)|ψ(z)|[ψ(z), ψδmw]

using the induction hypothesis

= [δmψ(z), ψ(w)] + (−1)|ψ(z)|[ψ(z), δmψ(w)] = δm[ψ(z), ψ(w)] = δmψ([z, w])

Now that we know δm and ψ commute for all m < n, and also ψ(δnp) = δnψ(p)
one gets

ψ(y) = −
n−1∑
m=1

ψδmδn−mg − ψ(δnp) = −
n−1∑
m=1

δmδn−mψ(g)− δnψ(p)

Since p and g change signs in the same manner under all symmetries, we get
that ψ(y) = ±y and the change in sign is exactly that occurring in g : ρ(y) = y
and ϕ(y) = −y .

Take any x ∈ Lie0n+1 such that δ0x = y and define

z =
1

4
(x− ϕ(x) + ρ(x)− ϕρ(x))

z is of course still in Lie0n+1 and since δ0 commutes with all symmetries

δ0z =
1

4
(y − ϕ(y) + ρ(y)− ϕρ(y)) = y

Knowing that the symmetry group is Z2 ×Z2 we know that ϕ and ρ commute
and are of order 2. Calculating the operation on z :

ϕ(z)=
1

4

(
ϕ(x)− ϕ2(x) + ϕρ(x)− ϕ2ρ(x)

)
=
1

4
(ϕ(x)− x+ ϕρ(x)− ρ(x))=−z

16



and

ρ(z) =
1

4

(
ρ(x)− ρϕ(x) + ρ2(x)− ϕρ2(x)

)
=

1

4
(ρ(x)− ρϕ(x) + x− ϕ(x)) = z

as desired.

Now that we know that extension is always possible, we can proceed in building
a model using a recursive technique. We do have some demands on the resulting
differential which will guide us in selecting the elements appearing in it.

4 The recursive construction method

This next section describes a process using which one should be able to find all
of the possibilities for δng .

Assuming that we have already found δkg for all k < n, we will find an element
of length n+1 which will serve as δng . As we search for possible candidates we
will require the expressions to be of a form that abides by certain restrictions:

• The grading of the element must be 0, as it is |g| − 1.

• The length must be n+ 1, as this is l(g) + n.

• The element must be symmetric, as was discussed in §3.3 and Corollary
11.

The final and most difficult condition to uphold is that the element must pro-
duce an exact differential in the sense of (3.4), meaning

δ0δng = −δ1δn−1g − . . .− δnδ0g = −δ1δn−1g − . . .− δn−1δ1g − δnp (4.1)

Since we know what δnp is, and we are assuming that δmg is known for all
m < n, this equation is well defined. δ0 is a linear transformation and one can
solve this linear equation using elementary linear algebra. First one must select
a basis and calculate δ0 ’s operation on this basis, then by simple Gaussian
elimination one will find all possible solutions.

To simplify the problem as much as possible, we will choose our basis according
to the following guidelines. Let Tn+1 be the set of all canonical elements with:

• length of n+ 1;

• grading of 0;

• even #n+#s and odd #g +#p.

17



These three restrictions make certain that any linear combination will meet the
restrictions imposed on δng and at the same time they are imperative for any
canonical element appearing in the expression of δng as a canonical sum. Its
span ⟨Tn+1⟩ ⊂ Lie0n+a(X) would include all possible solutions δng to (4.1) in
which we are interested.

4.1 Divisions into smaller subspaces

We can further subdivide the solution space into smaller subspaces.

Lemma 16 Suppose that V = W ⊕ U are vector spaces and T is a linear
transformation on V such that T (W ) = W̃ , T (U) = Ũ and W̃ ∩ Ũ = {0}. For
X ∈ {W,U} there holds T ◦ PX = PX̃ ◦ T .

Proof Noting that id = PW + PU , one finds that PU = id − PW . From the
definition of Ũ we find that Im(T ◦(id−PW )) = Ũ and thus trivially intersects
W̃ . Applying PW̃ one would get the zero function

0 = PW̃ ◦ T ◦ (id− PW ) = PW̃ ◦ T − PW̃ ◦ T ◦ PW
Now since T (W ) = W̃ one can drop the latter projection and get

0 = PW̃ ◦ T − T ◦ PW

Corollary 17 In the case described above, x is a solution to the equation
Tx = b iff T ◦ PW (x) = PW̃ (b) and T ◦ PU (x) = PŨ (b).

Proof (if) We use the equalities idV = PW + PU and idT (V ) = PW̃ + PŨ .

Tx = T ◦ PW (x) + T ◦ PU (x) = PW̃ (b) + PŨ (b) = b

(only if) Conversely, the result is an immediate consequence of applying PX̃ to
both sides of Tx = b and using the above lemma.

Using this corollary we note that for a partition ⟨Tn+1⟩ = W ⊕ U such that
δ0W ∩ δ0U = {0} it is sufficient to find solutions to

δ0(w) = Pδ0(W )

(
−

n∑
m=1

δmδn−mg
)

δ0(u) = Pδ0(U)

(
−

n∑
m=1

δmδn−mg
)

18



where w ∈W and u ∈ U . The resulting sum w+u will be δng satisfying (4.1).
By induction this could be extended to a partition into multiple subspaces.

One of the most useful partitions in our case is to take

T
(k)
n+1 = {x ∈ Tn+1|#p(x) + #g(x) = k}; 1 ≤ k ≤ n+ 1

It is easy to see that ⟨T (k)
n+1⟩ are vector spaces, that their sum is all of ⟨Tn+1⟩

and that every one of them trivially intersects the sum of the rest. Furthermore,

since the number #p+#g is preserved under δ0 we have also that δ0⟨T (i)
n+1⟩ ∩∑

j ̸=i δ0⟨T
(j)
n+1⟩ = {0}. Thus it is sufficient to examine equation (4.1) for each

k separately.

Note the following:

• For even k values, T
(k)
n = ∅ since there are no elements with even #(g)+

#(p) in Tn .

• For all n ∈ N note that ⟨T (n)
n ⟩ = {0}. Indeed an element of T

(n)
n must be

a canonical element involving only g ’s and p’s. Grading demands that
all are p’s and one finds only [p, p] = 0 at the center of all basis elements.

4.2 Vanishing of the odd δng

Taking after the form of ∂p and ∂n in which all δn ’s vanish for odd n > 1
(the corresponding Bernoulli number being zero) one might expect to see δng
vanishing as well. Indeed we shall see that one can choose δng = 0 for odd
n ̸= 1 as a part of an exact differential (i.e. ∂2 = 0).

Define a subset of generators Xt = X\{t} and denote the Lie- algebra generated
by it as Lt = Lie(Xt). Complementing Lt is the ideal generated by t, meaning
the span of all canonical elements in which t is one of the generators. As
proven in Lemma 6 of the section about projections, the projection Pt := PLt

is a homomorphism.

Lemma 18 If ∂ respects the symmetries of the 2-cell, ∂2g = 0 and δ0g = p
then δ1g = −1

2Tg .

Proof Using (4.1) for n = 1 one gets δ0δ1g = −δ1δ0g = 1
2Tp. Since δ0t = 0

one gets

δ0(−
1

2
Tg) = −1

2
([δ0t, g]− [t, δ0g]) =

1

2
Tp
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which implies −1
2Tg− δ1g ∈ Ker(δ0)∩S2 . Take a canonical element x ∈ ⟨T2⟩.

Since #t is odd and the length of x is 2 there necessarily is exactly one t.
The other generator in x must be g to achieve zero grading. Thus S2 is one
dimensional and spanned by Tg . Since δ0Tg ̸= 0 there are no non-trivial
elements in the intersection above and δ1g = −1

2Tg .

Lemma 19 If ∂ = δ0+ δ1+ . . . extends the [LS] model of the interval and has
δ1g = −1

2Tg then δ1 = −1
2T on the set Lt . An equivalent formulation of this

is δ1 ◦ Pt = −1
2T ◦ Pt .

Proof First notice that like all the adjoint operators with odd grading, −1
2T is

a derivation on L, meaning that it is linear and satisfies the Leibnitz relation.
To see this directly use the linearity of the Lie-bracket to get linearity and
Jacobi to get the Leibnitz relation. We will show the latter:

T [x, y]− (−1)|x||t|[x, Ty] = [Tx, y] ⇒ T [x, y] = [Tx, y] + (−1)|x|[x, Ty]

multiply by −1
2 and we find the desired result.

Now that we have seen that necessarily δ1g = −1
2Tg one sees that δ1 agrees with

−1
2T on the generating set of Lt . Hence, by the uniqueness of a recursively

defined function on a generating set one gets that the two functions are the
same.

Lemma 20 If δ is a derivation on L and δx ∈ Lt for every generator x ̸= t
then δ(Lt) ⊂ Lt i.e. the set Lt is closed under the operation of δ .

Proof For all the generators of Lt we have δx ∈ Lt by hypothesis.

Since Lt is a linear subspace, it is sufficient the check only for simple elements.
Suppose by induction that x, y ∈ Lt have δx, δy ∈ Lt , then

δ[x, y] = [δx, y] + (−1)|x|[x, δy] ∈ Lt

since Lt is a sub-Lie algebra and closed under Lie multiplication.

The induction gives the Lemma for all simple elements as desired.

Lemma 21 If x ∈ ⟨Tn⟩ then Pt(x) ∈ ⟨Tn⟩ as well.

Proof Write x as a sum
∑N

k=1 λkvk where vk ∈ Tn for all 1 ≤ k ≤ N .

Note that Pt is nothing more than scalar multiplication on each vk since

Pt(vk) =

{
0 if t appears in vk

vk otherwise
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Thus applying Pt to the sum above results in another sum of elements from Tn
and thus Pt(x) ∈ ⟨Tn⟩ as well.

Lemma 22 Pt ◦ δ0 = δ0 ◦ Pt

Proof Since the two compositions are linear, it is sufficient to check for ho-
mogeneous elements. First for the generators: Pt ◦ δ0t = 0 = δ0 ◦ Ptt and for
all others the composition of Pt has no effect since none have t as their δ0 .

Assuming by induction that Pt ◦ δ0 = δ0 ◦Pt on the homogeneous x and y and
using the fact that Pt is a homomorphism,

Pt ◦ δ0[x, y] = Pt([δ0x, y])− (−1)|x|Pt([x, δ0y])

= [Pt ◦ δ0x, Pt(y)]− (−1)|x|[Pt(x), Pt ◦ δ0y]
= [δ0 ◦ Pt(x), Pt(y)]− (−1)|x|[Pt(x), δ0 ◦ Pty]
= δ0[Pt(x), Pt(y)]) = δ0 ◦ Pt([x, y])

where in the last equality we used the fact that Pt does not change the grading
of x as can be easily confirmed.

Corollary 23 If δ0x ∈ Lt then δ0 ◦ Pt(x) = δ0x.

Proof By the commutation of δ0 and Pt one gets

δ0x ∈ Lt ⇒ δ0x = Pt(δ0x) = δ0 ◦ Pt(x)

Corollary 24 If x = δng is a solution to (4.1) i.e.

δ0x = −
n∑

m=1

δmδn−mg

and
∑n

m=1 δmδn−mg ∈ Lt then Pt(x) is also a solution and is in Lt .

Theorem 25 There exists a differential ∂ = δ0 + δ1 + . . . on L such that:

• ∂ respects the symmetries of the 2-cell.

• ∂ reduces to the differential found in [LS] on the edges and vertices.

• δ0g = p

• δ1g = −1
2Tg

• δng ∈ Lt for all n ̸= 1, i.e. there are no t symbols in δng .
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Proof First take ∂x to be as stated in §3.4 for all generators x ̸= g . This
definition ensures that ∂ reduces to the one dimensional model on the edges
and vertices. From [LS] we know that ∂2x = 0 for those generators and the
problem of defining ∂ reduces to defining it on g such that ∂2g = 0.

From §3.5 we know that one can recursively construct an exact symmetry-
respecting ∂g such that δ0g = p, and moreover that any symmetry-respecting
∂g up to nth order with δ0g = p can be extended to the (n+ 1)th order while
preserving symmetry. From Lemma 18 we know that any such must satisfy
δ1g = −1

2Tg , and so we can dispose of δng for all n > 1 and reconstruct these
terms recursively starting with n = 2.

By looking at δmx for x = s, n, p one sees that these are all expressions in Lt
for m ̸= 1. We will use this fact in the course of our proof.

For n = 2, writing equation (4.1) we get

δ0x = −δ1δ1g − δ2δ0g = −δ1δ1g − δ2p

By §3.5 there exists a solution x ∈ Lie03(X) with the correct symmetry (ρ(x) =
x and ϕ(x) = −x), then by the discussion at the start of §4, x ∈ ⟨T3⟩. Looking
at the first term,

δ1δ1g = δ1(−
1

2
Tg) = −1

2
([δ1t, g]− Tδ1g) = −1

2

(
−1

4
[Tt, g]− 1

4
[Ss, g] +

1

2
TTg

)
= −1

2

(
−1

2
TTg − 1

2
SSg +

1

2
TTg

)
=

1

4
SSg ∈ Lt

Now since δ2p ∈ Lt as well, thus from Corollary 23, Pt(x) is also a solution
and in ⟨T3⟩ by Lemma 21. By §3.5, we can replace δ2g = x by Pt(x) and there
exists an extension to a fully symmetric exact ∂g starting with δ2g .

For n > 2, suppose by induction that we have a symmetric differential ∂ such
that for all 1 ̸= k < n one has δkg ∈ Lt . By Lemma 20 δk(Lt) ⊂ Lt for all
such k values. We write (4.1) as an equation for x = δng ,

δ0x = −
n−1∑
m=1

δmδn−mg − δnp

For all 1 < m < n − 1 one has 1 ̸= m, (n − m) and both are smaller than
n, thus by the induction hypothesis we know that δm(Lt), δn−m(Lt) ⊂ Lt . In
particular

g ∈ Lt ⇒ δn−mg ∈ Lt ⇒ δmδn−mg ∈ Lt
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As for m = 1 and m = n− 1 one has δn−1g ∈ Lt , so by Lemma 19, δ1δn−1g =
−1

2Tδn−1g and using the Leibnitz rule

δ1δn−1g + δn−1δ1g = −1

2
(Tδn−1 + δn−1T )g = −1

2
[δn−1t, g] = 0

since n− 1 > 1 ⇒ δn−1t = 0.

Putting it all together we get

δ0x = −
n−1∑
m=1

δmδn−mg − δnp = −
n−2∑
m=2

δmδn−mg − δnp

which we know to be in Lt . As before let x ∈ ⟨Tn+1⟩ be a solution, then by
Corollary 24 Pt(x) ∈ ⟨Tn+1⟩ is a solution as well and we can alter the nth stage
of ∂ so that now δng = Pt(x).

The differential ∂ resulting from this process clearly has all the properties listed
above.

Lemma 26 For all odd n, every canonical element in Tn+1 has the symbol t
in it. Equivalently, Pt(x) = 0 for all canonical elements in Tn+1 .

Proof Symmetry requirements in Tn+1 (see definition at the start of §4) de-
mand an odd #p+#g and an even #s+#n. Thus the number of all symbols
other than t is odd. Since the length of a canonical element in Tn+1 is n + 1
(even), there has to be an odd #t. In particular #t ̸= 0.

Corollary 27 For the differential defined above δng = 0 for all odd n ̸= 1.

From now on will restrict our search to a differential of this form.

4.3 Using the form of ∂p

There is a way of guessing a differential on a generator x if one knows what is
∂(δ0x). This method will be now described.

Let X be a generating set for the free Lie(X) equipped with a differential
defined on X \ {x} for some x ∈ X . We wish to define a differential on x
such that δ0x = y , where y ∈ X \ {x} is a generator which for any n ∈ N has
δny ∈ Lien+1(X). Suppose further that δny is a canonical sum all of whose
terms contain y , so that

∀n ∈ N δny =

kn∑
i=1

Gi1 . . . G
i
ny
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where for all i and j one has gij ∈ X \ {x} and ∀n δngij ∈ Lie(X \ {x}). In
such a case δnx may take a similar form.

Theorem 28 If one defines δnx =
∑kn

i=1G
i
1 . . . G

i
nx in the case described

above, then the resulting differential on x satisfies the equation

n∑
m=0

δmδn−mx =

k̃∑
j=1

G̃j1 . . . G̃
j
nx

while
∑k̃

j=1 G̃
j
1 . . . G̃

j
ny = 0.

An equivalent formulation involves defining a mapping ηx : L−→L. We define
it recursively by defining it’s operation on the generators of L. For x take
ηx(x) = y and for every other generator g take ηx(g) = g . This mapping
simply replaces all instances of x by a y . The theorem states that the sum∑k̃

j=1 G̃
j
1 . . . G̃

j
nx is in Ker(ηx).

Proof For short we will denote for all k ∈ N

δk(G1 . . . Gn) =

n∑
d=1

(−1)|G1...Gd−1|G1 . . . adδkgd . . . Gn

using which one can write Leibnitz as

δk(G1 . . . Gnx) = δk(G1 . . . Gn)x+ (−1)|G1...Gn|G1 . . . Gn(δkx)

Since we assume that δ0x = y is part of a differential on x then δ0y = δ20x = 0
from (4.1). Also, since δn decreases the grading of y by 1 then necessarily
∀i |Gi1 . . . Gin| = (−1).

With this in mind one finds that for all i

δ0(G
i
1 . . . G

i
nx) = δ0(G

i
1 . . . G

i
n)x−Gi1 . . . G

i
ny

Summing that terms for all i one gets

δ0δnx = δ0

kn∑
i=1

Gi1 . . . G
i
nx =

kn∑
i=1

δ0(G
i
1 . . . G

i
n)x− δny

and noting that the right most term is exactly δnδ0x we find

(δ0δn + δnδ0)x =

kn∑
i=1

δ0(G
i
1 . . . G

i
n)x (4.2)
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We have defined δkx so that applying ηx to it results in δky . Furthermore,
since δmg

i
j ∈ Lie(X \{x}) for all j , i and m one also gets that ηx(δmδn−mx) =

δmδn−my for m > 0. As for the case of m = 0, applying ηx on both sides of
equation (4.1)

ηx
(
(δ0δn + δnδ0)x

)
=

kn∑
i=1

δ0(G
i
1 . . . G

i
n)y = (δ0δn + δnδ0)y (4.3)

Putting all these facts together and using the exactness of ∂y one gets

ηx
( n∑
m=0

δmδn−mx
)
=

n∑
m=0

δmδn−my = 0 (4.4)

The meaning of this theorem is that defining δnx so that it follows the form
of δnδ0x is close to being exact, differing only by a member of Ker(ηx). Note
however that this does not generally mean the one can find an exact differential
that follows from this construction. Take for example the pair n and 2b in our
Lie algebra model. Using the above process one will define ∂n = 2b − 1

2Tn
which satisfies

∂2n = −Tb− 1

2
([∂t, n]− T (2b− 1

2
Tn))

= Tb− Tb− 1

2
(−1

2
TTn− 1

2
SSn+

1

2
TTn) =

1

4
SSn

This is of course in Ker(ηn) since SSs = 0 but it is definitely not exact.

Although we haven’t seen proof that there is an exact differential ∂g of this
particular form, we will first look for such solutions, believing that some exist.
We will seek solutions in which a single p symbol in every canonical element
from δnp has been replaced with a g . This replacement would be a solution is
the corresponding Ker(ηg) elements is zero. Note that there are many possi-
ble replacements if there are several p symbols, for instance PPPNb can be
replaced with tPPGNb+ sPGPNb+(1− t− s)GPPNb for all t and s values.

In order to make use of the above theorem, we must first change the way we
express δnp. Noting that for all n ∈ N there is a p symbol in all the canonical
expressions of δnp, we will simply choose to move this p symbol and express the
canonical element as a canonical sum with p at the center of all the elements.

Remark 29 When checking (4.1) on expressions of this form one can think of
δ0g as being zero, since as we have seen, the expressions in which the derivation
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acts on g are canceled with δnp. Therefore formally replacing all δ0g expression
in (4.1) with zeros (including that of δnδ0g = δnp) does not change the equation
or it’s solutions in any way, apart from leaving us with less calculations.

Corollary 30 The part of δng that is in ⟨T (1)
n+1⟩ can be chosen to be exactly

like δnp with the inner most p symbol replaced with g . That is for n ̸= 2

P⟨T (1)
n+1⟩

(δng) = −2Bm+1

2mm!

n∑
k=0

NkGNn−1−ks

and P⟨T (1)
n+1⟩

(δ1g) = −1
2Tg

Proof It is sufficient to note that Ker(ηg) ∩ ⟨T (1)
n+1⟩ = {0}. This is because

we are dealing with a free Lie-algebra and the only relations on it are those of
graded symmetry and Jacobi.

The former demands more than one p symbol to exist in order to have a non-
zero bracket sum to become zero with the replacement of g with p. However

since we are allowing only one p or g symbols in the space ∠T (1)
n+1⟩, there are

no such elements.

The latter, combined with the fact that there is only one g or p element,
demands that the some elements include p that is not the center element of the
canonical expression. Since we have chosen only elements that have g at their
center, replacing it with p could not produce a trivial sum.

Finally, for all n ̸= 2 take the form of P⟨T (1)
n+1⟩

(δnp) and use graded symmetry

so that the p is at the center.

2Bm+1

2mm!

n∑
k=0

NkPNn−1−ks = −2Bm+1

2mm!

n∑
k=0

Nk[Nn−1−ks, p]

Replace the p with a g . The theorem ensures that this is a solution to (4.1)

projected onto ⟨T (1)
n+1⟩. Now use graded symmetry again to bring the g back

to where the p used to be. This time the sign does not change and thus, the
expression is left with the minus sign.

As for n = 1 simply replace the p with a g and we are done.
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Note that for all n ≤ 2 there are no elements in ⟨Tn+1⟩ other than ⟨T (1)
n+1⟩.

This implies that the following definitions of δng satisfy equation (4.1).

δ0g = p (4.5)

δ1g = −1

2
Tg (4.6)

δ2g = − 1

24
(NG+GN)s (4.7)

5 Applying the method for δ4g

We already have the part of δ4g in ⟨T (1)
5 ⟩ and we also know that ⟨T (i)

5 ⟩ = {0}
for i = 2, 4, 5. Thus the only part we still have to find is the part in ⟨T (3)

5 ⟩.

The form of δ4p is

2B5

244!
(PPPNb+ PPNPb+ PNPPb+NPPPb)

We will replace every one of the four canonical elements with the sum of it’s
three possible replacements such that applying ηg would result in the original
term. For instance

PPPNb 7→ tPPGNb+ sPGPNb+ (1− t− s)GPPNb

Applying δ0 on the sum and using δ0g = 0 we will find how every combination
is mapped and search for combinations that result in an expression satisfying
(4.1) exactly.

5.1 Understanding δ0 ’s operation

We start by picking a basis for Lie−1
5 (X):

(1) PPSSg

(2) SSPPg

(3) PSSPg
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(4) SPPSg

(5) PSPSg

(6) SPSPg

They are all clearly independent since all have only one g and this symbol is at
the center. In order to get from one such element to a sum of different elements
one must use either Jacobi or graded symmetry and thus loosing g ’s central
position.

Using all the relations and identities we know on L we will now understand the
operation of δ0 . It would be very useful to prepare the following:

• adSs = [S, S] = 2SS

• adPPx = [P, Px] = [P, [P,X]] = [P, PX −XP ] = PPX − 2PXP +XPP

• adPSs = [P, Ss] = [P, 2SS] = 2PSS − 2SSP

• adSPs = −adssp = −1
2adPSs = SSP − PSS

• adPSPs = −adPSSp = 1
2adPPSs = PPSS − 2PSSP + SSPP

• adPPs = PPS − 2PSP + SPP

• adSPPs = [B,PPS − 2PSP + SPP ]

= PPSS + SSPP + 2SPPS − 2SPSP − 2PSPS

In all following relations we will use ri = 1− ti − si .
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(1) δ0
(
t1PPGNs+ s1PGPNs+ r1GPPNs

)
= −2

(
t1PPGSS + s1PGPSS + r1GPPSs

)
= −2

(
−2t1PPSSg − s1P [PSs, g]− r1[PPSs, g]

)
= −2

(
−2t1PPSS − s1P (2PSS − 2SSP )

−r1(2PPSS − 4PSSP + 2SSPP )
)
g

= 4(t1 + s1 + r1)PPSSg + 4r1SSPPg + 4(−s1 − 2r1)PSSPg

= 4PPSSg + 4r1SSPPg − 4(s1 + 2r1)PSSPg

(2) δ0
(
t2PPNGs+ s2PGNPs+ r2GPNPs

)
= 2

(
t2PPSGs− s2PGSPs− r2GPSPs

)
= 2

(
t2PPSSg + s2P [SPs, g] + r2[PSPs, g]

)
= 2

(
t2PPSS + s2P (SSP − PSS) + r2(PPSS − 2PSSP + SSPP )

)
g

= 2PPSSg + 2r2SSPPg − 2(s2 + 2r2)PSSPg

(3) δ0
(
t3PNPGs+ s3PNGPs+ r3GNPPs

)
= 2

(
t3PSPGs+ s3PSGPs− r3GSPPs

)
= 2

(
t3PSPSg + s3PS[Ps, g]− r3[SPPs, g]

)
= 2

(
t3PSPS + s3PS(PS − SP )

+r3(PPSS + SSPP + 2SPPS − 2SPSP − 2PSPS)
)
g

= 2r3PPSSg + 2r3SSPPg − 2s3PSSPg + 4r3SPPSg

+2(t3 + s3 − 2r3)PSPSg − 4r3SPSPg

= 2r3PPSSg + 2r3SSPPg − 2s3PSSPg + 4r3SPPSg

+2(1− 3r3)PSPSg − 4r3SPSPg

(4) δ0
(
t4NPPGs+ s4NPGPs+ r4NGPPb

)
= 2

(
t4SPPGs+ s4SPGPs+ r4SGPPs

)
= 2

(
t4SPPSg + s4SP [Ps, g] + r4S[PPs, g]

)
= 2

(
t4SPPS + s4SP (PS − SP ) + r4S(PPS − 2PSP + SPP )

)
g

= 2r4SSPPg + 2(t4 + s4 + r4)SPPSg − 2(s4 + 2r4)SPSPg

= 2r4SSPPg + 2SPPSg − 2(s4 + 2r4)SPSPg
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The sum of all these elements is the affine transformation Ax+ b where

r1
r2
r3
r4
s1
s2
s3
s4


7→



0 0 2 0 0 0 0 0
4 2 2 2 0 0 0 0
−8 −4 0 0 −4 −2 −2 0
0 0 4 0 0 0 0 0
0 0 −6 0 0 0 0 0
0 0 −4 −4 0 0 0 −2





r1
r2
r3
r4
s1
s2
s3
s4


+



6
0
0
2
2
0



First we will calculate the kernel of the matrix. Using the Gaussian elimination
process, one can transform the matrix into

4 2 0 0 0 0 0 −1
0 0 1 0 0 0 0 0
0 0 0 2 0 0 0 1
0 0 0 0 2 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


and one can easily find that the kernel is

span





1
−2
0
0
0
0
0
0


,



0
0
0
0
1
−2
0
0


,



0
0
0
0
1
0
−2
0


,



1
0
0
−2
−2
0
0
4




Now we will find a particular solution. Remembering that we are looking
only for solutions that take after δ4p, Remark 29 shows that one can formally
take “δ0g = 0” to simplify our calculations and without changing the result-
ing equation. With this in mind our equation takes the form P⟨T (3)

5 ⟩δ0δ4g =

−P⟨T (3)
5 ⟩δ2δ2g . Calculating the right-hand side

δ2δ2g = − 1

24
δ2(NGs+GNs) = − 1

24
δ2([N,S]g +NSg) =

= − 1

24
δ2(2NSg − SNg)
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Taking only elements with #p+#g = 3 and using Leibnitz one gets

P⟨T (3)
5 ⟩δ2δ2g = − 1

242
(2[PPs, Sg] + S[PPs, g])

= − 1

242
(
2(PPS − 2PSP + SPP )Sg + S(PPS − 2PSP + SPP )g

)
= − 1

242
(2PPSS − 4PSPS + 2SPPS + SPPS − 2SPSP + SSPP )g

= − 1

242
(2PPSSg + SSPPg + 3SPPSg − 4PSPSg − 2SPSPg)

Putting this in the language of the equations above and dividing by 2B5
244!

Ax+ b = −−5760

242



2
1
0
3
−4
−2

 ⇒ Ax = 10



2
1
0
3
−4
−2

−



6
0
0
2
2
0

 =



14
10
0
28
−42
−20


It is easily verifiable that a particular solution to this equation is given by the
vector (0, 0, 7,−2, 0, 0, 0, 0)t . The actual form of this solution is

δ4g = (the part with #p=1 found in Cor 30)

+
2B5

244!
(PPGNs+ PPNGs− 6PNPGs+ 7GNPPs+ 3NPPGs− 2NGPPb)

As a conclusion we find that replacing p with a g does yield exact solutions for
all n ≤ 4 at the least.

Before proceeding to greater n values one has to pick one of the above solutions.
There are many possible choices to be made (four dimensions worth) and most
will not provide much insight to the possible form of δng for n ≥ 4. One can
also choose to add elements from Ker(δ0) that have the proper length, grading
and symmetries such as δ0(NNNNg) = δ0(N

4)g + NNNNp. This will add
new elements from Lie({n, p}) that we managed to prove unnecessary.

I will not go any further for now, but I would like to offer my guess regarding
the form of ∂g . I would imagine that one can continue the procedure that was
used above:

• Work in the context of a single ⟨T (k)⟩
n+1 at a time.

• For k = 1 use the form −2Bm+1

2mm!

∑n
k=0N

kGNn−1−ks.

• For even k values and for k = n take 0.
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• For odd k > 1 start with P⟨T (k)
n+1⟩

(δnp) and extract a from it a set A of

canonical elements that sum to it.

• From this set extract a basis B that includes all possible replacements in
which a single p is replaced with a g .

• Take a general sum of elements from B such that applying ηg gives
P⟨T (k)

n+1⟩
(δnp) back.

• Describe the operation of δ0 on the coefficients of the general sum in
terms of A. This gives a set of linear equations.

• Find the solution space (assuming that such solutions exist) and look
for solutions that provide special insight and allow for more educated
guessing.

My guess is that it would be possible to find solutions in this manner for all
n since using the form of δnp almost ensures exactness and there are plenty of
degrees of freedom to play with in order to find exact solutions. I especially
believe that there will be no need for Lie({n, p}) elements in ∂g and using this
technique eliminates them from the sum completely.

6 Summary
In looking for a free DGLA model of the 2-cell, we used the recursive technique
for finding the differential of g (the 2-cell). We showed that a model exists
preserving the symmetry of the 2-cell, and in addition that one can choose to
set δng = 0 for every odd n ̸= 1, as well as there being no t = a + b symbols
(using the symmetrized basis) in any δng for n ̸= 1. This makes the task
of finding possible solutions a bit easier and shows the resemblance between
the differentials of all generators, as they all have this property. Taking this
resemblance one step further, we suggested taking ∂g to be of the same form
as ∂(δ0g) which is known. This allowed us to write an explicit expression for
the part of ∂g with only one #p+#g in it. There are still choices to be made
as to what presentation to take, and there is the question of whether such a
presentation even exists. However we do know that such presentations exist up
to n = 5 and we have provided a technique using which one can find them.
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