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ABSTRACT

This thesis sets out to explore and implement the paradigm of representation stability,

specifically in the study of sequences of linear subspace arrangements, their stable

combinatorics, topology and arithmetic.

In a traditional sense, the sequences of arrangements in question do not exhibit

any form of stability, e.g. the Betti numbers of their complements grow to infinity.

But when one considers the symmetries at play and the various maps between the

arrangements, a new notion of stability presents itself: representation stability, where

a finite collection of patterns is merely translated around by increasingly large groups.

In this sense, stability is understood as a notion of finite generation.

One way to encode the structure of various symmetry groups and intertwining

maps between them is using the language of diagrams. These are functors from a fixed

category into the category of arrangements, vector spaces or any other target category.

Thus a system of intertwined group actions can be treated as a single mathematical

object, and finite generation gets a precise meaning. Representation stability therefore

consists of two main aspects: identify finitely generated diagrams and operations that

preserve finite generation (e.g. Noetherianity theorems), then extract stable invariants

from a finitely generated diagram (e.g. polynomial characters).

This work addresses both of the above aspects in a general axiomatic framework.

We define and study finitely generated diagrams of linear subspace arrangements –

these occur in many natural examples from algebraic geometry and combinatorics, such

as colored configuration spaces, k-equals arrangements and covers of moduli spaces

of rational maps. Such collections of arrangements exhibit finite generation in their

intersection posets, and this in turn leads to finite generation in the cohomology of

their complements. We then study the reprecautions of this finite generation using

an adaptation of character theory to the study of diagrams. Lastly, we adapt the

vi



Grothendieck-Lefschetz fixed point formula to provide a bridge between cohomological

representation stability results and asymptotic factorization statistics of orbits over

finite fields.
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CHAPTER 1

INTRODUCTION

In a foundational piece of recent work, Church-Ellenberg-Farb [CEF2] related repre-

sentation stability in the cohomology of configuration spaces to splitting statistics of

square-free polynomials over finite fields and discovered that these statistics converge

as the degree→∞. Attempting to apply the same set of ideas to study rational maps

poses several conceptual challenges, which this thesis seeks to overcome.

The main players in Church-Ellenberg-Farb’s argument are: representations of sym-

metric groups and FI-modules, hyperplane arrangements and their cohomology alge-

bra, and an equivariant Grothendick-Lefschetz fixed-point formula for free actions. All

three elements break when passing to the case of rational maps:

• The automorhpism groups are products of several symmetric groups;

• The topological spaces are complements of linear subspace arrangements of high

codimension, and the combinatorics at play has not been studied;

• The group actions have nontrivial stabilizers.

This thesis is organized around addressing the three points above, as follows. In §2

we introduce an axiomatic framework for working with categories similar to FI – the

category of finite sets and injections – and thus generalize the framework of represen-

tation stability to collections of finite groups other than the symmetric groups. This

approach formally and generally explains much of the seemingly ad-hoc structure of

representation stability for symmetric groups, as well as other specific generalizations

that exist in the literature. The central tool is a form of character theory for represen-

tations of categories, via character polynomials (Definition 2.2.5 below), that reveals
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stability in the representation theory as well as in statistics of the automorphism groups

themselves (see §2.7).

In §3 we discuss diagrams of linear subspace arrangements, and identify new stabil-

ity patterns in their combinatorics and in the cohomology of their complements. The

results presented here apply fairly generally, in particular to many variants of colored

configuration spaces and covers of moduli spaces of rational maps. Yet, at the same

time, the results here improve on the previously known cases of representation stability

for hyperplane arrangements with symmetric group actions as discussed in [CEF2] –

we show that the cohomology modules are in fact free. The consequence of this work

is that representation stability is far more ubiquitous than was previously observed.

Lastly, in §4 we adapt the Grothendieck-Lefschetz fixed point formula to the case

of group actions with stabilizers. With this, cohomological representation stability

translates to asymptotic statistics in the factorization of orbits into Galois-cycles over

finite fields. The formula can thus be applied to computing splitting statistics of general

varieties of polynomials over finite fields, not necessarily square-free ones. Weighted

point-counts for general polynomials are worked out explicitly in §4.3.

The chapters are mostly self contained and could be read independently.
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CHAPTER 2

GENERALIZING REPRESENTATION STABILITY

Representation stability is a theory describing a way in which a sequence of repre-

sentations of different groups is related, and essentially contains a finite amount of

information. Starting with Church-Ellenberg-Farb’s theory of FI-modules describing

sequences of representations of the symmetric groups, the literature now contains good

theories for describing representations of other collections of groups such as finite gen-

eral linear groups, classical Weyl groups, and Wreath products Sn oG for a fixed finite

group G. This chapter attempts to uncover the mechanism that makes the various

examples work, and offers an axiomatic approach that generates the essentials of such

a theory: character polynomials and free modules that exhibit stabilization.

We give sufficient conditions on a category C to admit such structure via the notion

of categories of FI type. This class of categories includes the examples listed above, and

extends further to new types of categories such as the categorical power FIm, whose

modules encode sequences of representations of m-fold products of symmetric groups.

The theory is applied in §3 to give homological and arithmetic stability theorems for

various moduli spaces, e.g. the moduli space of degree n rational maps P1 → Pm.

2.1 Introduction

The purpose of this chapter is to describe a categorical structure that is responsible for

the existence of representation stability phenomena. Our approach is centered around

free modules1 and character polynomials (defined below). We show that our proposed

categorical structure gives rise to free modules which satisfy the fundamental properties

that produce representation stability, and in particular the Noetherian property. We

1. These are commonly called #-modules in the context of the category FI.
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take an axiomatic approach that applies in a broad context, generalizing many of the

known examples.

2.1.1 Motivation

Let FI be the category of finite sets and injections. An FI-module is a functor from

FI to the category of modules over some fixed ring R. An FI-module M• is a single

object that packages together a sequence of representations of the symmetric groups

Sn for every n ∈ N (see e.g. [CEF1]). Objects of this form arise naturally in topology

and representation theory, for example:

• Cohomology of configuration spaces {PConfn(X)}n∈N for a manifold X.

• Diagonal coinvariant algebras {Q[x1, . . . , xn, y1, . . . , yn]/In}n∈N (see [CEF1]).

A fundamental result of Church-Ellenberg-Farb [CEF1] is that an FI-module over

Q is finitely-generated, i.e. there exists a finite set of elements not contained in any

proper submodule, if and only if the sequence of Sn-representations stabilizes in a

precise sense (see [CEF1] for details). This phenomenon was named representation

stability. In particular, if one defines class functions

Xk(σ) = # of k-cycles in σ

simultaneously on all Sn, then [CEF1] show that for every finitely-generated FI-module

M• then there exists a single polynomial P ∈ Q[X1, X2, . . .] – a character polynomial

– that describes the characters of the Sn-representations Mn independent of n for all

n� 1.

The uniform description of the characters in terms of a single character polynomial

accounts for the most direct applications of the theory, for example:
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• For every manifold X and i ≥ 0, the dimensions of {Hi(PConfn(X);Q)}n∈N are

given by a single polynomial in n for all n� 1.2

• Every polynomial statistic, regarding the irreducible decomposition of degree-n

polynomials over Fq, tends to an asymptotic limit as n→∞.3

However, the above logic could be reversed: as first suggested by Gan-Li in [GL2],

Nagpal showed in [Na, Theorem A] that if M• is a finitely generated FI-module, then

in some range n� 1 it admits a finite resolution by free FI-modules (see below) and

these have characters given by character polynomials. It follows that for every n� 1

the character of the Mn is itself given by a character polynomial. One can then get

stabilization of the decomposition of Mn into irreducible representations as a corollary

of this fact! We assert that the key property of character polynomials – responsible

for all representation stability phenomena and applications – is the following.

Fact 2.1.1 ([CEF2, Theorem 3.9]). The Sn-inner product of two character polynomials

P and Q becomes independent of n for all n ≥ deg(P ) + deg(Q).

The benefit of Gan-Li’s and Nagpal’s approach is that free FI-modules and char-

acter polynomials readily generalize to a wide class of categories similar to FI, and

do not require any understanding of the representation theory of the individual au-

tomorphism groups. Thus representation stability extends whenever these structures

exist.

2.1.2 Generalization to other categories

Work on generalizing representation stability to other contexts has proceeded in several

partially overlapping directions. A major direction on which we will be focused is that

2. See [Ch].

3. See [CEF2].
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of modules over other categories C of injections, whose automorphism groups are of

interest. Let C be a category.

Definition 2.1.2 (C-modules). A C-module over a ring R is a covariant functor

M• : C −→ R−Mod.

For every object c, the evaluation Mc is naturally a representation of the group AutC(c)

in R-modules, and these representation are related by the morphisms of C.

One then studies this category of representations, describes the simultaneous class

functions that generalize character polynomials, and proves the analog of Fact 2.1.1.

For example:

1. Putman-Sam [PS] considered the category C = VIq of finite dimensional vector

spaces over Fq and injective linear maps, whose representations encode sequences

of Gln(Fq)-representations.

2. Wilson [Wi1] studied C = FIW whose automorphism groups are the classical

Weyl groups Wn of type B/C or D.

3. Sam-Snowden [SS3] and Gan-Li [GL2] considered categories C = FIG for some

group G, encoding representations of Wreath products Sn o G. Casto [Ca] ex-

tended their treatment, and defined character polynomials in this context.

4. Barter [Ba] considered the category C = T of rooted trees with root-preserving

embeddings.

This approach has been further applied to topology, arithmetic and classical represen-

tation theory (see the respective citations).
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Other generalizations considered categories of dimension zero, studied by Wiltshire-

Gordon and Ellenberg (see [WG] with applications in [EWG]); homogeneous categories,

studied by Randal-Williams and Wahl (see [RWW]); and modules over twisted com-

mutative algebras, studied by Sam-Snowden (see [SS4]). We will not discuss these

ideas here.

In this chapter we attempt to generalize and unify the treatments in Examples 1-4

and ask:

Question 2.1.3. What structure do these categories possess that supports the existence

of a representation stability theory?

Here we offer an answer by fitting Examples 1-3 and others into the context of

a broader theory: representation of categories of FI type, i.e. categories that have

structural properties similar to those of FI (see Definition 2.1.6 below). This approach

is intended to subsume the individual treatments and eliminate the need to introduce

a new theory in each specific case. At the same time, it allows one to consider new

types of categories, such as the next example.

Example 2.1.4 (The categorical power FIm). As a first nontrivial example, and

the original motivation behind this generalization, we consider the categorical powers

FIm. These have objects that are (essentially) m-tuples (n1, . . . , nm) ∈ Nm with

automorphism groups the products Sn1 × . . . × Snm . Such categories are the natural

indexing category for various collections of linear subspace arrangements, to which our

theory is applied in §3. To see this at work consider the following example.

Fix m ≥ 1 and let Ratn(P1,Pm−1) be the space of based, degree n rational maps

P1 −→ Pm−1 that send ∞ to [1 : . . . : 1]. This space admits an (Sn × . . . × Sn)-

covering PRatn(P1,Pm−1) by picking an ordering on the zeros of the restrictions to
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the standard homogeneous coordinates functions on Pm−1. The coverings fit naturally

into a (contravariant) FIm-diagram of spaces, and their cohomology is an FIm-module.

The groups Hi(Ratn(P1,Pm−1);Q) can then be computed from the invariant part of

the (Sn×. . .×Sn)-representation Hi(PRatn(P1,Pm−1);Q) by transfer. Representation

stability for FIm-modules then gives the following.

Theorem 2.1.5 (Homological stability for Ratn). For every i ≥ 0 the i-th Betti

number of Ratn(P1,Pm−1) does not depend on n for all n ≥ i.

In §2.6 we discuss representation stability for FIm, which allows one to make such

claims as Theorem 2.1.5. We remark that similar treatment could be applied to any

product of categories whose representation stability is understood, but we do not

pursue other examples here.

2.1.3 Categories of FI type and free modules

As outlined above, we are looking for categorical structure that gives rise to character

polynomials satisfying Fact 2.1.1. We propose the following.

Definition 2.1.6 (Categories of FI type). We say that a category C is of FI type

if it satisfies the following axioms.

1. C is locally finite, i.e. all hom-sets are finite4.

2. Every morphisms is a monomorphism, and every endomorphisms is an isomor-

phism.

3. For every pair of objects c and d, the group of automorphisms AutC(d) acts

transitively on the set HomC(c, d).

4. Finiteness is not strictly necessary for many of the definitions and subsequent results. The
author will be very interested to see how far one can push this theory with infinite automorphism
groups

8



4. For every object d there exist only finitely many isomorphism classes of objects

c for which HomC(c, d) 6= ∅ (we denote this by c ≤ d).

5. C has pullbacks and (weak) pushouts5.

Remark 2.1.7. Categories that satisfy the second half of condition 2 – where every

endomorphism is an isomorphism – are called EI categories. The representation sta-

bility of such categories satisfying additional combinatorial conditions was studied by

Gan-Li in [GL1].

We will denote the automorphism group of an object c by Gc.

In §2.2.1 we define the collection of character polynomials for a general category C

of FI type - these are certain C-valued class functions simultaneously defined on all

automorphism groups Gc. Briefly, character polynomials are linear combinations of

functions of the form
(X
λ

)
where λ ⊂ Gc is some fixed conjugacy class.

(X
λ

)
evaluates

on gd ∈ Gd to give the number of ways gd can be restricted to an element gc ∈ λ, i.e.

via morphisms c
f−→ d for which gd ◦ f = f ◦ gc with gc ∈ λ.

However, it is not at all clear that these functions satisfy the analog of Fact 2.1.1,

or even that they can be reasonably thought of as polynomials, i.e. closed under taking

products. To demonstrate these fundamental properties we propose a categorification

of character polynomials, similar to the way in which group representations categorify

class functions. Our categorification takes the form of free C-modules, introduced in

Section §2.3.

Definition 2.1.8 (Free C-modules). A C-module is said to be free if it is a direct

sum of modules of the form Indc(V ), where Indc is the left-adjoint functor to the

restriction M• 7→Mc.

5. Pushouts are not quite what we want here, as these typically do not exists when one insists that
all morphisms be injective. We replace this notion by weak pushouts, defined below.

9



Note 2.1.9. Since we are only discussing finitely-generated C-modules, free modules

will always be taken to be finite direct sums. Over the field of complex numbers these

C-modules are precisely the finitely-generated projectives.

This choice of categorification is justified by the following observation.

Theorem 2.1.10 (Categorification of character polynomials). If M• is a free

C-module over C, then there exists a character polynomial P whose restriction to Gc

coincides with the character of Mc for every object c.

Conversely, the character polynomials that arise in this way span the space of all

character polynomials on C, defined in §2.2.1 below.

The structure of FI type then ensures that the class of free C-modules, and sub-

sequently character polynomials, has the properties that ultimately produce represen-

tation stability.

Theorem 2.1.11 (The class of free C-modules). If C is a category of FI type, then

the class of (finitely-generated) free C-modules over C has the following properties:

1. The tensor product of two free C-modules is again free.

2. There is a degree filtration on the category of free C-modules, taking values in

the objects of C. Direct sums and tensor products act on this degree in the usual

way with respect to an order relation ≤ on C and object addition + defined below.

3. Every free C-module M• has a dual C-module M∗• : c 7→ HomC(Mc,C), which

is again free of the same degree.

4. If M• is a free C-module of degree ≤ c, then for every object d ≥ c the coinvari-

ants (Md)/Gd are canonically isomorphic.

10



This statement – especially closure under tensor products – is nontrivial and de-

pends critically on the structure of FI type. For example, the specialization to FI-

modules was proved in [CEF1] using the projectivity of FI#-modules, and is related

to the fact that products of binomial coefficients
(n
k

)(n
l

)
can be expressed as linear

combinations of
(n
r

)
with r ≤ k + l.

Remark 2.1.12 (Working over different fields). Most of the results in Theorem

2.1.11 are set-theoretic in nature and follow from combinatorial properties of C-sets.

They thus hold in greater generality with the base field C replaced with an arbitrary

commutative ring R. However, when trying to decategorify and conclude character-

theoretic results, the assumption of characteristic 0 becomes necessary. To simplify

our exposition, we will phrase the results only for C-modules over C.

Theorem 2.1.11 in particular gives the categorified analog of Fact 2.1.1. This fact

captures the stabilization of the sequence of representations, as we shall see in the

Application 1 below.

Corollary 2.1.13 (Hom stabilization). If M• and N• are free C-modules of respec-

tive degrees ≤ c1 and ≤ c2, then the spaces

HomGd(Md, Nd)
∼= (M∗ ⊗N)d/Gd (2.1.1)

are canonically isomorphic for all d ≥ c1 + c2.

When the objects of C are parameterized by natural numbers, the addition c1 + c2

is the usual addition operations. For the general definition of addition on objects, see

Definition 2.3.7 below. Note that the identification of the two sides in Equation 2.1.1

is where characteristic 0 assumption is used.

Decategorifying back to characters, one obtains the following.

11



Corollary 2.1.14 (Inner product stabilization). If P and Q are character poly-

nomials of respective degrees ≤ c1 and ≤ c2, then the inner products

〈P,Q〉Gd =
1

|Gd|
∑
g∈Gd

P̄ (g)Q(g) (2.1.2)

become independent of d for all d ≥ c1 + c2.

These claims will be proved in §2.3 and §2.4.

2.1.4 Application 1: Stabilization of irreducible multiplicities

Let G be a finite group. Recall that over C the irreducible decomposition of a G-

representation can be detected by G-intertwiners. Explicitly, if V is a G-representation

and W is an irreducible representation, then the multiplicity at which W appears in

V is dim HomG(W,V ). Similarly, if V = ⊕iW
ri
i is an irreducible decomposition then

dim HomG(V, V ) =
∑
i

r2
i .

Corollary 2.1.13 then demonstrates that these dimensions stabilize in the case of

free C-modules.

Corollary 2.1.15 (Stabilization of irreducible decomposition). Let M• be a free

C-module of degree ≤ c. At every object d let

Md = ⊕iW (d)
r(d)i
i .

be an irreducible decomposition. Then the sums
∑
i r(d)2

i do not depend on d for

d ≥ c + c. More generally, if N• is any other free C-module of degree ≤ c′ with

12



irreducible decompositions

Nd = ⊕iW (d)
s(d)i
i

then the sums
∑
i r(d)i · s(d)i do not depend on d for all d ≥ c+ c′.

By choosing the test module N• carefully, one can gain more information as to the

individual multiplicities r(d)i. In particular, it is often possible to relate the irreducible

representations of the different groups Gd and show that the individual multiplicities

in fact stabilize for all d ≥ c+ c.

2.1.5 Application 2: The category of C-modules is Noetherian

One of the most important themes in representation stability is the Noetherian prop-

erty: the subcategory of finitely-generated modules is closed under taking submodules.

This allows one to apply tools from homological algebra to finitely-generated modules,

with far reaching applications (see e.g. [CEF1] and [Fa]).

Example 2.1.16 (Configuration spaces of manifolds [CEF1]). Let M be an

orientable manifold. For every finite set S the space of S-configurations on M ,

PConfS(M), is the space of injections from S to M . The functor S 7→ PConfS(M) is

an FIop-space, and S 7→ Hi(PConfS(M);Q) is an FI-module.

Totaro [To] proved that there is a spectral sequence converging to Hi(PConfS(M))

and [CEF1] showed that the every E
p,q
2 -term of this sequence is a finitely-generated FI-

module. [CEF1] also prove that FI-modules over Q is Noetherian, and therefore finite-

generation persists to the E∞-page, and subsequently to Hi. Therefore the sequence

Hi(PConfS(M);Q) exhibits representation stability. One direct result is that the i-th

Betti number of PConfS(M) is eventually polynomial in |S|.

A corollary of the theory developed here is that the same Noetherian property holds

in general.
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Theorem 2.1.17 (The category C−Mod is Noetherian). If C is a category of FI

type, then the category of C-modules over C is Noetherian. That is, every submodule

of a finitely generated C-module is itself finitely generated.

Theorem 2.1.17, proved below in §2.5, simultaneously generalizes the results by

Church-Ellenberg-Farb [CEF1, Theorem 1.3] and independently by Sam-Snowden [SS1,

Theorem 1.3.2], who proved that the category of FI-modules is Neotherian; Putman-

Sam [PS], who proved the same for the category of VI-modules; and Wilson [Wi1],

who proved this for FIW -modules.

Gan-Li [GL1] generalized all of these Noetherian results and found that they hold

for every category with a skeleton whose objects are parameterized by N satisfying

certain combinatorial conditions see ([GL1, Theorem 1.1]). However, their theory does

not address categories whose objects are not parameterized by N, such as FIm treated

in §2.6 below.

One reason Noetherian results are important in our context is that they ensure

that finitely-generated C-modules exhibit the same stabilization phenomena as with

free C-module discussed in Application 1 (although without the effective bounds on

stable range).

Theorem 2.1.18 (Stabilization of finitely-generated C-modules). If M• is a

finitely-generated C-module, then the sequence of coinvariants Mc/Gc is eventually

constant, i.e. all induced maps are Mc/Gc −→ Md/Gd are isomorphisms for suffi-

ciently large objects c.

More generally, for every free C-module F• the sequence of spaces HomGc(Fc,Mc)

is eventually constant in the same sense.
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2.1.6 Application 3: Free modules in topology

Beyond the applications of free C-modules to the representation theory of the cate-

gory C, they also appear explicitly in topology. In §3 we consider the cohomology

of C-diagrams of linear subspace arrangements, for which we show that the induced

cohomology C-module is free. An immediate consequence, stated here somewhat in-

formally, is the following (see §3 for the precise definitions and statements).

Corollary 2.1.19 (Stability of C-diagrams of linear subspace arrangements).

Every (contravariant) C-diagram X• of linear subspace arrangements, that is generated

by a finite collection of subspaces, exhibits cohomological representation stability. That

is, for every i ≥ 0 the C-module Hi(X•;C) is free. In particular, there exists a single

character polynomial Pi of C that uniformly describes the Gc-representation Hi(Xc;C)

for every object c.

Moreover, the respective quotients Xc/Gc exhibit homological stability for C-coefficients,

and for various systems of constructible sheaves.

2.2 Preliminaries

Let C be a category. Objects of C will typically be denoted by c, d, and so on.

The categories with which we shall be working will have only injective morphisms.

This typically precludes the possibility of having push-out objects. The following

definition provides a means for salvaging some notion of a push-out diagram subject

to this constraint.
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Definition 2.2.1 (Weak push-out). A weak push-out diagram is a pullback diagram

p c1

c2 d

f̃1

f̃2 f1

f2

with the following universal property: for every other pullback diagram

p c1

c2 z

f̃1

f̃2 h1

h2

there exists a unique morphism d
h−→ z that makes all the relevant diagrams commute.

We call d the weak push-out object and denote it by c1
∐
p c2. The unique map h

induced from a pair of maps ci
hi−→ z is denoted by h1

∐
p h2.

This is similar to a usual push-out, but with “all” commutative squares replaced

by only pullback squares. When starting from a category that has push-outs, such as

Set and Vectk, and passing to the subcategory that includes only injective maps, we

lose the push-out structure. However, weak push-outs persist, and retain most of the

same function.

A standard notation that we will use throughout is the following.

Definition 2.2.2. We say that c ≤ d if there exists morphisms c −→ d.

In categories of FI type (see Definition 2.1.6 above) this preorder relation between

objects is essentially an order, i.e. if c ≤ d and d ≤ c then every morphism c −→ d is

invertible. However, as noted in part (5) of Definition 2.1.6, push-outs typically don’t
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exist in categories of FI-type and we adjust the definition by demanding the following

property instead.

Definition 2.2.3 (Categories of FI type). A category C is said to be of FI type is

it satisfies axioms (1)-(4) from Definition 2.1.6, and in addition:

5. C has pullbacks and weak push-outs, i.e. for every pair of morphisms p
fi−→ ci

there exists a weak push-out c1
∐
p c2; and for every pair ci

gi−→ d there exists a

pullback c1 ×d c2.

It seems possible that some of the theory should carry over to compact groups or

even to semi-simple groups, but this direction will not be perused here.

The primary objects of study are the representation of C. These are the C-modules

defined in Definition 2.1.2. Our goal is to understand the category of C-modules and

relate it to the categories of representations of the individual automorphism groups

Gc.

2.2.1 Binomial sets and Character Polynomials

The character polynomials for the symmetric groups are class functions simultaneously

defined on Sn for all n. These objects are closely linked with the phenomenon of

representation stability in that the character of a representation-stable sequence is

eventually given by a single character polynomial (see [CEF1]). We will now define

character polynomials for a general category of FI type.

The following notion generalizes the collection of subset of size k inside a set of n

elements. It will be used below in the definition of character polynomials.

Definition 2.2.4 (Binomial set). Let c and d be two objects of C. The group of

automorphisms Gc acts on HomC(c, d) on the right by precomposition. Denote the
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quotient HomC(c, d)/Gc by
(d
c

)
. We will call this the binomial set, d choose c. If

c
f−→ d is a morphism, we denote its class in

(d
c

)
by [f ].

Since the set HomC(c, d) admits a left action by Gd, and this action commutes

with the right action of Gc, the binomial set
(d
c

)
acquires a Gd action naturally by

σ([f ]) = [σ ◦ f ].

Note that in the case of C = FI, the category of finite sets and injections, the

binomial set
(n
k

)
is naturally in bijection with the collection of size k subsets of n

(hence the terminology). Replacing FI by VIF, the category of finite dimensional

F-vector spaces and injective linear functions, the binomial set
(n
k

)
is naturally the

Grassmanian of k-planes in Fn.

Definition 2.2.5 (Character polynomial). Let c be an object of C and µ ⊆ Gc a

conjugacy class. In this case we will denote |µ| = c. The indicator character polyno-

mial of µ is the C-valued class function
(X
µ

)
simultaneously defined on all Gd by

(
X

µ

)
: (σ ∈ Gd) 7→

∣∣∣∣{[f ] ∈
(
d

c

)
| ∃ψ ∈ µ s.t. σ ◦ f = f ◦ ψ

}∣∣∣∣ . (2.2.1)

The degree of
(X
µ

)
is defined to be deg(

(X
µ

)
) := |µ|.

A character polynomial P is a C-linear combination of such simultaneous class

functions. We say that the degree of P is ≤ d for an object d if for every indicator(X
µ

)
that appears in P nontrivially we have |µ| ≤ d. We denote this by deg(P ) ≤ d.

The following lemma shows that the above definition indeed gives rise to well-

defined class functions.

Lemma 2.2.6. The function
(X
µ

)
is a class function of every group Gd. Furthermore,

its definition in Equation 2.2.1 does not depend on the choice of representative f ∈ [f ].
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Proof. First to see that Equation 2.2.1 does not depend on the choice of f , suppose

f ′ is another representative of [f ] ∈
(d
c

)
. Then there exists some g ∈ Gc such that

f ′ = f ◦ g. Then for every σ ∈ Gd and ψ ∈ µ

σ ◦ f = f ◦ ψ ⇐⇒ σ ◦ f ′ = (f ◦ ψ) ◦ g = f ′ ◦ (g−1ψg)

and g−1ψg belongs to µ as well.

Lastly, to see that we get a class function take σ′ = hσh−1. Then [f ] ∈
(d
c

)
satisfies

σ ◦ f = f ◦ ψ if and only in [h ◦ f ] satisfies

σ′ ◦ (h ◦ f) = hσh−1(h ◦ f) = h ◦ (f ◦ ψ) = (h ◦ f) ◦ ψ.

If we denote by Uµ(σ) the set of classes [f ] ∈
(d
c

)
which is counted in Equation 2.2.1

for σ, then we see that Uµ(hσh−1) = h(Uµ(σ)), and in particular these sets have equal

cardinality.

Example 2.2.7 (FI character polynomials). For C = FI the automorphism group

of the object n = {0, 1, . . . n−1} is the symmetric group Sn. For any k ∈ N a conjugacy

class in Sk is described by a cycle type, µ = (µ1, µ2, . . . , µk) where µi is the number

of i-cycles. For any other n ∈ N, if we denote by Xi the class function on Sn

Xi(σ) = # of i-cycles in σ

then we claim that (
X

µ

)
(σ) =

(
X1(σ)

µ1

)
. . .

(
Xk(σ)

µk

)
. (2.2.2)

Indeed, the class [f ] ∈
(n
k

)
of an injection k

f−→ n corresponds to the subset

Im(f) ⊆ n. The condition that σ ◦ f = f ◦ ψ translates to saying that Im(f) is
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invariant under σ and that the induced permutation on this subset has cycle type µ.

Then for a given σ ∈ Sn the right-hand side of Equation 2.2.2 counts the number of

ways to assemble such an invariant subset from the cycles of σ.

[CEF1] give Equation 2.2.2 as the definition of
(X
µ

)
. Thus our definition of character

polynomials extends the classical notion of character polynomials for the symmetric

groups to other classes of groups.

Example 2.2.8 (VI character polynomials). For C = VIF the automorphism

group of the object [n] = Fn is GLn(F). We describe the degree 1 indicators. A

conjugacy class in GL1(F) = F× is just a non-zero element µ ∈ F. For every n ∈ N

the function
(X
µ

)
on a matrix A ∈ GLn(F) is given by

(
X

µ

)
(A) = # of 1D eigenspaces of A with eigenvalue µ. (2.2.3)

These are the VI analogs of X1 on Sn, which counts the number of fixed points of a

permutation.

2.3 Free C-modules

This section is devoted to defining free C-modules and proving that, when C is of

FI type, these modules satisfy the fundamental properties stated in Theorem 2.1.11.

Note that the statements and proofs in this section are essentially set-theoretic in

nature, and therefore hold in a more general setting of C-modules over any ring R.

For concreteness we will only describe here the results with R = C.

Free C-modules are defined using a collection of left-adjoint functors. For every

object c there is a natural restriction functor

C−Mod
Resc−→ C[Gc]−Mod , M• 7→Mc (2.3.1)
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Following [tD], this functor admits a left-adjoint as follows.

Definition 2.3.1 (Induction C-modules). Let Indc : C[Gc]−Mod −→ C−Mod

be the functor that sends a Gc-representation V to the C-module

Indc(V )• = C[Hom(d, •)]⊗Gd V (2.3.2)

where morphisms in C act on these spaces naturally through their action on Hom(c, •).

We call a C-module of this form an induction module of degree c, and denote

deg(Indc(V )) = c.

[tD] shows that the functor Indc is a left adjoint to Resc. Recall that in Defini-

tion 2.1.8 we called direct sum of induction modules free. The following additional

terminology will also be useful.

Definition 2.3.2 (Degree of a free module). We say that a free C-module M• has

degree ≤ d if for every induction module Indc(V ) that appears in M• nontrivially we

have c ≤ d. In this case we denote deg(M•) ≤ d.

A virtual free C-module is a formal C-linear combination of induction modules,

e.g.

⊕ni=1λi Indci(Vi) where λi ∈ C.

We extend the induction functors Indc linearly to virtual Gc-representations, i.e.

Indc(⊕λiVi) := ⊕λi Indc(Vi).

We propose that (virtual) free C-modules are a categorification of character poly-

nomials, much like the case for any finite group G where (virtual) G-representations
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categorify class functions on G .

Definition 2.3.3 (The character of a C-module). If M• is a C-module, its char-

acter is the simultaneous class function

χM :
∐
c

Gc −→ C

that for every object c sends the group Gc to the character of the Gc-representation

Mc.

One can express the character of induction modules in terms of indicator character

polynomials, as follows.

Lemma 2.3.4 (Character of induction modules). If V is any Gc-representation

whose character is χV , then the character of Indc(V ) is given by

χIndc(V ) =
∑

µ∈conj(Gc)

χV (µ)

(
X

µ

)
(2.3.3)

where conj(Gc) is the set of conjugacy classes of Gc, and χV (µ) is the value χV takes on

any g ∈ µ. In particular we see that the character of Indc(V ) is a character polynomial

of degree c.

Proof. Since all morphisms in C are monomorphisms, it follows for every object d the

equivalence class f ◦Gc = [f ] ∈
(d
c

)
is a right Gc-torsor. Thus there is an isomorphism

of vector spaces

Indc(V )d = C[HomC(c, d)] ⊗
Gc
V = ⊕

[f ]∈(dc)
C([f ]) ⊗

Gc
V ∼= ⊕

[f ]∈(dc)
V (2.3.4)

where the group Gd permutes the summands through its action on
(d
c

)
. It follows that

the trace of σ ∈ Gd gets a contribution from the summand C([f ]) ⊗Gc V if and only
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if σ([f ]) = [f ]. Consider such [f ] ∈ Fix(σ), i.e. there exists some ψ ∈ Gc such that

σ ◦ f = f ◦ ψ. We get a commutative diagram

C([f ])⊗Gc V C([f ])⊗Gc V

V V

σ

∼= ∼=

ψ

so the trace of σ|C([f ])⊗GcV is precisely χV (ψ). We get a formula for the character

χIndc(V )(σ) =
∑

[f ]∈(dc)
∃ψ(σ◦f=f◦ψ)

χV (ψ). (2.3.5)

Arranging this sum according to the conjugacy class of ψ we get the equality claimed

by Equation 2.3.3.

A corollary or Lemma 2.3.4 is that free C-modules indeed categorify character

polynomials.

Theorem 2.3.5 (Categoricifaction of character polynomials). Character poly-

nomials of degree ≤ d are precisely the characters of virtual free C-modules of degree

≤ c.

Proof. It is sufficient to show that every
(X
µ

)
is the character of some virtual free C-

module of degree ≤ |µ|. Denote c = |µ| and consider the indicator class function on

Gc

χµ(ψ) =


1 ψ ∈ µ

0 ψ /∈ µ.

Since the characters of Gc-representations form a basis for the class functions on Gc,

there exist Gc-representations V1, . . . , Vn and complex numbers λ1, . . . , λn such that
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the virtual representation

Vµ = ⊕ni=1λiVi

has character χµ. Then by Lemma 2.3.4 and linearity it follows that

χIndc(Vµ) =

(
X

µ

)
.

2.3.1 Tensor products

The categorification of pointwise products of character polynomials is the tensor prod-

uct of free C-modules. The goal of this subsection is to show that the product of two

free modules is itself free.

Definition 2.3.6 (Tensor product of C-modules). If M• and N• are two C-

module, their tensor product (M ⊗N)• is the C-module

(M ⊗N)d = Md ⊗Nd (2.3.6)

where a morphism c
f−→ d acts naturally by M(f)⊗N(f).

At the level of characters, the tensor product corresponds to pointwise multiplica-

tion:

χM⊗N = χM · χN . (2.3.7)

The main result of this subsection is the parts (1) and (2) of Theorem 2.1.11. The

following definition gives meaning to addition of objects so as to make the degree

additive.
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Definition 2.3.7 (Sum of objects). If c1 and c2 are two object of C, then c1 + c2

denotes the collection of objects d that satisfy

c1
∐
p

c2 ≤ d

for every weak push-out of c1 and c2. If d belongs to the collection c1 + c2 we denote

d ≥ c1 + c2, i.e.

d ≥ c1 + c2 ⇐⇒ d ∈ c1 + c2.

If M• is a free C-module, we say that deg(M) ≤ c1 + c2 if the degree is ≤ d for

every d ∈ c1 + c2.

Note 2.3.8. If the collection c1 + c2 contains an essential minimum object d0, then we

can identify c1 + c2 with this minimum. In this case saying that deg(M) ≤ c1 + c2 is

equivalent to saying deg(M) ≤ d0. In all the examples we currently know, the essential

minimum object of c1 + c2 is the weak coproduct c1
∐

∅ c2. In particular, when C has

a skeleton whose objects are parameterized naturally by N then the object “n1 + n2”

coincides with the standard addition n1 + n2 (hence the notation).

At the level of character polynomials Theorem 2.1.11(1) translates into the following

result.

Corollary 2.3.9 (Closure under products). The collection of character polynomials

forms an algebra under pointwise products, and the degree is additive with respect

products. Namely, if P and Q are character polynomials of respective degrees ≤ c1 and

≤ c2, then their product P ·Q is a character polynomial of degree ≤ c1 + c2.

Note 2.3.10. It is not immediately clear that the product of two expressions
(X
µ

)
and(X

ν

)
can be expanded in terms of other such expressions, but we now see they can.

To demonstrate the nontriviality of this statement consider the standard binomial
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coefficients: for X =
(X

1

)
we have an expansion

X ·
(
X

k

)
= (k + 1)

(
X

k + 1

)
+ k

(
X

k

)

Problem 2.3.11. Find general formula for the expansion of
(X
k1

)(X
k2

)
in terms of

(X
k

)
’s.

The proof of Theorem 2.1.11(1) will use the following definitions and lemmas. First

we need an easy technical observation.

Lemma 2.3.12 (Pull-back invariance). Suppose

a b1

b2 c

f1

f2 g1

g2

is some commutative diagram in C and c
h−→ d is some monomorphism. By composing

with h we get another diagram

a b1

b2 d

f1

f2 h◦g1

h◦g2

If one of these diagrams is a pull-back, then so is the other.

Second we define the push-out set of three objects.

Definition 2.3.13 (Push-out set). Let c1 and c2 be two objects of C. For any

object d we define the push-out set PO
( d
c1,c2

)
to be the set of pairs of morphisms

(ci
gi−→ d | i = 1, 2) that present d as a weak push-out of c1 and c2. That is to say that
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the pullback diagram
c1 ×d c2 c1

c2 d

g1

g2

is a weak push-out diagram.

Remark 2.3.14. It is straightforward to verify that the procedure of replacing d by an

isomorphic object d′ and mapping c1 and c2 into d′ through any isomorphism d
∼−→ d′

preserves weak push-out diagrams. Therefore any such isomorphism induces a natural

bijection of sets

PO

(
d

c1, c2

)
∼−→ PO

(
d′

c1, c2

)
by left-composition. In particular, the group of automorphisms Gd acts on PO

( d
c1,c2

)
on the left. Similarly, the group Gc1 ×Gc2 acts naturally on the right by precomposi-

tion.

The general philosophy of this thesis is the following: statements about represen-

tation stability (of which Theorem 2.1.11(1) is one) are reflected by statement about

C-sets. Therefore closure under tensor products should be a consequence of a set-

theoretic observation. This is the content of the next lemma.

Lemma 2.3.15 (Tensor products: set version). Let C be a category of FI type.

There is a natural isomorphism between the product functor

Hom(c1, •)× Hom(c2, •)

and the disjoint union functor

∐
[d]

Hom (d, •)×Gd PO

(
d

c1, c2

)
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where [d] ranges over the isomorphism classes of C and d is some representative of [d].

Furthermore this natural isomorphism respects the right (Gc1×Gc2)-action on the two

functors.

Proof. For any object x and a representative d of the isomorphism class [d] we define

a function

Hom (d, x)×Gd PO

(
d

c1, c2

)
Ψd
x−→ Hom(c1, x)× Hom(c2, x) (2.3.8)

by composition, i.e. [
d

f−→ x, (ci
ri−→ d)

]
7→
(
ci
f◦ri−→ x

)
(2.3.9)

By the associativity of composition, this is well-defined on the product over Gd. More-

over, Ψd
• is clearly natural in x and respects the right action of Gc1 × Gc2 given by

precomposition.

Letting d range over all isomorphism classes we get a natural transformation from

the union

∐
[d]

Hom (d, •)×Gd PO

(
d

c1, c2

)
Ψ•−→ Hom(c1, •)× Hom(c2, •) (2.3.10)

which respects the right Gc1 ×Gc2-action.

In the other direction, let x again be any object. We define a function

Hom(c1, x)× Hom(c2, x)
Φdx−→ Hom (d, x)×Gd PO

(
d

c1, c2

)
(2.3.11)
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as follows. Let (ci
fi−→ x | i = 1, 2) be a pair of morphisms. Construct their pull-back

p c1

c2 x

α1

α2 f1

f2

and form the weak push-out for p
αi−→ ci

p c1

c2 c1
∐
p c2 =: d

α1

α2 r1

r2

The universal property of the weak push-out then implies that there exists a unique

morphism d
f−→ x such that f ◦ ri = fi. We define Φdx by

(ci
fi−→ x) 7→

[
(d

f−→ x), ci
ri−→ d

]
. (2.3.12)

To see that Φdx is well-defined, suppose

p′ c1

c2 d′

α′1

α′2
r′1

r′2

is another weak push-out diagram produced by the same procedure and d′
f ′−→ x is the

corresponding induced map. First we observe that since p and p′ are both pull-backs

of the pair (f1, f2) there exists an isomorphism p
τ−→ p′ for which α′i ◦ τ = αi for

i = 1, 2. Second, we replace p′ by p in the weak push-out diagram, mapping it though
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τ , i.e.

p c1

c2 d′

α′1◦τ

α′2◦τ r′1

r′2

and this is again a weak push-out diagram. Therefore, by the universal property of

the weak push-out, there exists a unique morphism d
ψ−→ d′ for which ψ ◦ ri = r′i. The

same reasoning applied in reverse shows that ψ admits a unique inverse, and therefore

d ∼= d′. Since we picked d to be the representative for the isomorphism class [d], it

follows that d = d′ and that ψ ∈ Gd. The induced map f is characterized by the

property that f ◦ ri = fi, and similarly for f ′ and r′i. Therefore we find that

fi = f ′ ◦ r′i = f ′ ◦ ψ ◦ ri

which by the universal property of d shows that in fact f = f ′ ◦ ψ. Our function Φdx

is defined as to send the pair (f1, f2) to

[
f, (ci

gi−→ d)
]

=
[
f ′ ◦ ψ, (ci

gi−→ d)
]

=

[
f ′, (ci

ψ◦gi−→ d)

]
=

[
f ′, (ci

g′i−→ d)

]

which we now see that is uniquely defined.

The two functions Ψd
x and Φdx are clearly inverse, and therefor they together form

a natural isomorphism between the two functors. As stated above, this isomorphism

respects the right Gc1 ×Gc2-action.

Now we can prove that free C-modules are indeed closed under tensor products.

Proof of Theorem 2.1.11(1). By the distributivity of tensor products, it is enough to

verify the claim for induction modules of respective degrees ≤ c1 and c2 respectively.

Moreover, by the transitivity of the order relation between objects, it will suffice if
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we assume that the degrees are precisely c1 and c2 respectively. Let Indc1(V ) and

Indc2(W ) be two such C-modules.

We apply an easy-to-verify equality of tensor products,

Indc1(V )• ⊗k Indc2(W )• =
(
C[Hom c1, •]⊗Gc1 V

)
⊗k
(
C[Hom c2, •]⊗Gc2 W

)
∼= (C[Hom(c1, •)]⊗k C[Hom(c2, •)])

⊗
Gc1×Gc2

(V �W )

and to this we can apply the natural isomorphism

C[Hom(c1, •)]⊗ C[Hom(c2, •)] ∼= C [Hom(c1, •)× Hom(c2, •)] . (2.3.13)

In Lemma 2.3.15 we found a natural isomorphism between the product

Hom(c1, •)× Hom(c2, •)

and the union ∐
[d]

Hom (d, •)×Gd PO

(
d

c1, c2

)

which when composed with the permutation representation functor X 7→ C[X] yields

a natural isomorphism

C [Hom(c1, •)× Hom(c2, •)] ∼=
⊕
[d]

C[Hom(d, •)]⊗Gd C[PO

(
d

c1, c2

)
] (2.3.14)
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By the associativity of the tensor product, we get a natural isomorphism

Indc1(V )• ⊗k Indc2(W )• ∼=
⊕
[d]

C[Hom(d, •)] ⊗
Gd

C[PO

(
d

c1, c2

)
]
⊗

Gc1×Gc2

(V �W )

=
⊕
[d]

Indd

C[PO

(
d

c1, c2

)
]
⊗

Gc1×Gc2

(V �W )

 •
as claimed.

Note that for d to have a non-zero contribution to this direct sum, the set PO
( d
c1,c2

)
must be non-empty. In particular, there exists a decomposition d = c1

∐
p

c2. This

proves the claim regarding the degree of terms in the sum. Since there are only finitely

many isomorphism classes of objects with such a presentation, the above direct sum

decomposition is finite.

2.3.2 Dualization

One would like to define the dual of a C-module M• by (M∗)c = (Mc)
∗. Unfortunately,

this will not be a C-module in general (it will be a Cop-module). In this subsection

we show that when dealing with free C-modules there is a good notion of dualization.

Definition 2.3.16 (Dual C-module). For an induction module Indc(V ) we define

its dual C-modules by

Indc(V )∗ = Indc(V
∗) (2.3.15)

where V ∗ is the Gc-representation dual to V . Extend this definition linearly to all

(virtual) free C-modules.

We claim that this indeed gives a good notion of duals.

Theorem 2.3.17. If M• is a free C-module then there is a homomorphism of C-
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modules

M∗• ⊗M•
ev−→ C• (2.3.16)

where C• is the trivial C-module with Cd = C for every object. This pairing is non-

degenerate and thus defines an isomorphism of Gd-representations (M∗)d ∼= (Md)
∗ for

every object d.

We conclude that the dual of a free C-module of degree ≤ c is again a C-module of

degree ≤ c.

Proof. Suppose M = ⊕i Indci(Vi). Then there is a decomposition of C-modules

M∗ ⊗M = ⊕
i,j

Indci(V
∗
i )⊗ Indcj (Vj).

We define the pairing to be 0 for all i 6= j. For i = j consider a single induction module

Indc(V ) and decompose it using Equation 2.3.4

Indc(V )d = ⊕
[f ]∈(dc)

V =⇒ (Indc(V
∗)⊗ Indc(V

∗))d = ⊕
[f ],[g]∈(dc)

V ∗ ⊗ V.

Set the pairing to be 0 on all [f ] 6= [g], and for [f ] = [g] use the natural contraction on

V ∗ ⊗ V . This produces a map

⊕
[f ],[g]∈(dc)

V ∗ ⊗ V −→ ⊕
[f ]∈(dc)

C +−→ C

which is the pairing we sought.

Explicitly, the pairing on Indc(V
∗)⊗ Indc(V ) is given by

〈f ⊗ v∗, g ⊗ v〉 =
∑
ψ∈Gc
f◦ψ=g

〈v∗, ψ(v)〉 =


〈v∗, ψ(v)〉 f ◦ ψ = g

0 [f ] 6= [g]

(2.3.17)
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It is straightforward to check that the above pairing is invariant under the action of

morphisms in C. It is thus a morphism of C-modules, as claimed. One can also

check that the pairing is non-degenerate, and thus defines the claimed Gd-equivariant

isomorphism

(M∗)d
∼−→ (Md)

∗.

Corollary 2.3.18 (The Hom C-module). If M• is a free C-modules and N• is

any C-module, then there exists a C-module Hom(M,N)• whose value at d is the

Gd-representation HomC(Md, Nd).

A morphism d
f−→ e induces a function HomC(Md, Nd)

f∗−→ HomC(Me, Ne) satis-

fying the following naturality property: if Md
T−→ Nd is any linear function, then there

is a commutative diagram

Md Nd

Me Ne

T

M(f) N(f)

f∗(T )

Furthermore, if N• is itself free, and the degrees of M• and N• are ≤ c1 and ≤ c2

respectively, then Hom(M,N)• is also free and has degree ≤ c1 + c2.

Proof. The desired C-module is the tensor product M∗ ⊗ N . All other claims follow

for the properties of tensor products and duals proved above.

2.4 The Coinvariant quotient and Stabilization

When G is a finite group, the coinvariants of a G-representation are the categorified

analog of averaging over class function: if χ is the character of a G-representation V ,
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then

dimVG =
1

|G|
∑
g∈G

χ(g). (2.4.1)

Such averages appear in G-inner products, which we want to relate for the various

automorphism groups Gc of our category C. This section will therefore analyze the

behavior of free C-modules under taking their coinvariants. Recall that the coinvariant

quotient of a G-representation V is its maximal invariant quotient, namely

VG = V/〈v − gv | v ∈ V, g ∈ G〉.

We will also denote this quotient by V/G.

In the context of a C-module M• we can form the Gc-coinvariant quotient of Mc

for every object c. If c
f−→ d is any morphism and Mc

M(f)
−→ Md the induced map, then

it descends to a well-defined map on the coinvariants. Indeed, this follows from the

assumptions that Gd acts transitively on HomC(c, d): if g ∈ Gc is any automorphism,

then f and f ◦ g are two morphisms from c to d and thus there exists some g̃ ∈ Gd for

which g̃ ◦ f = f ◦ g. This shows that for every v ∈Mc

v − g(v)
M(f)
7−→ f(v)− f ◦ g(v) = f(v)− g̃ (f(v))

and indeed v − gv gets mapped to zero in the coinvariant quotient of Md.

Definition 2.4.1 (The coinvariant quotient). We call the resulting C-module of

coinvariant quotients the coinvariant C-module of M• and denote it by (M/G)•.

Note 2.4.2. Every two morphisms c
f−→ d and c

f ′−→ d give rise to the same map

between coinvariants. This is because there exists some g̃ ∈ Gd for which g̃ ◦ f = f ′

and this g̃ acts trivially on (M/G)d. Thus for every pair c ≤ d there is a well-defined

map between the coinvariants (M/G)c −→ (M/G)d.
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The coinvariant quotient forms an endofunctor on C-modules. In this subsection

we study the action of this functor on free C-modules and demonstrate that they

exhibit stability under its operation.

Lemma 2.4.3. Let V be any Gc-representation and Indc(V ) the corresponding induc-

tion module. The Gd-coinvariants of Indc(V )d are given by

(Indc(V )/G)d
∼=


V/Gc if c ≤ d

0 otherwise

(2.4.2)

with all morphisms c ≤ d
f−→ d′ inducing the identity map.

Remark 2.4.4. This again reflects a statement about C-sets. Namely, that the set of

orbits Gd\HomC(c, d) is either a singleton if c ≤ d or empty otherwise.

Proof of Lemma 2.4.3. Recall that the coinvariant quotient of a G-representation W

can be defined as the tensor product

(W )G
∼= C⊗GW (2.4.3)

where C denotes the trivial G-representation.

Using the associativity of tensor products, and the presentation of Indc(V ) as one,

we get

(Indc(V )/G)d
∼= C⊗Gd C[HomC(c, d)]⊗Gc V ∼= C[Gd\HomC(c, d)]⊗Gc V (2.4.4)

By hypothesis the Gd action on HomC(c, d) is transitive. Therefore if c ≤ d then

Hom(c, d) 6= ∅ and this set forms a single orbit. Furthermore, a morphism d
f−→ d′

carries this single orbit corresponding to d to the one corresponding to d′. In the case
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where there are no morphisms c −→ d we have the empty set. In other words we have

C[Gd\HomC(c, d)] ∼=


C if c ≤ d

0 otherwise

(2.4.5)

and a morphism c ≤ d
f−→ d′ induces the identity map on C. Tensoring with V over

Gc we get V/Gc when c ≤ d, zero otherwise, and morphisms as stated.

Applying this result to direct sums of induction C-modules, we can formulate what

happens to free C-modules when we take their coinvariants.

Theorem 2.4.5 (Coinvariant stabilization). When the coinvariants functor is ap-

plied to any free module of degree ≤ c, all maps induced by C-morphisms are injections,

and all maps induced by morphisms between objects ≥ c are isomorphisms.

Explicitly, the stable isomorphism type of the coinvariant quotient of a free C-

module ⊕i Indci(Vi) is given by

lim
•→∞

(⊕i Indci(Vi)/G)• = ⊕iVi/Gci . (2.4.6)

This translates to the following result regarding character polynomials.

Corollary 2.4.6 (Stabilization of Expectation). If P is a character polynomial of

degree ≤ c, then its Gd-expected number

EGd [P ] :=
1

|Gd|
∑
σ∈Gd

P (σ)

does not depend on d for d ≥ c.

Furthermore, if P is the characters of free C-modules then EGd [P ] is a non-negative

integer, monotonically increasing in d.
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Proof. Recall that for a G-representation V the expectation

1

|G|
∑
g∈G

Tr(g) = Tr

 1

|G|
∑
g∈G

g


is the trace of the projection V � V G, whose existence also demonstrates that V G =

V/G. The expectation is thus dimC(V/G). In particular it is a non-negative integer.

Suppose P is the character of the free C-module M• of degree ≤ c. By Theorem

2.4.5 the coinvariants (M/G)• is a C-module, all of whose induced maps are injections,

and isomorphisms for objects ≥ c. Thus the sequence of dimensions dimC(M/G)d is

monotonic in d and becomes constant when d ≥ c.

The general statement follows by linearity.

We are often interested in the G-inner product of characters:

〈χ1, χ2〉G =
1

|G|
∑
g∈G

χ1(g)χ̄2(g) = EG[χ1 · χ̄2]

which is central to character theory. For character polynomials the previous corollary

gives the following immediate stability statement.

Corollary 2.4.7 (Stabilization of inner products). If P and Q are character

polynomials of respective degrees ≤ c1 and ≤ c2, then the Gd-inner products

〈P,Q〉Gd =
1

|Gd|
∑
σ∈Gd

P (σ)Q̄(σ) (2.4.7)

does not depend on d for all d ≥ c1 + c2.

Furthermore, if P and Q are the characters of free C-modules then 〈P,Q〉Gd is a

non-negative integer, monotonic in d.
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Proof. The claim follows directly from the presentation

〈P,Q〉Gd = EGd [PQ̄]

and Corollary 2.4.6.

If P and Q are the characters of M• and N• then PQ̄ is the character of the free

C-module M ⊗N∗. Integrality and monotonicity follow.

2.5 Noetherian property

In this section we apply the theory developed in the previous sections to prove that the

category of C-modules is Noetherian. Our proof strategy follows the argument made

by Gan-Li in [GL1]. The main theorem of this section is the following.

Theorem 2.5.1 (C −Mod is a Noetherian category). Every C-submodule of a

finitely generated C-module is itself finitely generated.

Theorem 2.5.1 will be proved at the end of this section. First we need some pre-

liminary results. We start with an extension result for equivariant homomorphisms

between free C-modules.

Lemma 2.5.2 (Equivariant extension). Let M• be a free C-module. There is a

left-exact endofunctor on C-modules

N• 7→ HomG•(M•, N•) (2.5.1)

whose image is contained in trivial C-modules. The value of the module HomG•(M•, N•)

at an object d is the vector space HomGd(Md, Nd). In particular, for every d ≤ e there

is a canonical map

HomGd(Md, Nd)
Ψe
d−→ HomGe(Me, Ne) (2.5.2)
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that promotes a Gd-linear map to a Ge-linear one.

Furthermore, if N• is itself free, and the degrees of M• and N• are ≤ c1 and ≤ c2

respectively, then the extension map Ψe
d is an isomorphism whenever d ≥ c1 + c2. In

particular, equivariant morphisms extend uniquely in this range.

Proof. To get the proposed endofunctor we use dualization, tensor products and coin-

variants:

N• 7→ (M∗ ⊗N)• 7→ [(M∗ ⊗N) /G]• (2.5.3)

This gives rise to an endofunctor whose value at d is

(
M∗d ⊗Nd

)
/Gd.

The tensor product is naturally isomorphic to HomC(Md, Nd) and averaging over Gd

gives a natural lift from coinvariants to invariants. Thus the value at d is naturally

isomorphic to

HomC(Md, Nd)
Gd = HomGd(Md, Nd)

and indeed the desired functor exists. Left exactness follows from the general fact that

the functor Hom(M, •) is left exact.

Lastly, if M• and N• are free of respective degrees ≤ c1 and ≤ c2 then by Theorem

2.1.11(1) M∗ ⊗ N is free of degree ≤ c1 + c2. We then apply Theorem 2.4.5 and see

that its coinvariants stabilize for all d ≥ c1 + c2 in the sense that all induced maps Ψe
d

are isomorphisms.

When the range N• is not free we cannot guarantee that the extension maps Ψe
d

be eventually isomorphisms. But in the case where the range is contained in a free

module, we can at least salvage injectivity.
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Corollary 2.5.3 (Injective extension). If M• and N• are free C-modules of respec-

tive degrees ≤ c1 and ≤ c2, and X• ⊆ N• is any C-submodule, then the extension

maps

HomGd(Md, Xd)
Ψe
d−→ HomGe(Me, Xe) (2.5.4)

are injective for all e ≥ d ≥ c1 + c2.

Proof. For every e ≥ d we have a commutative square of extensions

HomGd(Md, Xd) HomGd(Md, Nd)

HomGe(Me, Xe) HomGe(Me, Ne)

Xd↪→Nd

Ψe
d Ψe

d

Xe↪→Ne

and since M and N are free of the given degrees, it follows that the rightmost extension

map is an isomorphism when d ≥ c1 + c2. Furthermore, the two horizontal maps are

injective by left-exactness. Thus we have a square in which all but the leftmost map

are injections. This implies that the leftmost map is injective as well.

We are now ready to prove that C−Mod has the Noetherian property.

Proof of Theorem 2.5.1. Suppose that M• is a finitely generated C-module and X0
• ⊆

X1
• ⊆ . . . ⊆ M• is an ascending chain of submodules. We need to show that XN =

XN+1 = . . . for some N ∈ N. As in the standard proofs of Hilbert’s Basis Theorem,

we divide the task into two parts: controlling growth in all large degrees, then handling

lower degrees using Noetherian property of finite direct sums.

We assume without loss of generality that M• is a free, finitely-generated C-module

of degree c, as every finitely-generated C-module is a quotient of a finite sum of such.
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For brevity we denote the functor X• 7→ HomG•(M•, X•) by F , i.e.

F (X)d := HomGd(Md, Xd).

Since M• is free of degree ≤ c, it follows that all induced extension maps

F (M)d
Ψe
d−→ F (M)e

are isomorphisms when d ≥ c + c. Fix an object d ≥ c + c. We get a collection of

subspaces inside F (M)d by considering the images

{
F (Xn)e ↪→ F (M)e

(Ψe
d)−1
−→ F (M)d

}
n∈N, e≥d

(2.5.5)

Since F (M)d is itself Noetherian (a finite dimension vector space), this collection of

subspaces has a maximal element, say the image of F (XN0)e0 .

Claim 1. For all n ≥ N0 and e ≥ e0 we have Xn
e = XN0

e .

Proof. For every n ≥ N0 and objects e ≥ e0 we have a commutative diagram

F (XN0)e0
� � //

Ψe
eo
��

F (Xn)e0
� � //

Ψe
eo
��

F (M)e0

Ψe
eo
��

(Ψeo
d )−1

((

F (XN0)e
� � // F (Xn)e

� � // F (M)e
(Ψe

d)−1
// F (M)d

which by Corollary 2.5.3 all vertical extension maps are injective.

But we chose F (XN0)e0 to be the subspace whose image inside F (M)d is maximal.

It thus follows that all arrows in the above diagram are surjective. In particular, the

injection F (XN0)e ↪→ F (Xn)e is an isomorphism. Recalling the definition of F , we
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found that the inclusion

HomGe(Me, X
N0
e ) ↪→ HomGe(Me, X

n
e )

is an isomorphism, where XN0
e ⊆ Nn

e ⊆ Me are Ge-subrepresentations. By Mashke’s

theorem, this happens precisely when XN0
e = Xn

e thus proving the claim.

It remains to show that we can find some N1 ≥ N0 such that for all objects e < e0

the term XN1
e stabilized. Indeed, since C is of FI type, there are only finitely many

isomorphism classes of objects ≤ e0. Pick representatives for them e1, . . . , en and

consider the direct sum
n⊕
k=1

Mek .

Since each Mek is Noetherian (a finite dimensional vector space), this direct sum is

Noetherian as well. We can therefore find N1 ≥ N0 for which the sum

n⊕
k=1

XN1
ek ⊆

n⊕
k=1

Mek

stabilized. Now for every n ≥ N1 and every object e we have XN1
e = Xn

e thus showing

that XN1• is a maximal element of our chain.

Remark 2.5.4. Making contact with related work, we remark that in [GL1, Theorem

1.1] Gan-Li list a set of combinatorial condition on categories of a certain type, which

are sufficient for proving the Noetherian property [GL1]. Their conditions are

• Surjectivity: The groups Gd act transitively on incoming morphisms c −→ d.

• Bijectivity: Some sequence of double-coset spaces Hd\Gd/Hd stabilizes as d

get sufficiently large.
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These conditions are related to the present context as follows. First, the Surjectivity

condition is incorporated into our definition of categories of FI type. As for Bijectivity,

it was explained to me by Kevin Casto that by choosing a compatible system of

morphisms c −→ d for every pair c ≤ d one gets a natural isomorphism

Gd\ (HomC(c, d)× HomC(c, d)) ∼= Hd\Gd/Hd

where Hd\Gd/Hd is the double-coset space the appears in the Bijectivity condition. In

this sense, the objects considered in this chapter are a coordinate-free interpretation

of those the appeared in [GL1]. Arguing in this coordinate-free manner allows us

to consider categories whose objects are not linearly ordered, avoid having to find a

compatible system of morphisms, and show that the bijectivity condition holds for all

categories of FI type. This is a direct result of Lemma 2.3.15.

The following stabilization result is a central motivation for one to be interested in

the Noetherian property. It shows that finitely-generated C-modules exhibit the same

representation stability phenomena as free C-module, only without the explicit stable

range.

Theorem 2.5.5 (Stabilization of finitely-generated C-modules). If M• is a

finitely-generated C-module, then all induced maps in the associated module of coin-

variants are eventually isomorphisms. That is, there exists an upward-closed and cofi-

nal set of objects X such that if c ∈ X and d ≥ c, then the induced map

Mc/Gc −→Md/Gd

is an isomorphism.

More generally, if F• is any free C-module, then the coinvariants of F ⊗M even-

44



tually stabilizes in the above sense. In particular, the spaces HomGc(Fc,Mc) stabilize

as well.

Proof. By the Noetherian property, a finitely-generated C-module is finitely-presented,

i.e. there exist free C-modules F i• for i = 0, 1 and an exact sequence

F 1 // F 0 //M // 0

Since the functor of coinvariants is right-exact we get a similar sequence of coinvariants.

But by Theorem 2.4.5 the coinvariants of a free C-module stabilize in the desired sense.

The Five-Lemma then implies that the same stabilization occurs for M/G.

For the more general statement, suppose F• is some free C-module. By the right-

exactness of the tensor product it follows that

F ⊗ F 1 // F ⊗ F 0 // F ⊗M // 0

is itself exact. Theorem 2.1.11(1) shows that for i = 0, 1 the product F ⊗ F i is free.

Thus by the same reasoning as above stabilization follows.

Lastly, replacing F with its dual F ∗ (which is again free) and using the isomor-

phisms

(F ∗c ⊗Mc)/Gc ∼= Hom(Fc,Mc)
Gc = HomGc(Fc,Mc)

we find that the spaces on the right-hand side stabilize as well.

2.6 Example: Representation stability for FIm

This section is devoted to the category FIm, its free modules, and representation

stability in this context. We also give an explicit description of FIm-character polyno-

mials in terms of cycle-counting functions. The results presented below generalize to
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the category (FIG)m and its representation, where G is some finite group, using the

technique presented in [SS3, Theorem 3.1.3].

Recall that we denote the category of finite sets and injective functions by FI.

Consider the categorical power FIm, whose objects are ordered m-tuples of finite sets

n̄ = (n(1), . . . , n(m)), and whose morphisms n̄
f̄−→ n̄′ are ordered m-tuples of injections

f̄ = (f (1), . . . , f (m)) where n(i) f (i)−→ n′(i). In everything that follows we denote the

FIm analog of notions from FI by an over-line. The ordering on objects in FIm is

the following: n̄ ≤ n̄′ if and only if for every 1 ≤ i ≤ m there is an inequality of sizes

|n(i)| ≤ |n′(i)|. The group of automorphisms of an object n̄ is the product of symmetric

groups Sn(1) × . . .× Sn(m) , which we will denote by Sn̄.

Many natural sequences of spaces and varieties are naturally parameterized by

FIm. For example, fix some space X and consider the following generalization of the

configurations spaces

PConf(n1,...,nm)(X) := {[(x(1)
1 , . . . , x

(1)
n1 ), . . . , (x

(m)
1 , . . . , x

(m)
nm )] | ∀i 6= j(x

(i)
ki
6= x

(j)
kj

)}

inside the product Xn1× . . .×Xnm . Every inclusion n̄ ↪→ n̄′ induces a continuous map

by forgetting coordinates, so this is naturally a contravariant FIm-diagram of spaces.

Applying a cohomology functor to this diagram of spaces yields an FIm-module. The

special case of based rational maps P1 −→ Pm−1 was described in the introduction,

to which theory below applies and gives Corollary 2.1.5.

The category FIm fits in with our general framework, as the following demonstrates.

Proposition 2.6.1 (FIm is of FI type). FIm is a locally finite category of FI type.

Pullbacks and weak push-outs are given by the corresponding operations in FI applied

coordinatewise.

Proof. First we consider the case m = 1, i.e. we need to show that FI is indeed of
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FI type. FI is a subcategory of the category of finite sets, which has pullbacks and

push-outs. The Set-pullback of two injections itself has injective structure maps, and

is thus naturally a pullback in FI. Regarding weak push-outs, note that if

p c1

c2 d

f1

f2 g2

g2

is a pullback diagram in Set, then the images of g1 and g2 intersect precisely in the

image of the composition g1 ◦ f1 = g2 ◦ f2. Thus if all four maps are injections, the

universal function from the Set push-out c1 ∪p c2 into d is injective. We therefore see

that the Set push-out is a weak push-out in FI. The other axioms of FI type are

clear.

The case m > 1 follows easily from the previous paragraph when pullbacks and

weak push-outs are computed coordinatewise.

We turn to the decomposition into irreducible subrepresentations. First we recall

some of the terminology related to the case m = 1.

Definition 2.6.2 (Padded partitions and irreducible representations). Recall

that a partition of a natural number n is a sequence λ = (λ1 ≥ λ2 ≥ . . . ≥ λk) such

that
∑k
i=1 λi = n. In this case we write λ ` n and refer to n as the degree of λ. This

degree will be denoted by |λ|.

For every other natural number d ≥ |λ|+ λ1 we define the padded partition

λ(d) = (d− |λ| ≥ λ1 . . . ≥ λk) ` d (2.6.1)

By deleting the largest part of a partition, we see that every partition of d is of the
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form λ(d) for some partition λ ` n < d.

Recall that the partitions on d are in one-to-one correspondence with the irreducible

representations of Sd. Denote the corresponding irreducible representation by Vλ(d).

To consider the case m > 1 recall that the irreducible representations of a product

of finite groups G × H are given exactly by the pairs V � W where V and W are

irreducible representations of G and H respectively. The symbol � is the usual tensor

product on the underlying vector spaces V and W and the action of G × H on this

product is defined by (g, h).(v ⊗ w) = g(v)⊗ h(w).

Corollary 2.6.3. The irreducible representations of Sn̄ = Sn(1) × . . . × Sn(m) are

precisely external tensor products of the form

Vλ̄(n̄) := Vλ(1)(n1) � . . .� Vλ(m)(nm)

where |λ(i)| + λ
(i)
1 ≤ n(i) for every 1 ≤ i ≤ m. Furthermore the character of such a

product is given by the product of the individual characters.

Following this observation we define a � operation on FI-modules.

Definition 2.6.4 (External tensor product). Let (M (1), . . . ,M (m)) be an m-tuple

of FI-modules. We define their external tensor product to be the FIm-module

M̄ = M (1) � . . .�M (m) (2.6.2)

by composing the functor (M (1), . . . ,M (m)) : FIm −→ (R −Mod)m with the m-fold

tensor product functor on R-modules.

We then see that if n̄ is any object, then the Sn̄-representation M̄n̄ is precisely the

external tensor product M
(1)

n(1)
� . . .�M

(m)

n(m) . Consequently, the character of M̄ is the

product of the FI-characters of the factors.
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Remark 2.6.5. It is also important to note that the external tensor operation commutes

with the Ind functors in the following sense:

Indn̄(V (1) � . . .� V (m)) ∼= Indn(1)(V
(1)) � . . .� Indn(m)(V

(m)). (2.6.3)

This can be verified e.g. by considering the definition of Ind in Definition 2.3.1, and

using the associativity and commutativity of the tensor product.

Theorem 2.6.6 (Relating FIm-modules to FI-modules). The following relation-

ships hold between the representation theory of FIm and that of FI.

1. Every free FIm module of degree ≤ n̄ is the direct sum of external tensor products

of free FI-modules, where the i-th component is of degree ≤ n(i).

2. Every FIm-character polynomial of degree ≤ n̄ decomposes as a sum of products

of FI-character polynomials, where the i-th factor has degree ≤ n(i).

Remark 2.6.7. In most related work on the representation theory of the category FI,

free modules are called projective or FI#-modules. See [CEF1] for the relevant defi-

nitions and a proof that these concepts are equivalent.

Proof. We start with the first assertion. Let λ̄ = (λ(1), . . . , λ(m)) be an m-tuple of

partitions and n̄ some m-tuple of natural numbers satisfying n(i) ≥ |λ(i)|+ λ
(i)
1 for all

i = 1, . . . ,m. We apply the fact that Ind commutes with external tensor products to

the irreducible Sn̄-representation

Vλ̄(n̄) = Vλ(1)(n(1)) � . . .� Vλ(m)(n(m)).

This gives a presentation

Indn̄(Vλ̄(n̄)) ∼= Indn(1)(Vλ(1)(n(1))) � . . .� Indn(m)(Vλ(m)(n(m)))
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which proves the first assertion of the theorem for Indn̄(V ) when V is irreducible.

For a general Sn̄-representation V , decompose V into irreducible subrepresentations

V = V1⊕. . .⊕Vr. Since Ind commutes with direct sums, the induction module Indn̄(V )

is a direct sum of external tensor products of induction FI-modules.

Lastly, the assertion applies to all free FIm-modules, since they are directs sum of

induction modules of the form previously considered.

As for the second assertion, a character polynomials of degree ≤ n̄ is a k-linear

combination of the characters of free FIm-modules of degree ≤ n̄. By the first state-

ment such a free module is the sum of external tensor products of free FI-modules

with the appropriate bounds on their degrees. But the character of an external tensor

product is the product of the individual characters, which in the case of products of

free FI-modules are by definition FI-character polynomials. Thus every FIm-character

polynomial is indeed a k-linear combination of products of FI-character polynomials

with the appropriate bound on degree.

Theorem 2.6.6 allows us to give an explicit description of the character polynomials

of FIm is terms of cycle counting functions.

Definition 2.6.8 (Cycle counting functions). For every natural number k, let

Xk :
∐
n Sn −→ N be the simultaneous class function on the symmetric groups

Xk(σ) = # of k-cycles appearing in σ.

On the products Sn(1) × . . .× Sn(m) we define a similar function X
(i)
k by

X
(i)
k (σ(1), . . . , σ(m)) = # of k-cycles appearing in σ(i).

The study of polynomials in the class functions Xk dates back to Frobenius, and
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they are what is classically known as character polynomials. The following proposition

shows that our definition of character polynomials generalizes this classical idea.

Theorem 2.6.9 (Character polynomials of FIm). The filtered C-algebra of char-

acter polynomials of FIm coincides with the polynomial ring

R = C[X
(1)
1 , . . . , X

(m)
1 , X

(1)
2 , . . . , X

(m)
2 , . . .].

where we define deg(X
(i)
k ) = (0, . . . , k, . . . , 0) = kē(i).

Proof. We first prove this when m = 1. For the inclusion R ⊆ CharFI we show that

for every k the function Xk is indeed a character polynomial. Recall that in Example

2.2.7 we showed that for every cycle type µ = (µ1, . . . , µk) the associated character

polynomial satisfies (
X

µ

)
(σ) =

(
X1(σ)

µ1

)
. . .

(
Xk(σ)

µk

)
. (2.6.4)

Thus by taking µk = 1 and µj = 0 for all j 6= k we get a character polynomial

(
X

µ

)
(σ) =

(
Xk(σ)

1

)
= Xk(σ). (2.6.5)

For the reverse inclusion, one can construct the right-hand side of

(
X

µ

)
=

(
X1

µ1

)
. . .

(
Xk
µk

)
(2.6.6)

in the algebra generated by X1, X2, . . ., thus realizing every generator
(X
µ

)
of CharFI.

This concludes the proof in the case m = 1.

For m > 1, Theorem 2.6.6 states that every FIm-character polynomial is a linear

combination of external products of FI-character polynomials. We saw that the latter

class of functions is precisely the ring of polynomials in X1, X2, . . .. The function X
(i)
k
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is the external product ofXk in the i-th coordinate with 1’s in all other coordinates, and

thus polynomials in X
(i)
k clearly generate all linear combinations of external products

of X1, X2, . . .. This proves the claim.

Our general theory of stabilization for inner products thus applies to expressions

involving the functions X
(i)
k .

Corollary 2.6.10 (Stabilization of inner products). The Sn̄-inner product of

two polynomials P,Q ∈ C[X
(i)
k : k ∈ N, 1 ≤ i ≤ m] does not depend on n̄ for all

n̄ ≥ deg(P ) + deg(Q), where the degree of X
(i)
k is kē(i) and addition of degrees is

defined coordinatewise.

In the case C = FI this result is proved in [CEF2, Theorem 3.9] via a direct

calculation of the Sn-inner products. The C = FIZ/2Z-analog is proved in [Wi1].

When G is any other finite group, a non-effective analog of Corollary 2.6.10 for C =

FIG is implicit in [SS3, Theorem 3.2.2].

We turn to discussing representation stability for FIm. First consider the case

m = 1: the irreducible representations of symmetric groups of different orders are

naturally related in the following sense.

Fact 2.6.11 (The modules Vλ(•)). For every partition λ ` |λ|, there exists an FI-

submodule of Ind|λ|(Vλ), which we will denote by Vλ(•), whose value at every d ≥

|λ| + λ1 is isomorphic to the irreducible Sd-representation Vλ(d). Moreover, for every

partition λ there exists a character polynomial Pλ of degree |λ| such that the character

of Vλ(•) coincides with Pλ on Sd for all d ≥ |λ|+ λ1.

See [CEF1] for the existence of Vλ(•) and [Ma, Example I.7.14] for Pλ.

This fact extends to all m > 1 via the external tensor product.
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Corollary 2.6.12 (The modules Vλ̄(•)). For every m-tuple λ̄ = (λ(1), . . . , λ(m)) of

partitions there exists an FIm-submodule of Ind|λ̄|(Vλ̄), which we will denote by Vλ̄(•),

whose value at n̄ is the Sn̄-irreducible representation

Vλ̄(n̄) := Vλ(1)(n(1)) � . . .� Vλ(m)(n(m))

for all n̄ ≥ |λ̄| + λ̄1. Here |λ̄| is the m-tuple (|λ(1)|, . . . , |λ(m)|), the expression λ̄1 is

(λ
(1)
1 , . . . , λ

(m)
1 ) and + coincides with coordinatewise addition.

Moreover, the character of Vλ̄(•) is the following character polynomial of degree |λ̄|

Pλ̄ := Pλ(1) · . . . · Pλ(m) .

These sequences of irreducible representations allow us to formulate the notion of

representation stability for free FIm-modules.

Theorem 2.6.13 (Representation stability for FIm). Suppose F• is a free FIm-

module that is finitely-generated in degree ≤ n̄. Then there exist m-tuples of partitions

λ̄1, . . . , λ̄k, satisfying |λ̄j | ≤ n̄ for all j = 1, . . . , k, such that for all d̄ ≥ 2 × n̄ =

(2n(1), . . . , 2n(m)) the Sd̄-module Fd̄ decomposes into irreducibles as

Fd̄
∼= (Vλ̄1(d̄))

r1 ⊕ . . .⊕ (Vλ̄k(d̄))
rk

and the multiplicities r1, . . . , rk do not depend on d̄.

Note 2.6.14. The original definition of Representation Stability given in [CF] includes

additional injectivity and surjectivity conditions on top of the stabilization of irre-

ducible decompositions. We will not discuss these aspects of the definition, although

the reader familiar with them will readily notice that they are immediately satisfied

by all free C-modules.
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Proof of Theorem 2.6.13. The case m = 1 asserts the representation stability of free

finitely-generated FI-modules. This follows directly from the Branching rule for in-

ducing representations of the symmetric group (see [FH]), and is proved in [CEF1,

Theorem 1.13].

For m > 1 the statement follows from Theorem 2.6.6 using the corresponding

statement in the case m = 1. Since every free FIm-module M• is a sum of the external

tensor products of free FI-modules, and each of those decomposes as a stabilizing

direct sum of irreducibles, the same is true for M•.

At the level of character polynomials Theorem 2.6.13 translates to the following

orthonormality statement.

Corollary 2.6.15 (Spectral orthonormal basis for character polynomials).

The character polynomials

{
Pλ̄ := Pλ1 · . . . · Pλm

}
|λ̄|≤n̄

form an orthonormal basis for all FIm-character polynomials of degree ≤ n̄ with respect

to the inner product

〈P,Q〉 = lim
•→∞

〈P,Q〉• = 〈P,Q〉deg(P )+deg(Q). (2.6.7)

2.7 Stable statistics for finite general linear groups

Let us now apply the combinatorics of character polynomials to study stable statistics

of the groups themselves. As an example, we consider the general linear groups over

finite fields as analogs of permutation groups.

Picking permutations at random, the expected number of d-cycles is known to be
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1/d and is, in particular, independent of the size of the permuted set. In this section

we discuss similar size-independent statistics of finite general linear groups: ones that

depend only on ‘small minors’. The proof technique uses a twisted version of Burn-

side’s Lemma, motivated by the combinatorics of character polynomials, and applies

simultaneously to symmetric groups, finite linear groups and many other settings.

Statistics of finite matrix groups is a rich field with many successful techniques

and applications to number theory, combinatorics and computer science (see e.g. [Fu]

and the references therein). A typical question that one asks in this field is “what is

the probability that the characteristic polynomial a randomly chosen matrix have a

certain form?” and a typical answer is asymptotic in nature. The kind of question that

this section considers is different: while the characteristic polynomial depends on the

entire matrix, we will focus on more local properties – ones that depend only on small

minors – and our answers will be exact.

The question of expected number of d-cycles in a random permutation σ could

be rephrased as follows: it is the number of σ-invariant subsets of size d, to which σ

restricts to a d-cycle. This count is exactly the evaluation
(X
Cd

)
(σ) of the FI character

polynomial corresponding to the conjugacy class of the d-cycle Cd ⊆ Sd. A natural

generalization to the setting of finite linear groups is given as follows. Fix a finite field

F = Fq.

Theorem 2.7.1 (Stable statistics for Gln). Fix a conjugacy class C ⊂ Gld(F).

Then for a random T ∈ Gln(F), the expected number of d-dimensional subspaces W ≤

Fn for which T (W ) = W and T |W ∈ C is independent of n once n ≥ d. In particular,

calculating the case n = d gives that this expectation is precisely
|C|

|Gld(F)| .

More generally, all joint higher moments of these random variables are eventu-

ally independent of n. Explicitly, number of subspaces W ≤ Fn from the previous

paragraph is precisely the evaluation of the character polynomial
(X
C

)
(T ). Thinking of
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these polynomials as random variables on Gln(Fq) and considering conjugacy classes

Ci ⊆ Gldi(Fq), the expectation E
[(X
C1

)
· . . . ·

(X
Cr

)]
is the same for all n ≥ d1 + . . .+dr.

In particular, taking C = {1} ⊂ Gl1(F) gives a count of the number of fixed vectors

6= 0 of a random T ∈ Gln. As the expected number of such is independent of n, it

can be computed with n = 1: picking λ ∈ F× randomly, there are q− 1 non-zero fixed

points if λ = 1 and 0 otherwise.

Corollary 2.7.2. The expected number of non-zero fixed vectors of a random T ∈

Gln(F) equals 1. The same is true when replacing “fixed vectors” by “eigenvectors

with eigenvalue λ ∈ F∗”.

The proof of Theorem 2.7.1 is a special case of the general theory of charter polyno-

mials and thus revolves around basic category theory. Namely, studying the category

of finite-dimensional F-vector spaces, of which Gln(F) are the automorphism groups.

The point here is that the approach has nothing to do with linear algebra, and could

be used to prove analogous results in vastly different contexts. For example, the same

technique gives the analogous:

Fact 2.7.3 ([CEF1, Proposition 3.9]). Fix a conjugacy class C ⊂ Sd. Then for a

random τ ∈ Sn, the expected number of subsets W ⊂ [n] of cardinality d such that

τ(W ) = W and τ |W ∈ C does not depend on n once n ≥ d. In particular, this

expected number is
|C|
d! .

In [CEF1] this fact is proved combinatorially – counting the number of permutations

of various kinds. It is somewhat comforting that a single argument produces the same

result in the general linear setting as well as in the combinatorial one.

Proof of Theorem 2.7.1. Let VI be the category of finite-dimensional F-Vector spaces

and Injective linear transformations. The set of morphisms Fd ↪→ Fn will be denoted
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by VI(Fd,Fn). Since a linear injection Fn ↪→ Fn is an isomorphism, the endomor-

phisms EndV I(Fn) are precisely the group Gln(F). It is easy to verify that VI is a

category of FI type and thus the theory of character polynomials applies.

Applying Corollary 2.4.6 to the character polynomial
(X
C

)
, it follows that the ex-

pected number of Gld(F)-orbits of f : Fd ↪→ Fn, on which T ◦ f = f ◦ B with B ∈ C,

does not depend on n. But an injection f : Fd ↪→ Fn determines a d-dimension sub-

space W := Im(f) ≤ Fn, and two injections f and f ′ determine the same W if and

only if they differ by some precomposition f ′ = f ◦ B for B ∈ Gld(F). Therefore

the orbits VI(Fd,Fn)/Gld(F) are in natural bijection with the set of d-dimensional

subspaces W ≤ Fn. This completes the proof of the first statement.

For joint higher moments of these random variables, it is shown in Corollary 2.3.9

that if
(X
C1

)
and

(X
C2

)
are two such random variables corresponding to conjugacy classes

Ci ⊂ Gldi(F), then their product
(X
C1

)
·
(X
C2

)
is a linear combination of

(X
C ′
)

with

C ′ ⊂ Gld′(F) for d′ ≤ d1 + d2. By induction, the general statement now follows from

the previous special case.

The same approach applies in the following generality: let C be a locally-finite

category (i.e. hom-sets all are finite). For every two objects c and d denote the

monomorphisms from c to d by Mon(c, d) and the automorphism group of d by Aut(d).

A c-shaped subobject of d is an orbit in Mon(c, d)/Aut(c).

Theorem 2.7.4 (Size independent statistics). Suppose that for every two objects

c and d the composition action Aut(d) y Mon(c, d) is transitive. Fix a conjugacy class

C ⊂ Aut(c). Then choosing g ∈ Aut(d) randomly, the expected number of c-shaped

subobjects [f ] of d which are fixed by g and g ◦ f = f ◦ h with h ∈ C is precisely

|C|/Aut(c). In particular this expected number does not depend on d.
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CHAPTER 3

DIAGRAMS OF LINEAR SUBSPACE ARRANGEMENTS

Church-Ellenberg-Farb [CEF2] used the language of FI-CHA to identify certain se-

quences of hyperplane arrangements with Sn-actions that satisfy cohomological repre-

sentation stability. Here we vastly extend their results, and define when a collection

of arrangements is “finitely generated”. Using this notion we get stability results to:

• General linear subspace arrangements, not necessarily of hyperplanes.

• A wide class of group actions, replacing FI by a general category C.

We show that the cohomology of such collections of arrangements satisfies a strong

form of representation stability, with many concrete applications. For example, this

implies that their Betti numbers are always given by certain generalized polynomials.

For this purpose we use the theory of representation stability for quite general

classes of groups, developed in a §2. We apply this theory to get classical cohomolog-

ical stability of quotients of linear subspace arrangements with coefficients in certain

constructible sheaves.

3.1 Introduction

A linear subspace arrangement is a finite collection A of linear subspaces in Cn, all

containing the origin and possibly of different dimensions. A determines:

Algebro-geometric data: An algebraic variety, the complement MA = Cn − ∪A.

Combinatorial data: A partially ordered set PA of the intersections of subspaces in

A, ordered by reverse inclusion.

Representations: An Aut(A)-representation H∗(MA).
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The interaction between these three viewpoints was studied by Arnol’d [Ar], and later

by Goresky-MacPherson [GM], Orlik-Solomon [OS], Lehrer-Solomon [LS], and many

others.

Many natural arrangements appear in families, along with actions of finite groups

G ≤ Aut(A).

Example 3.1.1. The braid arrangement Bn = {zi = zj}1≤i<j≤n in Cn, with actions

of Sn ≤ Aut(Bn), the symmetric group on n letters.

Example 3.1.2. The arrangement C(n1,...,nm) = {z(1)
i1

= . . . = z
(m)
im
}∀(1≤j≤m), 1≤ij≤nj

inside Cn1 × . . .× Cnm , with Sn1 × . . .× Snm ≤ Aut(C(n1,...,nm)).

Example 3.1.3. The arrangement Dn = {vi 6= g(vj)}1≤i<j≤n, g∈G in V n, where G is

some finite group acting on a complex vector space V . Here Gn o Sn ≤ Aut(Dn).

In the special case of the first example Bn, Church, Ellenberg and Farb ([CF] and

[CEF1]) discovered patterns in the Sn-representations Hi(MBn ;Q): their characters

can be expressed as a single “character polynomial” independent of n; and their ir-

reducible decompositions stabilize in a precise sense. They named this representation

stability. The theory of FI-modules, developed in [CEF1], gives a powerful viewpoint

that explains this phenomenon as the finite-generation of a single object.

[CEF2] developed the framework of FI-CHA for discussing families of hyperplane

arrangements similar to Bn, which captures the sense in which the arrangements them-

selves are already “finitely-generated”. They then show that the cohomology of such

families always forms a finitely-generated FI-module, thus lifting finite-generation to

the level of spaces in that case. The approach in [CEF2] does not naturally generalize

to variations, e.g. to the arrangements in Examples 3.1.2 and 3.1.3 above. The pur-

pose of the present chapter is to extend these results to include many families of linear

subspace arrangements (An) (including Examples 3.1.2 and 3.1.3).
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A major obstacle is that groups Gn ≤ Aut(An) can be quite general. The theory

of FI-modules applies only for Gn = Sn; it also depends heavily on the specific naming

of irreducible representations of Sn, which is not available in a more general context.

An attempt to overcome this obstacle was proposed in §2, using the framework of

categories of FI type. It turns out that such categories also provide a robust framework

for analyzing families of subspace arrangements. Our goals in this work are therefore

three-fold:

(I) We identify when a collection of linear subspace arrangements fits together to

form a “natural family”. If (Ac) is a family of arrangements indexed by some cat-

egory C, this approach packages the family into a single object: a C-arrangement,

defined in §3.2. Representation stability then reduces to combinatorial properties

of this one object, namely finite-generation and downward stability (see §3.3.1).

(II) We extend the stability results of [CEF2] to linear subspace arrangements gen-

erated by arbitrary linear subspaces, not necessarily hyperplanes.

(III) We complete the project of lifting the “finite-generation” property, which char-

acterizes representation stability of FI-modules, to the level of the arrangements

themselves.

This aspect of the project began with a question from Benson Farb who, upon

learning that the sequence of complements Mn−∪i6=j{mi = mj} for a manifold

M exhibits representation stability when hit with both the cohomology functors

Hi and with the homotopy group functors πi
1, asked whether the spaces them-

selves are finitely-generated in some sense, and the observed finiteness results are

a mere shadow of this fact. Here we offer an answer to this question in the case

of linear subspace arrangements.

1. See e.g. Church [Ch] for Hi and Kupers-Miller [KM] for πi.
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3.1.1 Statement of the results

Let C be a small category. We say that C is of FI type, roughly, if every morphism is a

monomorphism and C has pullbacks and push-outs (see Definition 2.1.6). Categories

of FI type include many natural categories that have recently been studied in the

context of representation stability. Among these:

1. The category FI itself, of finite sets and injective functions, with automorphism

groups Sn for n ∈ N (see [CEF1]).

2. Finite powers FIm, with automorphism groups Sn1 × . . .× Snm for ni ∈ N.

3. The category VIk of finite dimensional k-vector spaces and injective linear maps,

with automorphism groups Gln(k) for n ∈ N (see Putman-Sam [PS]).

4. The class of categories FIG defined by Sam-Snowden [SS3] where G is some

group, with automorphism groups Gn o Sn (see [Wi2] and [Ca] for naturally

occurring families of arrangements with these symmetries).

A C-arrangement A• is a functor from C into the category of linear subspace

arrangements (see §3.2 for our definition of this category). Many infinite families of

arrangements can be defined very succinctly and contain a finite amount of information,

as illustrated using the following notion. We say that a C-arrangement A• is finitely-

generated if there exist finitely many linear subspaces {Li ∈ Aci}mi=1, for {ci}mi=1

objects of C, such that for every object d of C the arrangement Ad is generated by

intersecting the images of {Li}mi=1 under all morphisms ci → d. Our three examples

above each fit into a C-arrangement generated by a single subspace:
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Example Category Arrangement Group Generating Subspace

3.1.1 - B• FI Bn Sn (z1 = z2) ⊂ C2

3.1.2 - C• FIm C(n1,...,nm) Sn1 × . . .× Snm (z(1) = . . . = z(m)) ⊂ Cm

3.1.3 - D• FIG Dn Gn o Sn (v1 = v2) ⊂ V 2

Consider a cohomology functor2 Hi. By applying Hi to the complement varieties

MAd we get a family of abelian groups parameterized by C, i.e. a functor from C

into abelian groups (or more generally into R −Mod for some ring R, which in our

context will always be Q`). We call such a functor a C-module. If V• is a C-module

then at every object d of C the module Vd has an action of the group AutC(d), and

these representations are related by the morphisms of C.

We say that a C-module V• is finitely-generated if there exists a finite collection

of elements {vi ∈ Vci}mi=1 not contained in any proper sub-C-module. V• is free3 if

it is the sum of C-modules, each induced from some fixed AutC(d)-representation for

some object d (see Definition 2.3.1). It is the finitely-generated and free C-modules

that exhibit what we call representation stability, i.e. their constituent representations

stabilize in a precise sense. The theory of such objects is developed in §2 and applied

here.

Our main result states that the cohomology of a finitely-generated C-arrangement

is a finitely-generated, free C-module. The freeness assertion is the most surprising

and consequential part of this statement. We will give concrete applications of this

result below.

To avoid pathologies we assume that A• respects the structure of C, as follows.

2. Since we will only be concerned with algebraic varieties, take H∗(M) to mean `-adic cohomology
H∗

ét(Mk̄;Q`) with its Gal(k̄/k)-action. However, when the base field is C one can simply take H∗ to
mean singular cohomology with coefficients in Q` or even Q with inconsequential differences.

3. Free FI-modules are precisely the FI#-modules presented in [CEF1].
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We say that A• is continuous if it respects pullbacks in C (see Definition 3.2.5)4. A•

is normal, roughly, if no subspace appears later than it could (see Definition 3.3.16).

Many natural examples of arrangements satisfy these hypotheses including the ones in

Examples 3.1.1, 3.1.2 and 3.1.3.

Theorem 3.1.4 (Representation stability of C-arrangements). Let C be a

category of FI type, and let A• be a continuous, normal, and finitely-generated C-

arrangement. For all i ≥ 0 the C-module of cohomology groups Hi(MA)• is finitely-

generated and free.

Theorem 3.1.4 will be proved in §3.3. We consider two sets of applications:

Application I (Representation stability). For simplicity of exposition we special-

ize the theory in this introduction to classes of arrangements indexed by m-tuples of

natural numbers, i.e. FIm-arrangements and their cohomology. In Example 3.6.5 we

consider an FIm-family of varieties as follows. Fix r, k ∈ N, then for every m-tuple

(n1, . . . , nm) we have the variety M(n1,...,nm)
m,k (Cr) whose points are ordered tuples

[(v
(1)
1 , . . . , v

(1)
n1 ), . . . , (v

(m)
1 , . . . , v

(m)
nm )] ∈ (Cr)n1 × . . .× (Cr)nm

where there does not exist any vector v ∈ Cr that appears k times within the list

(v
(j)
1 , . . . , v

(j)
nj ) for all 1 ≤ j ≤ m. These varieties are the complements of an FIm-

arrangement Am,k
(n1,...,nm)

(Cr), generalizing C(n1,...,nm) from Example 3.1.2 above.

Remark 3.1.5 (Connection with configuration spaces). More geometrically, the

varietiesM(n1,...,nm)
m,k parameterize m-tuples of ordered configurations in Cr, where we

allow points to collide, subject to the restriction that the configurations cannot all

have k points in common including multiplicity. We will discuss special cases of these

below.

4. Note that this definition is weaker than the standard definition of continuity of functors.
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In §2 we show that for each category C of FI type we get an algebra of character

polynomials. These are class functions, simultaneously defined on all groups AutC(c),

that uniformly describe the characters of finitely-generated free C-modules. In the

case C = FIm a character polynomial is any polynomial in the class functions X
(j)
k for

1 ≤ j ≤ m and k ≥ 0, defined simultaneously on all m-fold products Sn1 × . . .× Snm

by

X
(j)
k (σ1, . . . , σm) = # of k-cycles in σj . (3.1.1)

Theorem 3.1.6 (Representation stability of M•m,k). For every triple of natural

numbers (m, k, r), and for each i ≥ 0, the cohomology

Hi(M•m,k(Cr))

forms a finitely-generated, free FIm-module of multi-degree b irck(1, . . . , 1).

In particular, there exists a single FIm-character polynomial

Pi ∈ Q[X
(j)
d | 1 ≤ j ≤ m, d ≥ 0]

of multi-degree b irck(1, . . . , 1) such that for every (n1, . . . , nm) ∈ Nm there is an equal-

ity of class functions

χ
Hi(M(n1,...,nm)

m,k (Cr))
= Pi (3.1.2)

The multi-degree of X
(j)
d is defined to be d ·ē(j) (zero except for a d appearing in the

j-th entry).

Example 3.1.7. When m = 2 and k = r = 1 the varieties M(n1,n2)
2,1 (C) are covers of

the space of rational maps Ratn∗ (C) studied by Segal (see Example 3.6.12 below). In

this case, the character polynomials P1 and P2 are χ
H1(M(n1,n2)

2,1 (C))
= X

(1)
1 ·X(2)

1 of
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multi-degree (1, 1) and

χ
H1(M(n1,n2)

2,1 (C))
= X

(1)
1

((
X

(2)
1
2

)
−X(2)

2

)
+X

(2)
1

((
X

(1)
1
2

)
−X(1)

2

)

+2

(
X

(1)
1
2

)(
X

(2)
1
2

)
− 2X

(1)
2 X

(2)
2

of multi-degree (2, 2), both independent from (n1, n2).

Other special cases to which Theorem 3.1.6 applies include:

1. The braid arrangements, i.e. the classifying spaces of Artin’s braid groups, dis-

cussed in Example 3.6.9 below.

2. Spaces of configurations in Cr, discussed in Example 3.6.10 below.

3. The k-equals arrangements, related to incomputability problems and classifying

homotopy links, discussed in Example 3.6.11 below.

4. Covers of the spaces of based holomorphic maps P1 −→ Pm, discussed in Exam-

ple 3.6.12 below.

Theorem 3.1.6 shows that all of these examples exhibit representation stability with

explicit stable ranges. Moreover, we get information regarding the Betti numbers of

all these varieties. Applying Theorem 3.1.6 to σ = id gives the following.

Corollary 3.1.8 (Polynomial Betti numbers for M•m,k). For every i ≥ 0 there

exists a polynomial pi ∈ Q[t1, . . . , tm] of multi-degree b irck(1, . . . , 1) such that

dimQ Hi(M(n1,...,nm)
m,k (Cr)) = pi(n1, . . . , nm)

for all (n1, . . . , nm) ∈ Nm.
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Application II (Classical cohomological stability). The quotient spaces XAd :=

MAd/AutC(d) come up in multiple contexts:

1. For Bn from Example 3.1.1, XBn is the space Polyn(C) of degree-n square-free

polynomials, studied by Arnol’d [Ar].

2. For C(n,...,n) from Example 3.1.2, XC(n,...,n) is the space Holn∗ (P1,Pm) of based

degree-n holomorphic maps, studied by Segal [Se].

3. For M(n,...,n)
m,k (C) discussed above, the quotient Xn

m,k is the space Polynm,k(C)

of m-tuples of polynomials with restrictions on root coincidences, introduced by

Farb-Wolfson [FW]. These generalize the two previous examples.

The cohomology of a quotient of some variety M by a finite group G is given by transfer

Hi(M/G) = Hi(M)G. (3.1.3)

Thus Theorem 3.1.4 applied to the trivial subrepresentation gives a classical cohomo-

logical stability statement.

Theorem 3.1.9 (Cohomological stability for arrangement quotients). Suppose

that C and A• satisfy the hypotheses of Theorem 3.1.4 and that |AutC(d)| < ∞ for

every object d. Then the cohomology groups Hi(XAd) stabilize in the following sense:

if any morphisms c→ d exist in C then there is a canonical injection

Hi(XAc) ↪→ Hi(XAd)

and these maps become isomorphisms when c is sufficiently large relative to i (an

explicit stable range is given in §3.5).
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In some special cases, Theorem 3.1.9 was previously proved for integral cohomology

using clever but ad-hoc techniques, see e.g. [Se]. Applying the theorem to M(n,...,n)
m,k

we get a new proof of the cohomological stability proved in [FW] for the rational

cohomology of Polynm,k(C).

Theorem 3.1.9 considers only the trivial subrepresentation of Hi(MAd). This is

a very special case of the following more general version that considers the entire

representation. Every C-module N• induces a natural constructible sheaf Ñd on the

quotient XAd whose stalk above the orbit [x] satisfies

(Ñd)[x]
∼= N

Stab(x)
d

where Stab(x) is the AutC(d)-stabilizer of x ∈MAd (see §3.5 for the construction).

Theorem 3.1.10 (Twisted stability for arrangement quotients). Suppose that

C and A• satisfy the hypotheses of Theorem 3.1.9. Let N• be a finitely-generated, free

C-module. Then the sheaf cohomology groups Hi(XAd ; Ñd) stabilize in the sense of

Theorem 3.1.9.

In the context of `-adic cohomology one needs N• to take values in continuous

Q`-modules.

By considering the trivial C-module N• ≡ Q` we recover Theorem 3.1.9. The proof

of Theorem 3.1.10 will be presented in §3.5.

Lastly, through the Grothendieck-Lefschetz fixed-point theorem, the twisted stabil-

ity result in Theorem 3.1.10 has implications for arithmetic statistics of varieties over

finite fields. This direction will be developed further in §4.
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3.2 Preliminaries

This section will introduce the necessary terminology and categories in which we will

be working. We start with the fundamental object of interest, namely linear subspace

arrangements.

Definition 3.2.1 (Linear arrangements). The category of linear subspace arrange-

ments over a field k, denoted by Arrk, consists of pairs A = (V, L) where V is a

finite dimensional vector space over k and L is a finite set of linear subspaces of V ,

all containing the origin5, such that L is closed under intersections. A morphism

(V1, L1)
f−→ (V2, L2) is a surjective linear map V (f) : V2 −→ V1 such that for every

subspace W ∈ L1 the preimage V (f)−1(W ) belongs to L2.

We remark that traditionally, and particularly in the context of hyperplane ar-

rangements, a distinction is made between an arrangement of distinguished subspaces

and the collection of all intersections generated by the arrangement. In the above def-

inition we chose to identify the two concepts, as we are already dealing with subspaces

of arbitrary codimension and since this makes the definition of morphisms cleaner.

As the definition suggests, there are two natural functors from the category of

arrangements:

Definition 3.2.2 (Underlying vector space). The underlying vector spaces func-

tor V : Arr
op
k −→ Vectk is defined by sending an arrangement (V, L) to the vector

space V . Morphisms of arrangements are defined as being (contravariant) linear maps

between the vector spaces, and these define the action of V on morphisms: f 7→ V (f).

and secondly,

5. This is often called a central arrangement. All arrangements here are assumed to be central.
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Definition 3.2.3 (Intersection poset). The intersection poset functor

L : Arrk −→ Pos

is defined by sending an arrangement (V, L) to the ranked poset (L, cd) ordered by re-

verse inclusion of subspaces, where cd is the codimension function: cd(W ) = dimk(V )−

dimk(W ) (see 3.3.1 later for the definition of the category Pos of ranked posets). A

morphism (V1, L1)
f−→ (V2, L2) defines a set function L1

L(f)
−→ L2 by W 7→ V (f)−1(W ),

which preserves inclusions and respects intersection.

An arrangement naturally gives rise to an algebraic variety:

Definition 3.2.4 (The complement of an arrangement). The complement func-

torM : Arr
op
k −→ Vark from arrangements to the category of algebraic varieties over

k (or when k = C, to complex manifolds) is the contravariant functor that sends

an arrangement (V, L) to the k-variety V − ∪L. The morphism of arrangements

(V1, L1)
f−→ (V2, L2) induces a map V2 − ∪L2

V (f)
−→ V1 − ∪L1 by restriction.

Note that the preimage of ∪L1 is contained inside ∪L2, and thus the restriction is

well-defined.

We are concerned with families of arrangements, and their complements, indexed

by some category C. Formally this is given by a diagram of arrangements, i.e. a

functor. Throughout this chapter we denote a covariant (resp. contravariant) functor

F : X −→ Y by F• (resp. F•).

Definition 3.2.5 (C-arrangements). Let C be a category. A C-arrangement (over

k) is a functor A : C −→ Arrk. We denote the compositions V ◦A, L ◦A and M◦A

by V •A, LA• andM•A respectively. Note that the associations c 7→ Ac 7→ V (Ac),M(Ac)

are contravariant and are therefore denoted with an upper index, i.e. Ac = (V cA, L
A
c ).
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If A is a C-arrangement, we say that the underlying diagram of vector spaces VA

is continuous if it takes pullback diagrams in C to push-out diagrams in Vectk. When

this is the case, we also say that A• itself is continuous.

We will often omit the superscript and subscript of A from LA and VA when there

is no ambiguity as to which arrangement is involved.

By applying a cohomology functor Hi to the Cop-variety MA we get a represen-

tation of C, also called a C-module, and these modules are the subject of Theorem

3.1.4. These objects are defined and studied in §2.

3.3 Steps towards representation stability

We now set out to prove Theorem 3.1.4. As discovered by Goresky-MacPherson,

the cohomology of an arrangement complement is determined by the combinatorial

data encoded in its partially ordered set of subspaces. We therefore start the proof by

setting up the terminology involving these objects and the notion of their combinatorial

stability.

3.3.1 Step 1 - Ranked posets and combinatorial stability

Definition 3.3.1 (Ranked posets). The category of finite ranked posets, denoted by

Pos, is described as follows. The objects are pairs (P, r) where P is a finite partially

ordered set and r is a function r : P −→ Z, called the rank function, that is strictly

increasing. A morphism (P1, r1)
f−→ (P2, r2) is a set function f : P1 −→ P2 that

preserves both ordering and rank, i.e. x ≤1 y =⇒ f(x) ≤2 f(y) and r1(x) = r2(f(x))

for all x, y ∈ P1.

Note that one traditionally requires a rank function to satisfy r(x) = r(y) + 1

whenever x covers y, and functions as in the definition above are called a generalized
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rank function. In our context it will be most convenient to adopt the generalized

notion, as the rank will often be determined by codimension.

Recall that the homology of a poset P is defined to be the homology of its nerve,

i.e. the simplicial set ∆(P ) whose n-simplices are order-chains x0 ≤ x1 ≤ . . . ≤ xn in

P . Note that both the nerve P 7→ ∆(P ) and the poset homology are functors. The

following concept explicitly appears in Goresky-MacPherson’s formula for the coho-

mology of the complement of a linear subspace arrangement – see [Bj] for a discussion

on the motivation for this definition.

Definition 3.3.2 (Ranked Whitney homology). The ranked Whitney homology

functors of a ranked poset (P, r) are defined by

WHn(P, r) :=
⊕
x∈Pn

H̃n−2(P<x;Z) (3.3.1)

where H̃ stands for reduced integral homology, n is an integer, Pn is the subposet of

elements with rank n, and P<x = {y ∈ P | y < x} with its induced ordering.

A morphism (P1, r2)
f−→ (P2, r2) sends every subposet P<x1 to P

<f(x)
2 and thus

induces homomorphisms H̃n−2(P<x1 )
f∗−→ H̃n−2(P

<f(x)
2 ). The direct sum of these

homomorphisms is the induced homomorphism WHn(P1, r1)
f∗−→ WHn(P2, r2).

Note that this definition is different from that of standard Whitney homology

(appearing in e.g. [Bj]): for one, we are not assuming that our posets contain minimal

and maximal elements, which are then to be removed from homology calculations.

But more importantly, the direct sum of Equation 3.3.1 includes only terms of a given

r-rank.

We now consider families of posets. Let C be some indexing category.

Definition 3.3.3. A C-poset is a functor P• : C −→ Pos.
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Combinatorial stability of such families of posets is defined by the following two

properties.

Definition 3.3.4 (Finite generation). We say that a C-poset P• is finitely-generated

if for every rank n ∈ Z there exist finitely many elements {xi ∈ Pnci}
k
i=1 whose orbits

under C contain Pnd for every object d.

Note 3.3.5. If we change the rank function by composing it with an injective order

preserving function Z −→ Z, the notion of being finitely-generated remains unchanged.

Definition 3.3.6 (Downward stability). We say that a C-poset P• is downward

stable if for every morphism c
f−→ d in C and an element x ∈ Pc the induced poset

map P<xc
f∗−→ P

<f(x)
d is an isomorphism.

We can now phrase our notion of stability for C-posets.

Definition 3.3.7 (Combinatorial stability). The C-poset is said to exhibit combi-

natorial stability if it is both finitely-generated and downward stable.

As the following theorem shows, combinatorial stability at the level of C-posets

implies more familiar stability phenomena that occur in the context of representation

stability: recall that an FI-module is representation stable in the sense of [CF] if and

only if it is finitely-generated (see [CEF1]).

Theorem 3.3.8 (Finitely-generated C-poset homology). If a C-poset (P, r)• is

combinatorially stable, then its Whitney homology WHn(P, r)• is a finitely-generated

C-module for all n.

Proof. Let n be a natural number. Since P• is finitely-generated we can find a finite

list of elements xi ∈ Pnci for i = 1, . . . , l whose C-orbits contain all rank n elements of

P•. Each of the Whitney homology groups WHn(Pci , rci) is finitely-generated, so it

will suffice to show that their C-orbits span all other Whitney homology groups.
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Let d be any object of C and y ∈ Pnd . Suffice it to show that H̃n−2(P
<y
d ) is

contained in the C-orbits of the above groups. By our choice of x1, . . . , xl, there exists

some 1 ≤ i ≤ l and a morphism ci
f−→ d such that f∗(xi) = y. By the downward

stability assumption, the induced map

P<xici
f∗−→ P

<y
d

is an isomorphism, and therefore the induced homomorphism on homology is also an

isomorphism. In particular it is surjective.

3.3.2 Step 2 - The cohomology of an arrangement complement

Goresky-MacPherson used Stratified Morse Theory to give a formula for the cohomol-

ogy groups of real and complex linear subspace arrangement complements in terms of

the associated intersection poset (see [GM]). Later, Björner-Ekedahl compute the `-

adic cohomology of the complement of a linear subspace arrangement defined over some

arbitrary field k (see [BE]). Their formula coincides with the Goresky-MacPherson re-

sult for the case k = C. The cohomology groups are given as follows.

Theorem 3.3.9 ([BE], Theorem 4.9). Let A = (V, L) be a subspace arrangement and

MA its complement. If ` 6= char(k) is a prime number then the `-adic cohomology of

MA is given by

H̃
i
ét(MA/k̄;Q`) ∼=

⊕
x∈LA

H̃2 cd(x)−i−2(∆(L<x))⊗Q`(− cd(x)) (3.3.2)

=
⊕
n≥0

WH2n−i(L, 2 cd−i)⊗Q`(−n) (3.3.3)

where cd(x) is the codimension of the subspace x in V , and L<x is the subposet of

spaces in L that contain x. The term Q`(n) is the n-fold tensor power of the `-adic
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cyclotomic character (see [Hu]).

Notation 3.3.10. In everything that follows we will abbreviate the functor H̃
i
ét(·/k̄;Q`)

to Hi(·) – note that these always represent reduced cohomology groups!

The key feature of Isomorphism (3.3.2) is that it is natural, i.e. we can read

off pullback maps between cohomology groups from the poset maps and the induced

homomorphisms on Whitney homology. This can be seen e.g. by applying Poincaré

duality to the spectral sequence described by Petersen in [Pe].

Implicit in Equation (3.3.3) is that the direct sum of Whitney homologies is finite.

This observation is essential to establishing finite generation of C-modules that occur

as cohomology of complements of C-arrangements. Indeed,

Lemma 3.3.11. The direct sum decomposition for Hi(MA) given in (3.3.2) and

(3.3.3) includes contributions only from subspaces x ∈ L of codimension i
2 ≤ cd(x) ≤ i.

Equivalently, the only Whitney homology groups that contribute to the direct sum are

the ones whose index n satisfies i
2 ≤ n ≤ i.

Proof. By Deligne’s bounds [De1] the weights that occur in Hiét(X;Q`) are bounded

between i and 2i. The lemma now follows from the fact that the weight of the n-th

summand of (3.3.2) is 2n.

Alternatively, we can see this directly by elementary means, which enjoy the benefit

of applying to real arrangements with successive (real) codimensions ≥ 2. For the lower

bound notice that if x ∈ L has codimension smaller than i
2 , then the direct summand

corresponding to x in (3.3.2) is

H̃2 cd(x)−i−2(∆(L<x))⊗Q`(− cd(x))

where 2 cd(x)− i− 2 ≤ −2. Since reduced homology groups are zero below degree −1,
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this summand is zero6.

For the upper bound the claim will follow if we show that ∆(L<x) has non-

degenerate (2 cd(x)− i− 2)-simplices only when cd(x) ≤ i. Suppose

x0 < x1 < . . . < xn (< x)

is a non-degenerate simplex in ∆(L<x). Then the strict monotonicity of codimension

gives

1 ≤ cd(x0) < cd(x1) < . . . < cd(xn) < cd(x)

and since these are all integers, n+ 1 < cd(x). Thus the existence of a non-degenerate

(2 cd(x) − i − 2)-simplex implies that (2 cd(x) − i − 2) + 1 < cd(x), or equivalently

cd(x) < i+ 1.

Corollary 3.3.12 (Combinatorially stable posets imply controlled cohomol-

ogy). Let A : C −→ Arrk be a C-arrangement. If the intersection poset LA• is com-

binatorially stable (i.e. finitely-generated and downward stable), then for each i ≥ 0

the C-module Hi(MA)• is finitely-generated.

Proof. We have seen in Theorem 3.3.8 that a combinatorially stable C-poset gives rise

to finitely-generated Whitney homology groups (in every degree). Since Hi(MA) is

naturally isomorphic to a finite direct sum of such homology groups, the resulting

cohomology C-module is finitely-generated.

6. Note that there could be a contribution in degree −1 since, by convention, H̃−1(∅;Z) = Z. This
term occurs precisely when x is minimal in L, or equivalently not contained in any other subspace in
L.
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3.3.3 Step 3 - Criterion for stability

This subsection discusses properties of C-arrangements which, together with some

structural assumptions on the category C, will ensure that the associated intersection

poset will be combinatorially stable. First we define a notion of finite-generation for C-

arrangements. It is this property of an arrangement that ensures the finite-generation

of the associated intersection poset. Downward stability poses more of a challenge,

and it will lead us to the notion of a normal C-arrangement.

Definition 3.3.13 (Finitely-Generated C-arrangements). A C-arrangement A•

is said to be generated by the set of subspaces {xα ⊂ V cα}α∈A if for every object d of

C and every subspace y ∈ LAd there exists a finite list of morphisms cαi
fi−→ d where

1 ≤ i ≤ l such that

y = L(f1)xα1 ∩ . . . ∩ L(fl)xαl . (3.3.4)

Equivalently, if A• is the least C-arrangement that contains all of the subspaces {xα}α∈A

among its chosen subspaces.

When this is the case, we say that A• is generated in degrees {cα}α∈A. The

C-arrangement A• is finitely-generated if it is generated by some finite set of sub-

spaces.

Example 3.3.14. The braid FI-arrangement over k is generated in degree 2 by a

single subspace: {z1 = z2} ⊂ k2. See example 3.6.9 for an elaboration.

The following notation will prove useful.

Definition 3.3.15. Let C be a category. If c and d are two objects, we say that c ≤ d

if HomC(c, d) 6= ∅. Moreover, we say that c < d if c ≤ d and d 6≤ c.

Downward stability turns out to be related to a notion of saturation of a C-

arrangement. We make this connection precise using the following definition.
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Definition 3.3.16 (Normality and primitive subspaces). Let A• = (V •, L•) be

a C-arrangement.

• A• is normal if for every morphism c
f−→ d, every subspace x ∈ LAd that contains

kerV (f) is in the image of L(f) : LAc −→ LAd . Equivalently, when the direct

image V (f)x ⊆ V c is a member of LAc .

• A subspace x ∈ LAd is primitive if it does not contain the kernel of any linear

map induced by a morphism c −→ d where c < d. We define the degree of x to

be the object d and denote deg(x) = d.

Normality and primitivity are well-behaved since we are assuming that all the subspaces

in LA contain the origin.

Example 3.3.17. To illustrate the meaning of (non)normality, consider the follow-

ing example. Let C = {0 f−→ 1} be a category of two objects with a single mor-

phism between them. Define a diagram of vector spaces by V 0 = V 1 = C with

V (f) = Id : V 1 −→ V 0 and construct a C-arrangement A• = (V •, L•) by choosing

L0 = ∅, L1 = {0}.

The arrangement thus constructed is not normal, as 0 ∈ L1 is not in the image of L(f)

even though it could be there (and perhaps “morally should” be there). Had we chosen

L0 = L1 we would have defined a normal arrangement, since then every element of L1

that could lie in the image of L(f) indeed appears there.

As previously declared, normality guarantees downward stability.

Lemma 3.3.18. The intersection poset LA• of a normal C-arrangement A is downward

stable.
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Proof. Throughout this proof we will denote the poset LAc by Lc. Suppose c
f−→ d

and x ∈ Lc. We will construct an inverse to the induced poset morphism

L<xc
L(f)
−→ L

<L(f)x
d .

By definition of the order on Ld, every y ∈ L<L(f)x
d satisfies L(f)(x) ⊂ y and thus

kerV (f) ⊆ V (f)−1(x) ⊂ y,

so by normality V (f)y is a subspace in Lc. Since V (f) is surjective we have x ⊂ V (f)y,

so V (f)y ∈ L<xc . The inverse map to L(f) = V (f)−1 is therefore the direct image

y 7→ V (f)y.

Next we show that under structural assumptions on C the properties defined above

indeed ensure the combinatorial stability of the associated intersection poset.

Definition 3.3.19 (Weakly filtering categories). A category C is weakly filtering

if for every pair of objects c1 and c2 there exists a finite collection of objects d1, . . . , dk

and morphisms ci
fij−→ dj where i = 1, 2 and 1 ≤ j ≤ k, such that every pair of

morphisms ci
gi−→ e for i = 1, 2 factors through one of the dj’s. Explicitly, for every

pair of morphisms ci
gi−→ e there exists some 1 ≤ j ≤ k and a morphism dj

g−→ e such

that g ◦ fi = gi for i = 1, 2.

This property is called property (F) by Sam-Snowden in [SS2].

Lemma 3.3.20. If the category C is weakly filtering, then the intersection poset of

every finitely-generated C-arrangement is a finitely-generated C-poset.

Proof. Fix a finite set of generators X = {xα ⊂ V cα}α∈A and a codimension n. For

every object e and a subspace y ∈ Le of codimension n, there exists a finite list of
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morphisms cαi
gi−→ e such that

y = L(g1)xα1 ∩ . . . ∩ L(gl)xαl .

But since y is of codimension n, it can be written as the intersection of no more than

n subspaces. Thus without loss of generality we can assume that l ≤ n. We will show

that all such intersections are in the C-orbits of
⋃
d∈Dn Ld for a fixed finite collection

Dn of objects in C. Since every poset Ld is finite, the union
⋃
d∈Dn Ld has finitely

many elements, and this will complete the proof.

We prove this by induction on n. For n = 1 it suffices to take the finite set

D1 = {cα}α∈A. For the induction step, suppose Dn−1 is already defined. For every

c1 ∈ Dn−1 and c2 ∈ D1 find a finite collection of objects d1, . . . , dk through which

every pair of morphisms factors. The set Dn will be defined to be the union of these

finite lists as c1 and c2 range over the finite sets Dn−1 and D1 respectively.

We need to show that Dn satisfies the desired property. Suppose y ∈ Le is given

by

y = L(g1)xα1 ∩ . . . ∩ L(gl)xαl

as above with l ≤ n. By repeating the last term if necessary, we can assume that l = n.

By the choice of Dn−1 there exists some c1 ∈ Dn−1 and a morphism c1
h1−→ e such

that the (n − 1)-fold intersection L(g1)xα1 ∩ . . . ∩ L(gn−1)xαn−1 is contained in the

image of L(h1), say it is equal to L(h1)y1 for y1 ∈ Lc1 . The remaining term L(gn)xαl

is contained in the image of c2
h2−→ e for c2 ∈ D1, say it is equal to L(h2)y2 (explicitly,

take c2 := cαn , h2 := gn and y2 := xn). Thus there exists some d ∈ Dn and morphisms

ci
fi−→ d through which the two morphisms hi factor, i.e. there exists d

h−→ e such that

h ◦ fi = hi. But then Ld contains the subspaces L(f1)y1 and L(f2)y2, so it contains

their intersection, which maps to y under L(h). Thus y is in the C-orbits of Ld, and
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Dn satisfies our assumption.

In all of our applications, the indexing category C is closely related to the category

FI. In order to unify the treatment of these examples, we use the notion of a category

of FI type from Definition 2.1.6. In short, these are categories that have pullbacks and

a weakened version of push-outs (see Definition 2.2.1), and are weakly partially ordered

by morphisms (c ≤ d ⇐⇒ ∃c −→ d) such that every lower interval is essentially finite.

The latter finiteness condition has the following obvious but useful consequence:

Fact 3.3.21 (Descending chain condition). Suppose that C is a category of FI

type. Then every nonempty collection X of objects of C contains a least element, i.e.

there exists some c0 ∈ X such that if c ∈ X satisfies c ≤ c0 then c0 ∼= c.

With this notion can now formulate a criterion for the combinatorial stability of

the associated intersection poset.

Theorem 3.3.22 (Finite-generation implies poset stability). Suppose C is a

category of FI type and that A• is a finitely-generated, normal C-arrangement. Then

the induced intersection poset LA• is combinatorially stable.

Proof. We have already seen in Lemma 3.3.18 that a normal C-arrangement gives rise

to a downward-stable intersection poset. It thus remains to show that when C is of

FI type, the C-poset LA• is finitely-generated.

By Lemma 3.3.20 it will suffice to show that a category of FI type is weakly filtering.

For every triple of objects p, a1, a2 and a pair of maps p
f̃i−→ ai, where i = 1, 2, we can

form a weak push-out

p a1

a2 a1
∐
p a2

f̃1

f̃2 f1

f2
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Because C is of FI type, the automorphisms of ai act transitively on incoming maps,

therefore replacing p
f̃i−→ ai by some other morphism g̃i amounts to post-composing

with some automorphism ϕi ∈ Gai . But such a replacement of f̃i with ϕi ◦ f̃i for

i = 1, 2 results in an isomorphic weak push-out object, with isomorphism given by

the universal property as ϕ1
∐
p ϕ2. Thus the weak push-out a1

∐
p a2 is uniquely

determined by p up to isomorphism.

Let c1 and c2 be two objects of C. By the definition of FI type, there exist only

finitely many objects p that admit maps into c1, up to isomorphism. Thus by the

previous argument there are only finitely many isomorphism types of weak push-outs

involving c1 and c2. Pick representatives for these isomorphism classes dj = c1
∐
pj
c2

for j = 1, . . . , k. Then for every pair of morphisms ci
gi−→ e we can form their pullback

p c1

c2 e

f̃1

f̃2 g1

g2

Now by the universal property of a weak push-out, there exists a (unique) morphism

c1
∐
p c2

g−→ e that satisfies g ◦ fi = gi. Find 1 ≤ j ≤ k such that dj ∼= c1
∐
p c2, then

the pair g1 and g2 factors through dj via this isomorphism. We have thus shown that

C is indeed weakly filtering, as every pair of morphisms ci
fi−→ e factors through one

of the objects d1, . . . , dk. This completes the proof.

Note 3.3.23 (Explicit degrees of generators). For the purpose of finding generators

explicitly in the case of categories of FI type, we trace through the construction of

the sets Dn from Lemma 3.3.20. Dn is constructed inductively from Dn−1 and D1

through the process of listing all possible weak push-outs. Thus if the C-arrangement

A• is generated by subspaces of V c1 , . . . , V cn , the set Dn on which all codimension n
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generators are obtained, is the collection of objects of the form

(
. . .

(
ci1

∐
p2

ci2

)∐
p3

ci3 . . .

)∐
pn

cin . (3.3.5)

As discussed in Step 2 on C-posets, a combinatorially stable intersection poset

gives rise to cohomology groups that are finitely-generated as a C-module. We have

thus proved the following.

Theorem 3.3.24 (Cohomology preserves finite-generation). If C is a category

of FI type and A• is finitely-generated, normal C-arrangement, then for every i ≥ 0

the cohomology groups Hi(MA;Q`)• form a finitely-generated C-module.

3.3.4 Step 4 - Freeness

Throughout this step we assume that C is a category of FI type and denote the group

Aut(d) by Gd for every C-object d. Recall Definition 2.3.1 of free and induced C-

modules over Q`: let d be an object of C; a C-modules is said to be an induced module

if it is of the form

Indd(V )• = Q`[Hom(d, •)]⊗Gd V (3.3.6)

where V is some Gd-representation, and morphisms in C act on the tensor products

naturally through their action on Hom(d, •). The degree of such a C-module is defined

to be the isomorphism class [d].

A free C-module is a direct sum of induced modules, and its degree is the isomor-

phism class of a least object7 d (if such exists) that is ≥ all the degrees of the induced

modules that appear in its direct sum decomposition. If there is no such d we say that

the degree is ∞.

7. Least with respect to the preordering between objects.
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Theorem 3.3.25 (Free cohomology). If A• is a continuous, normal C-arrangement

then the cohomology groups Hi(MA) form a free C-module.

The proof of this theorem proceeds in steps. First, we make explicit an observation

that appears in the proof of §2[Lemma 3.4] and gives a more useful characterization

of induced C-modules. This uses binomial sets, whose definition is given in 2.2.4.

Lemma 3.3.26 (Structure of induced modules). Suppose M• is a C-module of

the form

Md = ⊕
[f ]∈(dc)

V[f ]

for every object d, and that a morphism d1
g−→ d2 sends the factor V[f ] to V[g◦f ]

isomorphically. Then M = Indc(V ) where V := Mc.

Proof. This appears as a step in the proof of Lemma 2.3.4.

The key players in the decomposition of Hi(MA)• as a sum of induced C-modules

are primitive subspaces (see Definition 3.3.16). First we show that every normal

C-arrangement is generated by its primitive subspaces.

Lemma 3.3.27 (Primitive generators). If A is a normal C-arrangement then every

subspace x ∈ LAc is the image of some primitive subspace.

Proof. Let x ∈ Lc be any subspace and define X to be the collection of all objects

e for which Le contains a preimage of x. Explicitly, e ∈ X when there exists some

z ∈ Le and a morphism e
f−→ x such that L(f)z = x.

By the descending chain condition for categories of FI type the set X contains a

least object e0. Choose z0 ∈ Le0 and e0
f0−→ c satisfying L(f0)z0 = x. We claim

that z0 is primitive. Indeed, if not then by definition there exists some e1 < e0 and

a morphism e1
f1−→ e0 for which ker(f1) ⊆ z0. Since that arrangement A is assumed
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to be normal, this implies that z1 = V (f1)z0 ∈ Le1 is a preimage of z0. But then z1

is also a preimage of x, whereby we find that e1 ∈ X. This is a contradiction to the

minimality of e0 and thus the subspace z0 must indeed be primitive.

The crucial observation to make regarding primitive subspaces is that they cannot

appear nontrivially in the image of any induced map of posets. For this reason they

shed light onto the structure of C, e.g. they detect isomorphisms. More generally, the

following useful claim shows that two subspaces will never have equal images by way

of a coincidence.

Lemma 3.3.28 (Subspaces with equal image). Suppose that A• is a continuous

C-arrangement, z ∈ Lc0 is any primitive subspace and x ∈ Lc1 is any subspace. If

there exists some object d and morphisms ci
fi−→ d such that L(f0)z = y = L(f1)x,

then there exists a morphism c0
ϕ−→ c1 that sends z to x and satisfies f0 = f1 ◦ ϕ. In

particular, if x is itself primitive, the morphism ϕ is an isomorphism.

The conclusion holds even when the subspace x ⊂ V c1 is not a priori assumed to

belong to the arrangement.

Proof. Form the pullback of the two morphisms f0 and f1

p c0

c1 d

r0

r1 f0

f1

and consider the corresponding diagram of vector spaces

V p V c0

V c1 V d

V (r0)

V (r1)

V (f1)

V (f0)
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By the continuity assumption on A• this is a push-out diagram of vector spaces.

If we can show that z contains kerV (r0), then since z is primitive this would imply

that c0 ≤ p and in particular p
r0−→ c0 is an isomorphism since morphisms weakly

order objects. Using the inverse to r0 we find a morphism ϕ = r1 ◦ r0−1 : c0 −→ c1

that satisfies

f1 ◦ ϕ = f1 ◦ r1 ◦ r0−1 = f0.

In particular we have

L(f1)x = y = L(f0)z = L(f1)L(ϕ)z.

The function L(f1) is injective, since it is defined to be V (f1)−1 for the surjective

function V (f1). Thus we will see that x = L(ϕ)z, which will conclude the proof.

It remains to show that z contains kerV (r0). Since all subspaces contain the origin,

we have

kerV (f1) ⊂ V (f1)−1(x) = y = V (f0)−1(z)

thus it follows that z contains V (f0) (kerV (f1)). The claim would then follow if we

can prove that there is an inclusion

kerV (r0) ⊆ V (f0) (kerV (f1)) .

This follows from the universal property of V p being a push-out: V c1 admits a well-

defined map into the quotient V c0/V (f0) (kerV (f1)) by first lifting to V d and then
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mapping into V c0 via V (f0), thus by the universal property there exists a map

V c0 V c0/V (f0) (kerV (f1))

V p

V (r0)
∃!

that makes the diagram commute. But this implies that kerV (r0) maps to zero through

the quotient map, so kerV (r0) ⊆ V (f0) (kerV (f1)), as claimed.

Lastly, if x is primitive then the same argument applied in reverse shows that

c1 ≤ c0 as well. Thus by the weak order property, every morphism between c0 and c1

is an isomorphism.

We are now ready to begin proving the freeness statement. The general philosophy

behind our approach is that representation stability phenomena are the linearized

reflection of combinatorial stability. We will therefore demonstrate that freeness is

already exhibited at the level of C-sets. These sets are parameterized by primitive

elements up to the following natural notion of equivalence.

Definition 3.3.29 (Equivalence of primitive subspaces). If zi ∈ Lci are primitive

subspace with i = 1, 2, we write z1 ∼ z2 when their orbits in L• under the action of

C coincide, denoted C(z1)• = C(z2)•. Equivalently, z1 ∼ z2 if there is a morphism

c1
f−→ c2 for which L(f)z1 = z2.

Denote the equivalence class of z1 by [z1], and the set of all equivalence classes by

Z.

Lemma 3.3.30 (Freeness: set version). Suppose A is a continuous, normal C-

arrangement. Then the intersection poset LA decomposes as a disjoint union of C-

subposets corresponding to the equivalence classes of primitive subspaces of A. More-

over, if C(z)• is the orbit of the primitive subspace z ∈ Lc, then C(z)d decomposes
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as

C(z)d =
∐

[f ]∈(dc)

C(z)[f ]

where C(z)[f ] is the set of images of z under maps induced by morphisms c
f−→ d

in the equivalence class [f ]. Lastly, every morphism d1
g−→ d2 induces a bijection

C(z)[f ]
L(g)
−→ C(z)[g◦f ].

Proof. For every primitive subspace z ∈ Lc we consider its C-orbit, i.e. the C-subposet

of LA described by

C(z)d = {L(f)z | f ∈ HomC(c, d)}.

This is clearly closed under the action of C on LA• . We decompose this further as

C(z)d =
⋃

[f ]∈(dc)

C(z)[f ]

where C(z)[f ] = {L(f)z | f ∈ [f ]}. Again, it is clear that the poset map induced by

d
g−→ e takes the set C(z)[f ] into C(z)[g◦f ]. We start by showing that this union is in

fact disjoint. Suppose that there exists some x ∈ C(z)[f0] ∩C(z)[f1]. Then by Lemma

3.3.28 it follows that there exists a morphism c
ϕ−→ c that satisfies f1 = f0 ◦ ϕ. But

since ϕ ∈ HomC(c, c) = Gc we find that f1 ∼ f0.

Next we show that for every morphism c
f−→ d then induced map

C(z)[Idc]
L(f)
−→ C(z)[f ]

is a bijection. This will prove that all morphisms d
g−→ e indeed induce bijections

C(z)[f ]
L(g)
−→ C(z)[g◦f ]. We define the inverse map as follows. Consider the induced

linear surjection Vd
V (f)
−→ Vc. The inverse function to L(f) = V (f)−1 is the direct
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image under V (f). To see that this indeed provides an inverse, note that since V (f)

is surjective it follows that for all x ∈ C(z)[Idc]

x = V (f)
(
V (f)−1x

)
= V (f) (L(f)x)

and for the reverse composition, if y ∈ C(z)[f ] then there exists some morphism f ′ ∈ [f ]

for which L(f ′)z = y. Since f ∼ f ′, there exists some ϕ ∈ Gc such that f ′ = f ◦ ϕ.

Denote x = L(ϕ)z and observe that L(f)x = L(f ′)z = y. It now follows that

y = L(f)x = L(f)V (f) (L(f)x) = L(f) (V (f)y) .

Suppose that there exists some x ∈ C(z0)[f0] ∩C(z1)[f1], i.e. there exist two mor-

phisms fi for i = 1, 2 such that L(f0)z0 = x = L(f1)z1. By Lemma 3.3.28 there exists

an isomorphism c0
ϕ−→ c1 taking z0 to z1. This shows that the two orbits C(z0) and

C(z1) coincide.

Lastly, we need to show that L• is a disjoint union of such C-sets C(z)•. Lemma

3.3.27 asserts that every subspace x ∈ Ld is the image of some primitive subspace,

and thus it belongs to one of the C-sets C(z)• described here. For their disjointness,

assume that zi ∈ Lci for i = 1, 2 are two primitive subspaces such that there exists

some x ∈ C(z0)[f0] ∩ C(z1)[f1], i.e. there exist two morphisms fi for i = 1, 2 such

that L(f0)z0 = x = L(f1)z1. By Lemma 3.3.28 there exists an isomorphism c0
ϕ−→ c1

taking z0 to z1, demonstrating that the two orbits C(z0)• and C(z1)• coincide.

We can now proceed with the final step of the proof: showing that the cohomology

groups of a normal C-arrangement are free.
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Proof of Theorem 3.3.25. Recall that Formula (3.3.2) states that

Hi (MA)c =
⊕
x∈Lc

H̃2 cd(x)−i−2(∆(L<xc ))

and that a morphism c
f−→ d acts on these expressions through the induced iso-

morphism of posets L<xc
L(f)
−→ L

<L(f)x
d . For the sake of brevity we denote the i-th

cohomology group of Md
A by Hid and its summand H̃2 cd(x)−i−2(∆(L<xc )) by Hi(x).

In this notation, the map f∗ on cohomology, induced by a morphism c
f−→ d, maps

Hi(x) isomorphically onto Hi(L(f)x).

Let L• =
∐

[z]∈Z C(z)• be the disjoint union decomposition described in the set

version of the statement, Lemma 3.3.30. Then the cohomology decomposes as a direct

sum of C-submodules:

Hid =
⊕

[z]∈Z

 ⊕
x∈C(z)d

Hi(x)

 =:
⊕

[z]∈Z
M

[z]
d (3.3.7)

We claim that for every [z] ∈ Z the corresponding direct summand M
[z]
• is an induced

module, hence Hi• is free.

Indeed, the direct sum decomposes further as

M
[z]
d =

⊕
x∈C(z)d

Hi(x) =
⊕

[f ]∈(dc)

 ⊕
x∈C(z)[f ]

Hi(x)

 =:
⊕

[f ]∈(dc)

M
[z]
[f ]

(3.3.8)

Every morphism d
g−→ e takes the set C(z)[f ] bijectively onto C(z)[g◦f ], and for every

element x ∈ C(z)[f ] the map Hi(x)
g−→ Hi(L(g)x) is an isomorphism. Thus g∗ maps

the summand M
[z]
[f ]

isomorphically onto M[g◦f ]. Thus according to the characterization

of induced modules given in Lemma 3.3.26 this is indeed an induced C-module. If
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z ∈ Lc is a representative primitive subspace of the class [z] then M
[z]
• has degree c

and is generated by the Gc-representation

M
[z]
c =

⊕
x∈C(z)c

Hi(x) = IndGc
Stab(z)

Hi(z) (3.3.9)

For the purpose of keeping track of the degree of the free C-module Hi(MA)•,

observe that the degrees of the induced modules that appear in its direct sum decom-

position are the objects on which primitive subspaces are defined. Since only primitive

subspaces z of codimension i
2 ≤ cd(z) ≤ i contribute to the cohomology groups, the

degrees range only over objects that carry primitive subspaces with codimension in

this range. Furthermore, from Note 3.3.23 we know that if the C-arrangement A is

generated in degrees c1, . . . , cn, then all codimension-(≤ i) primitive subspaces are in

the image of iterated weak push-outs of at most i many objects from this list. The

following definition will make referring to the resulting degrees easier.

Definition 3.3.31. If c and d are two objects of C, let c + d denote a minimal (iso-

morphism class of) object that satisfies

c+ d ≥ c
∐
p

d

for every weak push-out of c and d.

Similarly if i ∈ N, let i × c denote a minimal (isomorphism class of) object that

satisfies

i× c ≥ c
∐
p1

. . .
∐
pi−1

c

for every i-fold weak push-out of c.
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Such a minimal objects exist in a category of FI type because of the descending

chain condition. In fact, in all of our examples these objects are uniquely determined

and can be identified explicitly: it will be given by weak coproduct c+d = c
∐

∅ d and

i× c = c
∐

∅ . . .
∐

∅ c.

Using this notation we succinctly bound the degree of the resulting C-modules.

Corollary 3.3.32 (Bound on degree). If A• is a continuous, normal C-arrangement

generated in degrees ≤ c. Then the degree of the free C-module Hi(MA) is ≤ i× c.

Proof. By the comment made in Note 3.3.23, if A• is generated in degrees

c1, . . . , cn ≤ c

then the C-module Hi(MA) is generated in degrees given by their i-fold iterated weak

push-outs. It is easy to verify that the definition of weak push-outs implies that for

all p ≤ ci, cj we have a relation

ci
∐
p

cj ≤ c
∐
p

c ≤
def.

c+ c = 2× c

Then by induction we see that i × c is greater than all i-fold weak push-outs of the

objects c1, . . . , cn. In particular, all the primitive generators of Hi• must appear in

degrees ≤ i× c.

This concludes the proof that the cohomology groups form a free C-module, and

thus Theorem 3.1.4 is proved.
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3.4 Normalization and a criterion for normality

The normality assumption in Theorem 3.1.4 is meant to exclude cases where subspaces

that could appear early in the C-arrangement are omitted for some reason and only

appear later. A normal C-arrangement is saturated in the sense that every subspace

that “should” belong to it actually does.

We saw earlier in Lemma 3.3.27 that a normal C-arrangement is generated by

primitive subspaces. The theorem we now state provides a converse. It also serves as

an easily verifiable criterion for checking normality.

Theorem 3.4.1 (Primitive generators imply normality). Suppose C has pull-

backs and A• is a continuous C-arrangement. If A• is generated by primitive subspaces

then it is a normal C-arrangement.

Proof. Suppose Z = {zα ⊂ V cα}α∈A is a set of primitive subspaces that generates A•.

Let d
g−→ e be a morphism and let y ∈ Le be a subspace that contains kerV (g). We

need to show that y is in the image of L(g).

By assumption Z generates the C-arrangement, thus there exist morphisms cαi
fi−→ e

where 1 ≤ i ≤ l such that

y = L(f1)zα1 ∩ . . . ∩ L(fl)zαl .

Note that for every 1 ≤ i ≤ l it follows that kerV (fi) ⊆ L(fi)zαi .

We prove the claim by induction on l. For l = 1 the subspace y ∈ Le is the image

of a primitive subspace z ∈ Lc under some morphism c
f−→ e. Consider the direct

image x := V (g)y. Since kerV (g) ⊂ y, it follows that V (g)−1x = y. Thus by Lemma

3.3.28 there exists a morphism c
ϕ−→ d that takes z to x. In particular x ∈ Ld and

L(g)x = y, as desired.
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Now for the induction step. Assume that y = y1∩ y2 where each is the intersection

of less than l many images of primitive subspaces. Since kerV (g) ⊂ y1, y2 the induction

hypothesis implies that y1 and y2 are in the image of L(g). But since L(g) respects

intersection y is also in the image of L(g). This completes the proof.

The result stated in Theorem 3.1.4 does not apply to C-arrangements that are not

normal. However, even in the general case the result holds in the limit as the objects

c become sufficiently large. This follows from the following construction which we call

normalization.

Theorem 3.4.2 (Normalization of a C-arrangement). Suppose C is a category

of FI type and A• is a continuous, finitely-generated C-arrangement, with underlying

diagram of vector spaces V •A. Then there exists a unique finitely-generated, normal

C-arrangement A• also defined on V •A that coincides with A• on a full subcategory

that is upward closed and cofinal in C. This normal C-arrangement A• will be called

the normalization of A.

Proof. For the uniqueness statement, it suffices to show that any two normal C-

arrangements, whose underlying diagram of vector spaces is V •, and that coincide on

a cofinal subcategory, are equal. Indeed, suppose B and B′ are two such arrangements

with corresponding intersection poset L• and L′• resp. Let x ∈ Lc be any subspace and

c ≤ d is an object such that Ld = L′d. Pick a morphism c
f−→ d, then y = L(f)x ∈ Ld

contains ker(V (f)). Thus since A′ is normal and y ∈ L′d, the subspace V (f)y = x

belongs to L′c. This shows that Lc ⊆ L′c for every object c. The same argument gives

the opposite inclusion.

For existence suppose K = {xi ⊂ V ci}ni=1 is a set of generators for A•. We will

define a new arrangement by specifying a generating set K as follows. For every i

let Xi be the collection of objects e for which there exists a morphism e
f−→ ci with
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ker(V (f)) ⊆ xi. By the descending chain condition Xi contains a least object ei that

possesses such a morphism ei
f−→ ci. Denote the image V (f)xi ⊂ V ei by zi and

observe that since ker(V (f)) ⊆ xi we get an equality

xi = V (f)−1V (f)xi = V (f)−1zi.

We claim that zi is primitive, i.e. it does not contain kerV (g) for any e
g−→ ei with

e < ei. Indeed, if e
g−→ ei is a morphism and kerV (g) ⊆ zi then it follows that

xi = V (f)−1zi ⊇ V (f)−1 kerV (g) = ker (V (g) ◦ V (f)) = kerV (f ◦ g)

so by definition e ∈ Xi. But this is a contradiction to the minimality of ei in Xi.

Define a new set of generators K = {z1, . . . , zn} and let A• be the C-arrangement

generated by them: the underlying diagram of vector spaces is the same as that of A•,

and the intersection poset at an object d is made up of all the subspaces of the form

V (g1)−1(zi1) ∩ . . . ∩ V (gl)
−1(zil)

for an l-tuple of morphisms eij
gj−→ d and l ∈ N. It is straightforward to check that

this indeed produced a C-arrangement, and by construction it is generated by the set

K of primitive subspaces. Lemma 3.4.1 then shows that this arrangement is normal.

We claim that A is a subarrangement of A and that the two coincide on all objects

d ≥ c1, . . . , cn (this is clearly an upward-closed and cofinal subcategory). For the first

claim, note that for every i there is a morphism ei
fi−→ ci such that L(fi)zi = xi. Thus

xi ∈ LAci , and since these subspaces generate A we have containment LAd ⊆ LAd for

every object d. Conversely, suppose d admits maps from c1, . . . , cn. It will suffice to

show that every morphism ei
g−→ d factors as ei

fi−→ ci
h−→ d for some h, for then the
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images of zi coincide with the images of xi in LAd . Indeed, pick any morphism ci
h0−→ d

and consider the two morphisms ei
h0◦fi−→ d and ei

g−→ d. Since Gd := AutC(d) acts

transitively on incoming morphisms we can find an automorphism ϕ ∈ Gd such that

ϕ ◦ h0 ◦ fi = g. Set h = ϕ ◦ h0, it satisfies h ◦ fi = g as desired.

Note 3.4.3. For concreteness’ sake we reiterate that if A is generated in degrees ≤ c,

then a full subcategory on which A coincides with its normalization is made up of

objects d that satisfy d ≥ c.

As immediate corollaries we find that the results of Theorem 3.1.4 apply to gen-

eral finitely-generated arrangements in degrees larger than those of the generating

subspaces. The combinatorial version of this observation is the following.

Theorem 3.4.4 (Limiting combinatorial stability). Suppose C is a category of

FI type and A is a continuous, finitely-generated C-arrangement, generated in degrees

≤ c. Then the intersection poset of A coincides with a combinatorially stable C-poset

on the full subcategory of objects d ≥ c. Namely, it coincides with the intersection

poset of the normalization A.

The representation theoretic version is the following.

Theorem 3.4.5 (Limiting freeness of cohomology). If C and A are as in Theorem

3.4.4, the cohomology groups Hi (MA) coincide with a finitely-generated, free C-module

on the full subcategory of objects d ≥ c.

3.5 Cohomological stability of arrangement quotients

Let C be a category of FI type and let A be a C-arrangement. For every object c

the group Gc acts on the variety Mc
A and we can form the orbit space (or scheme)
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Mc
A/Gc. We denote the collection of quotient spaces by M•A/G• (even though they

do not in fact form a functor).

Let us consider families of sheaves that arise from C-modules via the following

process. Fix some C-module N•. For every object d one can form the constant sheaf

N̄d on the space Md
A. Now the pairs (Md

A, N̄d) fit together naturally into a Cop-

diagram of spaces plus a sheaf on each space. In particular one can apply the sheaf

cohomology functor to this collection and get a C-module.

Pushing the sheaf N̄d forward to the quotientMd
A

qd−→Md
A/Gd, the sheaf qd∗(N̄d)

now admits a Gd-action.

Definition 3.5.1 (Twisted sheaf induced by a C-module). The subsheaf of Gd-

invariant sections qd∗(N̄d)
Gd will be called the twisted Nd-sheaf on Md

A/Gd and it will

be denoted by Ñd.

Remark 3.5.2. When Gd acts on the space Md
A freely, this construction yields (the

sheaf analog of) the familiar Borel construction of a flat vector bundle Md
A ×Gd Nd.

Otherwise Ñd will be a constructible sheaf whose stalks might be smaller than Nd.

One could check that for every point x ∈Md
A/Gd there is an isomorphism

(Ñd)x
∼= N

StabGd(x̃)

d

where x̃ ∈ (qd)−1(x) and the group StabGd(x̃) ⊂ Gd is the stabilizer of x̃. Different

choices of points x̃ will produce different isomorphisms.

We claim that when N• is a free C-module, cohomological stability holds with

these systems of twisted coefficients.

Theorem 3.5.3 (Twisted cohomological stability). Suppose C is a category of

FI-type with |AutC(d)| < ∞ for every object d. Let A• be a continuous, normal C-

arrangement, generated in degree ≤ c. Let N• be a free C-module over Q and suppose
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that it is generated in degree ≤ c′. Then the sheaf cohomology groups

Hi(Md
A/Gd; Ñd)

exhibit cohomological stability in the following sense: if d ≤ e then there is a well-

defined injective map

Hi(Md
A/Gd; Ñd) ↪→ Hi(Me

A/Ge; Ñe)

and these maps become isomorphisms when d ≥ (i× c) + c′.

In particular, when considering the trivial C-module N• ≡ Q` (free of degree 0),

this yields a classical cohomological stability statement for Hi(Md
A/Gd) in the range

d ≥ i× c.

In the context of `-adic cohomology one needs N• to take values in continuous

Q`-modules.

Proof. For every object d let id denote the inclusion Ñd = (qd∗N̄d)
Gd ↪→ qd∗N̄d. In

the other direction define a transfer morphism Ñd
τd←− qd∗N̄d by τd = 1

|Gd|
∑
g∈Gd g(·).

Clearly the composition τd ◦ id is the identity map on Ñd and the reverse compo-

sition id ◦ τd is the projection onto the Gd-invariants of qd∗N̄d which are also the

Gd-coinvariants.

Consider the induced maps on the sheaf cohomology

Hi(Md
A/Gd; Ñd)

τd
�
id

Hi(Md
A/Gd; q

d
∗N̄d) = Hi(Md

A; N̄d)

They induce a natural isomorphism Hi(Md
A/Gd; Ñd)

∼= Hi(Md
A; N̄d)Gd where the

latter is the coinvariant quotient.
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By the Universal Coefficients Theorem there is a natural isomorphism

Hi(MAd ; N̄d) ∼= Hi(MAd)⊗Nd (3.5.1)

and as d ranges over all objects this is the tensor product of two free C-modules of

respective degrees ≤ i× c and c′. The analysis of free C-modules, found in §2, applies

to this exact case: Parts (1-2) of Theorem 2.1.11 implies that the tensor product in

(3.5.1) is again free of degree ≤ (i× c) + c′, and Part (4) of Theorem 2.1.11 then shows

that the coinvariant quotients stabilize in the desired sense.

Often, one is interested in cohomological stability with coefficients in the various

sequences of representations, e.g. the irreducibles Vλ in the case of Sn. Such a sequence

is a natural candidate for a homological stability statement e.g. if its characters are

given by a single character polynomial (see Definition 2.2.5 for a general treatment).

In this case, when one is interested only in the dimension of the sheaf cohomology

groups a stronger stability statement can be phrased.

Theorem 3.5.4 (Stabilization of twisted Betti numbers). If A is as in Theorem

3.5.3 and N• is any C-module (continuous over Q`) whose character coincides with a

character polynomial of degree ≤ d (N• need not be free), then the dimensions of the

sheaf cohomology groups

dimk Hi(MAe/Ge; Ñe)

do not depend on e for all e ≥ (i× c) + d.

Remark 3.5.5. In Theorem 3.5.4 there is no reference to the structure of N• other

than its character. For example, all morphisms d
f−→ e for d < e might induce

the zero map, and this will not be detected by the character. In particular, even

though the cohomology groups eventually have the same dimension, there is no hope
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of finding natural isomorphisms Hi(Md
A/Gd; Ñd)

f∗−→ Hi(Me
A/Ge; Ñe) coming from

the structure of N•.

Proof. The argument in the proof of Theorem 3.5.3 above shows that

Hi(Md
A/Gd; Ñd)

∼=
(

Hi(MAd)⊗k Nd
)
Gd

(3.5.2)

and the dimension of this coinvariant quotient is given by the Gd-inner product of

characters

dimk Hi(Md
A/Gd; Ñd) = 〈Hi(MAd)

∗, Nd〉Gd . (3.5.3)

Part (3) of Theorem 2.1.11 shows that the pointwise dual of a free C-module can also

be given the structure of a free C-module, and Theorem 2.1.10 shows that the character

of such is given by a character polynomial of the same degree. With these facts we see

that the character of Hi(MAd)
∗ is given by a character polynomial Q of degree ≤ i×c.

By assumption there exists some character polynomial P of degree d that coincides

with the character of N•. Therefore the above inner product of characters is given by

the inner product 〈Q,P 〉Ge which stabilizes for all e ≥ deg(Q) + deg(P ∗) = (i× c) + d

by Corollary 2.4.7.

3.6 Applications

In all of the following examples we consider complex varieties, i.e. we take k = C.

However, it should be noted that the same results hold in positive characteristic as

well. Moreover, if the subspace arrangements are defined over Z, the C-modules we

get are naturally isomorphic for any characteristic, so in this sense we might as well

concentrate on the complex version of the statements.

Consider the category FI of finite sets and injections. Every finite set is isomorphic
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to a unique set of the form

n := {0, . . . , n− 1}

and the endomorphisms of n are the symmetric group on n letters, Sn. Furthermore

we consider the categorical power FIm where m ∈ N. Every object in this category is

isomorphic to a unique m-tuple n̄ := (n(1), . . . , n(m)), and the automorphism group of

n̄ is the product of symmetric groups Sn̄ := Sn(1)×. . .×Sn(m) . The + and × operations

on objects coincide in this case with coordinatewise addition and multiplication.

Definition 3.6.1 (The FIop-vector space V •). Fix some finite dimensional complex

vector space V . We consider the Setop-vector space V • : c 7→ HomSet(c, V ), i.e. V c

is the C-vector space of functions from c to V with pointwise operations.

This is a continuous contravariant functor from sets to vector spaces. Moreover,

since in Set every injection has a retraction, the functor V • sends injections to surjec-

tive linear maps. Restricting to the subcategory FI we get an FIop-vector space with

all induced maps surjective.

Definition 3.6.2 (The FIm-vector space V •). Embedding FIm into Set naturally

by considering (A1, . . . , Am) 7→ A1
∐
. . .
∐
Am, we turn V • into a (FIm)op-vector

space.

The embedding FIm ↪→ Set sends every morphism to an injective function, and

furthermore takes pullbacks and (weak) push-outs in FIm respectively to pullbacks and

push-outs in Set. In turn we find that V • respects the pullbacks and weak push-outs

of FIm and sends every morphism to a surjective linear map of vector space. Thus V •

can serve as a continuous underlying diagram of vector spaces for FIm-arrangements.

Note 3.6.3. Unpacking the definition of V • we see that its value at (n(1), . . . , n(m)) is

V n
(1)∐...∐n(m) ∼= V n

(1)
× . . .× V n

(m)
.
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The automorphism group Sn̄ = Sn(1) × . . . × Sn(m) acts on this product through the

action of every Sn(i) permuting the order of coordinates in V n
(i)

.

Using Criterion 3.4.1 for the normality of C-arrangements we get the following

result.

Corollary 3.6.4 (Producing normal FIm-arrangements). Let A• be an FIm-

arrangement whose underlying diagram of vector spaces is V • for some V and that is

generated by primitive subspaces. Then A• is normal.

Theorem 3.1.4 then implies that for every i ≥ 0 the FIm-module Hi(MA)• exhibits

representation stability – see §2[Theorem 6.13] for concrete representation-theoretic

consequences of this fact.

A general example to which this theory applies is the following. All later examples

will be instances of this general case.

Example 3.6.5 (The arrangementM•m,k and X•m,k). Let V be a finite-dimensional

complex vector space. Fix a pair of natural numbers (m, k) and consider the FIm-

arrangement Am,k• (V ) whose underlying diagram of vector spaces is V • and is gener-

ated by the diagonal line in V k × . . .× V k = V km:

∆(k,...,k) =
{(

(z
(1)
1 , . . . , z

(1)
k ), . . . , (z

(m)
1 , . . . , z

(m)
k )

)
| z(i1)
j1

= z
(i2)
j2
∀i1, i2, j1, j2

}

The preimage of ∆(k,...,k) under an injection (k, . . . , k)
f̄−→ (n(1), . . . , n(m)) is the

subspace of V n
(1) × . . .× V n(m)

defined by the equations

z
(i1)
fi1(j1)

= z
(i2)
fi2(j(2))

for all 1 ≤ i1, i2 ≤ m and 1 ≤ j1, j2 ≤ k. In other words, this is the subspace in which

the coordinates specified by f̄ are all equal. As we let f̄ range over all injections, we
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see that the induced arrangement on V n̄ is made up of precisely the tuples in which

there exists some z ∈ V that appears in every V n
(i)

factor at least k times.

The Sn̄-quotient of this arrangement (resp. its complement) is formed by forgetting

the ordering of the entries in each V ni factor, i.e. it is the space of unordered sets with

multiplicities U1, . . . , Um ∈ N[V ] with |Ui| = ni and the intersection of all these sets

contains a point with multiplicity ≥ k (resp. contains no point with multiplicity ≥ k).

Definition 3.6.6 (M•m,k and X•m,k). We denote the complement of Am,kn̄ (V ) in V n̄

by Mn̄
m,k(V ) and its Sn̄-quotient by X n̄

m,k(V ).

As stated in the introduction, these varieties are various spaces of configuration of

points in V . We will explore this geometric aspect below in specific examples.

Note 3.6.7. If k = 2 and m = 1 then (and only then) the Sn action is free. In this case

the quotient mapM•1,2 −→ X•1,2 is a normal Sn-cover. It also follows that if N• is any

FI-module then the twisted sheaf Ñn on Xn
1,2 is actually a vector bundle isomorphic

to Mn
1,2 ×Sn Nn.

In other cases we get a branched cover Mn̄
m,k(V ) → X n̄

m,k(V ), and the twisted

coefficient sheaf Ñn̄ on X n̄
m,k(V ) has different stalks above different points. This phe-

nomenon has a natural interpretation in our case. The following example illustrates

this well.

Example 3.6.8. Think of Polynk(C) := Xn
1,k(C) as the space of degree n polynomials

that have no roots of multiplicity ≥ k (see example 3.6.11 later), and construct the

twisted coefficient sheaf corresponding to the permutation representation Sn y Qn.

Then the stalk over a polynomial p ∈ Polynk(C) can be naturally described as the

Q-vector space spanned freely by the distinct roots of p. In particular, when p has

multiple roots (a Zariski closed condition) this vector space will have dimension smaller

than n.
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We conclude the general discussion with a proof of Theorem 3.1.6.

Proof of Theorem 3.1.6. Observe that the generating subspace ∆(k,...,k) is primitive,

as it does not contain the kernel of any map induced by any proper injection n̄ ↪→

(k, . . . , k). Therefore by Corollary 3.6.4, the arrangement Am,k• (V ) is a normal FIm-

arrangement generated in degree (k, . . . , k).

The only part of the statement of Theorem 3.1.6 that does not immediately follow

from this together Theorem 3.1.4 is the claimed bounds on generation degree. Let

r = dim(V ) and recall that by Lemma 3.3.11 a subspace x ∈ LA contributes to Hi only

if cd(x) ≤ i. Since the arrangement is generated by the diagonal line ∆(k,...,k) ⊂ V km,

the subspace x is the intersection of a certain number of preimages of this generating

diagonal, say

x = ∆1 ∩ . . . ∩∆l

is such a presentation with l least. We have a sequence of proper inclusions

∆1 ⊃ ∆1 ∩∆2 ⊃ . . . ⊃ x

where at each step we find a certain number of copies of V . Thus the codimension of

every successive pair is a positive multiple of r, in particular the successive codimen-

sions are ≥ r. This forces the codimension of x to be at least r · l. The bound cd(x) ≤ i

then implies that l ≤ i
r . In other words: x is already generated by an b irc-fold in-

tersection of images of the generating diagonal. By the same argument as in Lemma

3.3.20, x is therefore in the image of some subspace defined in degree b irc× (k, . . . , k).

This shows that the FIm-module Hi is generated in the stated degree.

All the other statement follow from the general theory of FIm-modules presented

in §2.6 and Theorem 3.1.9.
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3.6.1 Specializing to important examples

We now vary the parameters m, k and r = dim(V ), and specialize to concrete cases

of interest. All of the following examples exhibit the stability properties described in

Theorem 3.1.6 with the specified stable ranges.

Example 3.6.9 (Configurations of points in the plane and square-free poly-

nomials). Let V = C (i.e. r = 1), m = 1 and k = 2. The resulting spaces form the

FIop-space of ordered (or pure) configuration space of distinct points in C, denoted by

PConf•(C). The quotients by the action of the symmetric groups Sn are the unordered

configuration spaces, denoted by Conf•(C) which, by the fundamental theorem of alge-

bra, are naturally isomorphic to the spaces of monic square-free polynomials of degree

•, denoted by Poly•(C). The isomorphism is explicitly given by sending an n-tuple of

distinct points to the unique monic, degree n polynomial which vanishes precisely at

these points.

For every natural number n, the space Confn(C) is aspherical and its fundamental

group is Artin’s braid group on n strands, denoted by Bn. By forgetting the order-

ing PConfn(C) → Confn(C) is a normal Sn-cover corresponding to the short exact

sequence

1 −→ Pn −→ Bn −→ Sn −→ 1

where Pn is the pure braid group. Since both spaces are aspherical, they serve as

classifying spaces for Bn and Pn respectively, and their cohomology coincides with the

group cohomology.

This sequence of spaces has been intensely studies starting with Arnol’d ([Ar]) and

Fuks ([Fu]), and more recently it served as the catalyst for the development of the

theory of representation stability in [CF] and later of FI-modules in [CEF1].

In this context Theorem 3.1.6 reproves representation stability, first demonstrated
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in [CF], using a generalization of the [CEF2] notion of FI-CHAs. At the level of Sn-

quotient spaces we get cohomological stability with various systems of twisted coeffi-

cients. Every Sn-representation naturally becomes a Bn-representation via the natural

projection Bn → Sn. Thus we can consider the group cohomology of Bn with coeffi-

cients in Sn-representations, and the results of Theorems 3.5.3 and 3.5.4 specialize to

the twisted cohomological stability – these results previously appeared in [CEF2].

A similar example arises by considering a vector space V of higher dimension.

Example 3.6.10 (Configurations of points in even-dimensional Euclidean

space). Fix any r ≥ 1 and consider V = Cr ∼= R2r. By taking m = 1 and k = 2 in

Example 3.6.5 we get in degree n the space PConfn(V ) of ordered configurations of n

distinct points in V . The Sn-quotient is the space Confn(V ) of unordered configura-

tions of n points in V .

The cohomology ring of PConfn(V ) was computed by F. Cohen in [Co] where it

was shown to have a similar structure to that of PConfn(C) with all degrees multiplied

by r. These spaces arise as a local model for ordered and unordered configurations of

points in smooth complex varieties and even dimensional orientable manifolds. In [To],

Totaro uses the cohomology of PConfn(V ) to compute the cohomology of the space of

ordered configurations PConfn(M) where M is a complex smooth projective variety.

Specializing Theorems 3.1.6 to this case we get a new proof of representation stabil-

ity and freeness for H∗(PConfn(V )), previously proved in [CEF1] for the more general

case of all connected, orientable open manifolds.

Example 3.6.11 (The k-equals arrangement). Let V = C, m = 1 and k ≥ 2

be arbitrary in Example 3.6.5. The resulting FI-arrangement is called the k-equals

arrangement (see e.g. [BW]). The complement of this arrangement parametrizes all

ordered configurations of points in the plane with possible coincidences, but where no
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k points are allowed to coincide. Taking the quotient by the action of the symmetric

group we get the unordered version of such configurations. By assigning a configuration

of n points to the unique monic, degree n polynomial that vanishes on these points

(with the specified multiplicity), we get an isomorphism from the n-th quotient Xn
1,k(C)

to the space Polynk(C) of monic degree n polynomials that have no root of multiplicity

≥ k. These spaces of polynomials are the complements of the natural stratification

of the space of all monic, degree n polynomials (∼= An), where we filter based on the

maximal multiplicity of their roots.

The intersection poset of the k-equals arrangement is usually denoted by Πn,k, and

is isomorphic to the lattice of partitions of {1, . . . , n} such that every non-singleton

block has size at least k. These posets were studied in [FNRS] relating to complexes

of disconnected k-graphs, and by Vassiliev in connection with homotopy classification

of links.

The real version of these subspace arrangements comes up in problems of compu-

tational complexity. Consider the following problem:

Given real numbers x1, . . . , xn, decide whether at least k are equal.

Put in other words, we are asking whether the vector (x1, . . . , xn) ∈ Rn belongs to

the k-equals arrangement. Björner-Lovász show in [BL] that if one tries to solve

this problem using the computational model of a linear decision tree8, then the size

and depth of this tree can be bounded from below by expressions involving the Betti

numbers of (the complement of) the real k-equals arrangement.

The Betti numbers of the real and complex arrangements and their complements

are computed in [BW]. Among other things, our theory provides a new proof that the

Betti numbers are polynomial in n of the correct degree. To the best of the author’s

8. See [BL] for a definition.
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knowledge the representation stability results of Theorem 3.1.6, and the cohomological

stability results of Theorem 3.1.9 in this context are new.

Example 3.6.12 (Based rational maps P1 −→ Pm−1). Let V = C, k = 1 and

m ≥ 2 be arbitrary in Example 3.6.5. The resulting space at degree

n̄ = (n(0), . . . , n(m−1))

consists of m-tuples of ordered configurations of points in the plane (with possible

coincidences) whose sizes are n̄ and who do not all have a point in common. The

Sn̄-quotient is the unordered version which is naturally isomorphic to the space of

m-tuples of monic polynomials (p0(t), . . . , pm−1(t)), of degrees given by n̄, such that

the gcd of the polynomials in the tuple is 1. An equivalent description of an orbit is

given by considering the algebraic function it defines

[p0(t) : . . . : pm−1(t)] : P1 −→ Pm−1.

When restricting to the case m = 2 and to objects of the form (n, n), the quotient

space is naturally isomorphic to the space of rational maps P1 −→ P1 of degree n

that are based in the sense that they send ∞ to 1. We denote the resulting space by

Ratn∗ (C). This space is the key to understanding the space Ratn(C) of all degree n

rational maps, since there is a fibration sequence

Ratn∗ −→ Ratn
ev∞−→ P1

where the latter map is evaluation at ∞ and the fiber over 1 = [1 : 1] ∈ P1 is precisely

Ratn∗ .

The sequence of spaces Ratn∗ (C) was studied by Segal (see [Se]), where its integral
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cohomological stability was demonstrated. Our techniques shows that the sequence

of Sn × Sn-covers (obtained by choosing orderings on the zeros and poles) satisfies

representation stability rationally, and in particular rational cohomological stability

follows. In fact, here we extend the rational stability result to the 2-dimensional

sequence in which we allow n0 and n1 to vary independently.

For the case m > 2, one considers a similar restriction to degrees of the form

(n, . . . , n), in which case we get the space of degree n rational maps P1 −→ Pm−1 that

are based, i.e. send ∞ ∈ P1 to [1 : . . . : 1]. We denote this space by Ratnm∗(C). As

in the m = 2 case, this space is the key to understanding the space of all degree n

rational maps from P1 to Pm−1 through the fibration sequence

Ratnm∗(C) −→ Ratnm(C)
ev∞−→ Pm−1

where ev∞ is the evaluation at ∞ function.

Specializing Theorems 3.1.6 and 3.1.9 to this case we get new cohomological stabil-

ity results for spaces of (based) rational maps. A non-trivial example of a twisted coeffi-

cient sheaf (which is not a local system) is the sheaf whose stalks above a based rational

map f is the Q-vector space spanned freely by the distinct m-tuples (a0, . . . , am−1),

where f(ai) is contained in the hyperplane zi = 0. This is the sheaf associated to the

free, degree-1 FIm-module Ind1(Triv).

We can also consider all of the above examples with C replaces by Cr. They all sat-

isfy representation stability (Theorem 3.1.6 for the ordered version) and cohomological

stability (Theorem 3.1.9 for the unordered version) with improved stability ranges as

r grows.
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CHAPTER 4

TRACE FORMULA WITH STABILIZERS

A standard observation in algebraic geometry and number theory is that a ramified

cover of an algebraic variety X̃ → X over a finite field Fq furnishes the rational points

x ∈ X(Fq) with additional arithmetic structure: the Frobenius action on the fiber over

x. For example, in the case of the Vieta cover of polynomials over Fq this structure

describes a polynomial’s irreducible decomposition type.

Furthermore, the distribution of these Frobenius actions is encoded in the coho-

mology of X̃ via the Grothendieck-Lefschetz trace formula. This chapter presents a

version of the trace formula that is suited for studying the distribution in the context

of representation stability: for certain sequences of varieties (X̃n) the cohomology, and

therefore the distribution of the Frobenius actions, stabilizes in a precise sense.

We conclude by fully working out the example of the Vieta cover of the variety

of polynomials. The calculation includes the distribution of cycle decompositions on

cosets of Young subgroups of the symmetric group, which might be of independent

interest.

4.1 Introduction

Representation stability identifies sequences of spaces equipped with group actions

(Gn y Xn)n∈N whose cohomology groups exhibit a kind of stabilization as represen-

tations for n → ∞. One then hopes to translate the observed cohomological stabi-

lization into arithmetic results via the bridge provided by the Grothendieck-Lefschetz

trace formula. This program was realized e.g. by Church-Ellenberg-Farb [CEF2] in

the case of statistics of square-free polynomials and maximal tori in Gln over finite

fields.
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One difficulty that the program faces is the possible presence of nontrivial stabi-

lizers of the group actions, and their effect on the trace formula. This chapter offers

a treatment of actions with stabilizers and the adaptation of the trace formula to

representation stability applications. The formula, presented in Theorem 4.1.2 be-

low, is proved using standard methods and will not be considered new by algebraic-

geometers1. Rather, it is presented as a ‘ready for use’ tool to be applied in the context

of representation stability.

Using the approach presented here, we extend the project initiated in [CEF2] to

include the statistics of polynomials with possible root multiplicities (see details in

§4.1.3). Let us remark that much of the work that goes into polynomial statistics

often passes through calculations on square-free polynomials and ignores the rest (the

latter being relatively uncommon), see e.g. [ABR, Section 4]. The calculations below

suggest a way to handle more general polynomials: we introduce an algebra of division

symbols on the space of polynomials, and show that these give rise to functions that

serve as a direct link between the statistics of polynomials and those of symmetric

groups (see §4.1.3).

4.1.1 Distribution of rational orbits

Let X̃ be an algebraic variety over a finite field Fq, endowed with an action of a finite

group G. Then the variety of orbits X = X̃/G acquires arithmetic information from

X̃: a rational point x ∈ X(Fq) corresponds to a G-orbit of X̃(Fq) that is stable under

the Frobenius automorphism Frq. Thus for every x ∈ X(Fq) the Frobenius determines

a G-equivariant permutation σx on a transitive G-set, and this additional information

distinguishes rational points in X in a subtle way. For example, let X be the space

of monic degree d polynomials. Ordering the roots of a polynomial gives that X is

1. For example, the same ideas and definitions appear in Grothendieck’s [Gr] and in Serre’s [Se1].
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the quotient Ad/Sd with Sd, the symmetric group on d letters, acting by permuting

the entries of Ad. Then for every polynomial f(t) ∈ Fq[t] the permutation σf encodes

precisely the decomposition type of f into irreducible factors over Fq.

On the other hand, following the philosophy of the Weil conjectures, it is known

that the action of Frq on the étale cohomology groups H∗ét(X̃/Fq ;Q`) encodes arithmetic

information. At the same time, an action G y X̃ induces a G-representation on

H∗(X̃), and it is natural to ask: What arithmetic information is encoded by the joint

action of Frq and G on H∗(X̃)?

One answer, given below, is that the information encoded in H∗(X̃) is in some sense

the distribution of the permutations σx attached to rational points x ∈ X(Fq). How-

ever, it is not initially clear what one should mean by a “distribution” of permutations

σx on abstract G-orbits. The Tanakian point of view tells us instead to examine how

σx acts on G-representations, or equivalently: how it evaluates on G-characters.

We therefore detect the distribution of the permutations σx by evaluating them

on class functions of G as follows. Let χ : G −→ C be a class function. If the

quotient map p : X̃ −→ X is unramified at x ∈ X(Fq) (i.e. the stabilizer of a lift

x̃ ∈ p−1(x) is trivial), then σx determines an element gx ∈ G, unique up to conjugacy,

by σx(x̃) = gx.x̃ for a chosen lift x̃ ∈ p−1(x). Changing the lift x̃ only amounts to

conjugating gx, so it is possible to unambiguously define χ(σx) := χ(gx).

However, when p is ramified at x, the permutation σx no longer determines a

conjugacy class: if Hx̃ ⊆ G is the stabilizer of a lift x̃ ∈ p−1(x), then the condition

σx(x̃) = gx.x̃ only determines a coset gxHx̃. The best one can do in this situation is

to average:

Definition 4.1.1 (Evaluating σx on class functions). Let χ : G −→ C be a class
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function. For x ∈ X(Fq) and a lift x̃ ∈ p−1(x) with stabilizer Hx̃ define

χ(σx) :=
1

|Hx̃|
∑
h∈Hx̃

χ(gxh)

where gx ∈ G is any element satisfying σx(x̃) = gx.x̃.

Theorem 4.1.2 below relates the sum
∑

x∈X(Fq)
χ(σx) to the representation H∗(X̃).

As χ ranges over all class functions, these sums in some sense capture the distribution

of σx.

Theorem 4.1.2 (Frobenius distribution trace formula). Let G be a finite group,

acting on an algebraic variety X̃ over the finite field Fq, and let X = X̃/G as above.

Fix a prime ` � 1 coprime to q|G| and let Hic(X̃) denote the compactly supported `-

adic cohomology Hic,ét(X̃Fq ;Q`). Decompose Hic(X̃)⊗Q` into generalized eigenspaces2

of the Frq action:

Hic(X̃)⊗Q` =
⊕
λ∈Q`

Hic(X̃)λ.

Note that this sum includes only finitely many nonzero summands, and that each

Hic(X̃)λ is a G-subrepresentation. Then for every class function χ : G −→ Q`,

∑
x∈X(Fq)

χ(σx) =
∑
λ∈Q`

λ
∞∑
i=0

(−1)i〈Hic(X̃)∗λ, χ〉G (4.1.1)

where the inner product 〈V, χ〉G for a G-representation V is the standard character

inner product of χ with the character of V . Note again that this is really a finite sum.

2. Here “generalized eigenspaces” means all possibly nontrivial Jordan blocks. This is to avoid
questions of possible non-semisimplicity of the Galois action, which are not of interest to us in the
current context.
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When X̃ is further taken to be smooth, Poincaré duality implies

∑
x∈X(Fq)

χ(σx) = qdim(X̃)
∑
λ

λ−1
∞∑
i=0

(−1)i〈Hi(X̃)λ, χ〉G. (4.1.2)

4.1.2 Implications of representation stability

Representation stability provides examples of sequences of spaces (X̃n)n∈N where the

symmetric group Sn acts on X̃n, and where the induced representations Hi(X̃n) sta-

bilize in the following sense: if (χn : Sn → Q)n∈N is a certain natural sequence of class

functions (namely, given by a character polynomial, see 2.2.5) then the character inner

products

〈Hi(X̃n), χn〉Sn (4.1.3)

become independent of n for n � 1. In the algebraic setting, the same stabilization

occurs within every eigenspace of Frq (this observation follows immediately from the

Noetherian property of the category FI, see [CEF1]). Denote the stable values of these

inner products by

〈Hi(X̃∞)λ, χ∞〉.

This phenomenon was used in [CEF2], along with the Grothendieck-Lefschetz trace

formula in the unramified context, to demonstrate that the factorization statistics of

degree d square-free polynomials over Fq and maximal tori in GLd(Fq) tend to a limit

as d→∞ (see [CEF2, Theorem 1 and 5.6 respectively].

A general type of result that one gets by combining representation stability and

the trace formula of Theorem 4.1.2 is the following.

Corollary 4.1.3 (Limiting arithmetic statistics). Let (X̃n)n∈N be a sequence of

smooth algebraic varieties over Fq where Sn acts on X̃n, and denote the quotients by

Xn = X̃n/Sn. Suppose that the cohomology Hi(X̃n) exhibits representation stability

113



in the sense of [CEF1]. Further suppose that H∗(X̃•) is convergent in the sense of

[CEF2, Definition 3.12]. Then for every sequence of class functions (χn)n∈N, given

uniformly by a character polynomial, the following equality holds

lim
n→∞

q−dim(X̃n)
∑

x∈Xn/Sn

χn(σx) =
∑
i≥0

∑
λ

(−1)i

λ
〈Hi(X̃∞)λ, χ∞〉. (4.1.4)

In particular, the limit on the left exists, and its value is given by the value of the

convergent sum on the right.

Remark 4.1.4 (Other sequences of groups). In §2 we discussed categories of FI-

type, to which the theory of representation stability can be extended. In particular,

Corollary 4.1.3 holds more generally for any diagram X̃• of varieties for which H∗(X̃•)

exhibits representation stability and has a subexponential bound on the growth of

certain invariants.

The main example of such sequences of spaces is given in §3, where we found

that many collections of complements of linear subspace arrangements indeed give

rise to cohomology groups which exhibit representation stability. Therefore, if such a

collection satisfies an additional subexponential growth condition as above, then an

analog of Corollary 4.1.3 holds for them.

4.1.3 Example: Spaces of polynomials and Young cosets

We conclude in §4.3 by fully working out the example of the space of polynomials

Polyd = Ad/Sd mentioned in the first paragraph. In this case, as introduced in the

beginning of 4.1.1, the permutation σf that the Frobenius induces on the roots of

a polynomial f ∈ Polyd(Fq) records the irreducible decomposition of f . Thus The-

orem 4.1.2 is concerned with the fundamental question of factorization statistics of

polynomials over Fq.
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On the one hand the variety X̃ in this case is Ad and has very simple cohomology.

On the other hand, the quotient map p : Ad −→ Polyd is highly ramified and the

associated permutations σf are very far from defining conjugacy classes of Sd. Thus

§4.3 deals mainly with the combinatorial challenge of evaluating χ(σf ) when f is a

ramified point, i.e. computing averages of χ over cosets of Young subgroups of Sd.

The same calculation is useful in many other contexts when the symmetric group acts

by permutations.

Applying Theorem 4.1.2 to this case produces the following apparent coincidence

(which will become obvious once the two sides of Equation 4.1.5 are evaluated):

Corollary 4.1.5 (Equal expectations). Endow the two finite sets Sd and Polyd(Fq)

with uniform probability measures. Then every Sd-class function χ simultaneously

defines a random variable on both spaces (for a point f ∈ Polyd(Fq) define χ(f) :=

χ(σf ) as in Definition 4.1.1), and for every such χ

E
Polyd(Fq)

[χ] = ESd [χ] . (4.1.5)

To understand the left hand side of this equation, one has to interpret the value

of χ(f) for every f ∈ Polyd(Fq). The explicit description of this value requires some

notation, and the complete answer is given in Theorem 4.1.7 on the next page. For the

necessary notation – since χ(f) is related to the divisors f , it will be most convenient

to describe its value using the following natural structure of division symbols.

For every polynomial g ∈ Fq[t] define a function εg : Fq[t] −→ {0, 1} by

εg(f) =


1 if g|f

0 otherwise.

(4.1.6)
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Further define formal multiplication on the symbols εg by

εgεg′ = εgg′ . (4.1.7)

Note that this multiplication does not commute with the evaluation on a polynomial

f , and in fact every εg evaluates on f nilpotently.

To evaluate χ(f) for every χ, it suffices to consider a spanning set of class functions.

The most convenient in this context are given by character polynomials (see [CEF2])

which are described in §4.3.1 below. Briefly, for every k let Xk by the class function

Xk(σ) = # of k-cycles in σ

and for every multi-index µ = (µ1, µ2, . . .) define

(
X

µ

)
=

(
X1

µ1

)(
X2

µ2

)
. . . .

Explicitly,
(X
µ

)
is the Sd-class function that counts the number of ways to choose µk

many k-cycles in a permutation σ ∈ Sd. Instead of evaluating each
(X
µ

)
separately, it

is possible evaluate them all simultaneously be means of a generating function.

Definition 4.1.6. Introduce indeterminants t1, t2, . . ., and define a generating function

F (t) =
∑

µ=(µ1,µ2,...)

(
X

µ

)
t
µ1
1 t

µ2
2 . . . = (1 + t1)X1(1 + t2)X2 . . .

Evaluating
(X
µ

)
(f) for every µ is the same as evaluating F (t) on f .

Theorem 4.1.7 (Evaluation of
(X
µ

)
). When evaluating f ∈ Polyd(Fq) on class
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functions, there is an equality of generating functions

F (t) = exp

 ∞∑
k=1

∑
p∈Irr|k

deg(p)ε
k

deg(p)
p

tk
k

 (4.1.8)

where Irr|k is the set of irreducible polynomials over Fq whose degree divides k.

Unpacking Equation 4.1.8, for every multi-index µ = (µ1, µ2, . . .) there is an equal-

ity (
X

µ

)
(f) =

∞∏
k=1

1

kµkµk!

 ∑
p∈Irr|k

deg(p)ε
k

deg(p)
p


µk

(f) (4.1.9)

where the evaluation of the right-hand side proceeds by first expanding into monomial

terms in the εg symbols using Equation 4.1.7, then evaluating according to Equation

4.1.6.

With Theorem 4.1.7 it is possible explain the coincidence of the two expectations

in Corollary 4.1.5:

Proposition 4.1.8 (Necklace relations). The equalities E
Polyd(Fq)

[χ] = ESd [χ] for

every χ are equivalent to the Necklace relations

∑
d|k

dNd = qk

where Nd is the number of monic irreducible polynomials of degree d over Fq.

Proposition 4.1.8 shows that in fact Corollary 4.1.5 says nothing new about polyno-

mials. However, the explicit evaluation of χ(f) in Theorem 4.1.7 contains much more

information: one can impose any Sd-invariant restriction on the roots of polynomials

(see examples in §4.3) and get an equality similar to Corollary 4.1.5 – relating the

factorization statistics of those polynomials that satisfy the restriction with various
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expectations calculated over Sn.

Remark 4.1.9 (Statistics on cosets of Young subgroups). The calculation involved

in the evaluation χ(f) is entirely combinatorial, and can be considered independently

from polynomial counting problems. In §4.3.3 we phrase this as an independent com-

binatorial result, which might be of interest in other contexts. Consider the following:

let Hλ ≤ Sd be a Young subgroup and let gHλ be a coset with g ∈ N(Hλ).

Question 4.1.10. What is the distribution of cycle types of permutations in gH?

Theorem 4.3.15 below answers the question and provides additional statistics on

gHλ.

4.2 The Frobenius distribution trace formula

Let G be a finite group. As described above, one can extend the domain of G-class

functions to equivariant permutations of G-orbits by averaging.

Definition 4.2.1 (Evaluating class functions on permutations). Let S be a tran-

sitive G-set (possibly with non-trivial stabilizers) and let k be a field of characteristic

0. For every G-equivariant function σ : S −→ S and every class function χ : G −→ k

define

χ(σ) :=
1

| Stab(s)|
∑
g∈G

g.s=σ(s)

χ(g) (4.2.1)

where s ∈ S is any element and Stab(s) is its stabilizer subgroup.

Note that because χ is a class function, this definition does not depend on the

choice of s, as any other choice reduces to conjugating all elements in the sum.

For the proof of Theorem 4.1.2 we recall the following definitions.
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Definition 4.2.2 (G-equivariant sheaf). A G-action on a sheaf F over a G-space

X̃ is a collections of sheaf morphisms ϕg : (g−1)∗F → F indexed by G that make the

following diagrams commute for every g, h ∈ G:

(g−1)∗(h−1)∗F ∼ //

(g−1)∗ϕh
��

(h−1g−1)∗F
ϕgh
��

(g−1)∗F ϕg
// F

Example 4.2.3 (Constant sheaf with a G-action). Given a G-action on an abelian

group A, construct a G-action on the constant sheaf A over a G-space X̃ by defining

(g−1)∗A
ϕg−→ A to act by g on all stalks, which are canonically isomorphic to A.

Now suppose p : X̃ −→ X is the ramified G-cover discussed in Theorem 4.1.2 and

let F be a sheaf on X̃ equipped with a G-action. Then the push-forward p∗F on X

acquires the G-action

p∗F = (p ◦ g)∗F
'−→ p∗g∗F

'−→ p∗(g−1)∗F
p∗ϕg−−−→ p∗F

which is now acting by sheaf automorphisms.

Definition 4.2.4 (Twisted coefficient sheaf). In the situation described in the

previous paragraph, define the twisted coefficient sheaf corresponding to the G-sheaf F

on X̃ to be the subsheaf of invariants (p∗F)G on X. We denote this sheaf by F/G

(corresponding to X = X̃/G).

This construction is the sheaf analog of the Borel construction in topology: giving

rise to a (flat) twisted fiber bundle from the data of a π1-action on the fiber.

Lemma 4.2.5 (Transfer for F/G). If multiplication by |G| is an invertible transfor-
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mation on F , there is an isomorphism

Hic,ét(XFq ;F/G) ∼= Hic,ét(X̃Fq ;F)G.

Furthermore, since the G-action is Galois-equivariant, so is this isomorphism.

Proof. Denote the inclusion F/G = (p∗F)G ↪→ p∗F by ι and define a transfer mor-

phism (p∗F)G
τ←− p∗F by τ =

∑
g∈G g(·). Clearly the composition τ ◦ ι is multipli-

cation by |G| on (p∗F)G and the reverse composition ι ◦ τ is |G| times the projection

onto the G-invariants of p∗F .

Consider the induced maps on cohomology

Hic(XFq ;F/G)
τ
�
ι

Hic(X̃Fq ;F)

Assuming multiplication by |G| is an invertible transformation on F , these maps induce

the desired isomorphism. Lastly, since the G-action on F is Galois equivariant, so is

τ as a sum of group elements.

With this in hand, the proof of Theorem 4.1.2 follows.

Proof of Theorem 4.1.2. First, observe that by the linearity of the two sides of equation

4.1.2, it will suffice to prove the equality for a spanning set of class functions. In

particular, it will suffice to consider only characters of G-representations.

If ξ is a |G|-primitive root of unity, then Q[ξ] is a splitting field for G, i.e. every

G-representation in characteristic 0 is realized over Q[ξ] (see [Se2, §12.3, Corollary to

Theroem 24]). Since there are only finitely many irreducible representations of G, and

each one of those is represented by finitely many matrices with entries in Q[ξ], then

for every ` excluding a finite set of primes every one of the matrix entries is an `-adic
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integer. Fix any ` prime to q|G| and large enough to have this property, i.e. that every

G-representation in a Q`-vector space is defined over Z`.

Suppose the class function χ is the character of aG-representation in a n-dimensional

Q`-vector space V . Let V denote the constant `-adic sheaf of rank n on X̃Fq , and de-

fine a G-action on V as described in Example 4.2.3. Note that since Frq commutes

with the G-action on X̃Fq , it also commutes with this G-action on V .

The Grothendieck-Lefschetz trace formula [De2, Rapport, Theorem 3.2] applied to

the twisted sheaf V /G tells us in this case that

∑
x∈X(Fq)

Tr
(
(Frq)x y

(
V /G

)
x

)
=
∞∑
i=0

(−1)i Tr
(

Frq y Hic,ét

(
XFq ;V /G

))
(4.2.2)

The rest of the proof is rewriting this equation in the form stated by the theorem.

Starting with the left-hand side, the stalk
(
V /G

)
x is the vector space of G-invariant

functions on p−1(x), and restricting to any choice of lift x̃ ∈ p−1(x) gives an isomor-

phism (
V /G

)
x
∼=
(
V p
−1(x)

)G rx̃−→ V Hx̃ (4.2.3)

where Hx̃ = Stabx̃ and V Hx̃ is the subspace of Hx̃-invariants. Indeed, this follows

immediately from Frobenius reciprocity (since p−1(x) is a transitive G-set, the repre-

sentation V p
−1(x) is the coinduced module coIndG

Hx̃
V ).

Pick an element g0 ∈ G such that Frq(x̃) = g0(x̃). Then for every v ∈ V Hx̃ let

s = r−1
x̃

(v) be the associated G-invariant section, i.e. sg(x̃) = g(v). The following

equalities hold

v
(rx̃)−1
7−→ s

(Frq)x7−→ s ◦ Frq
rx̃7→
(
s ◦ Frq

)
x̃ = sg0(x) = g0(v)

and the trace of (Frq)x coincides with that of g0 acting on V Hx̃ . To compute this trace
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let

PHx̃ =
1

|Hx̃|
∑
h∈Hx̃

h : V −→ V Hx̃

be the usual projection operator. Composing g0 with PHx̃ gives a self-map on V that

restricts to g0 on V Hx̃ and is zero on the complementary representation. Thus the

trace of g0 ◦ PHx̃ agrees with the trace of g0 y V Hx̃ . On the other hand,

Tr(g0 ◦ PHx̃) =
1

|Hx̃|
∑
h∈Hx̃

Tr(g0h) =
1

|Hx̃|
∑
h∈Hx̃

χ(g0h) (4.2.4)

Denoting the induced permutation Frq y p−1(x) by σx, the above average is, by defi-

nition, the evaluation χ(σx). This shows that the left-hand side of the Grothendieck-

Lefchetz trace formula (Equation 4.2.2) coincides with that of the formula that we are

proving.

Now for the right-hand side of Equation 4.2.2. The transfer isomorphism of Lemma

4.2.5 gives

Hic(XFq ;V /G) = Hic(X̃Fq ;V )G.

Recall that V is a constant sheaf, so the cohomology groups can be expressed as

Hic(X̃Fq ;V ) ∼= Hic(X̃Fq ;Q`)⊗ V.

Extend scalars to Q` and decompose Hic(X̃Fq)⊗Q` into generalized Frq-eigenspaces

Hic(X̃Fq ;Q`)⊗Q` = ⊕λ Hic(X̃Fq)λ.

Since Frq commutes with the G-action, the same decomposition holds after tensoring
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with V and restricting to the G-invariant subrepresentation:

(Hic(X̃Fq ;Q`)⊗ V )G = ⊕λ(Hic(X̃Fq)λ ⊗ V )G.

Therefore the trace of Frq is
∑
λ λ dim(Hic(X̃Fq)λ ⊗ V )G. The theorem follows since

dim
(

Hic(X̃Fq)λ ⊗ V
)G

= 〈Hic(X̃Fq)
∗
λ, V 〉G

and V was chosen so that its character is χ.

4.3 Example: the space of polynomials

Consider the Vieta map v : AN → AN given by sending an N -tuple (z1, . . . , zN ) of

geometric points in A1 to the (coefficients of the) unique monic polynomial that has

precisely these roots including multiplicity, i.e.

v(z1, . . . , zN ) = f(t) =
N∏
i=1

(t− zi).

Denote the space of monic degree N polynomials by PolyN . This space is again AN ,

parametrized by the polynomials’ coefficients, and the coordinates of the Vieta map v

are given by the elementary symmetric polynomials. Thus the map v : AN −→ AN

is a ramified SN cover befitting the context of Theorem 4.1.2, where SN acts on the

domain by permuting the coordinates.

By considering SN -invariant subvarieties X̃ ⊂ AN cut out by various constraints,

Theorem 4.1.2 can be used to compute statistics of spaces of polynomials whose roots

are subject to the same constraints. Example of such constraints include the space of

polynomials with
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• root multiplicity bounded by some fixed k;

• all roots colinear; etc.

However, to get concrete information out of Theorem 4.1.2 one must be able to

evaluate χ(f) for every SN -class function χ and every polynomial f ∈ PolyN (Fq).

In particular, if f(t) has multiple roots then it is a ramification point of the Vieta

map, and the value χ(f) is an average over some coset in SN . The current section is

concerned with computing the evaluations χ(f) precisely.

4.3.1 Evaluation of χ(f)

For computing χ(f) on every SN -class function χ, it suffices to compute them on the

following convenient spanning set of class functions.

Definition 4.3.1 (Character polynomials). For every k ∈ N let Xk : SN −→ N be

the cycle-counting function

Xk(σ) = # of k-cycles in σ.

A character polynomial is any P ∈ Q[X1, X2, . . .]. Every character polynomial P gives

rise to class functions P : SN → Q, which will also be denoted by P . Note that Xk ≡ 0

whenever k > N .

Furthermore, for every k, µk ∈ N define a character polynomial

(
Xk
µk

)
=

1

µk!
Xk(Xk − 1) . . . (Xk − µk + 1).

More generally, for every multi-index µ = (µ1, µ2, . . .) define its norm ‖µ‖ =
∑∞
i=k kµk
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and the character polynomial

(
X

µ

)
=

(
X1

µ1

)(
X2

µ2

)
. . . .

Note that
(X
µ

)
= 0 unless µk = 0 for all k > N , so a non-zero product of this form

is necessarily finite.

Note 4.3.2. The class function
(X
µ

)
: SN −→ Q is counting, for every σ ∈ SN , the

number of ways to choose µk disjoint k-cycles in σ for all k simultaneously. Note that

when ‖µ‖ = N there is at most one way to arrange the cycles of σ in this way, so(X
µ

)
is the indicator function of the conjugacy class Cµ specified by having exactly

µk many k-cycles for every k. For this reason it follows that the functions
(X
µ

)
with

‖µ‖ = N form a basis for the class functions on SN . Lastly, if ‖µ‖ > N then there are

not enough disjoint cycles in σ, so
(X
µ

)
≡ 0.

Theorem 4.1.7 describes the evaluation
(X
µ

)
(f) for every polynomial f ∈ PolyN (Fq).

The statement involves the divisibility of f by other polynomials g, and its formulation

used the division symbols εg, recalled below.

Notation 4.3.3 (The algebra of division symbols). For every monic polynomial

g ∈ Fq[t] introduce a formal symbol εg that measures divisibility by g in the following

way: for every polynomial f ∈ Fq[t] set

εg(f) =


1 g|f

0 otherwise.

(4.3.1)

Let Rq be the free Q-vector space spanned by these εg symbols with g ranging over all

monic polynomials in Fq[t]. Extend the evaluation maps f 7→ εg(f) linearly to Rq.
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Furthermore define multiplication on the symbols εg by

εg · εh = εgh. (4.3.2)

turning Rq into a Q-algebra. One should take care and observe that the evaluation

f 7→ εg(f) is not multiplicative on Rq. In fact, with respect to the evaluation on any

f ∈ Fq[t], every element εg is nilpotent. This nilpotence property turns out to be an

essential part of Theorem 4.1.7.

One can evaluate all functions
(X
µ

)
simultaneously using a generating function: set

F (t) = F (t1, t2, . . .) :=
∑

µ=(µ1,µ2,...)

(
X

µ

)
t
µ1
1 t

µ2
2 . . .

This series evaluates on a polynomial f ∈ PolyN (Fq) term-wise, that is:

F (t)(f) =
∑
µ

(
X

µ

)
(f) t

µ1
1 t

µ2
2 . . .

and the resulting series is generated by that coefficients that we wish to compute.

Theorem 4.1.7 then provides an explicit description of all evaluations by

F (t)(f) = exp

 ∞∑
k=1

∑
p∈Irr|k

deg(p)ε
k

deg(p)
p

tk
k

 (f) (4.3.3)

with Irr|k being the set of monic irreducible polynomials of degree dividing k. Re-

call that to evaluate an element of Rq on f one must first expand any product into

monomials in the εg symbols, and then evaluate according to the divisibility of f by g.

We illustrate how to use this result in a couple of examples.

Example 4.3.4 (Square-free polynomials). Consider the special case where f ∈
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PolyN is square-free. This case is simple since such f are unramified points of the

Vieta map, and furthermore one does not encounter the non-multiplicative behavior

of the evaluation on εg symbols.

One the one hand, since f is an unramified point, the Frobenius permutation on

the roots determines an element gf ∈ SN unique up to conjugation, and by definition

χ(f) = χ(gf ). In particular, the evaluation is multiplicative in χ. Elementary Galois

theory shows that for χ = Xk the value Xk(f) is the number of degree k irreducible

factors of f . Using these facts one can easily write down a formula for
(X
µ

)
(f) that

does not go though Theorem 4.1.7. However, the point of this example is to see how

to use Equation 4.1.9 in calculations, so we shall ignore this argument.

For every irreducible polynomial p(t), evaluating the symbol εpr on f would give 0

whenever r > 1, as f will not be divisible by such powers of p. Thus in Equation 4.1.9,

the only contributions to the sum over p ∈ Irr|k come from p of degree k precisely. We

can therefore simplify the expression and get that on the set of square-free polynomials

the following two functions coincide:

(
X

µ

)
=
∞∏
k=1

1

µk!
(

∑
p∈Irr=k(Fq)

εp)
µk (4.3.4)

where Irr=k(Fq) is the set of irreducible polynomials of degree equal to k over Fq.

Observe the following two properties of this product.

1. If p and q are coprime polynomials then εp(f) ·εq(f) = εpq(f) for every f . There-

fore, since the k-th term of the product in Equation 4.3.4 involves only irreducible

polynomials of degree k, the different terms evaluate on f multiplicatively, i.e.

 ∞∏
k=1

1

µk!
(

∑
p∈Irr=k(Fq)

εp)
µk

 (f) =
∞∏
k=1

 1

µk!
(

∑
p∈Irr=k(Fq)

εp)
µk(f)


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and thus each term may be evaluated separately.

2. For each k, use again the fact that any power (εp)
r = εpr evaluates to 0 on

a square-free polynomial whenever r > 1. Expanding the µk-th power and

eliminating high powers of εp’s

1

µk!
(

∑
p∈Irr=k(Fq)

εp)
µk =

∑
{p1,...,pµk}⊂Irr=k(Fq)

εp1...pµk

where the sum goes over all sets of degree-k irreducibles of cardinality µk. Since

the ε symbols evaluate to either 1 or 0 on f , it follows that the sum evaluates to

the number of ways to choose µk distinct irreducible factors of f with degree k.

Corollary 4.3.5. If f is a square-free polynomial then

(
X

µ

)
(f) = # ways to choose µk many degree k irreducible factors of f , ∀k.

Example 4.3.6 (Degree 1 character polynomials). The evaluation of Xk is most

straightforward. This is the expression
(X
µ

)
with µk = 1 and µj = 0 for all j 6= k. In

this case Equation 4.1.9 simplifies to

Xk =
1

k

∑
p∈Irr|k

deg(p)ε
k

deg(p)
p =

∑
d|k

d

k

∑
p∈Irr=d

εpk/d .

When evaluating this expression on a polynomial f , since ε-symbols evaluate to either

0 or 1, the sum becomes a simple count:

Xk(f) =
∑
d|k

d

k
#{ irreducible degree d factors that divide f at least k/d times }.

(4.3.5)

Considering the two extreme cases: if f is square-free this reduces back to the count

128



of degree k irreducible factors; and if f = p(t)r with p irreducible of degree d then

Xd·`(f) = 1
` if r ≥ ` and 0 otherwise.

Remark 4.3.7. The origin of the sum in Equation 4.3.5 is clear when one considers the

stack quotient [AN/SN ]: the Vieta map factors though the universal map from the

quotient stack to the quotient variety

[AN/SN ] −→ AN/SN = PolyN

and the fiber of this map over f contains multiple points that each contribute a term to

Xk(f). At the same time, the points on the stack have automorphisms which account

for the denominators.

Proof of Theorem 4.1.7. Let f(t) be a monic polynomial over Fq. Suppose f decom-

poses as

f = p1(t)r1 . . . pn(t)rn

where the pi(t)’s are the distinct irreducible factors of f and set di = deg(pi). Over

the algebraic closure Fq every factor pi(t) decomposes further as a product of linear

terms

pi(t) = (t− αi,1)(t− αi,2) . . . (t− αi,di)

with all αi,k distinct. Thus f(t) is the product

f(t) =
∏

1≤i≤n
1≤k≤di

(t− αi,k)ri .

and the degree of f is N =
∑n
i=1 diri.
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Under the Vieta map v : AN −→ AN

(z1, . . . , zN ) 7→ p(t) = (t− z1) . . . (t− zN )

the polynomial f(t) is the image of the N -tuple

αf := (α1,1, . . . , α1,1︸ ︷︷ ︸
r1 times

, α1,2, . . . , α1,2︸ ︷︷ ︸
r1 times

, . . . , α1,d1 , . . . , α1,d1︸ ︷︷ ︸
r1 times

, α2,1, . . . , α2,1︸ ︷︷ ︸
r2 times

, . . .).

Under the SN -action of permuting the coordinates, the stabilizer of αf is the Young

subgroup

Hf := Sr1 × . . .× Sr1︸ ︷︷ ︸
d1 times

× . . .× Srn × . . .× Srn︸ ︷︷ ︸
dn times

= (Sr1)d1 × . . . (Srn)dn .

For clarity of notation, relabel the points of the set {1, . . . , N} by choosing a bijection

Tf = {(i, j, k) : 1 ≤ i ≤ n, 1 ≤ j ≤ ri, k ∈ Z/diZ}
∼=−→ {1, . . . , N}

and thinking of SN as the symmetry group of Tf . One should think of the 3-tuple

(i, j, k) ∈ Tf as corresponding to the root αi,k of the j-th copy of pi(t) (that is, i indexes

the irreducible factor, j indexes which of the multiple copies of pi one is considering,

and k indexes the roots of pi).

The Frobenius Frq acts on the roots of f(t) by the cyclic permutation αi,k 7→ αi,k+1,

where the second subscript k belongs to Z/diZ. Thus the Frq-action is lifted by the

permutation τ ∈ SN given by τ(i, j, k) = (i, j, k + 1).

Our task is now to compute the value of χ(σf ) for every class function χ, i.e. the
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average value of χ on the coset τHf . Define a new function χ(τ) : SN −→ Q by

χ(τ)(h) = χ(τ · h).

Then it is clear that χ(f) =
1

|Hf |
∑
h∈Hf

χ(τ)(h) = EHf [χ(τ)] and that the operation

χ 7→ χ(τ) commutes with arithmetic operations on functions. Thus to evaluate f on

arbitrary character polynomials, one can start by understanding the function X
(τ)
k .

For this purpose introduce the following notation.

Definition 4.3.8 (The projection operator mi0). For every 1 ≤ i0 ≤ n (i.e. for

every irreducible factor pi0|f) define a projection operator mi0 : Hf −→ Sri0
as follows.

An element of Hf =
∏
i,k Sri is given by a sequence of permutations (hi,k)i,k where

hi,k ∈ Sri. Define

mi0 : (hi,k)i,k 7→ hi0,di · hi0,di−1 · . . . · hi0,2 · hi0,1.

Claim 2. For every r ∈ N the function X
(τ)
r can be presented as a sum

X
(τ)
r =

∑
1≤i≤n
di|r

X r
di
◦mi. (4.3.6)

Proof. Fix an element h = (hi,k)i,k ∈ Hf . The value Xr(τh) is the number of r-

cycles the permutation τh ∈ τHf has when acting on the set Tf . The action of this

permutation on an element (i, j, k) ∈ Tf is by

(i, j, k)
h7→ (i, hi,k(j), k)

τ7→ (i, hi,k(j), k + 1).

Observe that the i-value is fixed by this action. Thus every cycle of τh has a well-
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defined i-value, and there is a decomposition

X
(τ)
r =

n∑
i=1

X
(i)
r

where X
(i)
r counts only the number of r-cycles with i-value equal to i. It therefore

remains to show that X
(i)
r = X r

di
◦mi if di | r and 0 otherwise.

Fix i. An element (i, j, 1) ∈ Rf belongs to an r-cycle if it is fixed by (τh)r and not

by any smaller power of τ · h. Compute

(τh)m(i, j, 1) = (i, (hi,m · . . . · hi,2 · hi,1)(j),m+ 1)

so for (i, j, 1) to be fixed, demand that m+1 ≡ 1 mod di, i.e. that di | m. Restricting

to this case, write m = ` · di. Now the j-value after applying (τh)m is

(hi,m · . . . · hi,1)(j) = (hi,di · . . . · hi,1)`(j) = mi(h)`(j)

This shows that (i, j, 1) belongs to an r cycle if and only if di | r and j belongs to an

r
di

-cycle of mi(h).

Since every orbit of τ · h includes an element of the form (i, j, 1) (as any triple

(i, j, k) goes to an element of the form (i, j′, 1) after (di − k + 1) applications of τh),

one only need to count the number of such elements that belong to r-cycles. By the

previous paragraph, the number of j’s for which (i, j, 1) belong to r-cycle is equal to

the number of r
di

-cycles of mi(h) when di | r, and that otherwise there are none. Thus
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the proclaimed equality follows

X
(i)
r (τh) =


X r
di

(mi(h)) di | r

0 otherwise

.

We are now ready to compute
(X
µ

)
(f) for every multi-index µ. Our calculation

proceeds using the generating function introduced above. Note that for every fixed

N , the class functions Xk with k > N are identically 0, so the function F (t) is really

a polynomial in the variables t1, . . . , tN . Throughout the proceeding calculation one

should remember that all expressions involved are really finite.

Apply the operation χ 7→ χ(τ) to F termwise: F (τ)(t) =
∑
µ

(X
µ

)(τ)
tµ. Using the

observation of Claim 2 it follows that

F (τ) =
∞∏
k=1

(1 + tk)
∑n
{i:di|k}

Xk/di
◦mi

=
∞∏
k=1

n∏
{i:di|k}

(1 + tk)
Xk/di

◦mi =
∞∏
i=1

∞∏
`=1

(1 + tdi`)
X`◦mi .

where in the last equality we relabeled k = ` · di to include only pairs (i, k) in which

di|k. One now notices that the function F (τ) factors though the product of projections

m = (m1, . . . ,mn) : Hf −→ Sr1 × . . .× Srn .

The next observation simplifies the problem greatly.

Claim 3. The product of projections

m = (m1, . . . ,mn) : Hf −→ Sr1 × . . .× Srn
133



is precisely an
|Hf |

|Sr1×...×Srn |
-to-1 function. In other words, the map m is measure

preserving between the two uniform probability spaces.

Proof. Fix any element (σ1, . . . , σn) ∈ Sr1 × . . . × Srn . Then for every i and every

choice of elements (hi,1, . . . , hi,di−1) ∈ Sdi−1
ri there exists a unique hi,di that satisfies

the equality

hi,di · hi,di−1 · . . . · hi,1 = σi

namely hi,di = σi · (hi,di−1 · . . . · hi,1)−1. Since the terms with different index i do not

appear in this expression, they may be chosen independently.

It follows that there is a bijection
∏n
i=1 S

di−1
ri

∼= m−1(σ1, . . . , σn), thus demon-

strating the claim.

The fact that F (τ) factors through the measure preserving map m allows one to

compute the Hf -expected value by computing it on
∏n
i=1 Sri instead:

EHf [F (τ) ◦m] = E∏n
i=1 Sri

[F (τ)] =
n∏
i=1

ESri [
∞∏
`=1

(1 + tdi`)
X` ]. (4.3.7)

The derivation of our formula follows from the following key observation.

Theorem 4.3.9. Fix r ∈ N and let ε be a formal nilpotent element such that εr+1 = 0

but εr 6= 0. Then for every d ∈ N there is an equality

Gd,r(t, ε) := ESr [
∞∏
`=1

(1 + ε`td`)
X` ] = exp

(∑
`

ε`
td`
`

)
. (4.3.8)

Furthermore, the introduction of ε to the left-hand side of the equation does not

cause any loss of information in the sense that replacing every nonzero power of ε by 1

recovers the expectations. Formally, denoting the ring Q[t1, t2, . . .] by A, the A-module
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map A[ε]/(εr+1)
φε−→ A defined by εj 7→ 1 for all j ≤ r sends

φε : Gd,r(t, ε) 7→ Gd,r(t, 1).

The latter function is the generating function of the expectations ESr
[(X`/d

µ

)]
(defined

to be 0 unless d|`).

Proof. Expand the left-hand side

∞∏
`=1

(1 + ε`td`)
X` =

∑
µ

(
X

µ

)
ε1µ1+2µ2+...t

µ1
d t

µ2
2d . . . =

∑
µ

(
X

µ

)
ε‖µ‖tµ1d t

µ2
2d . . . . (4.3.9)

Recall that if ‖µ‖ > r then
(X
µ

)
≡ 0, so setting εi = 1 for all i ≤ r is the same as

having 1’s in place of ε everywhere.

Use the following calculation of [CEF2].

Fact 4.3.10 ( In the proof of [CEF2, Proposition 3.9] ). If µ is a multi-index with

‖µ‖ ≤ r then

ESr

[(
X

µ

)]
=
∞∏
`=1

1

`µ`µ`!
.

When multiplying this equation by ε‖µ‖ one gets an equality that holds for all µ.

Thus when evaluating the expectation on the generating function

ESr

[∑
µ

(
X

µ

)
ε‖µ‖tµ1d t

µ2
2d . . .

]
=
∑
µ

(εtd)µ1

1µ1µ1!

(ε2t2d)µ2

2µ2µ2!
. . . =

∞∏
`=1

∞∑
µ`=1

1

µ`!

(
ε`td`
`

)µ`

=
∞∏
`=1

exp

(
ε`td`
`

)
.

To get the stated form of this expression, use the multiplicative property of the expo-

nential series.
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Apply this observation to the calculation of EHf [F (τ)]: introduce n nilpotent ele-

ments εi with respective order ri + 1 and let φ be the map Q[t]-linear map that sends

(εi)
j 7→ 1 whenever j ≤ ri. Then

EHf
[
F (τ)(t)

]
=

n∏
i=1

ESri [
∞∏
`=1

(1 + tdi`)
X` ] = φ

[
n∏
i=1

exp

(∑
`

ε`i
tdi`
`

)]

= φ

[
exp

(
n∑
i=1

∑
`

ε`i
tdi`
`

)]
.

Relabel the terms di` = k back by summing only over {i : di|k} and replacing ` = k/di.

The resulting expression becomes

EHf
[
F (τ)(t)

]
= φ

exp

 ∞∑
k=1

∑
{i:di|k}

ε
k/di
i di

tk
k

 . (4.3.10)

To bring the expression to the desired form, replace the εi’s with the symbols

εp ∈ Rq introduced above. Recall that the (Sri)
×di-factor of Hf corresponds to the

irreducible factor pi of degree di that divides f precisely ri times. Thus, using the

symbol εpi and its evaluation of f as defined in Equation 4.3.1, there is an equality

φ(εdi ) = εdpi(f) =


1 d ≤ ri

0 otherwise

.

More generally, φ
[
ε
j1
1 . . . ε

jn
n

]
= 1 if ji ≤ ri for all i and is 0 otherwise. This is precisely

the value of ε
j1
p1 . . . ε

jn
pn = ε

p
j1
1 ...p

jn
n

evaluated on f , since the pi’s are coprime. It follows

that Equation 4.3.10 can be written with εpi in the place of εi everywhere.

For every other irreducible polynomial p 6= p1, . . . , pn the evaluation εp(f) = 0, so

adding all such symbols into Equation 4.3.10 does not change the resulting evaluation.
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It does, however, allow us to write the sum uniformly without making any reference

to the divisors of f . This is the sought after form of the generating function.

Lastly, to get the individual expectations
(X
µ

)
(f) = EHf

[(X
µ

)(τ)
]

one needs only

to look compute the µ-th partial derivative with respect to t. This resulting expression

is as stated.

4.3.2 The case of all monic polynomials

We now complete the calculation in the case where one does not impose any restrictions

on roots, i.e. we are considering the SN action on the whole of AN . The cohomology

groups of AN are very simple: they are known to be Q`(0) in dimension 0 and vanish

in all higher degrees. Moreover, the induced SN -action on these cohomology groups is

trivial. Thus Theorem 4.1.2 reduces to the surprising Corollary 4.1.5.

Proof of Corollary 4.1.5. For every SN -class function χ Theorem 4.1.2 gives an equal-

ity

1

qN

∑
f∈PolyN (Fq)

χ(σf ) = 〈H0(AN ;Q`), χ〉SN =
1

N !

∑
g∈SN

1 · χ(g).

Remark 4.3.11. In Corollary 4.1.5, there is no reason to restrict attention to the group

action SN y AN : one can more generally consider any subgroup of Aut(AN )(Fq) =

AffN (Fq) and get a similar result:

Theorem 4.3.12 (Equal expectation for G ≤ AffN (Fq)). Let a subgroup G ≤

AffN (Fq) act on AN naturally, and denote the resulting quotient AN/G by XG. Then

every G-class function χ induces random variables on the two uniform probability
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spaces XG(Fq) and G, and these satisfy

∣∣XG(Fq)
∣∣

qN
EXG(Fq)[χ] = EG[χ].

We will not pursue this idea any further.

Example 4.3.13 (Case χ =
(X
µ

)
). The explicit form of

(X
µ

)
(f) given by Theorem

4.1.7 can be used to unpack Equation 4.1.5 and get definite facts regarding polynomials.

Claim 4. Equation 4.1.5 is equivalent to the well known Necklace relations: for every

degree d let Nd be the number of degree d monic irreducible polynomials in Fq[t], then

for every k ∈ N one has ∑
d|k

dNd = qk. (4.3.11)

More specifically, for every multi-index µ = (µ1, µ2, . . .) the following equality holds

E
PolyN (Fq)

[(
X

µ

)]
= ESN

[(
X

µ

)] ∞∏
k=1

 1

qk

∑
d|k

dNd

µk . (4.3.12)

Proof. The major challenge in computing the evaluation
(X
µ

)
(f) directly is that one

has to deal with the irreducible decomposition of f , and these can take many forms.

It turns out that this challenge disappears completely when one in only interested in

the average value over all f ∈ PolyN (Fq), as the following observation shows.

Lemma 4.3.14 (Average of εg). Let E denote the expectation over the set PolyN (Fq)

of monic polynomials of degree N as a uniform probability space. Then for every

polynomial g, the symbol εg satisfies

E[εg] =


1

qdeg(g)
deg(g) ≤ N

0 Otherwise.

(4.3.13)

138



Stated equivalently, let ε be a formal nilpotent element of order N + 1. Then the

Q-algebra homomorphisms Rq
Λ−→ Q[ε]/(εN+1) defined by linearly extending

Λ : εg 7→
(
ε

q

)deg(g)

∀g ∈ Fq[t]

and the Q-module map φε : Q[ε]/(εN+1) −→ Q defined by sending εj 7→ 1 for all

j ≤ N satisfy the relation

φε ◦ Λ = E.

Thus the expectation factors through the homomorphism Λ, which sends all εg sym-

bols to a single expression involving ε.

Proof. First, if deg(g) > N then εg ≡ 0 on PolyN and thus E[εg] = 0. Next, if

deg(g) ≤ N , then since Fq[t] is a UFD, division gives a bijection

{
f ∈ PolyN (Fq) s.t. g|f

}
←→ Poly(N−deg(g))(Fq) .

Thus the number of monic polynomial divisible by g is precisely qN−deg(g). Evaluating

the expectation amounts to dividing this count by the cardinality of PolyN (Fq), which

is qN .

Let F (t) be the generating function of the
(X
µ

)
’s as introduced in the previous

section. Recall that by Theorem 4.1.7

F (t) = exp

 ∞∑
k=1

∑
p∈Irr|k

deg(p)ε
k

deg(p)
p

tk
k


as functions on PolyN (Fq). Using Lemma 4.3.14 proved above, one can readily compute

E[F (t)] by first applying Λ: Since the evaluation Λ : εg 7→
(
ε
q

)deg(g)
is a Q-algebra
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homomorphism, it commutes with taking the exponential series

Λ(F ) = exp

 ∞∑
k=1

∑
p∈Irr|k

deg(p)Λ(εp)
k

deg(p)
tk
k

 = exp

 ∞∑
k=1

∑
p∈Irr|k

deg(p)

(
ε

q

)k tk
k

 .

Collect all terms that depend only on k

exp

 ∞∑
k=1

εktk
k
· 1

qk

∑
p∈Irr|k

deg(p)

 .

Reindex the sum
∑

p∈Irr|k

deg(p) based on the degrees d = deg(p), and observe that it is

precisely the sum
∑
d|k dNd that appears in the Necklace relations.

By differentiation with respect to t one finds that the µ-th coefficient of this gen-

erating function is

Λ

(
X

µ

)
=
∞∏
k=1

εkµk

kµkµk!
·

 1

qk

∑
d|k

dNd

µk = ε‖µ‖
∞∏
k=1

1

kµkµk!
·

 1

qk

∑
d|k

dNd

µk .
Furthermore, Fact 4.3.10 produced an equality

φε

(
ε‖µ‖

∞∏
k=1

1

kµkµk!

)
= ESN

[(
X

µ

)]

which produces the desired result using φε ◦ Λ = E
PolyN (Fq).

4.3.3 Statistics on cosets of Young subgroups

One can rephrase Theorem 4.1.7 as a purely combinatorial statement regarding the

cycle-decomposition statistics of cosets of Young subgroups. This could be stated as

follows.
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As stated above, for every multi-index µ = (µ1, µ2, . . .), the character polynomial(X
µ

)
counts the number of ways to arrange cycles into sets of µk many k-cycles for

every k.

Theorem 4.3.15 (Statistics on Young cosets). Let H = Sλ1 × . . . × Sλm be a

Young subgroup of SN . Consider a coset gH where g ∈ SN is in the normalizer of H

(i.e. gH = Hg). Then conjugation by g induces a permutation τ of the Sλi factors,

say

H = Sd1r1 × . . .× S
dn
rn

and τ cyclically permutes the factors in each Sdiri .

Then for every multi-index µ = (µ1, µ2, . . .), the expected value of
(X
µ

)
on the coset

gH is given by the expression

ESN

[(
X

µ

)]
Φ

 ∞∏
k=1

 ∑
{i:di|k}

ε
k
di
i di

µk (4.3.14)

where the symbol εi is a formal nilpotent element of order ri + 1, and one eliminates

these applying the Q-linear transformation

Φ : Q[ε1, . . . , εn]/(εri+1
i ) −→ Q , Φ : (εi)

j 7→ 1 ∀j ≤ ri.

In particular, for every cycle type µ = (µ1, µ2, . . . , µN ), the number of elements in

gH with cycle-type µ is given by the expression

|H| · |Cµ|
N !

Φ

 N∏
k=1

 ∑
{i:di|k}

ε
k
di
i di

µk (4.3.15)

where Cµ is the conjugacy class of all elements with cycle-type µ, and εi and Φ are as

above.
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Example 4.3.16 (Expected number of k-cycles in gH ⊆ SN ). Let H and g be as

in the statement of Theorem 4.3.15. Compute the expected number of k-cycles in an

element σ ∈ gH, i.e. the average of Xk over gH, using Equation 4.3.14 with µk = 1

and µj = 0 for all j 6= k. It takes the form

1

k
Φ

 ∑
{i:di|k}

ε
k/di
i di

 =
1

k

∑
{i:di|k}
diri≥k

di.

Proof of Theorem 4.3.15. The proof given for Theorem 4.1.7 applies more generally in

this case: replacing the set of roots {αi,k:1≤i≤n,k∈Z/diZ} by a formal set of pairs {(i, k) :

1 ≤ i ≤ n, k ∈ Z/diZ}, and the Frobenius permutation by the formal permutation

τ : (i, k) 7→ (i, k + 1), the proof proceeds as presented above.

This shows that our derivation leading up to Equation 4.3.10 applies and the ex-

pected values of
(X
µ

)
on gH are given by the generating function

Φ

exp

 ∞∑
k=1

∑
{i:di|k}

ε
k/di
i di

tk
k

 .
Extract the µ-th coefficient by derivation with respect to t. The resulting Taylor

coefficient is

Φ
∞∏
k=1

1

kµkµk!

 ∑
{i:di|k}

ε
k/di
i di

µk .
Now use Fact 4.3.10 to substitute

∏∞
k=1

1
kµkµk!

= ESN
[(X
µ

)]
and arrive at the final

form of our equation.

Lastly, the statement regarding the case ‖µ‖ = N follows from the observation that(X
µ

)
is the indicator function of Cµ.
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