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1 Introduction

The classical Grothendieck-Lefschetz fixed point formula relates the number of points on a variety over a finite
field to the trace of the Frobenius automorphism on its étale cohomology. By considering a more refined result for
cohomology with local coefficients, we can compute more subtle statistics other than just the number of points
on the variety. Thus we can translate questions about the arithmetic of Fq into questions about cohomology and
vice versa.

In many natural examples, the cohomology of sequences of spaces exhibits a form of stability called repre-
sentation stability. Translating these stability results into the world of arithmetic using the Lefschetz formula
yields asymptotic stabilization in arithmetic counts, and conversely, arithmetic stabilization implies results about
representation-stable cohomology. In this topic proposal I will introduce the archetypal example of this phe-
nomenon and the tools involved in the proof.

1.1 The space of square free polynomials

For a field k = C or Fq, define

Polyn(k) =

{
(a0, . . . , an−1) ∈ kn | P(t) = tn +

n−1∑
i=0

ait
i has no repeated roots in k

}
= kn − {∆ = 0}

Here, ∆ denotes the discriminant.
This is a quasi-projective variety defined over Z, and if k = C, it is also a complex analytic manifold. We will

use representation stability to study its cohomology with local coefficients, and see how this information implies
the stabilization of a large class of statistics for polynomials over finite fields. In §1.2 we start by considering the
untwisted case to illustrate how topology and arithmetic are reflected in each other.

1.2 Point counts and the cohomology of Polyn

On the arithmetic side, we consider the varieties Polyn(Fq) of polynomials over finite fields. The main invariant
of these spaces is their cardinality # Polyn(Fq). This can be computed combinatorially, but we will use étale
cohomology and the Grothendieck-Lefschetz fix point formula, since this will later allow us to apply representation
stability.

In an attempt to solve the Weil conjectures, Grothendieck constructed the étale cohomology theory for
schemes, giving a bridge between arithmetic and topology. On the one hand, this theory is geometric enough, as
demonstrated by the following.

Fact 1 (Artin’s comparison theorem). If X is a smooth nonsingular algebraic variety defined over C, then for
every finite group Λ there exists an natural isomorphism

Hi(Xét; Λ)
∼−→ Hi(X(C); Λ)
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where the codomain is singular cohomology with coefficients in Λ.

By taking the direct limit over Λ = Z/nZ and tensoring with Q` we get an isomorphism of the cohomology
groups with coefficients in Q`. Thus étale cohomology captures the same geometric information as singular
cohomology.

On the other hand, étale cohomology is defined by purely algebraic means. Thus it can be applied to finite
fields. Let q be some prime power, Fq the field of q elements and Fq the algebraic closure. The map Frobq(x) = xq

is the Frobenius automorphism on Fq, and its fixed points are precisely the elements of Fq. Similarly, for any
variety X defined over Fq there is an induced Frobenius automorphism, which on every affine chart is given by

Frobq(x1, . . . , xn) = (x1
q, . . . , xn

q).

Since X is defined using equations with coefficients in Fq and those are fixed by Frobq, this map is an algebraic
automorphism of X whose fixed points are precisely X(Fq).

To compute the number of these fixed points, we will apply the Grothendieck-Lefschetz fix point formula for
the étale cohomology

#X(Fq) = # fix(Frobq) =
∑
i≥0

(−1)i tr
(

Frobq
∗|Hi

ét(X;Q`)

)
. (1)

However, this formula applies only to projective schemes, and Polyn is affine, so we must replace Hi
ét with com-

pactly supported étale cohomology. In many important examples, X = Polyn included, the map Frobq
∗ acts on

Hi
c by the scalar q−(n−i) where n = dim(X). By Poincaré duality, dimQ`

(
H2n−i
c (X;Q`)

)
= dimQ`

(
Hi
ét(X;Q`)

)
,

which, together with Artin’s comparison, gives us a precise formula for # Polyn(Fq) whose input is purely topo-
logical:

#X(Fq) =
∑
i≥0

(−1)iqn−idim
(
Hi(X(C))

)
(2)

Now we consider topology. Arnol’d studied the space Polyn(C) as a smooth manifold and proved in [1] that
its rational cohomology is Q in dimensions i = 0 and 1 and vanishes otherwise.

Plugging this in, we get the well-known point count # Polyn(Fq) = qn − qn−1.

1.3 The Sn-cover Confn(C)
Definition 2. Let Confn(C) be the space of n-ordered tuples of distinct points in the plane C, topologized as a
subspace of Cn.

This space is the complement of the hyperplanes zi = zj for 1 ≤ i 6= j ≤ n, and thus it is also an algebraic
variety defined over Z. The group Sn acts topologically freely on Confn by permuting the coordinates, and the
quotient Confn /Sn is the configuration space of n unordered points in the place. There is a natural identification
between this quotient Confn/Sn and Polyn given by

{z1, . . . , zn} 7→ P (t) = tn − (z1 + . . .+ zn)tn−1 + . . .+ (−1)n(z1 · . . . · zn) =

n∏
i=1

(t− zi)

Thus Confn is a regular Sn-covering space of Polyn. The fiber above a polynomial P (t) ∼ {z1, . . . , zn} is the set
of all orderings of these roots {(zσ(1), . . . zσ(n)) | σ ∈ Sn}. Any two such orderings can be connected by a path in
Confn, whose image down in Polyn is a loop based at P . Thus any permutation of the roots is realized by some
based loop in Polyn.
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The same construction works over any algebraically closed field k. In particular we consider Fq and the action
of Frobq on this cover. A polynomial P (t) ∈ Fq[t] is fixed by Frobq if and only if all its coefficients are in Fq, in
which case Frobq acts on the set of it’s roots by a permutation σP . Every orbit is the set of roots of an irreducible
factor of P . Thus the number of k-cycles in σP is equal to the number of degree-k irreducible factors of P .

As we shall see below, this information together with the Grothendieck-Lefschetz fixed point formula reveals
many arithmetic statistics of polynomials over Fq. For example, we will be able to compute the expected number
of degree k irreducible factors of a random polynomial P ∈ Fq[t] using cohomological information about Confn(C).

2 Twisted coefficients and the Lefschetz fixed point formula

In order to compute the more subtle statistics we must replace the cohomology theory used above by cohomology
with twisted coefficients.

2.1 Local systems and cohomology with twisted coefficients

Let B be a locally path-connected space and V a finite dimensional vector space over some field k.

Definition 3. A local coefficient system with fiber V is a fiber bundle whose fiber is V , on which trivialization
along paths is invariant under homotopy with fixed endpoints.

Suppose p : B̃ → B is a finite regular G-cover and E a local system over B with fiber V . The pullback
Ẽ = p∗(E) is again a local system over B̃. If E pulls-back to the trivial V -bundle, then the deck group G acts
on the fiber V via the identification

Ẽb̃ = Eb = Ẽg(b̃)

for all b ∈ B, b̃ ∈ p−1(b) and g ∈ G.

Given a regular G-cover p : B̃ → B as above, every G-representation V arises in this way from some local

system E → B by defining E =
(
B̃ × V

)
/G where G acts diagonally on the two factors, and the projection map

to B is obvious one.

Example 4. Let B be the space of polynomials Polyn(C) discussed above. For any polynomial f ∈ Polyn
let R(f) denote the set of its roots {z1, . . . , zn} ⊂ C. For some field k define the following k-bundle R over
B = Polyn: the fiber above the point f ∈ B is the n-dimensional k-vector space of functions s : R(f) → k with
pointwise operations. This bundle is flat, since polynomials g ∈ B very close to f will have roots very close to
those of f and thus we can identify R(f) with R(g) canonically near f and trivialize the bundle accordingly.

This is a nontrivial bundle, since going around a loop γ that permutes the roots by some permutation
σ : R(f)→ R(F ) will take a function s : R(f)→ k to the permuted function s ◦ σ.

Since the action of π1(Polyn) = Bn on the fiber of R factors through the the quotient Bn → Sn, the pullback
of R to a bundle over Confn is trivial: the fiber over (z1, . . . , zn) is the set of k-valued functions on z1, . . . , zn
and thus canonically identified with functions on the set {1, . . . , n} via the bijection i↔ zi.

A deck transformation σ ∈ Sn takes the basepoint (z1, . . . , zn) to the point (zσ(1), . . . , zσ(n)) and the fibers
over these points are identified via the identification with the fiber over the unordered set {z1, . . . , zn}. Thus the
identification sends the function s : i 7→ zi 7→ s(zi) to the function s′ : i 7→ zσ(i) 7→ s(zσ(i)), i.e. it send s to s ◦ σ.

Definition 5. Let B be a space and E a local system over B with fiber V . The cohomology of B with coefficients
in the local system E is the cohomology whose n-cochains Cn(B;E) are functions on Cn(B) that for every singular
simplex σ in B assign a constant section σ̃ of E over σ. Define addition and scalar multiplication on these sections
by the pointwise operations in every fiber.
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For a trivial bundle this reduces to the standard singular cohomology with coefficients in V .
Assume that for the G-cover p : B̃ → B, the pullback bundle Ẽ is trivial and there is an induced G-action on

V . We will now show that the dimension of Hi(B;E) can be computed from the characters of the G-reps V and

Hi(B̃;V ), thus representation stability results will apply.

If char(K) = 0, we have a transfer map which identifies Hi(B;E) with the G-invariant part of Hi(B̃; Ẽ) =

Hi(B̃;V ). However, unlike the untwisted case, the deck group G acts on the coefficients V as well as on the space

B̃. Thus we get the following presentation for the cohomology of B.

Proposition 6. Hi(B;E) ∼= Hi(B̃;V )G ∼=
(

Hi(B̃;C)⊗C V
)G ∼= Hi(B̃;C)⊗C[G] V,

where the middle isomorphism comes from the universal coefficient theorem.

The dimension of these spaces can thus be expressed in terms of their characters as G-representations.

Corollary 7. dimC Hi(B̃;C)⊗G V = dimC HomG

(
V ∗,Hi(B̃;C)

)
= 〈V ∗,Hi(B̃;C)〉G

where V ∗ is the dual representation to V and the inner product is the standard one.

Remark 8. We can replace the bundle E → B with the sheaf of it’s locally constant sections, denoted by FE .
This sheaf is clearly locally constant, and the cohomology of B with coefficients in F is the same as the previously
defined cohomology with twisted coefficients Hi(B;E).

This formulation of cohomology with twisted coefficients makes sense in the setting of schemes, and will allow
us to apply the results to étale cohomology.

2.2 Twisted Lefschetz fixed point formula

To find a formula for the arithmetic statistics, we wish to apply the Lefschetz formula to twisted cohomology.
Let p : B̃ → B be a finite regular G-cover, and E → B a local system that pulls back to a trivial V -bundle.

Let B̃
f̃→ B̃ be a map that commutes with the deck action. Then it induces a map B

f−→ B such that f ◦p = p◦ f̃ .
Similarly, F̃ = f̃ × IdV is an bundle map of Ẽ = B̃×V that commutes with the deck action and induces a bundle

map E
F−→ E. These bundle maps induce pullbacks on cochains which descend to endomorphisms on cohomology

with twisted coefficients.
Consider a fixed point b ∈ B of f . The map f̃ permutes the fiber p−1(b) say by taking a point b̃ to gb.b̃.

The bundle map F then induces an automorphism of the E-fiber Eb ' V which we will denote by Fb. This
automorphism coincides with g−1

b since

F ([b′, v]) = [f(b′), v] = [g.b′, v] = [b′, g−1v]

The Lefschetz fix point formula relates the local information about the behavior of F at fixed points of f to
the global information about the action of F on cohomology.

Theorem 9 (Twisted Lefschetz fix point formula). Let B be a closed oriented manifold, E a local system over

B and B̃ a finite regular G-cover of B over which E pulls-back to a trivial bundle. Suppose f̃ : B̃ → B̃ commutes
with the deck action and the maps f , F̃ and F are defined as above. Moreover, suppose that the fiber V is finite
dimensional and that the graph of f intersects the diagonal ∆ ⊂ B×B transversely at finitely many points. Then
the following equality holds:∑

f(b)=b

tr
(
g−1
b y V

)
=
∑
f(b)=b

tr (Fb y Eb)︸ ︷︷ ︸
local information

=
∑
i≥0

(−1)i tr
(
F ∗ y Hi(B;E)

)︸ ︷︷ ︸
global information

. (3)
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When working with non-closed manifolds, one must use compactly supported cohomology with twisted coefficients,
defined in the obvious way.

This formula comes from computing the intersection number of the graph of f and the diagonal in B × B,
in two different ways. The proof follows the same lines as that of the classical Lefschetz formula for constant
coefficients.

Since the diagonal class has the same form in the setting of étale cohomology (see [7]), the same formula will

hold, as we now explain. Let X be a scheme defined over Fq with a Galois G-cover X̃ → X (analogous to a
regular G-cover of a manifold). Every finite dimensional G-representation V gives rise to a locally constant sheaf

F on X whose pullback to X̃ is the constant sheaf V and the deck action of G the stalks coincides with the action
on V . The Frobenius automorphism commutes with the deck action and thus we can construct endomorphisms
on cohomology, as we did in the case of manifolds.

Suppose x ∈ X is a closed point fixed by Frobq. Denote by gx ∈ G the deck transformation by which Frobq
acts on the fiber over x.

Theorem 10 (Twisted Grothendieck-Lefschetz fix point formula). If X be a nonsingular projective variety
defined over Fq and F a locally constant sheaf of finite dimensional Q`-vector spaces. Then∑

Frobq(x)=x

tr
(
g−1
x y V

)
=

∑
Frobq(x)=x

tr
(
Frob∗q y Fx

)
=
∑
i≥0

(−1)i tr
(

Frob∗q y Hi
ét(X/Fq

;F)
)
. (4)

The sum at the left is over the closed fixed points of Frobq in X, i.e. precisely over X(Fq).
If X is not projective, the cohomology must be replaced with compactly supported cohomology.

Example 11. Consider X = Polyn and X̃ = Confn as schemes defined over Z. By the above, for every Sn-
representation ρ : Sn → GL(V ) we can associate a locally constant sheaf F on Polyn that pulls back to the
constant sheaf on Confn on which Sn acts by ρ. If P is a fixed point of the Frobenius map, the induced action on
FP is the inverse of the deck transformation σP ∈ Sn by which Frobq acts on the fiber above P . This is precisely
the permutation σP defined in §1.3. Thus we get a formula for the local terms

Corollary 12.
tr
(
Frob∗q y FP

)
= tr

(
σ−1
P y V

)
= χV (σ−1

P ) = χV (σP ) (5)

where χV is the character of the Sn-representation V .

The rightmost equality follows since every permutation is conjugate to its inverse.

2.3 Hyperplane complements and Poincaré duality

In the case of hyperplane complements, such as Confn, we will derive an explicit formula for statistics over
finite fields. Let the hyperplane Hj ⊂ An be the kernel of a linear functional Lj . Then the restriction Lj :
(An − {Hj = 0})→ (A− 0) induces a map on étale cohomology.

Fact 13. It is a theorem of étale cohomology theory that Hi
ét(A− 0;Q`) ' Q` if i = 0,1 and vanishes in all other

dimensions. The Frobenius map acts on H1
ét by multiplication by q. Moreover, the cohomology of hyperplane

complements is generated as an algebra by the pullbacks of H1
ét(A− 0) along the maps Lj (see [6]).

Thus, by the naturality of the cup product, the Frobenius map acts on Hi
ét of a hyperplane complement by

multiplication by qi.
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The final ingredient involves getting rid of the compactly supported cohomology. Poincaré duality asserts
that when X̃ is a nonsingular variety of dimension n defined over Fq, then H2n

c (X̃;Q`) ' Q` on which Frobq acts
by qn. Moreover, the cup product is a perfect pairing that induces an isomorphism (Hi

ét)
∗ ' H2n−i

c .
If Frobq acts on Hi

ét by qi, as is the case for hyperplane complements, the naturality of the cup product
implies that Frob∗q acts on H2n−i

c by qn−i.
Plugging this into the global side of the fixed point formula we get

tr
(
Frob∗q y H2n−i

c

)
= qn−i · dimQ`

Hi
ét . (6)

Example 14. We apply all the above conclusions to the Sn-cover Confn → Polyn, seeing as Confn is a hyperplane
complement, in order to find a formula for statistics of square-free monic polynomials over Fq in terms of certain
characters of Sn.

The naturality of Artin’s comparison theorem shows that Hi
ét(Polyn;Q`) is in fact isomorphic to Hi(Polyn(C))

as an Sn-rep. Combined with the results on transfer, we get the equality

dimHi
ét(Polyn;F) = 〈V ∗,Hi

ét(Confn;Q`)〉G = 〈V ∗,Hi(Confn(C))〉G. (7)

Using the Grothendieck-Lefschetz formula, and the fact the any Sn-representation can be used as the system of
local coefficients, we arrive at the following result.

Theorem 15. For any character χ of an Sn-representation,∑
P∈Polyn(Fq)

χ(σP ) =
∑
i≥0

(−1)iqn−i〈χ,Hi(Confn(C))〉Sn
. (8)

Note that the characters of Sn-representations span the space of class functions on Sn, and that the two sides
of the equation are linear in χ.

Corollary 16. We can replace χ in equation 8 by any class function on Sn.

Consider the class function χk that for every permutation σ returns the number of k-cycles in σ. Since the
number of k-cycles of σP is the number of degree-k irreducible factors in P , we get an expression for the total
number of degree-k irreducible factors over Fq, and similarly for all other statistics of this form.

3 Representation stability and FI-modules

The other half of the story is that the numbers 〈χ,Hi(Confn(C))〉Sn
stabilize as n→∞. To prove this, the key

observation is that the spaces Confn form a single object Conf• which we now describe.

3.1 FI-Modules

Definition 17. Let FI be the category of finite sets with injections between them. A (co)FI-module is a
(contravariant) covariant functor from the category FI to the category k-Mod. Similarly a (co)FI-space is a
similar functor into the category Top. Morphisms of FI-modules and spaces are natural transformations.

Example 18. The ordered configuration space Conf•(X) is a coFI-space as follows: for every finite set S let
ConfS(X) be the space of injections S ↪→ X, topologized as a subspace of the cartesian product. For every
injection T ↪→ S the map ConfS(X)→ ConfT (X) is given by precomposing an injection S ↪→ X by the injection
T ↪→ S.

Composing the functor Conf•(X) : FI → Top with the cohomology functor Hi ((•); k) we naturally get an
FI-module.

6



The category FI has a skeleton whose objects are the finite sets n = {1, . . . , n} where n ∈ N, and their
endomorphisms are the groups Sn = Aut(n). Thus an FI-module (space) M• is essentially a sequence of
modules (spaces) Mn together with maps between them, compatible with the Sn-actions. The fact that k-Mod
is an abelian category turns FI-Mod into an abelian category as well with respect to pointwise kernels and
cokernels. In particular we can talk about FI-submodules and quotient objects.

Definition 19. An FI-module M• is said to be finitely generated if there are finitely many elements ai ∈ Mni

that are not contained in any proper FI-submodule. This is equivalent to saying that every Mn is generated as
a k-module by the images of these elements. If N = max{ni}, we say that M• is generated in degree N .

3.2 Representation stability

FI-modules prove very useful and give a uniform treatment of representation stability as defined in [3]. This is
illustrated by the following theorem.

Theorem 20. Suppose k is a field of characteristic 0 and M• is an FI-module over k finitely generated in degree
N . Then the Mn’s form a sequence of Sn-representations with maps fn : Mn → Mn+1 which satisfy uniform
representation stability with stable range 2N . This means that the following conditions hold of all n ≥ 2N :

1. (Injectivity) The map fn : Mn →Mn+1 is injective.

2. (Surjectivity) The Sn+1-orbit of Im(fn) is the whole degree n+ 1 part of M .

3. (Multiplicity) For every partition λ = (λ1, . . . , λn) s.t. n − |λ| ≥ λ1 ≥ . . . ≥ λn, let λ(n) be the padded
partition (n − |λ|, λ1, . . . , λn) of n. Decomposing Mn into irreducible Sn-representation Vλ(n) indexed by
partitions λ, the multiplicity cn,λ of Vλ(n) is independent of n.

Moreover, the partitions λ for which Vλ(n) appears in the decomposition of Mn all satisfy |λ| ≤ N .

This follows from the branching rules for Sn-representations (see [5]), which are:

Theorem 21. Let λ be a partition of n and Vλ the irreducible representation corresponding to λ. We identify
partitions with the corresponding Young diagrams.

1. Ind
Sn+k

Sn×Sk
Vλ � Triv = ⊕Vµ, where the µ’s are all the Young diagrams obtained from λ by adding k boxes

to distinct columns.

2.
(
ResSn

Sn−k×Sk
Vλ

)
Sk

= ⊕Vµ where the µ’s are all the Young diagrams obtained from λ by removing k boxes

from distinct columns.

It is clear that after considering all the ways of adding or removing more than λ1 many boxes, there are
no new combinations other than adding or removing boxes from the rightmost end of the top row. Thus the
multiplicities of irreducibles appearing in these sequences of inductions or restrictions stabilize.

Theorem 20 also describes the characters of the Sn representations Mn. The function χk :
∐
Sn → N

that assigns to every permutation σ ∈ Sn the number of k-cycles appearing in σ defines a class function on
Sn simultaneously for all n. We call a polynomial P ∈ Q[χ1, χ2, . . .] a character polynomial, and these again
define class functions on all the Sn’s. Declare the degree of χk to be k for every k and extend this degree to all
polynomials. It is a fact that for every partition λ there exists a single character polynomial Pλ of degree |λ|
such that the characters of the Sn-representations Vλ(n) all coincide with Pλ.

Corollary 22. If M• is an FI-module over Q finitely generated in degree N , then there exists a character
polynomial P of degree ≤ N s.t. the characters of the Sn-representation Mn coincide with P for all large n.
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3.3 Stabilization of arithmetic statistics

In the previous section we found formulas for statistics over finite fields in terms of 〈χk,Hi(X̃n)〉Sn
. If the

modules Hi(X̃•) turn out to form an FI-module finitely generated in degree Ni then the above results apply and

the characters of Hi(X̃n) are given by a single character polynomial Pi for all n ≥ 2Ni. Thus we find that the
coefficients appearing in equation 8 are the inner products 〈χk, Pi〉Sn

.
A combinatorial counting argument on Sn shows that the inner product of two character polynomials 〈P,Q〉Sn

is independent of n for all n ≥ deg(P ) + deg(Q). Thus the coefficient 〈χk,Hi(X̃n(C);Q)〉Sn
is independent of n

for all n ≥ 2Ni + k. Denote the stable coefficient limn→∞〈P,Hi(X̃n)〉Sn
by 〈P,Hi(X̃)〉.

Example 23 (Hyperplane complement). If L1, . . . , Lk are linear functionals on AN , the FI-hyperplane com-

plement X̃• is defined to be the complement in A• of the hyperplanes Lj ◦ σ = 0 for all 1 ≤ j ≤ k and
σ ∈ HomFI(•, N). As stated above, the cohomology ring of a hyperplane complement is generated by the pull-

backs ωj = L∗j (ω) for ω ∈ H1(A1 − 0). Thus the FI-module H1(X̃•) is finitely generated in degree N . Since
higher dimensional cohomology is generated by the products of these wj ’s, they are also finitely generated and
stability follows.

Note however, that for each i the cohomology Hi(X̃•) is a different FI-module and they are possibly generated
in different degrees. Even though the coefficient of qn−i in equation 8 eventually stabilizes for large values of n,
more terms appear in the sum and there are contributions from higher dimensional cohomology.

In some cases there is control over the growth of the coefficients 〈P,Hi(X̃)〉 for all P . If these coefficients are
bounded by some sub-exponential function FP (i) then the limit

lim
n→∞

∑
i≥0

(−1)iq−i〈P,Hi(X̃n)〉Sn

exists. Thus we get an equality in the limit

lim
n→∞

q−n
∑

x∈Xn(Fq)

P (σx) =
∑
i≥0

(−1)iq−i〈P,Hi(X̃)〉 (9)

and in particular the limit at the left hand side exists for all q.
Knowing that we have such stabilization, we can now reverse the process and compute the stable cohomology

coefficients 〈P,Hi(X̃)〉 from explicit expressions for the left hand side of 9 on a sequence of q’s diverging to ∞.
The coefficients are determined uniquely by these values by the uniqueness theorem for power series.

4 Applications

We apply the results summarized above to two example.

1. The space of monic square-free polynomials. Let χk denote the function on Poly• that for every polynomial
returns the number of it’s degree-k irreducible factors.

Theorem 24. For every prime power q and a polynomial P ∈ Q[χ1, χ2, . . .] there is an equality

lim
n→∞

q−n
∑

f∈Polyn(Fq)

P (f) =
∑
i≥0

(−1)iq−i〈P,Hi(Conf)〉

and in particular the limits on both sides exist.
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The rational cohomology ring of Confn(C) is the alternating algebra generated by the classes ωij ∈ H1

which count the winding number around the hyperplane zi = zj , subject only to the relations

ωij ∧ ωjk + ωjk ∧ ωki + ωki ∧ ωij = 0.

The group Sn acts on these generators by permuting the indices. We apply the theorem to the character
polynomial χ1, counting the number of linear factors in a square-free polynomial, and compute the two
leading terms of this series expansion corresponding to H0 and H1.

Clearly H0 is the trivial representation V(0) and H1 is the permutation representation on the set of unordered

pairs {i, j} ⊂ {1, . . . , n}. Decomposing into irreducibles we find H1 = V(0) ⊕ V(1) ⊕ V(2). Using the
orthogonality of irreducible characters and the fact that χ1 = χV0 + χV(1)

,

〈χ1,H
0〉Sn

= 1 , 〈χ1,H
1〉Sn

= 2

independently of n.

Corollary 25. The total number of linear factors of square-free polynomials over Fq is qn−2qn−1+O(qn−2).

2. The space of maximal tori. Let T ′n be the space of n linear independent lines in An. The quotient Tn =
T ′n/Sn in the space parameterizing maximal tori in GLn via associating to every maximal torus it’s set of
eigenspaces in An. Denote by χk the function on M• that for every maximal torus returns the number of
it’s degree-k irreducible tori.

The cohomology of T ′n is known to be concentrated in even dimensions and H2• = ⊕2i≥0 H2i isomorphic
to the co-invariant algebra R[z1, . . . , zn] = ⊕i≥0Ri. Moreover, every homogeneous component Ri is a
finitely generated FI-module, and the multiplicities 〈χ,Ri〉 are known to be sub-exponential. Over Fq the
Frobenius automorphism acts on H2i

ét by qi, so formula 8 applies under the appropriate substitutions.

Theorem 26. For every polynomial P ∈ Q[χ1, χ2, . . .] we have an equality

lim
n→∞

q−(n2−n)
∑

τ∈Tn(Fq)

P (τ) =
∑
i≥0

(−1)iq−i〈P,Ri〉

here n2 − n is the dimension of Tn. In particular the limits exist.

[8] proves a formula for the multiplicity of Vλ in Ri. In particular, it follows that for all i > 0 the trivial
representation does not occur in Ri.

Corollary 27. The total number of maximal tori in Gln(Fq) is precisely

qn
2−n (1− 0 · q−1 + 0 · q−2 − . . .

)
= qn

2−n.
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