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Seven schemes to maintain the∇ · B= 0 constraint numerically are compared.
All these algorithms can be combined with shock-capturing Godunov type base
schemes. They fall into three categories: theeight-wave formulationmaintains the
constraint to truncation error, theprojection schemeenforces the constraint in some
discretization by projecting the magnetic field, while the five different versions of
the constrained transport/central differencetype schemes conserve∇ · B to ma-
chine accuracy in some discretization for every grid cell. It is shown that the three
constrained transport algorithms, which have been introduced recently, can be recast
into pure finite volume schemes, and the staggered representation of the magnetic
field is unnecessary. Another two new and simple central difference based algorithms
are introduced. The properties of the projection scheme are discussed in some de-
tail, and I prove that it has the same order of accuracy as the base scheme even
for discontinuous solutions. I describe a flexible and efficient implementation of the
projection scheme using conjugate gradient type iterative methods. Generalizations
to resistive MHD, to axial symmetry, and to non-Cartesian grids are given for all
schemes. The theoretical discussion is followed by numerical tests, where the ro-
bustness, accuracy, and efficiency of the seven schemes and the base scheme can be
directly compared. All simulations are done with the Versatile Advection Code, in
which several shock-capturing base schemes are implemented. Although the eight-
wave formulation usually works correctly, one of the numerical tests demonstrates
that its non-conservative nature can occasionally produce incorrect jumps across
strong discontinuities. Based on a large number of tests, the projection scheme,
one of the new central difference based schemes, and one of the constrained trans-
port schemes are found to be the most accurate and reliable among the examined
methods. c© 2000 Academic Press
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1. INTRODUCTION

There has been a very rapid development towards shock-capturing numerical methods
applied to the equations of magnetohydrodynamics (MHD). Without trying to be complete,
here is a list of some of the algorithms: the widely used ZEUS code by Stone and Norman
[38] is based on a finite difference algorithm with artificial viscosity; DeVore adapted [13]
the flux corrected transport (FCT) scheme to the MHD equations; Dai and Woodward [10]
generalized the piecewise parabolic method (PPM); Ryuet al. [32], Balsara [1, 2], Powell
[31], Zacharyet al.[50], and Tóth [40, 41] implemented total variation diminishing (TVD)
type methods using different approximate Riemann solvers; and the simple TVD Lax–
Friedrich (TVDLF) method [48] was implemented and tested for the MHD equations by
Barminet al. [4] and Tóth and Odstrˇcil [44].

The modern MHD codes can successfully solve many problems involving all kinds of
discontinuities, both in time accurate and steady state applications. Still, there are un-
resolved arguments about how one should maintain the divergence-free property of the
magnetic field in multidimensional MHD calculations. This property is automatically sat-
isfied in one-dimensional simulations where∂y= ∂z= 0 and consequentlyBx = const, but
many discretization methods do not guarantee∇ ·B= 0 in multidimensional simulations.

1.1. Analytic versus Numerical Constraints

There is a big difference between the view of theorists, who would generally insist that
∇ ·B should be exactly zero, and practitioners of numerical MHD, who usually take a more
pragmatic approach and are satisfied with∇ ·B converging to zero as the grid resolution
1x and the time step1t approach zero. The justification for the latter approach is simple:
None of the numerical values agrees with the analytical solution exactly, so why should
one insist that a specific combination of them, namely some numerical representation of
∇ ·B, should be equal to the analytic value, i.e., zero? Ideally, one would like to have
thatparticular representation to be zero, which ensures that no unphysical effects arise. The
usual example for such an unphysical effect is acceleration of the plasma parallel to the field
lines (even if the unphysical force vanishes with increasing grid resolution, it may be quite a
nuisance when an equilibrium flow is to be modeled) [7]. For conservative shock-capturing
methods, however, it is impossible to define a particular discrete constraint on the magnetic
field that would avoid all unphysical effects. In particular, I prove in Appendix A that a
scheme cannot satisfy both the numerical conservation of momentum and the requirement
that the discretized acceleration due to the Lorentz force should be exactly perpendicular
to the magnetic field in every grid cell. Due to these difficulties, the usual practice is to
choose some simple discretization of∇ ·B, but it should be clear that the choice is always
somewhat arbitrary.

One way of ensuring a small numerical value for∇ ·B is to demand that some particular
discretization is exactly zero. Another possibility is to set the numerical value of∇ ·B to
zero in the initial and boundary conditions and to trust the scheme to maintain this condition
until the end of the simulation to the accuracy of the truncation error. There seems to be
no compelling theoretical argument to favor any of these approaches, and only numerical
tests can tell which scheme is the most efficient, accurate, and robust for a particular
problem.
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1.2. Numerical Algorithms

In the context of shock-capturing MHD codes, three approaches became rather popular to
handle the∇ ·B= 0 constraint. All three approaches can be regarded as some modification
of, or addition to abase scheme. The base scheme can be, for example, Harten’s TVD [16]
or van Leer’s TVD-MUSCL [46], or Yee’s TVD Lax–Friedrich scheme [48]. It evolves
mass, momentum, and energy densities according to the well-established algorithms of
computational hydrodynamics. The base scheme is also used in the time integration of the
magnetic field, but it is modified in some way to maintain the∇ ·B= 0 constraint. The three
approaches differ in how the base scheme is modified regarding the induction equation.

The first approach, in order of simplicity, is the8-wave formulationof the MHD equations
suggested by Powell [15, 31], which is found to behave better in terms of stability and
accuracy than the discretization of the usual conservative form (see Section 2). The 8-wave
form can be derived [47] from physical principles if the∇ ·B= 0 Maxwell equation is not
used. This approach requires the addition of some source terms (proportional to∇ ·B) and
a simple modification of the Riemann solver (if any) of the base scheme. According to
the Lax–Wendroff theorem [24], however, only conservative schemes can be expected to
get the correct jump conditions and propagation speed for a discontinuous solution. I will
examine this issue in Section 3.

The second approachwas namedconstrained transport(CT) by Evans and Hawley [14],
which simply means a particular finite difference discretization on a staggered grid, which
maintains∇ ·B in a specific discretization. If the initial magnetic field has zero divergence in
this discretization, then every time step will maintain that to the accuracy of machine round
off error as long as the boundary conditions are compatible with the constraints. DeVore
[13] combined the CT approach with one of the first-generation shock-capturing schemes,
the flux corrected transport (FCT), to obtain a divergence free solution by FCT. Much
later, the now popular Godunov type, Riemann solver based schemes were also combined
with the CT discretization by Dai and Woodward [11, 12], by Ryuet al.[35], and by Balsara
and Spicer [3]. Hereafter, I will refer to these articles as DW, RMJA, and BS, respectively.

In their original form, the algorithms of DW, RMJA, and BS require the introduction
of a new staggered magnetic field variable, which is updated by simple finite differences
using the interpolated magnetic and velocity fields (DW), the interpolated fluxes (BS), or
the interpolated transport fluxes (RMJA) of the base scheme. The scheme designed by Dai
and Woodward is a CT type discretization connected to a Godunov type scheme by spatial
and temporal interpolations of the magnetic and velocity fields, which I will therefore call
field-interpolated CT scheme(or field-CT for short), while the schemes of BS and RMJA
will be namedflux-interpolatedandtransport-flux-interpolated CT(or simply flux-CT and
transport-flux-CT), respectively. In Subsection 4.4, I will shed a new light on the above CT
approaches: there is no need for a staggered magnetic field representation! The schemes
can be regarded as modifications of the finite volume style numerical flux function of the
base scheme.

I introduce twonew and simple central difference(CD) approaches, which are analogous
to the CT schemes of DW and BS. The CD approaches fit very smoothly into the finite volume
type discretization of the base scheme and, for the extremely simplefield-interpolated
central difference(field-CD) scheme, there is no need for spatial interpolation. The three CT
and the two CD schemes all belong to the second approach, so I will call themconstrained
transport/central difference(CT/CD) schemes, and they are described in Section 4. The
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CT/CD schemes can be generalized to resistive MHD, to axial symmetric calculations, and
to arbitrary curvilinear grids.

The third approachis theprojection scheme, which, in the context of MHD, was first
suggested by Brackbill and Barnes [7]. The idea is to project the numerical solutionB∗

provided by the base scheme onto the subspace of zero divergence solutions by a linear
operator, and this projectedB solution is used in the next time step. The projection involves
the solution of a Poisson equation. Section 5 will explore the properties of the projection
scheme and address many of the incorrect claims widespread about it. In particular, I show
that an appropriate implementation of the projection scheme can preserve the conservative
properties, the efficiency, and the flexibility (with respect to grid geometry and boundary
conditions) of the base scheme. I also prove that the projection scheme is a consistent
discretization even for flows containing discontinuities, and it has the same order of accuracy
as the base scheme or any CD/CT type discretization. In this paper the projection step
is regarded as an integral part of the scheme and not as a “clean up” procedure. I also
note that the idea of projection has been successfully used in the numerical modeling of
incompressible hydrodynamics, where the∇ ·v= 0 constraint should be fulfilled. There the
projection scheme [5, 9] is applied for calculating the pressure or a correction to pressure
after the advection equation is solved explicitly.

Another way to keep∇ ·B exactly zero is to rewrite the MHD equations in terms of
the vector potentialA instead of the magnetic fieldB=∇ ×A. A disadvantage of this
approach is that the order of spatial derivatives increases by one, which reduces the order of
accuracy by one (see [14] for a more in-depth discussion). Replacing the magnetic field by
the vector potential requires a completely new base scheme, therefore I will not investigate
this approach. As it was noted by Evans and Hawley [14], the divergence free magnetic
field evolved by the constrained transport and central difference schemes can always be
integrated into a vector potential, thus these schemes can be regarded as if they evolved an
“underlying” vector potential.

A recent paper by Peterkinet al. [29] discusses a finite volume discretization with a
cell centered representation of the magnetic field, and the authors claim that their scheme
conserves the divergence of the magnetic field defined for “grid vertices” by their Eqs. (36)
and (38). Their proof [29, bottom of p. 159], however, contains an error: the equation
181,i, j,k=−181,i+1, j,k does not follow from the statement that “these flux surfaces share
an edge and the flux at this edge is computed just once,” since both181,i, j,k and181,i+1, j,k

are calculated as contour integrals alongfour edges, and there isonly onecoinciding edge,
while the other three–three terms are independent. Unfortunately, the proof cannot be saved,
and their scheme does not maintain the zero divergence property for any discretization of
the divergence of the magnetic field.

Another recent paper by Londrillo and Del Zanna [25] describes a higher than 2nd order
constrained transport scheme. In contrast with the CT schemes discussed in this paper, their
algorithm uses a high order upwinded reconstruction of the staggered representation of the
magnetic field for all the equations (and not just for the induction equation). This approach
is clearly more consistent than the above described field- and flux-interpolated CT schemes,
but their elaborate algorithm cannot be regarded as a simple modification of a base scheme.
Although the test results shown for this new CT scheme are very encouraging, it is not clear
whether this should be attributed to the higher order accuracy of the whole scheme, to the
more consistent CT discretization, or both.
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TABLE I

Basic Properties of Schemes

Name Base scheme ∇ ·B= 0 constraint Costa Description Reference

8-wave Any Truncation error 7% Section 3 [31, 15]
Field-CT Any Conserves (15) and (27) 4% Subsections 4.2 and 4.4 DW [11, 12]
Flux-CT Any Conserves (15) and (27) 5% Subsections 4.3 and 4.4 BS [3]
Tr-flux-CT One step TVD Conserves (15) and (27) 6% Subsections 4.3 and 4.4 RMJA [35]
Field-CD Any Conserves (26) 2% Subsection 4.5 This paper
Flux-CD Any Conserves (26) 4% Subsection 4.5 This paper
Projection Any Enforces (26) to be<ε ≈20% Section 5 [7]

a Fraction of CPU time relative to the one-step TVD base scheme is measured for the VAC implementation.

The properties of the seven schemes discussed in this paper are summarized in Table I.

1.3. Fair Comparison

I will compare the performance of the seven schemes and the base scheme on test prob-
lems in Section 6. Such a comparison is difficult based on the published numerical tests due
to the following reasons: (1) the different numerical approaches to handle the∇ ·B= 0 con-
straint are combined with different base schemes, which makes the properties of the numer-
ical approach for∇ ·B= 0 and the properties of the underlying scheme indistinguishable;
(2) the published numerical tests often hide the bad properties of the scheme, e.g., by using a
very high resolution, or by selecting tests that are favourable to the scheme; (3) the accuracy
of the solution is difficult to judge from figures.

To make the comparison fair, in this paper a single code, the Versatile Advection Code
(VAC [40, 41], seehttp://www.phys.uu.nl/~toth/) will be used, in which all the seven
schemes have been implemented and they can be combined with several shock-capturing
base schemes. The capabilities of VAC will be briefly described in Subsection 6.1. The
numerical test problems will be solved at different resolutions, so that the numerical errors
and the convergence properties can be directly and quantitatively compared. It is important
to realize that in a real application we are not interested in the numerically obtained value
of ∇ ·B, since the analytic value is known to be zero. What we are really interested in is the
solution in terms of the primitive variables, which are not known analytically. Therefore
the accuracy of the schemes will be compared for the physically most relevant quantities,
the primitive variablesρ, v, p, andB.

I will restrict myself to two-dimensional, time dependent, ideal MHD test problems on
Cartesian grids for the following reasons. Three-dimensional tests are extremely time con-
suming but they are not more challenging for the numerical schemes than two-dimensional
problems. A small amount of resistivity typically only makes the simulation easier to do.
Resistivity dominated problems, on the other hand, should not probably be solved by the
shock-capturing schemes discussed in this paper. Obtaining converged steady state solutions
can be rather time consuming as well as difficult, and such problems will be investigated
in another paper. Tests on curvilinear grids may be of interest, but these would be difficult
to reproduce by many MHD codes designed for Cartesian grids only. The tests presented
here, which were all taken from the literature, are easy to reproduce by other practitioners
of numerical MHD.
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Based on the theoretical arguments and the numerical tests, conclusions will be drawn
in Section 7.

2. EQUATIONS AND NOTATION

The conservation form of the resistive MHD equations

∂ρ

∂t
+∇ · (ρv) = 0 (1)

∂ρv
∂t
+∇ · (vρv− BB)+∇ ptot = 0 (2)

∂e

∂t
+∇ · (ve+ vptot− BB · v− B× ηJ) = 0 (3)

∂B
∂t
+∇ · (vB− Bv)+∇ × (ηJ) = 0 (4)

express conservation of mass, momentum, energy, and magnetic flux, respectively. The
conservative variables are the mass densityρ, the momentum densityρv, the total energy
densitye, and the magnetic fieldB. The velocityv, the current densityJ=∇ ×B, and the
total pressureptot= p+B2/2 together with the thermal pressure

p = (γ − 1)

(
e− 1

2
ρv2− 1

2
B2

)
(5)

are derived quantities. The equation parameters are the adiabatic indexγ and the resistivity
η. Units ofB are chosen such that the vacuum magnetic permeability is unity. In ideal MHD
the resistivity is taken to beη= 0.

For the constrained transport and central difference discretizations, the original form of
the induction equation (4) will be used,

∂B
∂t
+∇ × (−v× B+ ηJ) = 0 (6)

which directly follows from Faraday’s law∂B/∂t =−∇ ×E and the general form of Ohm’s
law ηJ=E+ v×B, whereE is the electric field.

Finally, the subject of this paper is the constraint

∇ ·B = 0. (7)

Analytically, this condition is maintained forever if it holds for the initial magnetic field,
since taking the divergence of the induction equation (6) results in

∂∇ ·B
∂t
= ∇ · (−∇ × E) = 0. (8)

Numerically, however, the discrete divergence of the discrete curl may not give exactly zero.
The full set of conservative variablesρ, ρv, e, andB will be denoted byU . A short

notation for the conservative form of the MHD equations (1)–(4) is

∂U

∂t
+∇ · F = 0, (9)

whereF represents the set of flux vectors for all the variables.
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The discretized time levels are indexed by superscripts, and the spatial discretization
by subscripts. Cell centers are denoted by integer subscripts (e.g.,j, k in 2D), while the
locations of cell interfaces are denoted by half integers (e.g.,j + 1/2, k). Occasionally,
time-centered quantities will also be used, e.g., time leveln+ 1/2 corresponds to time
(tn+ tn+1)/2.

The numerical scheme advances the conservative variables from time leveln to time level
n+ 1 by the non-linear discrete operatorL as

Un+1 = Un + L(Un). (10)

The operator corresponding to thebase schemewill be denoted byL∗ which advancesUn

to an “auxiliary” solutionU ∗ = L∗(Un). This auxiliary solution is only used to obtain the
final updateUn+1.

3. THE 8-WAVE FORMULATION

Already Brackbill and Barnes [7] suggested a non-conservative formulation to reduce
the numerical errors associated with the finite numerical divergence of the magnetic field.
It is interesting to note that their paper already contains all the source terms, which show
up in the non-conservative 8-wave scheme introduced by Powell [15, 31].

Powell found that his approximate Riemann solver based scheme (TVD-MUSCL with
Roe-type approximate Riemann solver) often crashed for multidimensional problems due
to the accumulation of errors which were associated with high values of∇ ·B. He suggested
to start from an alternative form of the MHD equations that can be derived [47] from the
hydrodynamic equations, Ohm’s law, the Lorentz force, and the Maxwell equationsexcept
for the∇ ·B= 0 equation. Thisnon-conservative formof the (resistive) MHD equations

∂ρv
∂t
+∇ · (vρv− BB)+∇ ptot = −(∇ ·B)B (11)

∂e

∂t
+∇ · (ve+ vptot− BB · v− B× ηJ) = −(∇ ·B)B · v (12)

∂B
∂t
+∇ · (vB− Bv)+∇ × (ηJ) = −(∇ ·B)v (13)

differs from the usual conservative form (2)–(4) by the source terms on the right hand
sides. All these source terms are proportional to∇ ·B, thus they should always remain zero
analytically, but they can become non-zero numerically.

Using the non-conservative form, Powell arrived at a new discretization, theeight-wave
Riemann solver(the eighth wave is associated with propagation of∇ ·B) together with the
non-conservative source terms above, that was found to be numerically robust. It was later
found by Tóth and Odstrˇcil [44] that the non-conservative source terms also improve the
accuracy of the flux corrected transport and TVD Lax–Friedrich (TVDLF) schemes that do
not involve a Riemann solver. It should be mentioned that Powell introduced the 8-wave
Riemann solver for the hyperbolic set of ideal MHD equations, but it is quite trivial to add
the parabolic terms∇ · (B× ηJ) and∇ × (ηJ) in (12) and (13) as explicit source terms; at
least as long as the resistive diffusion time is longer than other dynamical time scales.

The reason behind the improved robustness and accuracy is believed to be the follow-
ing: using the non-conservative formulation, the small but finite∇ ·B generated by the
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numerical solution does not accumulate at a fixed grid point, rather the “magnetic mono-
poles” propagate together with the flow. For many problems the 8-wave formulation works
well, the errors in∇ ·B remain small, and the conservation of quantities is satisfactory. In
problems containing strong shocks, however, the non-conservative source terms can pro-
duce incorrect jump conditions and consequently the scheme can produce incorrect results
away from the discontinuity. These errors do not decrease with the grid resolution although
the solution seems to converge normally. This phenomenon will be demonstrated in a rotated
shock tube problem in Subsection 6.3.

4. CONSTRAINED TRANSPORT AND CENTRAL DIFFERENCE DISCRETIZATIONS

For sake of simplicity, most of the discrete equations will be shown for a two-dimensional
uniform Cartesian grid with slab symmetry in the 3rd direction. This includes the possi-
bility of having three magnetic field components (often referred to as 2.5D model), since
Bz can be updated by the base scheme without modification as it does not contribute to
∇ ·B= ∂x Bx + ∂y By. Generalization to 3D is quite trivial and many of the 3D formulae can
be found in DW and BS. Generalization to axial symmetry and arbitrary curvilinear grids
is described in Appendix B.

For sake of clarity, the cell centered representation of the magnetic field will be denoted
by capitalB, while the cell interface centered representation by lower caseb in the difference
formulae.

4.1. Constrained Transport in Finite Difference Schemes

Theconstrained transport(CT) method by Evans and Hawley [14] applies a staggered
grid to maintain the∇ · b= 0 property for finite difference schemes. The magnetic field
componentsb are represented on the cell interfaces.

In 2D thebx component is located atxj+1/2, yk while theby component is atxj , yk+1/2

as shown in Fig. 1. To make the notation similar to DW and RMJA, let us denote the
z component of the electric field byÄ=Ez=− v×B+ ηJ. The main idea of the CT
algorithm is to placeÄ at the cell cornersxj+1/2, yk+1/2. The induction equation (6) is

FIG. 1. Staggering in the finite difference constrained transport approach in 2D. The interface centered field
componentsbx andby are updated by finite differencing the electric fieldÄ located at the cell corners. As a result,
∇· b defined in the cell center does not change.
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discretized by simple finite differences along the cell edges as

bx,n+1
j+1/2,k = bx,n

j+1/2,k −1t
Ä j+1/2,k+1/2−Ä j+1/2,k−1/2

1y
(14)

by,n+1
j,k+1/2 = by,n

j,k+1/2+1t
Ä j+1/2,k+1/2−Ä j−1/2,k+1/2

1x
.

It is easy to show that the numerical divergence ofb defined as

(∇ · b) j,k =
bx

j+1/2,k − bx
j−1/2,k

1x
+ by

j,k+1/2− by
j,k−1/2

1y
(15)

does not change due to perfect cancellation of terms, i.e., if∇ · bn= 0 then∇ · bn+1= 0 to
the accuracy of round off errors.

4.2. Field-Inerpolated Constrained Transport Scheme

Recently the CT idea was combined with Godunov type schemes by Dai and Woodward.
Let us denote the result of the Godunov type base scheme by the superscript∗. Spatial and
temporal interpolationis used to obtain the cell corner centered magnetic field

B̄n+1/2
j+1/2,k+1/2 =

1

8

(
Bn

j,k + Bn
j+1,k + Bn

j,k+1+ Bn
j+1,k+1

+B∗j,k + B∗j+1,k + B∗j,k+1+ B∗j+1,k+1

)
(16)

and velocity fieldv̄n+1/2
j+1/2,k+1/2 (using the same interpolation) at time leveln+ 1/2. On a

nonuniform grid, bilinear interpolation could be used. I note that one could interpolate the
cell centeredÄ j,k itself, instead of interpolating the components ofv andB separately, and
save some operations.

Thez component of the electric field is estimated as

Ä j+1/2,k+1/2 = −v̄n+1/2
j+1/2,k+1/2× B̄n+1/2

j+1/2,k+1/2 (17)

in ideal MHD, and an extraηJ̄ term could be added for resistive MHD. AfterÄ is obtained,
theb field centered at the cell interfaces is updated according to (14). The components of
the cell centeredBn+1 are obtained by interpolatingb as

Bx,n+1
j,k = bx,n+1

j+1/2,k + bx,n+1
j−1/2,k

2
(18)

By,n+1
j,k = by,n+1

j,k+1/2+ by,n+1
j,k−1/2

2

and are used in the next time step. The geometry of the full scheme is depicted in Fig. 2.

4.3. Flux- and Transport-Flux-Interpolated Constrained Transport Schemes

Balsara and Spicer combine the CT approach with an arbitrary Godunov type base scheme
by interpolating the appropriately signed cell-interface centeredupwind fluxes fx,∗ and f y,∗
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FIG. 2. The staggered (left) and finite volume (right) representations of the field-interpolated CT scheme in
2D. In the staggered approachv̄ andB̄ are interpolated (dashed arrows) from the four neighbouring cells and two
time levels. The electric fieldÄ=−v̄× B̄ is differenced to produce the staggeredbx andby, which are interpolated
(dashed arrows) toB. In the finite volume representation the flux̄f y is interpolated from 6 cells and 2 time levels.
The f̄ x flux has a similar stencil, but rotated by 90◦.

(corresponding toBy andBx, respectively) into the electric fields at the cell corners

Ä j+1/2,k+1/2 = 1

4

(−f x,∗
j+1/2,k − f x,∗

j+1/2,k+1+ f y,∗
j,k+1/2+ f y,∗

j+1,k+1/2

)
. (19)

All four fluxes, with their appropriate signs, are approximations toÄat the cell interfaces, but
they are upwinded according to the base scheme. BS also describes a variant of their scheme,
which adjusts the interpolation coefficients in (19) in the vicinity of magnetosonic shocks
according to the direction of the local pressure gradient, but they do not find a significant
improvement for any of their test cases; therefore I will not use that modification. The
electric fieldÄ j+1/2,k+1/2 can be used to advance the staggeredb field according to the CT
approach (14), andBn+1 is obtained by spatial interpolation ofbn+1 according to (18). The
full flux-CT scheme is depicted in Fig. 3.

Ryuet al.(RMJA) suggest yet another way of combining the CT approach with Harten’s
one step TVD scheme. They define thetransport partof the upwind fluxes as

f̃ x,∗
j+1/2,k =

(Byvx)nj,k + (Byvx)nj+1,k

2
+8x

j+1/2,k

(20)

f̃ y,∗
j,k+1/2 =

(Bxvy)nj,k + (Bxvy)nj,k+1

2
+8y

j,k+1/2,

where the numerical fluxes8x and8y contain the upwind corrections for the TVD property
and the Lax–Wendroff type corrections for 2nd order time accuracy, and they are provided
by the (approximate) Riemann solver of the base TVD scheme. The partial fluxesf̃ x,∗ and
f̃ y,∗ can be combined and interpolated into

Ä j+1/2,k+1/2 = 1

2

(− f̃ x,∗
j+1/2,k − f̃ x,∗

j+1/2,k+1+ f̃ y,∗
j,k+1/2+ f̃ y,∗

j+1,k+1/2

)
. (21)
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FIG. 3. The staggered (left) and finite volume (right) representations of the flux-interpolated CT scheme in 2D.
In the staggered approach the upwind fluxesfx and fy are combined (dashed arrows) from the four neighbouring
cell interfaces. The resulting electric field estimateÄ is differenced to produce the staggeredbx andby, which are
interpolated (dashed arrows) toB. In the finite volume representation the flux̄f y is combined and interpolated
from 6 flux components. Thēf x flux has a similar stencil, but rotated by 90◦.

Note that the denominator is 2 rather than 4 since the transport fluxes contain only a part
of the full fluxes. RMJA emphasize a nice property of their transport-flux-CT algorithm:
the scheme is identical with the base scheme for one-dimensional problems aligned with
one of the coordinate axes. For example, if there is a slab symmetry in they direction, then
Bx = bx = const and the upwind correction in they direction8y= 0, consequently

−Ä j+1/2 =
(Byvx)nj + (Byvx)nj+1

2
+8x

j+1/2−
(Bxvy)nj + (Bxvy)nj+1

2
(22)

which is exactly the one-dimensionalfull upwind flux function f ∗ of the base scheme for
By= by. All the k indices were dropped due to the slab symmetry. This property does not
hold for the field-CT and flux-CT approaches.

4.4. Finite Volume Interpretation of CT Schemes

Although DW, BS, and RMJA regard the staggered magnetic field representationb as
the primary variable, in fact it is only used to obtain the cell centered representationB; thus
one can equally regardB as the primary variable, which is quite natural in a Godunov-type
finite volume scheme. I will show thatb can be eliminated from the CT schemes altogether,
which simplifies the implementation (no need for staggered variables), the interpretation in
the finite volume sense, and comparison with other schemes.

In fact, the spatial interpolations of the field-CT method (16), (18) can be easily combined
into a usual finite-volume-style conservative update

Bx,n+1
j,k = Bx,n

j,k −1t
f̄ y

j,k+1/2− f̄ y
j,k−1/2

1y
(23)

By,n+1
j,k = By,n

j,k −1t
f̄ x

j+1/2,k − f̄ x
j−1/2,k

1x
,
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where the new numerical fluxes are defined as

f̄ x
j+1/2,k = −

(v̄× B̄)n+1/2
j+1/2,k+1/2+ (v̄× B̄)n+1/2

j+1/2,k−1/2

2
(24)

f̄ y
j,k+1/2 = +

(v̄× B̄)n+1/2
j+1/2,k+1/2+ (v̄× B̄)n+1/2

j−1/2,k+1/2

2

and the rest of the spatial and temporal averaging is hidden in (16). Altogether 6 cells
and 2 time levels are averaged out for each flux component. I sayaveraginginstead of
interpolation, since clearly, the new̄f fluxes require a much wider stencil (see Fig. 2) than
the fluxes of the base scheme. The only reason for extending the stencil is to symmetrize
the fluxes in such a way that the divergence free property is maintained.

In a similar fashion, the interpolations (18), (19) of the flux-CT scheme can also be
combined and the new flux definitions for the components ofB become

f̄ x
j+1/2,k =

1

8

(
2 f x,∗

j+1/2,k + f x,∗
j+1/2,k+1+ f x,∗

j+1/2,k−1

− f y,∗
j,k+1/2− f y,∗

j+1,k+1/2− f y,∗
j,k−1/2− f y,∗

j+1,k−1/2

)
(25)

f̄ y
j,k+1/2 =

1

8

(
2 f y,∗

j,k+1/2+ f y,∗
j+1,k+1/2+ f y,∗

j−1,k+1/2

− f x,∗
j+1/2,k − f x,∗

j+1/2,k+1− f x,∗
j−1/2,k − f x,∗

j−1/2,k+1

)
.

Theseaveragedfluxes are used according to (23). For the transport-flux-CT scheme,f ∗

and the denominator 8 should be replaced byf̃ ∗ and 4, respectively. Figure 3 shows the
total stencils. Note that if the base scheme is dimensionally unsplit, then one can replace
the original numerical flux of the base scheme by the above definedf̄ x and f̄ y, and there
is no need to calculate aB∗ at all. Again, the required symmetry of the fluxes is achieved
via averaging over a wider stencil.

How can one check the divergence-free property of the cell centeredB field if the staggered
b field is eliminated from the algorithm and the implementation? Clearly, the centered
difference definition

(∇ ·B) j,k =
Bx

j+1,k − Bx
j−1,k

21x
+ By

j,k+1− By
j,k−1

21y
(26)

is not conserved by the CT approach.
It turns out, however, that the followingcell corner centered divergence definition

(∇ ·B) j+1/2,k+1/2

= Bx
j+1,k + Bx

j+1,k+1− Bx
j,k − Bx

j,k+1

21x
+ By

j,k+1+ By
j+1,k+1− By

j,k − By
j+1,k

21y
(27)

vanishes if∇ · b= 0 for the ( j, k), ( j, k+ 1), ( j + 1, k), and ( j + 1, k+ 1) cells ac-
cording to (15), andB is related tob according to (18). The above definition (which
easily generalizes to nonuniform grids and/or 3D) can be regarded as a contour inte-
gral for a diagonally oriented volume shown in Fig. 4. It is also easy to check that if
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FIG. 4. If the staggeredb field (dashed arrows) satisfies∇· b = 0 in all four cells, then∇· B = 0 for the
diagonally rotated volume (dashed square).

∇ ·Bn= 0 as defined by (27), then applying the fluxes̄f defined by (24) or (25) accord-
ing to (23) will maintain∇ ·Bn+1= 0 in the same sense (27) to the accuracy of round off
errors.

In this section, I have recast the field-, flux-, and transport-flux-interpolated CT algorithms
into pure finite volume schemes. This shows that these schemes are conservative in the finite
volume sense too. In this form, the amount of averaging relative to the base scheme becomes
quite apparent. It should be stressed that the above finite volume forms areidenticalwith
the original staggered schemes in terms of the cell centered variablesρ, ρv, e, andB. In
the next section two new algorithms are introduced, the first of them discards all the spatial
averages. The newcentral differencebased schemes maintain∇ ·B= 0 in a more natural
discretization than (27).

4.5. Field- and Flux-Interpolated Central Difference Schemes

A further step in the direction of simplifying the idea of constrained transport is to use
simplecentral differencing(CD) for the induction equationon the original grid. To make
the scheme second order accurate in time, atime centeredapproximation is taken for the
electric field, so, e.g., for ideal MHD

Ä j,k = −(v× B)n+1/2
j,k = − (v× B)nj,k + (v× B)∗j,k

2
(28)

and the magnetic field is updated as

Bx,n+1
j,k = Bx,n

j,k −1t
Ä j,k+1−Ä j,k−1

21y
(29)

By,n+1
j,k = By,n

j,k +1t
Ä j+1,k −Ä j−1,k

21x
.

It is easy to prove that the central difference definition (26) of∇ ·B is exactly con-
served during the time step, which is more natural than the constraints (15) or (27).
The finite volume equivalent of thisfield-interpolated CD approach uses the flux
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FIG. 5. The field-interpolated central difference (field-CD) approach (left) and its finite volume interpretation
(right). The electric fieldÄ=−v×B is temporally interpolated between the values obtained fromUn and the
auxiliary solutionU ∗. The magnetic fieldB is updated by simple central differencing ofÄ. The finite volume flux
f̄ y can be obtained from a two-cell stencil, formally. The stencil forf̄ x looks similar, but rotated by 90◦.

definitions

f̄ x
j+1/2,k = −

(v× B)n+1/2
j,k + (v× B)n+1/2

j+1,k

2
(30)

f̄ y
j,k+1/2 = +

(v× B)n+1/2
j,k + (v× B)n+1/2

j,k+1

2

in (23) as shown in Fig. 5.
It is also possible to combine the upwind flux components of the base scheme into a cell

centered electric field approximation

Ä j,k = 1

4

(−f x,∗
j−1/2,k − f x,∗

j+1/2,k + f y,∗
j,k−1/2+ f y,∗

j,k+1/2

)
(31)

which can be used in the central difference formula (29). The finite volume flux correspond-
ing to thisflux-interpolatedCD scheme can be easily read from Fig. 6.

It should be emphasized that in the simple central difference formula (29) the electric field
Ä is obtained from the shock-capturing base scheme using either temporal interpolation
(field-CD scheme) or spatial interpolation (flux-CD scheme). These interpolations provide
sufficient coupling between odd and even cells; thus no checker-board like instability arises.
The numerical tests also confirm that the CD schemes are stable. Both CD approaches
are second order accurate in space for uniform grids and should be “almost” second order
accurate for mildly stretched grids. Generalization to arbitrary curvilinear grids is described
in Appendix B.

4.6. Boundary and Initial Conditions

The CD and CT approaches maintain∇ ·B= 0 as long as the initial and boundary con-
ditions are compatible with the numerical constraints (26) and (27), respectively. Certain
boundary types, e.g., periodic, are easy to implement; others, like inflow, outflow, or a
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FIG. 6. The flux-interpolated central difference (flux-CD) approach (left) and its finite volume interpretation
(right). The cell centered electric fieldÄ is constructed from the upwind fluxesf ∗. The magnetic fieldB is updated
by simple central differencing ofÄ. The finite volume fluxf̄ y can be obtained from 6 upwind flux components.
The stencil for f̄ x looks similar, but rotated by 90◦.

perfectly conducting wall, may require more careful considerations of the discrete form of
∇ ·B= 0. In particular, the perfectly conducting wall requires that fluxes are zero accross
the boundary. For the flux-interpolated CT and CD schemes, the upwind corrections parallel
to the boundary can produce a non-zero flux accross the boundary if the flux interpolations
(19), (21), or (31) are applied carelessly.

The discretized initial conditions given in terms of the magnetic field components do not
satisfy the discrete∇ ·B= 0 condition in general. In that case the analyticB field should be
integrated to an analytic vector potentialA, and the discreteB j,k values should be obtained
from finite differencingA j,k for the CD schemes, or from finite differencing and averaging
A j+1/2,k+1/2 for the CT schemes.

5. PROJECTION SCHEME

5.1. Removing the Unphysical Part of the Magnetic Field

The projection schemewas proposed by Brackbill and Barnes [7] as a correction to
the magnetic field after the time step is completed by some arbitrary numerical scheme.
The name comes from the idea that theB∗ field provided by the base scheme in time step
n+ 1 is projected to a divergence-freeBn+1 field. It is well known that a vector field can be
decomposed unambiguously into the sum of a curl and a gradient

B∗ = ∇ × A+∇φ, (32)

where the curl of the vector potentialA contains the physically meaningful part ofB∗.
Taking the divergence of both sides, a Poisson equation

∇2φ = ∇ ·B∗ (33)

is obtained, which can be solved for the scalar functionφ. Then it is easy to correct the
magnetic field to

Bn+1 = B∗ − ∇φ. (34)
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The numerical divergence ofBn+1 will be exactly zeroif the Laplace operator in(33) is
evaluated in two steps as a divergence of the gradient with the same difference operators
as used for calculating∇ ·B∗ and∇φ in Eqs.(33) and (34), respectively.If the Laplace
operator is evaluated in Fourier space then this requirement translates to Eq. (5.6) in [2]. It
follows directly from (34) that the correction does not affect the current densityJ=∇ ×
Bn+1=∇ ×B∗.

5.2. Minimal Correction

Let us solve the following problem: Given the auxiliary solutionB∗ with a finite diver-
gence, what isthe closest divergence-freeB field? We wish to minimize the function

d(B1,B2, . . . ,BN) = 1

2
‖B− B∗‖2 = 1

2

N∑
i=1

(Bi − B∗i )
2 (35)

for the 2N unknownsBx
i , By

i with the constraints

(∇ ·B)i =
N∑

j=1

Dx
i, j B

x
j + Dy

i, j B
y
j = 0 (36)

for all grid cells indexed byi = 1 . . . N. The discrete difference operatorsDx and Dy are
N× N matrices, whereN is the number of all the grid points. This conditional minimum
problem can be solved with the use of the Lagrange multipliers8i , requiring that

∂[d(B)+∑i 8i (∇ ·B)i ]
∂Bx

j

= (Bx
j − Bx,∗

j

)+∑
i

8i D
x
i, j = 0 (37)

and similar equations can be obtained for theBy
j unknowns. The solution is

Bx = Bx,∗ − Dx,T8
(38)

By = By,∗ − Dy,T8,

where the superscriptsT indicate transposed operators. To determine the Lagrange multi-
plier8, let us substitute (38) into (36). The final equation for8 is

0= Dx Bx,∗ + Dy By,∗ − (Dx Dx,T + Dy Dy,T )8. (39)

If the discrete operatorsDx andDy areantisymmetric, e.g., the central difference operators
on a uniform Cartesian grid, then Eqs. (38) and (39) are equivalent with the correction
equation (34) and the Poisson equation (33), respectively, andφ=−8.

In other words, on uniform Cartesian grids the projection scheme makes the smallest
possible correction to remove the divergence of the magnetic field provided by the base
scheme. On nonuniform or non-Cartesian grids the difference operators may not be exactly
antisymmetric, still the projected field should be fairly close to the minimal solution. In the
continuum limit, the projection provides the solution for the conditional minimum problem.
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5.3. Conservation, Consistency and Order of Accuracy

It is quite widely believed that the projection scheme makes an error in the conservation
of the total energy and/or in the conservation of the magnetic flux and/or that it cannot be
used to obtain discontinuous solutions.

Addressing the first worry is trivial: the total energye is an independent variable of
any numerical scheme that discretizes the MHD equations in a conservation form; thus a
change in the magnetic field does not affect the total energy at all. Kinetic energy does
not change due to projection either, since momentum and density are not affected. What
does change is the magnetic energy, and consequently, the thermal energy, or even more
specifically, the temperature. A change of the temperature has no consequences as long as it
remains positive, since there is no reason to believe that the temperature associated withU ∗

was more correct than the one obtained from the projected solutionUn+1. Getting a negative
temperature can be a problem, of course, but that can occur quite easily independent of the
projection scheme too, since the base scheme usually does not guarantee positivity of the
temperature either. It could equally occur that the base scheme provides a negative tem-
perature which becomes positive after projection. In certain cases, e.g., when the magnetic
energy density is much larger than the thermal energy density, one may prefer to sacrifice
the exact conservation of total energy for the sake of robustness. After the projection step
the total energy may be modified as

en+1 = e∗ + (B
n+1)2− (B∗)2

2
(40)

thus keeping the thermal energy and temperature provided by the base scheme fixed. The
same option has been described by BS for their flux-CT algorithm.

Conservation of magnetic flux is a more delicate problem. Of course, magnetic flux is
conserved in a global sense, sinceB∗ is modified by a gradient to obtainBn+1 (34), thus the
integrated magnetic flux can only change at the boundaries. What can be more problematic
is the conservation of magnetic fluxlocally, especially next to discontinuities, where the
correctness of the jump conditions relies on the conservation properties of the scheme
and where the divergence of the auxiliary solutionB∗ is usually large. In other words, the
numerical error in∇ ·B∗ at the discontinuity could be spread all over the computational
domain by the projection scheme, and thus the projection scheme would not be consistent
or at least the projection would reduce the order of accuracy of the base scheme. Numerical
experience shows, however, that the projection scheme does not suffer from this problem:
the discontinuities are correctly represented and the numerical error is not increased in
the smooth parts of the solution by the projection. The numerical tests in this paper will
also support this observation. In the following paragraphs I present a rigorous proof of the
consistency of the projection scheme and I also show that its order of accuracy cannot be
worse than that of the base scheme or a CT/CD type discretization.

Suppose that we are solving a discontinuous problem. I shall consider a single time step
of size1t starting from an initial condition which is taken to be exact, and I will estimate the
error made by the various schemes in one time step. Let me denote the analytic solution after
the time step byBa. The numerical solutionB∗ provided by a consistent and conservative
base scheme has to satisfy

‖B∗ − Ba‖ < O(1xk,1tm), (41)
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where the norm‖ · ‖ is defined in (35) and the exponentsk andm give the actual order of
accuracy of the base scheme. For discontinuous problems the order of accuracy is usually
lower than it is for smooth problems, butk> 0 andm> 1 should hold for a sufficiently fine
resolution. The solutionBc provided by any of the CD/CT schemes should also satisfy

‖B∗ − Bc‖ < O(1xk′ ,1tm′) (42)

with k′> 0, m′> 1, and∇ ·Bc= 0 in the appropriate discretisation. As it was proven in
Subsection 5.2, the projection scheme changesB∗ to theclosestdivergence-free discrete
representationBp; therefore

‖Bp − B∗‖ ≤ ‖Bc − B∗‖. (43)

Using simple geometrical inequalities it follows that

‖Bp − Ba‖ ≤ ‖Bp − B∗‖ + ‖B∗ − Ba‖ ≤ ‖Bc − B∗‖ + ‖B∗ − Ba‖
≤ ‖Bc − Ba‖ + 2‖B∗ − Ba‖ < O(1xk′′ ,1tm′′), (44)

where the exponents arek′′ = min(k, k′)>0 andm′′ = min(m,m′)>1; i.e., the projection
scheme is a consistent discretization and it has the same order of accuracy as the worse of
the base scheme and the CT/CD scheme.

It should be mentioned that the consistency is a necessary but insufficient condition
for convergence to the analytic solution at a fixed physical time, because the number of
time steps increase with resolution and the growth of the cumulative errors depends on the
stability properties of the scheme. Unfortunately, no proof of numerical stability and/or
convergence is known for any of the considered base schemes (or for any of the schemes
derived from them) when they are applied to a non-linear system of partial differential
equations, like the system of MHD equations. Still, it is of practical importance to prove
consistency and order of accuracy, otherwise the results of a scheme should not be trusted
even if the numerical results seem to suggest stability and convergence for increasing grid
resolution.

One can also estimate the change due to a non-zero value of∇ ·B∗ in a single cell.
The solution of this problem is the “Green-function” of the discrete Laplace operator. A
conservative base scheme, however, will not create aB∗ field containing a single mag-
netic monopole, since that is not allowed by flux conservation. The error in∇ ·B∗ is the
result of an error inB∗ which is due to some flux being too large or too small between
two cells. Therefore the “Green function” of the projection scheme is the magnetic field
produced by the projection of the fieldBy,∗

j,k =−By,∗
j+1,k= 1 andB∗ = 0 everywhere else,

which corresponds to a magnetic quadruple in terms of∇ ·B. The resulting field is depicted
in Fig. 7. Clearly, the numerical error causes significant (above 5%) changes only within 4
cells distance from the( j, k) cell. In three dimensions the Green function falls even faster
with distance. Since this distance is comparable to the number of cells resolving a typical
discontinuity, the projection scheme does not spread the errors significantly.

5.4. Direct versus Iterative Poisson Solvers

The price to pay for the nice properties of the projection scheme is the Poisson problem
(33), but that can be solved efficiently with either direct or iterative solvers.Most direct
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FIG. 7. The “Green function” for the projection scheme. The Green function is the projection of the magnetic
field (generated by a single erronous fluxf ) shown by the two longest arrows shifted to the bottom left corner.
The divergence of this field is a magnetic quadruple indicated by the+ and− signs. The projected divergence-free
field is represented by the rest of the arrows centered around the middle of the plot. Note the fast decay of the
correction.

Poisson solverswork for relatively special cases, e.g., uniform Cartesian grid with periodic
boundary conditions, only, and they require about 20 to 30% of the total CPU time [32,
35]. Another possibility [37] is to calculate the full matrix for the projection operator
(I −∇∇−2∇ ·) once and for all and apply it directly in every time step. This direct approach
is restricted to moderate grid sizes only, since the memory requirement for the full matrix
grows with the square of the number of grid points.

One should realize, however, that unless some discretization of∇ ·B is particularly
optimal for the numerical scheme, the “exact” (to precision of round off errors) solution
of the Poisson problem is not necessary. It may well be sufficient to solve the Poisson
problem to some accuracy and require that|∇ ·Bn+1

i |<ε whereε is a small value relative
to the typical|∇ ·B∗| error generated in one time step. For this particular Poisson problem
(33), iterative solversare not just flexible, but also surprisingly efficient. The numerical
errors in∇ ·B∗ usually arise as local errors of opposite signs (short wavelength) which are
removed by the conjugate gradient type solvers [17, 45] rather efficiently. The very small
long wavelength errors do not have to be removed at all, since an approximate solution of
the Poisson problem is quite acceptable. For this reason, using a (generally more efficient
but much more complicated) multigrid solver for the projection step [50] may not pay off.
By applying a few iterations of the conjugate gradient type linear solver, one can reduce the
numerically generated divergence of the magnetic field sufficiently. In my experience, the
projection scheme with an iterative solver requires about 15% of the total execution time
on Cartesian grids (more efficient than direct solvers) and about 30% on general structured
grids.

Even on parallel computers, the conjugate gradient type methods are quite efficient and
the fraction of the time spent on the projection does not change much by increasing the
number of processors [20]. In fact, many of the high-resolution simulations in this paper
were done on 16 processors of a Cray T3E parallel computer and the fraction of time spent
on the projection remained below 30%.
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5.5. Initial and Boundary Conditions

Even if the discretized initial magnetic field has a finite divergence, the projection scheme
can eliminate it before the first time step. Therefore the projection scheme is not sensitive
to discretization errors in the initial condition. On the other hand, it is important to choose
good boundary conditions forφ in the Poisson equation (33) so that the corrected magnetic
field Bn+1 satisfies the boundary conditions for the physical problem. RMJA mentions the
restrictions on the boundary conditions as a draw back for the projection scheme. It should
be emphasised thatit is not the projection scheme, but their particular Poisson solver(fast
Fourier transform) that restricts the possible boundary conditions to a few simple cases.

Here I briefly describe how the boundary conditions can be implemented when a con-
jugate gradient (CG) [17], stabilized biconjugate gradient (BiCGSTAB) [45], or similar
Krylov subspace type iterative solver is used to solve the Poisson equation. This implemen-
tation works successfully in the Versatile Advection Code for a waste number of tests and
applications. The iterative schemes require a subroutine which evaluates a matrix vector mul-
tiplication: the matrix is the Laplace operator and the vector is an iterate forφ. The boundary
conditions applied during the evaluation of the discrete Laplace operator will determine the
boundary conditions for the solutionφ and for the magnetic fieldBn+1= B∗ −∇φ.

The simplest way to implement the boundary conditions is by putting two layers of
ghost cells around the physical cells. The unknownsφ j,k (the description here is for a 2D
Cartesian grid, but this can be easily generalized to 3D and/or non-Cartesian grids) belong to
the physical cells only, but the two layers are needed, since the Laplace operator is evaluated
as the discrete divergence of the discrete gradient, both extending the stencil by one cell in
all directions. The values ofφ in the ghost cells are calculated according to the boundary
conditions on the magnetic field. Let me concentrate on the ghost cells next to thej = 1
edge of the computational domain and denote the ghost cells by indices 0 and−1, while
the physical cells are indexed fromj = 1 to N in thex direction.

If B isperiodic,φ should also be periodic, i.e.,φ−1,k=φN−1,k andφ0,k=φN,k. Forshifted
periodicboundary conditionsφ−1,k=φN−1,k+K andφ0,k=φN,k+K , whereK is the number
of cells by which the periodicity is shifted in they direction (see Subsection 6.3 for an
application). Afixed(supersonic inflow or outflow) boundary condition forB implies that
the gradient ofφ should be zero for the first layer of ghost cells, which can be achieved
by settingφ0,k= 0 andφ−1,k=φ1,k. For acontinuous(approximation of open) boundary,
φ0,k=φ−1,k= 0 can be used. When the orthogonal componentBx is antisymmetricand the
tangential componentBy is symmetric (perfectly conducting wall) then the boundary con-
dition onφ should be symmetric:φ−1,k=φ2,k andφ0,k=φ1,k. Sometimes the symmetry of
the problem demandsBx to be symmetric andBy antisymmetric at thex= 0 boundary, then
an antisymmetric condition should be applied onφ, i.e.,φ−1,k=−φ2,k andφ0,k=−φ1,k.

In summary, the projection scheme can be used efficiently in all geometries for which
the Poisson equation can be solved efficiently. Iterative methods provide a very flexible,
efficient, and parallelizable algorithm.

6. NUMERICAL TESTS

6.1. Versatile Advection Code

The aim of developing the Versatile Advection Code (VAC) [40, 41] is to provide the
astrophysicist and physicist community with a modern, versatile, and user-friendly software,
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which can be adapted to the application, and which runs efficiently on work stations, vector
and parallel super computers as well.

VAC uses various shock-capturing numerical methods: two versions of flux corrected
transport (FCT) schemes [6, 27], the Lax–Wendroff type total variation diminishing (TVD)
[16] and the TVD-MUSCL [46] schemes with Roe-type approximate Riemann solvers
[33, 34], and the TVD Lax–Friedrichs (TVDLF) method [48]. For the TVD type schemes
different slope limiters are available, including the most robustminmod, the sharpermono-
tonized central(MC, also referred to as Woodward) limiter, and the (overly) sharpsuper-
beelimiter. For exact specifications of these algortihms, see [44]. In multidimensions, the
schemes can be used in a dimensionally split [39] or unsplit manner. Explicit, semi-implicit,
or fully implicit time stepping [23, 43] algorithms are available for time integration. The
simulations can be done on 1-, 2-, or 3-dimensional structured finite volume grids using the
same dimensional independent source code written in theloop annotation syntax[42]. In
two spatial dimensions both slab and cylindrical symmetry can be assumed in the ignored
third dimension. Cartesian and polar grids are handled as special cases for sake of efficiency.

The code is designed to solve conservation laws of the form (9) with possible source
terms. The different numerical schemes and equations are implemented in modules and
they can be combined arbitrarily. The implemented equation modules are the hydrodynamic
and adiabatic hydrodynamic equations, the isothermal or polytropic MHD equations, and
the full MHD equations. Source terms for resistivity, viscosity, heat conduction, radiative
cooling, and external gravity are readily available; other types of source terms can be defined
in user written subroutines.

For MHD applications, the divergence of the magnetic field can be kept zero with the
constrained transport or the new central difference approaches (Section 4) or by the pro-
jection scheme (Section 5). The Poisson equation (33) is solved by the CG or BiCGSTAB
iterative methods. These iterative algorithms work for arbitrary boundary conditions unlike
direct solvers based on fast Fourier transforms. Also implemented in VAC are Powell’s
eight-wave Riemann solver and the corresponding source terms (see Section 3).

Parallel execution of the code is achieved by an automatic translation to high performance
Fortran. All explicit schemes, including the iterative Poisson solvers, are fully parallelizable.
In this paper VAC will be used as a research tool for computational methods, but it has already
been successfully used in many physical applications [18, 19, 21, 22, 26, 30, 36]. The code
is available fromhttp://www.phys.uu.nl/~toth/ via registration.

6.2. Base Scheme and Measurement of Numerical Error

I wish to compare the numerical methods aimed at the∇ ·B= 0 constraint; therefore for
any test problem thebase schemewill be fixed. Since the transport-flux-interpolated CT
scheme of RMJA is defined for a one step TVD base scheme only, I chose this method as the
base scheme whenever possible. The one step TVD method requires dimensional splitting
for numerical stability. Second order accuracy in time is achieved by altering the order of
x andy sweeps after every time step the same way as it is done by RMJA and DW. In real
applications the time step is varied dynamically based on the Courant–Friedrichs–Lewy
(CFL) condition. In principle1t should only be changed after every second step. If the
time step changes in every step, the formal second order temporal accuracy is lost, although
the variation of1t is typically small; thus the error is very small. In any case, in most of the
test problems, the time step1t is set to a fixed value which the final timetmax is an integer
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multiple of and for which the Courant number is approximatelyC= 0.8 during the whole
simulation.

There are a few minor differences between the TVD algorithm used by RMJA and the
one used in the test cases below: (1) RMJA use the original flux definition by Harten,
while I chose the simpler and equally accurate Roe-type flux (see [44]); (2) I use the
monotonized central (MC) limiter by default, since it usually gives sharper discontinuities
than the minmod limiter and it is simpler than Harten’s steepener; (3) no entropy fix was
used in these test simulations. Note that these choices are not due to limitations of the
Versatile Advection Code but decisions in favour of the better and/or simpler algorithms.
VAC actually contains Harten’s flux among three others, also Harten’s steepener, and four
different versions for the entropy fix (including the one used by RMJA). As far as it can be
judged from the comparison with several published test results, the base scheme used here
is at least as good as the base schemes of RMJA and DW.

For a quantitative comparison of the various schemes handling the∇ ·B= 0 constraint, the
numerical error should be calculated and compared. In the absence of an analytic solution,
a high resolution numerical solution is used as a basis for comparison. The high resolution
solution iscoarsenedto the resolution of the simulations to be compared by averaging out the
fine grid values contained in the coarse cells. For example, when the schemes are compared
at a 50× 50 resolution and the high resolution grid has 400× 400 cells, for each coarse cell
8× 8= 64 high resolution cells are averaged. The averaging corresponds to an integration
over the coarse cell, so the coarsened solution is a very accurate numerical solution in the
finite volume sense. In principle one shouldcoarsen the conservative variablesand calculate
derived functions of these; however, in certain cases this procedure can lead to non-physical
results, e.g., negative temperature. To avoid this possibility, Icoarsen the derived quantities
themselves for the reference solutions used in this paper. As a check, the coarsening was
done both ways for a few test problems, and the resulting errors were found to change
insignificantly, as expected.

The relative numerical error of variableu obtained on anN×M grid is defined as

δu =
∑N

j=1

∑M
k=1

∣∣u j,k − uhigh
j,k

∣∣∑N
j=1

∑M
k=1

∣∣uhigh
j,k

∣∣ , (45)

whereuhigh is the coarsened high resolution solution. I will measure the numerical error for
the physically most meaningful primitive variables. The averaged errorδ̄ is defined as an
average ofδu for all the (non-zero) primitive variablesu. For convergence studies the grid
resolution is indicated as a subscript forδ̄N .

6.3. Rotated One-Dimensional Problems

In all tests of this section, a one-dimensional problem, which can be solved either analyti-
cally or very accurately with a 1D simulation, is rotated by an angleα to test the capabilities
of the schemes in 2D, where the zero divergence of the magnetic field is not maintained by
the base scheme.

When the rotation angle isα= 0 (or 90◦), the projection, 8-wave, and transport-flux-CT
schemes reduce to the base scheme, while the other CD and CT schemes are different from
the base scheme even in this slab symmetric case. Theα= tan−1(1x/1y), which is 45◦

for aspect ratio of unity, case happens to be very special as well: the centered (26) and the
staggered (27) discretizations become identical for the diagonal symmetryB j,k=B j−1,k+1.
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Therefore the initial conditions can satisfy∇ ·B= 0 for both discretizations and all the CT
and CD schemes will conserve this property. Moreover, due to the symmetry in thex andy
fluxes, the flux-CT and flux-CD schemes become identical. Finally, the parallel component
of the magnetic fieldB‖ (which must be a constant in one-dimensional problems) is also
conserved to round off errors by all the CT and CD schemes. This explains whyB‖ and
Bξ are almost exactly constant in the plots of RMJA and DW for the rotated shock tube
problems. I note that DW incorrectly attribute the minute oscillations in their Fig. 5 in [11]
and Fig. 13 in [12] to truncation errors; in fact those oscillation are due to round off errors.
For a general angleα, however, the conservation ofB‖ is accurate to truncation errors at
best.

6.3.1. Smooth Alfv́en waves. This test problem compares the accuracy of the schemes
for smooth flow. Thecircularly polarizedAlfv én waves are analytic solutions of the MHD
equations for arbitrary amplitudes. The test presented in this paper is similar to DW’s Alfv´en
test (Fig. 10 in [12]), but there are significant differences: (1) the Alfv´en waves used by
DW are linearly polarized, therefore the gradient of the magnetic pressure is not zero,
which causes a small but finite distortion of the initial sine wave with time; (2) DW sets the
fluid velocityv‖ =−vA to compensate the Alfv´en speed; thus the wave is actually standing
relative to the grid. I will usecircularly polarized Alfvén waves and I will examine both the
travelling (v‖ = 0) and standing (v‖ + vA= 0) wave cases.

It should be mentioned that BS also modeled the propagation oflinearlypolarized oblique
Alfv én waves as their third test problem. As I pointed out above, such a travelling wave
is not an exact solution of the non-linear compressible MHD equations, although the non-
linear terms are much smaller than the numerical errors in any of their simulations. The
main problem with their test is of a different nature. Balsara and Spicer’s third test involves
Alfv én waves polarized in thez direction on a two-dimensionalx–y domain, while the
flux-CT algorithm differs from the base scheme in theBx andBy variables only! The latter
variables are constants in space and time for this test except for the small non-linear effects.
This explains why BS find essentially no difference when the test is done with or without
the CT discretization. The tiny differences between their Figs. 5 and 6 should be entirely
due to the fact that the non-linear effects slightly perturbBx andBy, and these are handled
differently by the base scheme and the CT scheme. We shall see that there is a much more
pronounced difference between the different discretizations when the Alfv´en waves involve
the Bx andBy variables directly.

The circularly polarized Alfv´en wave propagates at an angleα= 30◦ relative to the
x axis, and it has a unit wave length in that direction. The computational box is peri-
odic with 0< x< 1/ cosα and 0< y< 1/ sinα. The initial conditions areρ= 1, v‖ = 0,
p= 0.1, B‖ = 1, v⊥ = 0.1 sin[2π(x cosα+ y sinα)]= B⊥, andvz= 0.1 cos[2π(x cosα+
y sinα)]= Bz withγ = 5/3 andη= 0. Theπ/2 phase shift betweenBz andB⊥ = By cosα−
Bx sinα ensures that the magnetic pressure is constant. The Alfv´en speed is|vA| =
B‖/
√
ρ= 1; thus by timet = 1 the flow is expected to return to its initial state. The wave is

moving towardsx= y= 0.
The computational domain is resolved by anN× N grid; thus the cells have an aspect

ratio1x/1y= tanα= 1/
√

3. For this special choice, the initial condition satisfies∇ ·B= 0
both in the centered (26) and in the staggered (27) discretizations. The simulation is run to
a final timetmax= 5 with a time step1t = 0.8/N. The seven schemes and the base scheme
are compared for resolutionsN= 8, 16, 32, and 64 in Table II. The errros are averaged for
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TABLE II

Convergence of Average Errors for Alfvén Waves

Travelling waves Standing waves

δ̄8 δ̄16 δ̄32 δ̄64 δ̄8 δ̄16 δ̄32 δ̄64

Projection 0.716 0.135 0.032 0.012 Projection 0.299 0.079 0.031 0.012
Base scheme 0.711 0.133 0.033 0.012 Base scheme 0.321 0.112 0.034 0.013
8-wave 0.713 0.134 0.033 0.012 Flux-CD/CT 0.315 0.122 0.037 0.013
Tr-flux-CT 0.852 0.193 0.044 0.014 Field-CT 0.268 0.102 0.044 0.021
Field-CD 1.016 0.336 0.087 0.025 Field-CD 0.294 0.106 0.044 0.021
Flux-CD/CT 0.971 0.393 0.105 0.029 8-wave 0.351 0.127 0.050 0.024
Field-CT 0.927 0.566 0.163 0.044 Tr-flux-CT 0.549 0.287 0.111 0.046

thev⊥, vz, B⊥, andBz variables, since the other primitive variables do not take part in the
Alfv én wave, and their errors are much smaller. All schemes converge approximately at a
second order rate, but there are large differences in the average errors, which is dominated
by amplitude and phase errors inB⊥ andv⊥ as shown in Fig. 8.

The simulations were repeated withv‖ = 1 so that the Alfvén wave is standing relative
to the grid. The time step is reduced to1t = 0.4/N to maintain the Courant condition. The
results in Table II and Fig. 9 show that the schemes behave rather differently for this setup.
The projection scheme and the base scheme are the most accurate for both the travelling and
standing wave problems. The transport-flux-CT scheme produces under and overshoots for
coarse resolutions.

FIG. 8. The orthogonal componentB⊥ = (
√

3By− Bx)/2 of the magnetic field in the travelling (v‖ = 0,
vA=−1) Alfv én wave problem. The initial condition (full line) is shown for theN= 64 resolution. The solutions
at time t = 5 are shown for the different schemes at resolutionsN= 8 (dotted), 16 (dashed), and 32 (dot-dash
lines).
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FIG. 9. Conditions the same as Fig. 8 except that the results are shown for the standing (v‖ = 1=−vA) Alfv én
wave problem.

As a check, I also did the travelling wave problem forα= 0, i.e., the wave moves parallel to
thex axis. For this case the projection, 8-wave, and transport-flux-CT schemes are identical
with the base scheme which was verified by the numerical results. The error of the flux-CT
scheme is about 1.3 times larger than the error of the base scheme at all the resolutions. The
field-CD, flux-CD, and field-CT schemes all give very similar errors, which are about 1.3 to
1.7 times larger than the error of the base scheme at the different resolutions. The standing
wave problem is solved exactly by all the schemes for theα= 0 case since the fluxes are
zero analytically as well as numerically.

6.3.2. The 2D shock tube test.The initial left state is(ρ, v‖, v⊥, p, B‖, B⊥)= (1, 10, 0,
20, 5/

√
4π, 5/

√
4π) and the initial right state is(1,−10, 0, 1, 5/

√
4π, 5/

√
4π) for this

Riemann problem. Thevz and Bz components are zero. The adiabatic index and the re-
sistivity areγ = 5/3 andη= 0. The same problem with its exact solution can be found in
[10, 32]. The 2D test withα= 45◦ was solved with the transport-flux-CT scheme by RMJA
and with the projection scheme in [32], and the plotted results look very similar (see also
[25]). First I make the comparison for the seven different schemes and the base scheme
with a rotation angleα= tan−1 2≈ 63.4◦. Since the magnetic field is uniform initially, for
this test problem the initial condition satisfies∇ ·B= 0 for any rotation angle and for any
discretization.

The computational domain is a narrow strip with 0< x< 1 and 0< y< 2/N, and it is
resolved by anN× 2 grid. The top and bottom boundaries are of the shifted periodic types
(see Subsection 5.5) according to the translational symmetry in the(−2, 1) direction, while
the left and right boundaries are fixed according to the initial condition (see Fig. 10). The
computation is stopped at timetmax= 0.08 cosα= 0.08/

√
5 before the fast shocks would

reach the left and right boundaries. This setup is more economic than using anN× N grid,
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FIG. 10. The grid used for the 2D shock tube problem rotated byα= tan−1 2. The ghost cells on the top and
bottom (double shaded area) are copies of the computational domain (middle unshaded part) but shifted to the left
and right by four cells. In the rest of the ghost cells (single shaded area) the variables are fixed to the initial left
and right states. The flow (dark and light gray squares) has a translational symmetry in the(−2, 1) direction, and
the normal vector of the discontinuities point in the(1, 2) direction.

but the results are otherwise identical. In all figures the first row( j = 1) of the physical mesh
is plotted. The discontinuities look more spread out than in the plots of RMJA, since the final
times differ by a factor of

√
10, which means that the effective resolution is approximately

3 times lower for the simulations presented here for the same value ofN. In other words, the
plots in RMJA are cuts along thej = k diagonal, which is orthogonal to the discontinuities,
while the plots in this paper are cuts parallel to thex axis, which is at an angleα relative to
the shock normal.

The seven schemes and the base scheme are compared at a resolutionN= 256. The final
time is reached in 170 time steps with1t = tmax/170≈ 2.1× 10−4. The errors are measured
against a high resolution 1D simulation with 1024 grid cells running tot = 0.08 in 1600 time
steps. The high resolution result is coarsened by a factor of 4 and the vector components
are rotated byα to match the low resolution simulations. Both the minmod and MC slope
limiters were tried for the base scheme. Formally the errors are slightly smaller for the MC
limiter, due to the sharper discontinuities, but there are more pronounced oscillations in the
smooth regions. The numerical errors (45) reported in Table III correspond to the minmod
limiter. The schemes are listed in the order of their numerical errors averaged for all the
primitive variables.

The results show that the non-conservative 8-wave formulation performs the worst for this
test. The error is most significant in the parallel magnetic field component, which should be
a constantB‖ = 5/

√
4π ≈ 1.4105. Figure 11 showsB‖ = (Bx + 2By)/

√
5 for six different

schemes. The 8-wave scheme is in error everywhere between the two fast shocks by 3 to 7%.

TABLE III

Numerical Errors in the 2D Shock Tube Test forα = 63.4◦ and N = 256

δρ δv‖ δv⊥ δp δB‖ δB⊥ δ̄

Field-CD 0.0074 0.0175 0.0936 0.0052 0.0046 0.0102 0.0231
Flux-CD 0.0075 0.0175 0.0965 0.0052 0.0036 0.0107 0.0235
Projection 0.0076 0.0177 0.0948 0.0055 0.0062 0.0093 0.0235
Flux-CT 0.0075 0.0176 0.0996 0.0052 0.0016 0.0098 0.0235
Base scheme 0.0075 0.0178 0.1006 0.0055 0.0037 0.0078 0.0238
Tr-flux-CT 0.0075 0.0177 0.1020 0.0054 0.0020 0.0089 0.0239
Field-CT 0.0075 0.0174 0.1214 0.0059 0.0043 0.0178 0.0291
8-wave 0.0076 0.0180 0.1027 0.0056 0.0413 0.0092 0.0307
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FIG. 11. The parallel component of the magnetic field in the 2D rotated shock tube test is shown for six different
schemes. The analytic solution is a uniform valueB‖ = 5/

√
4π . The non-conservative 8-wave formulation is in error

by several percentage everywhere between the left and right moving fast shocks (x= 0.1− 0.9). The conservative
schemes, including the base-scheme (middle top panel), show significant errors close to the discontinuities only.

This error is due to the non-conservative source terms plotted in Fig. 12. When the source
terms (and the 8th wave of the Riemann solver) are not included, the base scheme produces
correct jumps accross the discontinuities as it is shown in the middle top panel in Fig. 11.
The conservative schemes also have errors at the discontinuities, but the errors between the
discontinuities are smaller and they converge to zero with increased resolution. Figure 13
compares the convergence behaviour of the 8-wave scheme and the field-interpolated central
difference schemes by showingB‖ at tmax/2 andtmax. The results at half time correspond to
half the resolution(N= 128) due to the self similarity of the solution of Riemann problems.
The average deviation from the analytic value ofB‖ = 5/

√
4π does not decrease for the

non-conservative 8-wave scheme, while it converges to zero for the conservative field-CD
scheme as expected.

To be fair I should say that in many shock tube problems the 8-wave scheme performs well
and the conservation across the jumps is satisfactory (see, e.g., the next subsection). The
present test problem was selected to demonstrate a potential weakness of non-conservative
schemes. On the other hand, it was carefully checked that other choices for the base scheme,
e.g., dimensionally unsplit TVD-MUSCL or adding the non-conservative source terms by
operator splitting, do not fix or diminish the problem. It was also checked that the error
is not a consequence of the initial startup errors: when the simulation is continued with
the 8-wave scheme starting from the divergence-free output of the projection or field-CD
scheme at an intermediate time, the incorrect jump in the parallel magnetic field appears
with the same magnitude as in Fig. 12.

Among the conservative schemes, the field-CT scheme is the least accurate due to large
oscillations behind the slow rarefaction wave (see the bottom left panel in Fig. 11). It was
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FIG. 12. In the rotated shock tube problem, the incorrect jumps of the parallel magnetic field (top left) for
the 8-wave formulation are due to the source terms (bottom left and right) in the non-conservative form of the
induction equation (13). The source terms are proportional to the numerical value of∇ · B (top right), which has
large oscillations at the discontinuities independent of the resolution.

checked that these oscillations do not reduce if an entropy fix (the same as in RMJA) was
used, or if the time step was reduced by a factor of 2. The rest of the schemes (top six rows
in Table III) can be ordered differently depending which variable we take for comparing
the errors. The relative errors are largest in the orthogonal velocity component since|v⊥| is
much smaller than the Cartesian components|vx| and|vy|, but the numerical errors invx

andvy do not cancel forv⊥ = (vy− 2vx)/
√

5. The gap between the best six and worst two
schemes remains significant even if the errorδv⊥ is not taken into account. The magnetic
field is most accurate for the flux- and transport-flux-CT schemes. In terms of the average
error, the most accurate algorithm for this problem happens to be the simple field-CD scheme
(see Fig. 14), although one should not take the differences between the top six schemes
very seriously. Despite the reservations emphasised by DW, the projection scheme solves
this superfast flow (the velocity exceeds the fast magnetosonic speed by a factor of 4.2)
significantly more accurately than the field-CT scheme proposed by the same authors. This
is a practical demonstration of the theoretical arguments discussed in Subsection 5.3.

It is interesting to check the numerical value of∇ ·B for the various schemes. Table IV
shows the maximum and average values of|∇ ·B| according to both the central difference
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TABLE IV

DivergenceB in the 2D Rotated Shock Tube Test

|∇ ·B j,k| |∇ ·B j+1/2,k+1/2|

Max Avrg Max Avrg

Base scheme 141.5 3.43 48.9 3.27
8-wave 142.5 3.62 57.0 1.91
Projection 0.3 0.01 130.9 4.73
Field-CD 10−12 10−13 84.2 3.81
Flux-CD 10−12 10−13 68.5 3.91
Field-CT 65.9 5.63 10−12 10−13

Flux-CT 73.5 2.09 10−12 10−13

Tr-flux-CT 102.8 2.95 10−12 10−13

FIG. 13. The convergence behaviour of the parallel component of the magnetic field is shown for the non-
conservative 8-wave (top) and the conservative field-CD (bottom) schemes for the 2D rotated shock tube test. The
plots at half time (left) correspond to a resolution of 128 points, while the results at the final time make use of
the full resolution of 256 grid cells. The results by the non-conservative method do not converge to the correct
uniform solution, while the conservative scheme converges toB‖ = 5/

√
4π everywhere except for a fixed number

of cells in the vicinity of the discontinuities.
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FIG. 14. The solution of the 2D rotated shock tube problem by the field-CD scheme (symbols) on a 256×
2 grid. For comparison, the non-rotated 1D solution with 1024 grid cells is also plotted (line).

(26) and the cell corner centered (27) definitions for all seven schemes and the base scheme.
As expected, the central difference definition for the CD schemes and, similarly, the cell
corner centered discretization for the CT schemes are around the round off error 10−12. The
projection scheme keeps the cell centered discretization below 0.3 using 20 iterations of the
conjugate gradient solver in every time step. It was checked that the results hardly change
if the Poisson problem was solved much more accurately withε= 0.01, but of course such
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TABLE V

Average Errors in the 2D Rotated Shock Tube Test

α= 63.4◦ α= 45◦

δ̄128 δ̄256 δ̄128 δ̄256

Field-CD 0.0345 0.0231 0.0249 0.0132
Projection 0.0351 0.0235 0.0238 0.0130
Flux-CT 0.0336 0.0235 0.0253 0.0134
Flux-CD 0.0341 0.0235 0.0253 0.0134
Tr-flux-CT 0.0340 0.0239 0.0258 0.0140
Base scheme 0.0336 0.0238 0.0376 0.0258
Field-CT 0.0437 0.0291 0.0316 0.0165
8-wave 0.0413 0.0307 0.0374 0.0264

a precision requires more iterations. It is quite interesting to see that for all the six schemes
(3rd to 8th rows in the Table IV) that keep∇ ·B very small in one discretization, in theother
discretization∇ ·B is not at all small when compared to the 8-wave scheme or the base
scheme. There seems to be no straightforward relationship between the overall accuracy of
a method and its ability to keep∇ ·B small in some particular discretization.

The schemes were also compared at half the resolution (N= 128) and the overall picture
remains the same: the 8-wave and the field-CT schemes are significantly less accurate than
the other four schemes. The convergence rate is around first order for all the primitive
variables except for the orthogonal velocity component, for which the errors diminish by
10 to 20% only as the resolution goes fromN= 128 to 256.

I repeated the test problem for the rotation angleα= 45◦ as well (same as used by RMJA)
with tmax= 0.08/

√
2.For this special choice of angle, the divergence ofB is zero to machine

accuracy for all CT and CD schemes in both the central difference (26) and the cell corner
centered (27) discretizations and the uniform parallel component of the magnetic field
B‖ = 5/

√
4π is also conserved accurately. The 8-wave scheme produces incorrect jump

conditions, and it converges to aB‖ which is in error by 5% to 10% between the fast shock
waves. Table V summarizes the average errors for rotation anglesα= 63.4◦ and 45◦ and
resolutionsN= 128 and 256. In all four cases there is a gap between the five most and the
two least accurate methods, while the base scheme seems to do the problem withα= 63.4◦

better than withα= 45◦. Comparison of values of̄δ128 andδ̄256 indicates an approximately
first order convergence rate for the conservative schemes forα= 45◦ and somewhat worse
for α= 63.4◦ due to the error inv⊥.

6.3.3. The 2.5D shock tube test.This rotated shock tube problem is a 2.5D test since all
three components of the velocity and magnetic fields are non-zero. The initial left and right
states of this Riemann problem are(ρ, v‖, v⊥, vz, p, B‖, B⊥, Bz)= (1.08, 1.2, 0.01, 0.5,
0.95, 2/

√
4π, 3.6/

√
4π, 2/

√
4π) and (1, 0, 0, 0, 1, 2/

√
4π, 4/

√
4π, 2/

√
4π), and γ =

5/3, η= 0. The same Riemann problem with its exact solution can be found in [10, 32].
Since the initial condition contains a jump in the magnetic field, this test is easiest to do
with a rotation angleα= 45◦ which ensures∇ ·B= 0 both in the cell centered (26) and
the corner centered (27) discretizations. This test is identical with RMJA for the transport-
flux-CT scheme and with [32] for the projection scheme except for the final time, which
is tmax= 0.2/

√
2, exactly half of the value used by RMJA. This test problem is also done
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TABLE VI

Convergence of Average Errors in the 2.5D Shock Tube Test

Minmod MC limiter

δ̄128 δ̄256 δ̄128 δ̄256

Projection 0.0182 0.0111 0.0129 0.0074
8-wave 0.0190 0.0119 0.0131 0.0071
Tr-flux-CT 0.0188 0.0114 0.0156 0.0093
Field-CD 0.0190 0.0115 0.0156 0.0093
Flux-CD/CT 0.0197 0.0120 0.0171 0.0107
Base scheme 0.0206 0.0124 0.0187 0.0121
Field-CT 0.0213 0.0134 0.0192 0.0126

in [25]. Again anN× 2 grid is used withN= 256; thus the effective resolution is half of
RMJA’s. The time step is1t = tmax/120. The high resolution 1D solution is obtained with
the base scheme on aN= 1024 grid att = 0.2 using1t = 0.00025.

For this test case the monotonized central limiter is clearly superior to the minmod limiter
since it gives smaller errors due to the sharper discontinuities and the oscillations are very
small. The average errors̄δ are shown for the seven schemes and the base scheme at the
resolutionsN= 128 and 256 in Table VI. Although the special choice ofα should favour
the CT and CD algorithms (sinceB‖ is exactly conserved by them) the average error is the
smallest for the 8-wave and projection schemes. For this test problem the non-conservative
source terms of the 8-wave scheme do not introduce a significant error. In Fig. 15 the results
of the 8-wave scheme are shown together with the reference high resolution solution. The
field-CT scheme gives the worst result: its average error is approximately 1.5 times larger
than that of the most accurate schemes.

6.4. Orszag–Tang Vortex

The Orszag–Tang vortex problem [28] has been used in many papers [11, 12, 25, 35, 44,
50] as a two-dimensional numerical test for MHD codes, although the choices for the length
and time units differ. Here I use the same normalization as in [44]. The computational domain
is a square with 0< x, y< 2π and periodic boundary conditions. The initial vortex structure
is defined byρ= 25/9,vx =− siny,vy= sinx, Bx =− siny, By= sin 2x, p= 5/3,vz= 0,
Bz= 0, and the equation parameters areγ = 5/3 andη= 0. In the numerical initial condition
γ = p= 1.667 andρ = 2.778 were used, but for the coordinates a double precision value
is taken for 2π to make the periodicity accurate.

Three different resolutions are taken for theN× N grid: N= 50, 100, and 200. The
numerical errors are calculated relative to “high resolution” results withN= 400. Even
at this high resolution the numerical results differ somewhat depending on the numerical
scheme. To make the comparison fair, two high resolution results were obtained with the
projection and the field-CT schemes, and the numerical errors reported in Table VII are the
averages of the errors relative to the two high resolution runs. The time step is1t = 2/N
for all the simulations.

The Orszag–Tang vortex problem starts from smooth initial data, but gradually the flow
becomes very complex as expected from a transition towards turbulence. At timet = 1 the
flow is still quite smooth, although some discontinuities are already present. The accuracy of
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FIG. 15. The solution of the 2.5D rotated shock tube problem by the 8-wave scheme (symbols) on a 256×
2 grid. For comparison, the non-rotated 1D solution with 1024 grid cells is also plotted (line).

the schemes for dominantly smooth problems can be compared at this time. Table VII lists
the average relative errors for the primitive variables for the three resolutions. The errors
are more or less evenly distributed among the primitive variables and the ordering of the
schemes is essentially independent of which primitive variable the errors are measured by.
All seven schemes and the base scheme converge with a convergence rate of approximately
1.6, which is worse than the second order accuracy expected for completely smooth flow,
but better than the first order accuracy obtained in dominantly discontinuous problems. The
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TABLE VII

Convergence of Averaged Errors in the Orszag–Tang Test

t = 1 t = 3.14

δ̄50 δ̄100 δ̄200 δ̄50 δ̄100 δ̄200

Field-CD 0.0250 0.0085 0.0026 Field-CD 0.1150 0.0617 0.0300
Field-CT 0.0284 0.0096 0.0029 Projection 0.1280 0.0709 0.0340
Projection 0.0287 0.0109 0.0035 Field-CT 0.1393 0.0720 0.0355
Flux-CT 0.0321 0.0114 0.0035 Flux-CT 0.1352 0.0737 0.0358
8-wave 0.0305 0.0119 0.0043 Flux-CD 0.1380 0.0775 0.0373
Flux-CD 0.0347 0.0122 0.0037 Tr-flux-CT 0.1527 0.0837 0.0439
Base scheme 0.0324 0.0128 0.0044 8-wave 0.1420 0.0867 0.0478
Tr-flux-CT 0.0349 0.0134 0.0045 Base scheme 0.1784 0.1097 0.0705a

a Obtained with the minmod limiter.

averaged relative errors̄δ of the most accurate field-CD and the least accurate transport-
flux-CT schemes differ by about a factor of 1.5.

The situation changes a lot when the schemes are compared att = 3.14, which is approx-
imately the same time for which the different quantities are plotted in [11, 12, 25, 35, 44,
50]. (I note that Balsara [2] ran an isothermal MHD version of this test problem to time
t = 3 using the same distance unit as here, but their time unit, which is presumably smaller
than here, was not specified, so it is difficult to make a comparison with his results.) The
average numerical errors are reported in Table VII. The errors per primitive variable have
similar values as̄δ and they all show the same order among the schemes. The base scheme
fails for the Orszag–Tang problem at resolutionN= 200 due to accumulation of errors that
eventually result in non-physical states. A solution could only be obtained with the minmod
limiter.

There are lots of things that can be read from the table. The convergence rate dropped to
1, which shows that the integrated errors defined in (45) are dominated by the errors at the
discontinuities. For the same reason, the errors are much larger att = 3.14 than they were
at t = 1. The base scheme is considerably less accurate than the other schemes, even for the
resolutions where it succeeded with the MC limiter. The projection scheme became second
best, while the simplest field-CD scheme kept its leading position.

The qualitative differences in resolution can be appreciated in the six gray scale im-
ages of temperature in Fig. 16. I plot temperature, since it is a good indicator of shocks
as well as contact discontinuities. The reference high resolution solution (bottom right)
was obtained with the projection scheme on a 400× 400 grid. The other five plots are
results of five different schemes with 100× 100 resolution. Only the left half of the
computational domain is shown since the right half is symmetric to the center point
x= y=π . Looking at the images, the field-CD and field-CT results are obviously sharper
than the other three solutions. Only these two schemes show clearly the sharp dark (cold)
feature betweenx= y= 1 and x= 0.5, y= 2. The feature can hardly be seen in the
solution from the projection scheme, and it is completely smeared out in the 8-wave
and flux-CT results. Although the solution with the field-CT scheme looks sharp, it con-
tains spurious oscillations aroundx= 0, y= 3, some dark spots aroundx= y= 3, and white
spots aroundx= 3, y= 6, which should not be there according to the high resolution so-
lution. To a much lesser extent these spurious features can also be detected in the field-CD
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FIG. 16. The temperature distribution in the Orszag–Tang vortex problem. Only the left half of the compu-
tational domain is shown, the other half is symmetric. The five schemes are compared at a 100× 100 resolution.
The reference high resolution solution (bottom right panel) was computed on a 400× 400 grid with the projection
scheme. The temperature range is from 0.15 (black) to 1.24 (white).

result. Although the projection scheme does not look much sharper than the 8-wave and
flux-interpolated schemes, according to the quantitative measure of error it is the second
most accurate algorithm for the temperature. The average errors (measured against two high
resolution solutions obtained with the projection and field-CT methods) areδT = 0.0323,
0.0330, 0.0335, 0.0357, 0.0373, 0.0385, 0.0416, and 0.0463 for the field-CD, projection,
flux-CT, flux-CD, 8-wave, transport-flux-CT, field-CT, and base schemes, respectively.

6.5. Cloud-Shock Interaction

This problem models the disruption of a high density cloud by a strong shock wave. The
test problem is taken from DW [12] and it is presented here to test the different schemes
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on highly superfast flows. The computational domain is 0< x, y< 1 resolved by a uniform
N× N grid. The initial condition contains a discontinuity parallel to they axis atx= 0.6
with the left and right states(ρ, vx, vy, vz, p, Bx, By, Bz)= (3.86859, 0, 0, 0, 167.345, 0,
2.1826182,−2.1826182)and(1,−11.2536, 0, 0, 1, 0, 0.56418958, 0.56418958)with γ =
5/3, η= 0. The discontinuity is a combination of a fast shock wave and a rotational dis-
continuity in Bz. The rotational discontinuity has no effect on the evolution of other flow
variables. The circular cloud is located atx= 0.8, y= 0.5 with a radius 0.15, densityρ= 10,
and pressurep= 1 in hydrostatic equilibrium with the surrounding plasma. There is a fixed
boundary condition on the right aty= 1 due to the supersonic inflow, while the other
boundaries are approximately open using the zero-gradient boundary condition.

It was found that the dimensionally split one step TVD scheme can easily fail due to
non-physical states produced during the violent collision of the shock and the cloud even
when the minmod limiter and an entropy fix were used. Although the difficulties can be
avoided by significantly reducing the time step and/or by making the edge of the cloud
smoother, I decided to use another base scheme, the two step TVD-MUSCL scheme with
a Hancock predictor step, with no dimensional splitting, and with the monotonized central
slope limiters applied on the primitive variables. This base scheme is not compatible with
the transport-flux-CT algorithm, so that is not tested. The time step is adjusted dynamically
so that the Courant number never exceeds C = 0.6 and the last time step reaches exactly the
final timetmax= 0.06. Using this base scheme the test problem could be solved successfully
with all the tested schemes at all the tested resolutions with two exceptions. The field-CT
scheme failed at higher resolutions just a few steps before completion, but a subtle change
of averaging the electric field instead of the magnetic and velocity fields fixed this problem.
This minor modification does not change the essential characteristics of the scheme. The
base scheme has also failed for theN = 200 resolution, which could only be done by using
the minmod limiter instead of the sharper MC limiter.

The simulations were carried out at resolutionsN= 50, 100, and 200. Two reference so-
lutions were obtained with the projection and the field-CD schemes at a resolutionN= 400.
The results of the projection scheme are shown in Fig. 17 which should be compared with
Figs. 18 and 19 in [12]. The magnetic field solutions look very similar if we take into
account that DW plot more contourlines in the post shock region, suppress contourlines
in the preshock region, and cut off the edges of the simulation domain. The density plots
also compare well, although certain details, like the two “eyes” visible in DW’s Fig. 18 at
x= 0.4, y= 0.4 and 0.6 do not show up in Fig. 17 or in any of the results obtained by the
other schemes. This may be due to the color coding of the DW plot.

All the schemes perform very similarly for this problem; their averaged numerical errors
differ by less than 5% from̄δ50= 0.2, δ̄100= 0.15, andδ̄200= 0.08 and the errors of the
individual primitive variables also agree within 10%. The only exception is the base scheme
at N= 200 resolution, wherēδ200= 0.14 due to the use of the minmod limiter. The relative
errors are highest for thevz andBx variables which are zero initially. The convergence rate
is approximately first order betweenN = 100 and 200 which is expected for a dominantly
discontinuous problem.

6.6. Rotor

This test problem is taken from BS. The computational domain is a unit square 0< x, y< 1
resolved byN× N grid cells. The inital thermal pressure and magnetic field are uniform
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FIG. 17. The magnetic field lines and the density distribution in the cloud-shock interaction problem solved by
the projection scheme on a 400× 400 grid. The density range goes from 1 (white) to 44 (black) with a logarithmic
gray scale.

with By= 0. There is a dense rotating disk of fluid withρ= 10, vx =−v0(y− 0.5)/r0, and
vy= v0(x− 0.5)/r0 out to a radial distancer < r0, wherer = [(x− 0.5)2+ (y− 0.5)2]1/2

is measured from the center point andr0= 0.1. The ambient fluid is at rest withρ= 1
andvx = vy= 0 for r > r1= 0.115. The fluid between the rotating and the ambient fluid
at r0< r < r1 has linear density and angular speed profiles withρ= 1+ 9 f , vx =
− f v0(y− 0.5)/r , andvy= f v0(x− 0.5)/r , wheref = (r1− r )/(r1− r0) is a “taper” func-
tion, which helps to reduce initial transients. Note that the rotor is not in equilibrium, since
the centrifugal forces are not balanced. The magnetic field, as it winds up, will confine the
rotating dense fluid into an oblate shape. There is no resistivity,η= 0.

By mistake the final time and the plots in BS do not correspond to the initial condition
described in the text (BS, private communication). First I will solve the problem as defined
in the text of BS:v0= 2, p= 1, Bx = 5/

√
4π , and adiabatic indexγ = 1.4. The final time
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tmax= 0.15 will be used in thisfirst rotor problem, when the flow looks similar, although
not identical, to the plots of BS. Thesecond rotor problem, which was used to obtain the
plots in BS, is defined byv0= 1, p= 0.5, Bx = 2.5/

√
4π , and adiabatic indexγ = 5/3. For

this problem the final time istmax= 0.295 as in BS. (I note that Londrillo and Del Zanna
[25] solve the first rotor problem withr0= r1= 0.1 and a final timet = 0.18.)

For the first rotor problem, experiments with the one step TVD base scheme showed that
many of the algortihms fail due to negative pressure; thus the more robust dimensionally
unsplit TVD-MUSCL base scheme is used. The MC limiter is applied on the primitive
variables. This base scheme excludes the transport-flux-CT algorithm from the test. The
remaining six schemes and the base scheme were tested at resolutionsN= 50, 100, and
200. The reference solutions were obtained with the projection and flux-CT schemes (see
Fig. 18) with N= 400. In all runs, the time step is dynamically set so that the Courant
number does not exceed 0.6 and the final time is reached exactly. The errors, averaged
relative to the two reference solutions, are listed in Table VIII on the left side.

The second rotor problem, which has a factor of two higher thermal pressure relative
to magnetic and dynamic pressures, could be solved successfully using the dimensionally

FIG. 18. The density, thermal pressure, Mach number, and magnetic pressure att = 0.15 for the first rotor
problem. The solution was obtained by the flux-CT scheme on a 400× 400 grid. The 30 contourlines are shown for
the ranges 0.483<ρ <12.95, 0.0202< p< 2.008, 0< |v|/cs< 8.18, and 0.0177<B2/2< 2.642, respectively.
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TABLE VIII

Convergence of Averaged Errors in the Rotor Tests

First rotor test withp= 1 Second rotor test withp= 0.5

δ̄50 δ̄100 δ̄200 δ̄50 δ̄100 δ̄200

Projection 0.1145 0.0603 0.0276 Projection 0.1146 0.0625 0.0324
8-wave 0.1152 0.0621 0.0285 8-wave 0.1153 0.0657 0.0354
Flux-CT 0.1191 0.0624 0.0298 Field-CD 0.1250 0.0652 0.0337
Base scheme 0.1185 0.0637 0.0329 Base scheme 0.1176 0.0667 0.0363
Field-CD 0.1340 0.0728 0.0354 Flux-CT 0.1218 0.0682 0.0369
Flux-CD 0.1344 0.0716 0.0355 Flux-CD 0.1283 0.0696 0.0361
Field-CT 0.1537 0.0893 0.0488 Tr-flux-CT 0.1195 0.0708 0.0491a

Field-CT 0.1404 0.0777 0.0453

a Obtained with the minmod limiter.

split one step TVD base scheme using the MC limiter. The only exception is the transport-
flux-CT scheme at resolutionN= 200, where the minmod limiter had to be used to avoid
break down due to unphysical states. Also, the reference high resolutionN= 400 solutions
were obtained with the projection and the field-CD schemes using the TVD-MUSCL base
scheme, since the one-step TVD scheme with the MC limiter failed for this resolution (using
the minmod limiter would probably help, but it would degrade the accuracy of the reference
solutions). The same quantities that were plotted by BS in their Fig. 2 are shown for the
high resolution result obtained with the projection scheme in Fig. 19. There is an excellent
agreement. The relative errors of the various schemes at different grid resolutions are listed
in Table VIII on the right.

For both rotor problems, all schemes converge at an approximately first order rate. The
projection scheme and the field-CT schemes are the most and least accurate among the
compared methods. The ratio of their relative errors is around 1.5 and 1.3 for the first and
second tests, respectively. It should be noted that the average errors do not reflect all the
properties of the results. For example, many of the schemes produce undershoots in pressure
and the corresponding sound speed, which reflect as spurious peaks in the Mach number
|v|/cs. The pressure undershoots hardly influence the errorδp. To avoid such undershoots,
one may prefer to use an energy correction like (40). For the first rotor problem, a test
with the field-CD scheme atN= 200 resolution showed that the energy correction removes
the pressure undershoots while the other variables or the overall accuracy hardly change.
Therefore the second rotor problem was solved with the energy correction for all the schemes
and resolutions. In all the runs, the total energy conservation is violated by less than 0.4%
during the whole computation due to the correction.

To get an impression of qualitative differences, contourplots of the Mach number in the
second rotor problem are shown for seven different schemes together with the base scheme
and a high resolution reference solution in Fig. 20. The central part shows significant
distortion of the circularly rotating velocity field for the base scheme and the field-CT
schemes. The error looks similar to the one shown by BS in Fig. 3 for their dimensionally
split base scheme. BS argue that the error is related to the error in the divergence of the
magnetic field, but the simulations presented here do not support this explanation. The
field-CT scheme, which maintains∇ ·B= 0 to machine accuracy in the CT discretization,
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FIG. 19. The density, thermal pressure, Mach number, and magnetic pressure att = 0.295 for the second rotor
problem. The solution was obtained by the projection scheme on a 400× 400 grid. The 30 contourlines are shown
for the ranges 0.532<ρ <10.83, 0.007< p< 0.776, 0< |v|/cs< 3.64, and 0.007<B2/2< 0.702, respectively.

shows very distorted velocity contours, while the 8-wave scheme, which has finite errors in
∇ ·B, does not suffer from this problem.

7. CONCLUSIONS

The main points of the algorithmic sections are the following:

• The 8-wave formulation is non-conservative which may cause incorrect jump con-
ditions occasionally.
• Staggered variables can be eliminated from all the constrained transport type algo-

rithms; thus the CT schemes can be viewed as finite volume discretizations.
• The new central difference based schemes are considerably simpler than the analo-

gous constrained transport type methods.
• The field-interpolated CD scheme does not require spatial interpolation.
• The CT and CD schemes can be generalized to arbitrary curvilinear grids, to axial

symmetry, and to resistive MHD.
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FIG. 20. The Mach number|v|/cs for the second rotor problem in the central part of the computational domain.
The seven schemes and the base scheme are compared at a 100× 100 resolution. The reference high resolution
solution (bottom right panel) was computed on a 400× 400 grid with the projection scheme. The 30 contourlines
are shown for the Mach number ranging from 0 to 3.3.

• The projection scheme is consistent and has the same order of accuracy as the base
scheme even for discontinuous (e.g., superfast) flows.
• The projection scheme can be implemented in an efficient, parallelizable, and flexible

way using iterative Poisson solvers.

Let us summarize the properties of the seven schemes: the 8-wave formulation, the field-
and the (transport-)flux-interpolated CT and CD schemes, and the projection method. All
seven schemes can be regarded as some modification of abase scheme, which is assumed to
be second order accurate in space and time for smooth solutions and conservative in a finite
volume sense, so that discontinuities are handled properly. All seven schemes maintain the
second order accuracy for smooth solutions. The 8-wave formulation spoils conservation,
the other six schemes are conservative. The 8-wave formulation conserves∇ ·B to the
accuracy of the truncation error, the CT and CD algorithms conserve∇ ·B in some particular
discretization down to round off errors, while the projection scheme removes the divergence
of the magnetic field to the accuracy of the Poisson solver. It is important to note that the
CT schemes maintain∇ ·B= 0 in a cell corner centered sense (27) while the CD and
the projection methods use a more natural cell centered discretization (26). Due to the
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differences in handling∇ ·B, the schemes are more or less sensitive to discretization errors
in the boundary and initial conditions. The projection scheme removes the errors from the
initial condition, and errors due to the boundary conditions influence only the edges of
the computational domain. The 8-wave scheme requires the zero divergence to be satisfied
to second order accuracy in the initial and boundary condition. Finally the CT and CD
schemes require that the initial and boundary conditions are compatible with their particular
discretization of∇ ·B= 0 to the accuracy of round off errors.

The projection algorithm is identical with the base scheme if∇ ·B∗ = 0 to start with.
The transport-flux-CT scheme coincides with the base scheme only for one-dimensional
problems with slab symmetry in the other directions. The other CT and CD algorithms
modify the result of the base scheme in general. The CT and CD schemes are restricted
to structured meshes, the projection scheme works for any grid on which the Poisson
equation can be solved (this includes unstructured grids), while the 8-wave form can be
used independent of the grid type. The projection step is a global scheme, since it requires
the (approximate) solution of a Poisson problem. The other schemes are local, although the
CT and the flux-CD algorithms have considerably larger stencil than the base scheme.

The numerical test results are summerized in Table IX for the ten test problems presented
in this paper. The relative errors that were shown in the other tables for the individual
problems are all normalized to the errors of the most accurate scheme for the given problem.
The normalized errors are averaged for the different grid resolutions.

The last row of the table contains a correction factor for each scheme. The correction
factors are the cubic root of the cost factors shown in Table I, since in a 2D simulation
the grid resolutionNx, Ny and the number of time stepsNt should be decreased by this
factor to keep the CPU time the same as if only the base scheme was used. For the majority
of the test problems, the convergence rate is approximately first order; thus the error will
grow proportional to the correction factor due to the decreased resolution. For second
order convergence rate (this only applies to the two Alfv´en wave tests) the error should be
multiplied with the square of the correction factor. Even for the most expensive projection

TABLE IX

Numerical Errors Relative to the Most Accurate Scheme for Each Test

Project. Field-CD Flux-CT Flux-CD 8-wave Tr-flux-CT Field-CT Base

Rotated 1D tests
Alfv én travelling 1.000 2.177 2.491 2.491 1.005 1.290 3.562 1.002
Alfv én standing 1.000 1.374 1.219 1.219 1.599 3.221 1.339 1.168
2D shockα= 63◦ 1.022 1.005 1.000 1.007 1.268 1.014 1.269 1.006
2D shockα= 45◦ 1.000 1.031 1.047 1.047 1.801 1.080 1.298 1.782
2.5D shock tube 1.000 1.137 1.234 1.234 1.023 1.132 1.392 1.333

True 2D tests
Orszagt = 1 1.259 1.000 1.324 1.415 1.425 1.568 1.127 1.498
Orszagt = 3.14 1.132 1.000 1.188 1.233 1.411 1.383 1.187 1.893a

Cloud-shock 1.007 1.069 1.000 1.036 1.013 — 1.072b 1.348a

Rotor p= 1 1.000 1.220 1.052 1.216 1.023 — 1.530 1.094
Rotor p= 0.5 1.000 1.058 1.098 1.116 1.050 1.230a 1.289 1.071

Correction factor ≈1.06 1.006 1.018 1.013 1.023 1.022 1.014 1.000

a Required use of the minmod limiter at some resolution(s).
b Required averaging of the electric field at some resolution(s).
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scheme, the correction factor is only≈1.06 (it depends on the number of iterations, but
this is a typical number), while the least expensive field-CD scheme has a correction factor
1.006; thus the corrections will not change the errors dramatically. It is also important to
note that these factors are based on CPU timings, which are inherently implementation,
compiler, and machine dependent. The correction factors shown in the table are probably
upper estimates, since they are calculated for 2D problems using a one-step TVD scheme.
For more expensive base schemes, e.g., TVD-MUSCL, the correction factors are smaller.
In 3D one should take the fourth root instead of the cubic root when transforming the CPU
cost to resolution.

Although a single number cannot fully characterize the quality of a numerical solution,
and the tests cannot represent all aspects of numerical MHD simulations, the overall trends
are quite clear. Based on the table and the detailed comparison of the solutions, the following
points can be made:

• The numerical error is typically dominated by the error close to discontinuities and
first order convergence rates are typical for discontinuous solutions.
• The base scheme is less robust than the modified schemes.
• The 8-wave scheme can produce incorrect jump conditions across discontinuities

in certain problems.
• The field-CT scheme produces spurious oscillations in many test problems which

degrade its accuracy.
• The transport-flux-CT scheme is more complicated, less versatile, and typically not

more accurate than the flux-CT scheme.
• The projection, the new field-CD, and the flux-CT schemes are the most accurate

for these test problems.

It would be interesting to see how well the different schemes can solve steady state problems,
how they can be combined with implicit time integration, or how they can be adapted to
hierarchical or adaptively refined meshes; however, these questions are out of the scope of
this paper and subject of future research.

APPENDIX A

Momentum Conservation and Lorentz Force

I prove that it is impossible for aconservative(which is a necessary property to obtain
correct weak solutions) scheme to guarantee that the discretized acceleration due to the
Lorentz force isorthogonalto the magnetic field in every cell to machine accuracy. The
latter property will be called the “orthogonality property” for short. Let’s assume that some
“perfect” discretization of the MHD equations is conservative as well as it has the orthog-
onality property. For sake of simplicity we may assume that this perfect scheme is two
dimensional, first order accurate in time, and it advances from time stepn to n+ 1 in a sin-
gle update. Such a scheme should maintain momentum conservation

∑
(ρv)i, j = const and

orthogonality ofB and the acceleration∂(ρv)/∂t due to the Lorentz forceJ×B for an arbi-
trary initial condition that satisfies∇ ·B= 0 in some discrete sense. Therefore it is sufficient
to construct a single counter example to show that such a perfect scheme does not exist.

Let the initial condition beρ= const, p= const, v= 0 everywhere. This ensures that mo-
mentum can only change due to the magnetic stresses (cf. Eq. (2)). LetBy= 0 in all cells
neighboring celli, j ; thus the acceleration has to be parallel to they axis in the neighboring
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FIG. 21. The discrete magnetic field of the counter example is represented by the solid arrows. The dashed
arrow points in the direction of the Lorentz force for the central cell.

cells, which means thatρvx cannot change in these cells. On the other hand, in cell(i, j )
the magnetic field can have a finiteBx component, e.g.,Bx

i, j = 1, and a small non-zeroBy

component, e.g.,By
i, j =1xk, which is due to some truncation error. If the current has a

finite value, e.g.,Jz
i, j = 1, then the momentum(ρv)i, j has to change, since the scheme is

consistent, and the magnitude of the Lorentz force|J×B| ≈1 is finite. This non-zero mo-
mentum change will have to have a non-zero component in thex direction according to the
orthogonality property, sinceBi, j is not parallel to thex axis. Indeed, theBx components in
the neighboring cells can be chosen such that the currentJi, j = (∇ ×B)i, j 6= 0, for example,
Bx

i, j−1= 1.5, Bx
i−1, j = Bx

i+1, j = 1, andBx
i, j+1= 0.5 as it is shown in Fig. 21. It is quite easy

to see that the∇ ·B= 0 condition can be satisfied for every cell for a given discretization
of ∇ ·B, since the number of free parameters, i.e., the components ofB in the surrounding
cells, greatly exceeds the number of constraints. In particular, the centered discretization
(26) gives(∇ ·B)i, j = 0 for the above described initial condition.

As the “perfect scheme” advances the solution with a finite time step, the momentum
(ρvx)

n+1
i, j will become non-zero due to the non-zerox component of the acceleration, while

in all the neighboring cells(ρvx)
n+1= 0, since there the acceleration due to the Lorentz

force has to be exactly orthogonal to theB field according to the orthogonality property.
Consequently, the totalρvx momentum is not conserved, which means that the “perfect
scheme” is not conservative.

APPENDIX B

Generalization of CD/CT Schemes to Curvilinear Grids and Axial Symmetry

Evans and Hawley [14] emphasised that their CT approach is not restricted to Carte-
sian grids. Here I briefly show how the CT and CD approaches can be combined with
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a Godunov-type scheme on arbitrary (non-orthogonal) curvilinear grids. Instead of the
general relativistic notation used by Evans and Hawley, I will use the generalized coordi-
nate notation which is more widespread in the computational physics literature.

In this appendix,ξ, η, ζ denote the generalized coordinates,x, y, z the Cartesian coordi-
nates, and any subscripting by these variables indicates a partial derivative, e.g.,xξ = ∂x/∂ξ .
In the generalized coordinate system the grid is uniform, i.e., thej, k, l cell center is located
at j1ξ, k1η, l1ζ . Let us introduce the curvilinear magnetic and electric field components

(Bξ ,Bη,Bζ )T = 1

detJ
J · (Bx, By, Bz)T (B.1)

(E ξ , Eη, Eζ )T = J−1,T · (Ex, Ey, Ez)T , (B.2)

where the superscriptsT indicate the transpose. The Jacobian transformation matrices are

J =

ξx ξy ξz

ηx ηy ηz

ζx ζy ζz

 , J−1,T =

xξ yξ zξ
xη yη zη
xζ yζ zζ

. (B.3)

Note thatB is defined with a 1/detJ coefficient in (B.1).
In the curvilinear variables, the induction equation (6) takes the same form as in the

Cartesian case! For example, the first component is

∂Bξ
∂t
= −∂E

ζ

∂η
+ ∂E

η

∂ζ
(B.4)

which can be trivially discretized according to the CT or CD approaches, and this guarantees
that∇ ·B= ∂ξBξ + ∂ηBη+ ∂ζBζ remains zero in a discrete sense analogous to (15) or (26).

The updated curvilinear componentsB can be transformed back to the Cartesian com-
ponentsB= detJ J−1 · B. The elements of the Jacobian matrix can be approximated nu-
merically, e.g., the elements ofJ−1 are

(xξ ) j,k,l = xj+1,k,l − xj−1,k,l

21ξ
(B.5)

(xη) j,k,l = xj,k+1,l − xj,k−1,l

21η
,

etc., and the elements ofJ could be obtained by invertingJ−1; however,J is not needed
in an efficient implementation.

In two dimensions the equations greatly simplify, sinceEξ = Eη= 0. For slab symmetry
in the 3rd direction, the central difference approach (29) becomes

Bx,n+1
j,k = Bx,n

j,k −
1t

Vj,k

[
(xj+1,k − xj−1,k)

(
Eζj,k+1− Eζj,k−1

)
− (xj,k+1− xj,k−1)

(
Eζj+1,k − Eζj−1,k

)]
(B.6)

By,n+1
j,k = By,n

j,k −
1t

Vj,k

[
(yj+1,k − yj−1,k)

(
Eζj,k+1− Eζj,k−1

)
− (yj,k+1− yj,k−1)

(
Eζj+1,k − Eζj−1,k

)]
,
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whereEζ = Ez=Ä can be approximated by (28) or (31). The (quadrupole) cell volume is
defined as

Vj,k = 41ξ1η detJ−1 = (xj+1,k − xj−1,k)(yj,k+1− yj,k−1)

− (xj,k+1− xj,k−1)(yj+1,k − yj−1,k). (B.7)

If the magnetic field components are updated according to (B.6) then the following
discretization

∂ξBξ + ∂ηBη =
Bξj+1,k − Bξj−1,k

21ξ
+ B

η
j,k+1− Bηj,k−1

21η
(B.8)

is conserved to machine accuracy, whereBξ = yηBx− xηBy,Bη=−yξ Bx + xξ By, and the
coefficients are defined as in (B.5). To get the usual dimensions for∇ ·B, definition (B.8)
can be divided byVj,k.

For axial symmetry in the third dimension,Eζ = zζ Ez= rÄ in (B.6) and the cell volume
Vj,k (B.7) should also be multiplied by the radial distancer measured from the symmetry
axis. If the code is already written in curvilinear vector components, e.g.,Br , Bφ on a polar
grid, then the only required transformation to obtainB is a multiplication by 1/detJ (which
is simplyr for polar coordinates).

In an efficient 3D implementation the three curvilinear electric field componentsE =
J−1,TE are calculated first. Next the three components of∂B/∂t are obtained according
to a CD or CT discretization of (B.4) and its cyclic permutations inξ, η, ζ . Finally the
Cartesian field components are updated

Bn+1 = Bn +1t detJ J−1 · ∂B/∂t, (B.9)

where detJ= 1/detJ−1 can be calculated and stored in the first time step. Note that the
curvilinear magnetic field componentsB or the JacobianJ themselves do not occur in this
implementation.
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