
COHOMOLOGY OF CONFIGURATION SPACES
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Abstract. The configuration space of n distinct points in the complex plane

is a complex n-manifold. This complex structure allows us to define holomor-

phic 1-forms and use their nice behavior under integration to understand the
cohomology of the manifold.

Next we prove that a configuration space is a covering of a variety of poly-

nomials with no repeated roots, and interpret the same 1-forms in terms of
the discriminant of the polynomials.

In low dimensions there exists a morphism from configuration space of 4

points to that of 3 points, the Ferrari map. We will describe it’s origins and
compute it’s action on the previously described 1-forms.

1. Cohomology of configuration space over C

Let Xn = Confn(C) be the configuration space of n distinct points in the com-
plex plane. This space is the open set of Cn defined by the inequalities zi 6= zj for
all i 6= j.

We have the natural coordinate functions z1, . . . , zn induces by restricting the n
projections Cn → C. Use these to define holomorphic 1-forms

wij =
d(zi − zj)
zi − zj

for all i 6= j. In [1] Arnol’d states that the forms with i < j induce linearly
independent cohomology classes. Moreover, these in fact generate the cohomology
ring as an alternating algebra, subject only to the relations wij = wji and

wij ∧ wjk + wjk ∧ wki + wki ∧ wij = 0

This may be proved inductively using the fibration

C \ {n points} → Confn+1(C)→ Confn(C)

and the Serre spectral sequence, but we will not cover this here. For a proof see T.
Church’s notes at [2].

In what follows we will verify directly that these forms induce non-trivial ele-
ments in H1(Confn(C);C) and that these elements are linearly independent. After
which, we proceed to proving that the above relations hold and that the appropriate
k-forms

wi1,j1 ∧ . . . ∧ wik,jk
are non-trivial and linearly independent in Hk for all k ≤ n.

Proposition 1.1. The forms wij defined above are closed and define cohomology
classes [wij ] 6= 0 that are all linearly independent in H1.
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Proof. Consider the following maps Pij : Xn → C \ {0}
Pij(z1, . . . , zn) = zi − zj

It is now clear that for all i < j

wij =
d(zi − zj)
zi − zj

= P ∗ij

(
dz

z

)
where dz

z represents a generator of the cohomology H1(C \ {0};C). Since dz
z is a

closed form, the pullback wij is also closed.
Pairing the form wij with a 1-cycle γ we get∮

γ

wij =

∮
γ

P ∗ij

(
dz

z

)
=

∮
Pij◦γ

dz

z
= 2πi · n (Pij ◦ γ, 0)

where n(δ, 0) is the winding number of a 1-cycle δ around the origin 0 ∈ C.
Define 1-cycles by the closed loops γkl : [0, 1]→ X for k < l

γkl(t) = (a1, a2, . . . , al−1, ak − e2πit, al+1, . . . , an)

for fixed distinct complex numbers a1, . . . , an ∈ C that are far apart, say |ai−aj | > 3
for all i 6= j.

Applying Pij to the path γkl we get one of the following cycles in C \ {0}

Pij ◦ γkl(t) =


ai − aj if l 6= i, j

ak − aj − e2πit if l = i

ai − ak + e2πit if l = j

in particular if (i, j) = (k, l) then the cycle becomes e2πit and in any other case
the modulus is bounded away from zero. Thus pairing wij with γkl results in the
complex number 2πiδikδjl.

This proves that the cohomology classes [wij ] are linearly independent, and in
particular they are non-trivial. �

Note that this gives us a geometric interpretation of the form wij : it measures the
winding number around the (real codimension 2) hyperplane zi = zj . Alternatively,
if we think of points in Confn as n distinct points in the plane, then wij measures
the winding of zi around zj .

Proposition 1.2. The forms wij satisfy wij = wji and the cyclic relation

wij ∧ wjk + wjk ∧ wki + wki ∧ wij = 0

Proof. These are elementary calculation:

wji =
dzj − dzi
zj − zi

=
dzi − dzj
zi − zj

= wij

As for the cyclic relation,

wij ∧ wjk =
dzi − dzj
zi − zj

∧ dzj − dzk
zj − zk

=
dzi ∧ dzj + dzj ∧ dzk + dzk ∧ dzi

(zi − zj)(zj − zk)

Collecting the three terms together, we form the sum over the three cyclic permu-
tations.

dzi ∧ dzj + dzj ∧ dzk + dzk ∧ dzi
(zi − zj)(zj − zk)(zk − zi)

[(zk − zi) + (zi − zj) + (zj − zk)] = 0

and indeed the relation holds. �
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Now we proceed to the higher cohomology.

Proposition 1.3. Let I = [(i1, j1), . . . , (ik, jk)] be a double multi-index with ir < jr
for all r and j1 < j2 < . . . < jk. The k-forms wI = wi1,j1 ∧ . . . ∧ wik,jk with I as
above are closed and linearly independent in the cohomology Hk(Xn;C).

Proof. The wedge of closed forms is closed, so in particular wI is closed.

Denote P I = Pi1,j1 × . . .×Pik,jk : (Xn)k → (C \ {0})k. Map Xn into (C \ {0})k
via the diagonal:

PI : Xn
∆
↪→ (Xn)k

P I

−→ (C \ {0})k

Clearly the projection of this map into the l-th coordinate coincides with Pil,jl .
Thus by naturality of the wedge product and the pullbacks, we get a characteriza-
tion of wI

wI = PI
∗
(
π1
∗ dz

z
∧ . . . ∧ πk∗

dz

z

)
When paired with a k-chain γ,∫

γ

wI =

∫
PI◦γ

π1
∗ dz

z
∧ . . . ∧ πk∗

dz

z

Now if the k-chain PI ◦ γ happens to be homologous to a product of 1-chains
γ1 × . . .× γk where

γi : [0, 1]→ C \ {0}
then by Fubini’s theorem, the integral

∫
γ
wI breaks up as the product of the 1-

dimensional integrals∫
γ1

dz

z
· . . . ·

∫
γk

dz

z
= (2πi)kn(γ1, 0) · . . . · n(γk, 0)

If on the other hand PI ◦ γ is homologous to a cycle c : [0, 1]k → C \ {0}k s.t.

c = (c′(s′), ck(s′,sk)) where s′ = (s1, . . . , sk−1)

and for every fixed s′ the 1-cycle ck(s′, ·) does not wind around 0, then again by
Fubini’s theorem∫

γ

wI =

∫
s′∈c′

w′
∫
ck(s′,·)

dz

z
= 2πi

∫
s′
w′ · n(ck(s′, ·), 0) = 0

Thus proving that the cohomology classes [wI ] are linearly independent reduces
to finding k-cycles γI s.t. for every I the push-forward cycle PI ◦ γI is a product
of loops around the origin, like the torus S1 × . . .× S1 ⊂ (C \ {0})k, and for I ′ 6= I
there is a presentation c = (c′, ck) with ck(s′, ·) not winding around 0 for every
fixed s′.

Define the k-cycle γI : [0, 1]k → Confn(C) in the following way. First fix complex
numbers (a1, . . . , an) with |aj − ai| ≥ 3 for all i 6= j. Define

(s1, . . . , sk) 7→ (f1(s), . . . fn(s))

where fl is defined recursively in l:

• If l 6= j1, . . . , jk, set fl ≡ al as in the 1D case.
• If l = jr, set fl(s) = fir (s) + 1

2r e
2πisr (imagine the trajectories of moons in

the solar system).
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This definition ensure that for every r′ < r the distance between fr′ and fr is at
least 1

2r , and thus γI(s) indeed defines n distinct points in C. Moreover,

fjr − fir =
1

2r
e2πisr

while if I ′ 6= I, there is a pair (i, j) ∈ I ′ that does not belong to I and for which
fj − fi is a function of s1, . . . , sr alone with (fj − fi)(s′, ·) not winding around the
origin for every fixed s′ = (s1, . . . , sr−1).

Thus pairing wI′ with γI is non-zero iff I = I ′ proving that the forms {wI}I
induce linearly independent (and in particular non-trivial) cohomology classes. �

2. Connection with the space of polynomials

There is a natural (algebraic) map from the configuration space to the space of
polynomials

ϕ : Confn(C)→ Cn[T ] ∼= Cn

assigning for every n-tuple (a1, . . . , an) the unique monic polynomial of degree n
whose roots are precisely a1, . . . , an.

The image of this map is precisely those monic polynomials p(T ) with no repeated
roots. This property can be described in terms of the coefficients of p(T ) by the
non-vanishing of the discriminant ∆(p), and thus the image is a (Zariski) open set
of Cn.

Proposition 2.1. The map ϕ is a local diffeomorphism.

Proof. Note that ϕ sends x = (x1, . . . , xn) to the coefficients of the polynomial

Px(T ) =

n∏
i=1

(T − xi) = Tn + f1(x)Tn−1 + . . . fn(x)

Computing the partial derivatives of the map x 7→ (f1, . . . , fn), we find that they
form a new polynomial

∂jf1T
n−1 + . . .+ ∂jfn = ∂jPx(T ) = ∂j

n∏
i=1

(T − xi) = −
∏
i6=j

(T − xi) =: Qj(T )

This polynomial vanishes at xi for all i 6= j. We use this observation to compute
the Jacobian of ϕ.∂1f1 . . . ∂1fn

...
...

∂nf1 . . . ∂nfn



xn−1

1 xn−2
2 . . . xn−1

n

xn−2
1 xn−2

2 . . . xn−2
n

...
...

1 . . . 1

 =

Q1(x1) Q1(x2) . . . Q1(xn)
...

...
Q1(xn) Qn(x2) . . . Qn(xn)


so using the vanishing property of the Qj ’s, the RHS is a diagonal matrix. Com-
puting it’s determinant,

det


Q1(x1) 0 . . . 0

0 Q2(x2) . . . 0
...

...
0 0 . . . Qn(xn)

 = Q1(x1) · . . . ·Qn(xn) = (−1)n
n∏
j=1

∏
i6=j

(xj − xi)
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By the multiplicativity of the determinant and the Vandermonde formula, we con-
clude that the Jacobian of ϕ is

(−1)n
∏
i 6=j(xi − xj)∏

i<j(xi − xj)
= (−1)n

∏
i>j

(xi − xj) 6= 0

If fact, this Jacobian is a square root of the discriminant of Px (up to sign). By
the inverse function theorem we conclude that ϕ : Confn → Cn[T ] is a local
diffeomorphism. �

Consider the natural Sn action on Confn(C) permuting the coordinates. The
map ϕ is invariant under the Sn action, and thus there is an induced map

UConfn(C) := Confn(C)/Sn → {p ∈ Cn[T ] | monic and ∆(p) 6= 0} ⊂ Cn[T ]

which now becomes bijective. Thus the two spaces are naturally diffeomorphic.

Corollary 2.2. The map ϕ is in fact a normal covering map with deck group Sn.

Remark 2.3. Recall that the fundamental group of Confn(C) is the pure braid
group Pn while that of UConfn is the full braid group Bn. The Sn-covering just
described corresponds to the short exact sequence (of non-abelian groups)

1→ Pn → Bn → Sn → 1

Remark 2.4. Consider the monodromy action of this covering. A path in the space
of polynomials lifts to a path in the configuration space of their roots. However,
as we move along a closed loop of polynomials and return to where we started, the
roots must also return to the original configuration as an unordered set, but might
get permuted in the process.

This nice observation may be used to give a geometric proof of the insolvability
by radicals of quintic equations. For more on this, see the wonderful video [3].

It is interesting to consider the forms wij in light of the covering ϕ. Of course,
they are not invariant under the Sn-action and so do not descend to forms on the
space of polynomials, but there are invariant combinations of them and these do
descend.

Example 2.5. If n = 2 then we have w12 = w21 and so there is an induced form
on the space of polynomials.

Explicitly, z1 and z2 are the two roots of the polynomial Pz(T ) = T 2 + bT + c,
and their difference z1−z2 is expressed as a square root of the discriminant b2−4c.
The two choices of square root correspond to the two labelings of the points z1 and
z2, which in turn correspond to the two point in the fiber above Pz. By the chain
rule,

dz1 − dz2

z1 − z2
=
d(
√
b2 − 4c)√
b2 − 4c

=
1

2(b2 − 4c)
d(b2 − 4c) =

1

2

d(b2 − 4c)

(b2 − 4c)

This expresses a remarkable connection between the mutual winding of the two
roots of P (T ) = T 2 + bT + c in the plane and the winding of it’s discriminant
b2 − 4c around the origin (the discriminant hits the origin precisely when P has a
doubled root). The change in the argument of the difference z2 − z1 is precisely
half the change in argument of the discriminant b2 − 4c.

https://www.youtube.com/watch?v=RhpVSV6iCko
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Example 2.6. If n > 2, to get an invariant form we must take the sum
∑
i<j wij .

This descends to a form on UConfn or equivalently on polynomials.
By the properties of the logarithmic derivative

d(fg)

fg
=
df

f
+
dg

g

which in this case implies

∑
i<j

wij =
∑
i<j

d(zi − zj)
zi − zj

=
d
(∏

i<j(zi − zj)
)

∏
i<j(zi − zj)

As above, this is the square root of the discriminant ∆ of the polynomial Pz(T ),
i.e. ∑

i<j

wij =
1

2

d∆

∆

and again the logarithmic derivative of the discriminant, measuring the change of
argument of the ∆ around 0, generates the cohomology and is naturally related to
the forms wij .

3. Resolvent cubics and the Ferrari map

In the 16th century, Italian mathematicians managed to solve polynomial equa-
tions of degrees 3 and 4. The solution of the quartic is credited to L. Ferrari, who
reduced solving the quartic equation to solving a cubic equation (now called the
resolvent cubic).

Since then, several different methods were found for solving the quartic, each re-
ducing the problem to the solution of a different cubic equation [4]. In what follows
we use one of these techniques - the Euler resolvent - to construct a polynomial
map between Conf4(C) and Conf3(C).

3.1. Euler’s resolvent cubic. This technique may be described as follows (see
[5]). Let

P (T ) = T 4 + aT 3 + bT 2 + cT + d

be a monic quartic equation. Suppose it’s roots are x1, x2, x3, x4. Instead of com-
puting the roots directly, we consider the following involution J

s = Jx←→

s0 = 1
2 (x1 + x2 + x3 + x4)

s1 = 1
2 (x1 − x2 + x3 − x4)

s2 = 1
2 (x1 + x2 − x3 − x4)

s3 = 1
2 (x1 − x2 − x3 + x4)

From s we may recover the roots, since J2 = Id. One might recognize in s1 the
first symmetric polynomial in x, which we know is equal to (−a). Thus computing
x reduces to finding s1, s2 and s3.

The degree 6 polynomial

R(s2) = (s2 − s1
2)(s2 − s2

2)(s2 − s3
2)

is symmetric as a function of the xi’s and thus may be expanded and expressed
in terms of the coefficients of P . R a polynomial of degree 3 called the Euler
resolvent cubic of P .
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Finding the three roots of R and choosing square roots ±s1,±s2,±s3 will provide
us with the four solutions of P . Different choices of signs may give rise to a different
labeling of x1, x2, x3, x4.

Definition 3.1. Let the Ferrari map fe : C4[T ]→ C3[T ] be the map that sends a
quartic P to it’s resolvent cubic R.

We can use the involution J to construct an explicit lifting of fe to the configu-
ration spaces.

Definition 3.2. Let the Ferrari map Fe : Conf4(C)→ Conf3(C) be the map that
sends the set of 4 roots of a quartic P to the three roots of the resolvent cubic R
as expressed by the involution J .

Explicitly, this is the following polynomial map:

z1 = s2
1 = 1

4 (x1 − x2 + x3 − x4)2

z2 = s2
2 = 1

4 (x1 + x2 − x3 − x4)2

z2 = s2
2 = 1

4 (x1 − x2 − x3 + x4)2

If the four roots x of P are distinct, so will the roots z of R be distinct. Therefore
this indeed defines a map between the configuration spaces. Moreover, permuting
the four roots x induces a permutation of the three roots z of R, so this map
descends to a map on the unordered configurations

fe : UConf4(C)→ UConf3(C)

which, in terms of the isomorphism ϕ, is the same Ferrari map previously defined
on the space of polynomials.

Remark 3.3. Notice the following implication of the existence of this map: fe and
Fe induce homomorphisms on fundamental groups

P4
Fe∗−−−−→ P3y y

B4
fe∗−−−−→ B3y y

S4
fe∗−−−−→ S3

The bottom most map is simple and yet interesting. Explicitly, every permutation
σ ∈ S4 acts on the four roots x1, x2, x3, x4 by changing labels. This action permutes
the three roots z1, z2, z3, and so defines fe∗(σ) ∈ S3. fe∗ is interesting since a
surjective homomorphism

Sn → Sm where n > m > 2

exists only when n = 4 and m = 3 (for m = 2 there is always the sign homomor-
phism). This is because for n ≥ 5 the alternating group An ≤ Sn is simple and has
cardinality greater than that of Sm so it must map to 1, and the image thus has
cardinality ≤ 2.

This demonstrates that the Ferrari map is unique in that there are no analogous
maps for higher dimensions. Since fe is used in the solution of the quartic, the
nonexistence of higher dimensional analogs is again related to the insolvability of
equations of degree ≥ 5.
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3.2. The induced map on cohomology. We have explicit generators for the
cohomology of configuration spaces represented by the 1-forms wij . Let’s compute
the action of the Ferrari map on these forms.

Proposition 3.4. The action Fe∗ on the forms wij is given by

Fe∗(w12) = w14 + w23

Fe∗(w13) = w12 + w34

Fe∗(w23) = w13 + w24

Proof.

Fe∗(z1 − z2) =
1

4

(
(x1 − x2 + x3 − x4)2 − (x1 + x2 − x3 − x4)2

)
=

1

4
(2x1 − 2x4)(−2x2 + 2x3) = (x1 − x4)(x3 − x2)

and by the properties of the logarithmic derivative, the pullback form is

Fe∗(w12) = Fe∗
(
d(z1 − z2)

z1 − z2

)
=
d ((x1 − x4)(x3 − x2))

(x1 − x4)(x3 − x2)

=
d(x1 − x4)

x1 − x4
+
d(x3 − x2)

x3 − x2
= w14 + w23

Similarly, the other two forms w13 and w23 pullback as stated. �

Remark 3.5. These pullbacks are related to the homomorphism S4 → S3 in the
following way: the two transpositions (14) and (23) in S4 map to the transposition
(12) in S3, and similarly for the other two forms.

Geometrically, this implies that if the transposition xi ↔ xj gives rise to the
transposition zk ↔ zl, then loops winding once around the hyperplane xi = xj will
be mapped to loops winding once around zk = zl

At the level of unordered configuration spaces, transfer shows that the cohomol-
ogy is generated by the sum

∑
i<j wij . Pulling back this sum from Conf3 to Conf4

we get again the sum over all the forms. Thus fe∗ maps H1(UConf3;C) naturally
onto H1(UConf4;C)

(w12 + w13 + w23) 7→ (w12 + w13 + w14 + w23 + w24 + w34)

sending the natural generator of H1(UConf3;C) to that of H1(UConf4;C).
Equivalently in terms of the discriminant on the space of polynomials,

fe∗
(
d∆3

∆3

)
=
d∆4

∆4
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