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Seven schemes to maintain tile B =0 constraint numerically are compared.
All these algorithms can be combined with shock-capturing Godunov type base
schemes. They fall into three categories: ¢ight-wave formulatiomaintains the
constraint to truncation error, thprojection schemenforces the constraint in some
discretization by projecting the magnetic field, while the five different versions of
the constrained transport/central differentgpe schemes conser%e - B to ma-
chine accuracy in some discretization for every grid cell. It is shown that the three
constrained transport algorithms, which have been introduced recently, can be recast
into pure finite volume schemes, and the staggered representation of the magnetic
field is unnecessary. Another two new and simple central difference based algorithms
are introduced. The properties of the projection scheme are discussed in some de-
tail, and | prove that it has the same order of accuracy as the base scheme even
for discontinuous solutions. | describe a flexible and efficient implementation of the
projection scheme using conjugate gradient type iterative methods. Generalizations
to resistive MHD, to axial symmetry, and to non-Cartesian grids are given for all
schemes. The theoretical discussion is followed by numerical tests, where the ro-
bustness, accuracy, and efficiency of the seven schemes and the base scheme can be
directly compared. All simulations are done with the Versatile Advection Code, in
which several shock-capturing base schemes are implemented. Although the eight-
wave formulation usually works correctly, one of the numerical tests demonstrates
that its non-conservative nature can occasionally produce incorrect jumps across
strong discontinuities. Based on a large number of tests, the projection scheme,
one of the new central difference based schemes, and one of the constrained trans-
port schemes are found to be the most accurate and reliable among the examined
methods. @ 2000 Academic Press
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1. INTRODUCTION

There has been a very rapid development towards shock-capturing numerical mett
applied to the equations of magnetohydrodynamics (MHD). Without trying to be comple
here is a list of some of the algorithms: the widely used ZEUS code by Stone and Norn
[38] is based on a finite difference algorithm with artificial viscosity; DeVore adapted [1.
the flux corrected transport (FCT) scheme to the MHD equations; Dai and Woodward [:
generalized the piecewise parabolic method (PPM); &yal.[32], Balsara [1, 2], Powell
[31], Zacharyet al.[50], and T6th [40, 41] implemented total variation diminishing (TVD)
type methods using different approximate Riemann solvers; and the simple TVD La
Friedrich (TVDLF) method [48] was implemented and tested for the MHD equations |
Barminet al.[4] and Téth and Odstil [44].

The modern MHD codes can successfully solve many problems involving all kinds
discontinuities, both in time accurate and steady state applications. Still, there are
resolved arguments about how one should maintain the divergence-free property of
magnetic field in multidimensional MHD calculations. This property is automatically sa
isfied in one-dimensional simulations wheXe= 0, =0 and consequentlB, = const, but
many discretization methods do not guararifed8 = 0 in multidimensional simulations.

1.1. Analytic versus Numerical Constraints

There is a big difference between the view of theorists, who would generally insist tt
V - B should be exactly zero, and practitioners of numerical MHD, who usually take a mc
pragmatic approach and are satisfied viithB converging to zero as the grid resolution
Ax and the time stepzt approach zero. The justification for the latter approach is simple
None of the numerical values agrees with the analytical solution exactly, so why sho
one insist that a specific combination of them, namely some numerical representatiol
V - B, should be equal to the analytic value, i.e., zero? Ideally, one would like to ha
thatparticular representation to be zero, which ensures that no unphysical effects arise.
usual example for such an unphysical effect is acceleration of the plasma parallel to the 1
lines (even if the unphysical force vanishes with increasing grid resolution, it may be quit
nuisance when an equilibrium flow is to be modeled) [7]. For conservative shock-captur
methods, however, it is impossible to define a particular discrete constraint on the magn
field that would avoid all unphysical effects. In particular, | prove in Appendix A that
scheme cannot satisfy both the numerical conservation of momentum and the requirer
that the discretized acceleration due to the Lorentz force should be exactly perpendic
to the magnetic field in every grid cell. Due to these difficulties, the usual practice is
choose some simple discretization\of B, but it should be clear that the choice is always
somewhat arbitrary.

One way of ensuring a small numerical value YorB is to demand that some particular
discretization is exactly zero. Another possibility is to set the numerical valde- & to
zero in the initial and boundary conditions and to trust the scheme to maintain this condit
until the end of the simulation to the accuracy of the truncation error. There seems tc
no compelling theoretical argument to favor any of these approaches, and only numei
tests can tell which scheme is the most efficient, accurate, and robust for a partic
problem.
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1.2. Numerical Algorithms

In the context of shock-capturing MHD codes, three approaches became rather popul
handle thev - B =0 constraint. All three approaches can be regarded as some modificat
of, or addition to ebase schemd& he base scheme can be, for example, Harten’s TVD [1¢
or van Leer's TVD-MUSCL [46], or Yee's TVD Lax—Friedrich scheme [48]. It evolves
mass, momentum, and energy densities according to the well-established algorithm
computational hydrodynamics. The base scheme is also used in the time integration o
magnetic field, but it is modified in some way to maintaintheB = 0 constraint. The three
approaches differ in how the base scheme is modified regarding the induction equatiol

The first approachin order of simplicity, is th&-wave formulatiof the MHD equations
suggested by Powell [15, 31], which is found to behave better in terms of stability a
accuracy than the discretization of the usual conservative form (see Section 2). The 8-v
form can be derived [47] from physical principles if tie B =0 Maxwell equation is not
used. This approach requires the addition of some source terms (proportishaBjand
a simple modification of the Riemann solver (if any) of the base scheme. According
the Lax—Wendroff theorem [24], however, only conservative schemes can be expecte
get the correct jump conditions and propagation speed for a discontinuous solution. |
examine this issue in Section 3.

The second approaakas namedonstrained transpofiCT) by Evans and Hawley [14],
which simply means a particular finite difference discretization on a staggered grid, wh
maintainsV - B in a specific discretization. If the initial magnetic field has zero divergence |
this discretization, then every time step will maintain that to the accuracy of machine rot
off error as long as the boundary conditions are compatible with the constraints. DeV
[13] combined the CT approach with one of the first-generation shock-capturing schen
the flux corrected transport (FCT), to obtain a divergence free solution by FCT. Mu
later, the now popular Godunov type, Riemann solver based schemes were also comt
with the CT discretization by Dai and Woodward [11, 12], by Ryal.[35], and by Balsara
and Spicer [3]. Hereafter, | will refer to these articles as DW, RMJA, and BS, respective

In their original form, the algorithms of DW, RMJA, and BS require the introductiol
of a new staggered magnetic field variable, which is updated by simple finite differen
using the interpolated magnetic and velocity fields (DW), the interpolated fluxes (BS),
the interpolated transport fluxes (RMJA) of the base scheme. The scheme designed b
and Woodward is a CT type discretization connected to a Godunov type scheme by sp
and temporal interpolations of the magnetic and velocity fields, which | will therefore c:
field-interpolated CT schenfer field-CT for short), while the schemes of BS and RMJA
will be namedilux-interpolatecandtransport-flux-interpolated C{or simply flux-CT and
transport-flux-CT), respectively. In Subsection 4.4, | will shed a new light on the above (
approaches: there is no need for a staggered magnetic field representation! The sch
can be regarded as modifications of the finite volume style numerical flux function of t
base scheme.

| introduce twonew and simple central differen¢€D) approaches, which are analogous
tothe CT schemes of DW and BS. The CD approachesfit very smoothly into the finite volu
type discretization of the base scheme and, for the extremely sifiefdeinterpolated
central differencéfield-CD) scheme, there is no need for spatial interpolation. The three C
and the two CD schemes all belong to the second approach, so | will callcthrestrained
transport/central differenc€CT/CD) schemes, and they are described in Section 4. Tt
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CT/CD schemes can be generalized to resistive MHD, to axial symmetric calculations, :
to arbitrary curvilinear grids.

The third approactis the projection schemewhich, in the context of MHD, was first
suggested by Brackbill and Barnes [7]. The idea is to project the numerical soRition
provided by the base scheme onto the subspace of zero divergence solutions by a |
operator, and this project@&isolution is used in the next time step. The projection involve:
the solution of a Poisson equation. Section 5 will explore the properties of the project
scheme and address many of the incorrect claims widespread about it. In particular, | s
that an appropriate implementation of the projection scheme can preserve the conserv
properties, the efficiency, and the flexibility (with respect to grid geometry and boundz
conditions) of the base scheme. | also prove that the projection scheme is a consis
discretization even for flows containing discontinuities, and it has the same order of accur
as the base scheme or any CD/CT type discretization. In this paper the projection :
is regarded as an integral part of the scheme and not as a “clean up” procedure. |
note that the idea of projection has been successfully used in the numerical modelini
incompressible hydrodynamics, where thev = 0 constraint should be fulfilled. There the
projection scheme [5, 9] is applied for calculating the pressure or a correction to press
after the advection equation is solved explicitly.

Another way to keepv - B exactly zero is to rewrite the MHD equations in terms of
the vector potentialA instead of the magnetic fielB =V x A. A disadvantage of this
approach is that the order of spatial derivatives increases by one, which reduces the ord
accuracy by one (see [14] for a more in-depth discussion). Replacing the magnetic fielc
the vector potential requires a completely new base scheme, therefore | will not investic
this approach. As it was noted by Evans and Hawley [14], the divergence free magn
field evolved by the constrained transport and central difference schemes can alway
integrated into a vector potential, thus these schemes can be regarded as if they evolve
“underlying” vector potential.

A recent paper by Peterkiet al. [29] discusses a finite volume discretization with a
cell centered representation of the magnetic field, and the authors claim that their sch
conserves the divergence of the magnetic field defined for “grid vertices” by their Egs. (:
and (38). Their proof [29, bottom of p. 159], however, contains an error: the equati
Adyjjk=—Ad1i41 Kk does notfollow from the statement that “these flux surfaces shal
an edge and the flux at this edge is computed just once,” since\sbih ; k andA P41 j «
are calculated as contour integrals aldogr edgesand there i®nly onecoinciding edge,
while the other three—three terms are independent. Unfortunately, the proof cannot be se
and their scheme does not maintain the zero divergence property for any discretizatio
the divergence of the magnetic field.

Another recent paper by Londrillo and Del Zanna [25] describes a higher than 2nd or
constrained transport scheme. In contrast with the CT schemes discussed in this paper,
algorithm uses a high order upwinded reconstruction of the staggered representation o
magnetic field for all the equations (and not just for the induction equation). This approez
is clearly more consistent than the above described field- and flux-interpolated CT scher
but their elaborate algorithm cannot be regarded as a simple modification of a base schi
Although the test results shown for this new CT scheme are very encouraging, it is not ¢
whether this should be attributed to the higher order accuracy of the whole scheme, to
more consistent CT discretization, or both.
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TABLE |
Basic Properties of Schemes

Name Base scheme  V.B=0 constraint Cost Description Reference
8-wave Any Truncation error 7%  Section 3 [31, 15]
Field-CT Any Conserves (15) and (27) 4%  Subsections4.2and 4.4 DW [11, 1¢
Flux-CT Any Conserves (15) and (27) 5%  Subsections 4.3and 4.4 BS|[3]
Tr-flux-CT  Onestep TVD  Conserves (15) and (27) 6%  Subsections4.3and 4.4 RMJA[35
Field-CD Any Conserves (26) 2%  Subsection 4.5 This paper
Flux-CD Any Conserves (26) 4%  Subsection 4.5 This paper
Projection Any Enforces (26) to bee ~20%  Section 5 [7]

2 Fraction of CPU time relative to the one-step TVD base scheme is measured for the VAC implementatiot

The properties of the seven schemes discussed in this paper are summarized in Tal

1.3. Fair Comparison

| will compare the performance of the seven schemes and the base scheme on test
lems in Section 6. Such a comparison is difficult based on the published numerical tests
to the following reasons: (1) the different numerical approaches to handie-tBe= 0 con-
straint are combined with different base schemes, which makes the properties of the nu
ical approach fov - B =0 and the properties of the underlying scheme indistinguishabl
(2) the published numerical tests often hide the bad properties of the scheme, e.qg., by us
very high resolution, or by selecting tests that are favourable to the scheme; (3) the accu
of the solution is difficult to judge from figures.

To make the comparison fair, in this paper a single code, the Versatile Advection Cc
(VAC[40, 41], seenttp: //www.phys.uu.nl/~toth/) will be used, in which all the seven
schemes have been implemented and they can be combined with several shock-capt
base schemes. The capabilities of VAC will be briefly described in Subsection 6.1.
numerical test problems will be solved at different resolutions, so that the numerical err
and the convergence properties can be directly and quantitatively compared. It is impotr
to realize that in a real application we are not interested in the numerically obtained ve
of V . B, since the analytic value is known to be zero. What we are really interested in is
solution in terms of the primitive variables, which are not known analytically. Therefo
the accuracy of the schemes will be compared for the physically most relevant quantit
the primitive variables, v, p, andB.

I will restrict myself to two-dimensional, time dependent, ideal MHD test problems ¢
Cartesian grids for the following reasons. Three-dimensional tests are extremely time ¢
suming but they are not more challenging for the numerical schemes than two-dimensi
problems. A small amount of resistivity typically only makes the simulation easier to ©
Resistivity dominated problems, on the other hand, should not probably be solved by
shock-capturing schemes discussed in this paper. Obtaining converged steady state sol
can be rather time consuming as well as difficult, and such problems will be investiga
in another paper. Tests on curvilinear grids may be of interest, but these would be diffi
to reproduce by many MHD codes designed for Cartesian grids only. The tests prese
here, which were all taken from the literature, are easy to reproduce by other practitior
of numerical MHD.
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Based on the theoretical arguments and the numerical tests, conclusions will be dr
in Section 7.

2. EQUATIONS AND NOTATION

The conservation form of the resistive MHD equations

5
P V. (=0 )
ot

dpVv
%-I—V'(V/OV—BB)-Fthot:O )
oe
9B
So TV (WB=BY+V x (1]) =0 @)

express conservation of mass, momentum, energy, and magnetic flux, respectively.
conservative variables are the mass densjtthe momentum densityv, the total energy
densitye, and the magnetic fielB. The velocityv, the current density =V x B, and the
total pressurgy, = p + B?/2 together with the thermal pressure

1 1
=@y -1le-Zp¥ - 2B 5
p=r =1 (e- 507 36) ®)
are derived quantities. The equation parameters are the adiabatig/iateithe resistivity
n. Units of B are chosen such that the vacuum magnetic permeability is unity. In ideal MH
the resistivity is taken to be=0.
For the constrained transport and central difference discretizations, the original forrr
the induction equation (4) will be used,
B
§+Vx(—VxB+nJ)=O (6)
which directly follows from Faraday’s ladB/dt = —V x E and the general form of Ohm’s
law nJ = E+ v x B, wherekE is the electric field.
Finally, the subject of this paper is the constraint

V.-B=0. (7)

Analytically, this condition is maintained forever if it holds for the initial magnetic field,
since taking the divergence of the induction equation (6) results in

ov-B

— —~ —V.(-VxE)=0. (8)

at
Numerically, however, the discrete divergence of the discrete curl may not give exactly ze
The full set of conservative variablgs pv, e, andB will be denoted byUJ. A short
notation for the conservative form of the MHD equations (1)—(4) is
ou

— 4+V.F=0, 9
o T ©)

whereF represents the set of flux vectors for all the variables.
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The discretized time levels are indexed by superscripts, and the spatial discretiza
by subscripts. Cell centers are denoted by integer subscripts jgkdn 2D), while the
locations of cell interfaces are denoted by half integers (¢.¢~.1/2, k). Occasionally,
time-centered quantities will also be used, e.g., time levgll/2 corresponds to time
(tn +tn+l)/2.

The numerical scheme advances the conservative variables from time tevshe level
n + 1 by the non-linear discrete operatomlas

Ut =u"4+ L. (10)

The operator corresponding to thase schemwill be denoted byL* which advance®"
to an “auxiliary” solutionU* = L*(U™). This auxiliary solution is only used to obtain the
final updateU "+1.

3. THE 8-WAVE FORMULATION

Already Brackbill and Barnes [7] suggested a non-conservative formulation to redt
the numerical errors associated with the finite numerical divergence of the magnetic fi
It is interesting to note that their paper already contains all the source terms, which st
up in the non-conservative 8-wave scheme introduced by Powell [15, 31].

Powell found that his approximate Riemann solver based scheme (TVD-MUSCL w
Roe-type approximate Riemann solver) often crashed for multidimensional problems:
to the accumulation of errors which were associated with high values Bf He suggested
to start from an alternative form of the MHD equations that can be derived [47] from t
hydrodynamic equations, Ohm'’s law, the Lorentz force, and the Maxwell equaticept
for the V - B =0 equation Thisnon-conservative forrof the (resistive) MHD equations

apVv

TS +V.-(Vov—BB)+ Vpe=—(V-B)B (11)

g—f+v.(ve+vptot—BB.v—BxnJ):-(v.B)B.v (12)
oB

E+V~(VB—BV)+V><(nJ)=—(V.B)v (13)

differs from the usual conservative form (2)—(4) by the source terms on the right he
sides. All these source terms are proportionar td, thus they should always remain zero
analytically, but they can become non-zero numerically.

Using the non-conservative form, Powell arrived at a new discretizatiorigie-wave
Riemann solvefthe eighth wave is associated with propagatio¥ eB) together with the
non-conservative source terms above, that was found to be numerically robust. It was |
found by T6th and Odstil [44] that the non-conservative source terms also improve th
accuracy of the flux corrected transport and TVD Lax—Friedrich (TVDLF) schemes that
not involve a Riemann solver. It should be mentioned that Powell introduced the 8-w:
Riemann solver for the hyperbolic set of ideal MHD equations, but it is quite trivial to ac
the parabolic term¥ - (B x nJ) andV x (nJ) in (12) and (13) as explicit source terms; at
least as long as the resistive diffusion time is longer than other dynamical time scales.

The reason behind the improved robustness and accuracy is believed to be the fol
ing: using the non-conservative formulation, the small but fiNiteB generated by the
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numerical solution does not accumulate at a fixed grid point, rather the “magnetic mol
poles” propagate together with the flow. For many problems the 8-wave formulation wol
well, the errors inv - B remain small, and the conservation of quantities is satisfactory. |
problems containing strong shocks, however, the non-conservative source terms can
duce incorrect jump conditions and consequently the scheme can produce incorrect re
away from the discontinuity. These errors do not decrease with the grid resolution althot
the solution seems to converge normally. This phenomenon will be demonstrated in a rot
shock tube problem in Subsection 6.3.

4. CONSTRAINED TRANSPORT AND CENTRAL DIFFERENCE DISCRETIZATIONS

For sake of simplicity, most of the discrete equations will be shown for a two-dimensior
uniform Cartesian grid with slab symmetry in the 3rd direction. This includes the pos:
bility of having three magnetic field components (often referred to as 2.5D model), sir
B, can be updated by the base scheme without modification as it does not contribut
V - B =0x By + 9y By. Generalization to 3D is quite trivial and many of the 3D formulae car
be found in DW and BS. Generalization to axial symmetry and arbitrary curvilinear grit
is described in Appendix B.

For sake of clarity, the cell centered representation of the magnetic field will be deno
by capitalB, while the cell interface centered representation by lowerlcastne difference
formulae.

4.1. Constrained Transport in Finite Difference Schemes

The constrained transporfCT) method by Evans and Hawley [14] applies a staggere
grid to maintain thev - b= 0 property for finite difference schemes. The magnetic fielc
component® are represented on the cell interfaces.

In 2D theb* component is located & 1/2, Yk While thebY component is ax;, yi;1/2
as shown in Fig. 1. To make the notation similar to DW and RMJA, let us denote t
z component of the electric field b2 =E, = —v x B+ 1nJ. The main idea of the CT
algorithm is to place at the cell corners; 1,2, Yk+1/2. The induction equation (6) is

FIG. 1. Staggering in the finite difference constrained transport approach in 2D. The interface centered f
components, andb, are updated by finite differencing the electric fieldocated at the cell corners. As a result,
V- b defined in the cell center does not change.
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discretized by simple finite differences along the cell edges as

Qijr12k+1/2 — 2j+1/2k-1/2

1
bT+n1+/2k = bj+1/2k At Ay
Qjr12kt12 — Lj-1/2k+1/2 14)
n+1 i+1/2k+1/2 = S4j-1/2 k+1/
b{ k+1/2 = bj kr12 + At Ax .
It is easy to show that the numerical divergencé defined as
_ bX_ b? —b'\
(v - b), i+1/2k — Yj—1/2k n j.k+1/2 j.k=1/2 (15)

AX Ay

does not change due to perfect cancellation of terms, i€.; t" = 0 thenv - b™1=0to
the accuracy of round off errors.

4.2. Field-Inerpolated Constrained Transport Scheme

Recently the CT idea was combined with Godunov type schemes by Dai and Woodw:
Let us denote the result of the Godunov type base scheme by the superssgptial and
temporal interpolatioris used to obtain the cell corner centered magnetic field

—n+1/2 1
Biil2ki12 = g(B?ﬁk + B ik + Bl ki T Bkt

+Bj + B 1k + Bkt + B ki) (16)

and velocity field\_/nﬂ/2 k+1/2 (using the same interpolation) at time levet-1/2. On a
nonuniform grid, bilinear interpolation could be used. | note that one could interpolate 1
cell centered?; i itself, instead of interpolating the components@indB separately, and
save some operations.

Thez component of the electric field is estimated as

_ +1/2 Sn+1/2
Qjy1/2k412 = — j+1/2,k+1/2 X Bj+1/2,k+1/2 (17)

in ideal MHD, and an extraJ term could be added for resistive MHD. Aft@ris obtained,
theb field centered at the cell interfaces is updated according to (14). The component
the cell centere®"** are obtained by interpolatirgas

Bx,n+1 bT-Slt% kT bT nlt% k
a 2 (18)
by n+1 + by n+1
By,n+1 j,k+1/2 j,k—1/2
ik 2

and are used in the next time step. The geometry of the full scheme is depicted in Fig.

4.3. Flux- and Transport-Flux-Interpolated Constrained Transport Schemes

Balsara and Spicer combine the CT approach with an arbitrary Godunov type base sct
by interpolating the appropriately signed cell-interface centepsdnd fluxes f* and f ¥-*
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FIG. 2. The staggered (left) and finite volume (right) representations of the field-interpolated CT scheme
2D. In the staggered approailandBTare interpolated (dashed arrows) from the four neighbouring cells and tw
time levels. The electric fielt = —v x B is differenced to produce the staggebg@ndb,, which are interpolated
(dashed arrows) tB. In the finite volume representation the flrfﬁ; is interpolated from 6 cells and 2 time levels.
The ﬂ flux has a similar stencil, but rotated by°90

(corresponding td®Y and B*, respectively) into the electric fields at the cell corners

X, % X, % Y, * Y. %
(=520 — 5020 T Tl + Flkiy2)- (19)

NN

Qji1/2ks1/2 =

Allfour fluxes, with their appropriate signs, are approximatiors3 & the cell interfaces, but
they are upwinded according to the base scheme. BS also describes a variant of their sct
which adjusts the interpolation coefficients in (19) in the vicinity of magnetosonic shoc
according to the direction of the local pressure gradient, but they do not find a signific
improvement for any of their test cases; therefore | will not use that modification. Ti
electric field2j 11,2 k+1/2 can be used to advance the staggdréedld according to the CT
approach (14), anB"*! is obtained by spatial interpolation bt"* according to (18). The
full flux-CT scheme is depicted in Fig. 3.

Ryuet al.(RMJA) suggest yet another way of combining the CT approach with Harten
one step TVD scheme. They define trensport partof the upwind fluxes as

. (Byvx)?,k + (Byvx)?+1_k

>j<f1/2,k = 2 + q))i<+1/2,k
X,,y\N X, Y \N (20)
Pz = EDint B s + 172
, 2 J.k+1/

where the numerical fluxeB* and®Y contain the upwind corrections for the TVD property
and the Lax—Wendroff type corrections for 2nd order time accuracy, and they are provi
by the (approximate) Riemann solver of the base TVD scheme. The partial fitixesnd
f¥* can be combined and interpolated into

1 ~ ~ ~ ~
s s Y, Y,
Qj412k+1/2 = 5(—f?+*1/2.k — P+ Fiaye + Tiiiey2)- (21)
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FIG.3. The staggered (left) and finite volume (right) representations of the flux-interpolated CT schemeiin
In the staggered approach the upwind flutgand f, are combined (dashed arrows) from the four neighbouring
cell interfaces. The resulting electric field estimgtés differenced to produce the staggebgdindb,, which are
interpolated (dashed arrows) B In the finite volume representation the f|li?§ is combined and interpolated
from 6 flux components. Thé, flux has a similar stencil, but rotated by°90

Note that the denominator is 2 rather than 4 since the transport fluxes contain only a
of the full fluxes. RMJA emphasize a nice property of their transport-flux-CT algorithn
the scheme is identical with the base scheme for one-dimensional problems aligned
one of the coordinate axes. For example, if there is a slab symmetry yrdinection, then
B* =Db* = const and the upwind correction in tgeirection®, = 0, consequently

(BYv™)T 4+ (BYv)", 4 (B*v")T 4+ (B*v¥)" 4
—Qjy12 = : 2 = +q))i<+1/2_ : 2 = (22)

which is exactly the one-dimensiorfall upwind flux functionf* of the base scheme for
By =by. All the k indices were dropped due to the slab symmetry. This property does 1
hold for the field-CT and flux-CT approaches.

4.4. Finite Volume Interpretation of CT Schemes

Although DW, BS, and RMJA regard the staggered magnetic field representetion
the primary variable, in fact it is only used to obtain the cell centered represerBations
one can equally regai8 as the primary variable, which is quite natural in a Godunov-typ
finite volume scheme. | will show thatcan be eliminated from the CT schemes altogethe
which simplifies the implementation (no need for staggered variables), the interpretatio
the finite volume sense, and comparison with other schemes.

In fact, the spatial interpolations of the field-CT method (16), (18) can be easily combir
into a usual finite-volume-style conservative update

B?(,n+1 B?(,n _ At f_{kJrl/Z - f_{kfl/Z
j.k ik Ay

_ (23)

fliyok — i1k
AX

’
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where the new numerical fluxes are defined as

—  Sin+l/2 —  S\n+l/2
(v xB)ji12kt12 + VX B)ii1oKk 12

f X - _
J+l/2,k 2

(24)

n+1/2 n+1/2
'ﬂ' _ (VX B)j+1/2 k+l/2+ (VX B)J —1/2,k+1/2
j.k+1/2 — + 2

and the rest of the spatial and temporal averaging is hidden in (16). Altogether 6 c
and 2 time levels are averaged out for each flux component. hgasaginginstead of
interpolation, since clearly, the nefvfluxes require a much wider stencil (see Fig. 2) thar
the fluxes of the base scheme. The only reason for extending the stencil is to symme
the fluxes in such a way that the divergence free property is maintained.

In a similar fashion, the interpolations (18), (19) of the flux-CT scheme can also |
combined and the new flux definitions for the componen® bécome

£ X X, X,
i1k = g( f5 ok + 5200+ f502k1

_ fy,* _ fy,* _ fy,* _ fy,* )
jk+1/2 j+1k+1/2 j.k—1/2 j+1k—1/2 (25)

1
y _ y.x y.x Yok
iy = é(ij,kJrl/Z + ka2 + ikt
X, % X, % X, % X, %
— 412k 7o Vj4r2k+1 T o Nj-12k T j—1/2,k+1)'

Theseaveragedfluxes are used according to (23). For the transport-flux-CT schéine,
and the denominator 8 should be replacedfiiyand 4, respectively. Figure 3 shows the
total stencils. Note that if the base scheme is dimensionally unsplit, then one can rep
the original numerical flux of the base scheme by the above defifemhd Y, and there
is no need to calculateB* at all. Again, the required symmetry of the fluxes is achievec
via averaging over a wider stencil.

How can one check the divergence-free property of the cell ceriédield if the staggered
b field is eliminated from the algorithm and the implementation? Clearly, the center
difference definition

X X y y
Bly1k — BlL1k N Bik+1 — Bjk-1

V:-B)jk=
V-Bix 2AX 2Ay

(26)

is not conserved by the CT approach.
It turns out, however, that the followirgell corner centered divergence definition

(V-B)j+12k+1/2

B]+1k + BJ?(+l,k+1 - B]?(,k - J?(.k+1 Bjy.,k+1 + Bjy+1,k+1 - Bjy,k - Bjy+1.k (27)
2AX + 2Ay

vanishes ifV . b=0 for the (j, k), (j,k+1), (j +1,k), and (j +1,k+1) cells ac-
cording to (15), and is related tob according to (18). The above definition (which
easily generalizes to nonuniform grids and/or 3D) can be regarded as a contour i
gral for a diagonally oriented volume shown in Fig. 4. It is also easy to check that
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FIG. 4. If the staggered field (dashed arrows) satisfi&s b =0 in all four cells, thenv- B =0 for the
diagonally rotated volume (dashed square).

V -B" =0 as defined by (27), then applying the fluxeslefined by (24) or (25) accord-
ing to (23) will maintainV - B"*' =0 in the same sense (27) to the accuracy of round o
errors.

Inthis section, | have recast the field-, flux-, and transport-flux-interpolated CT algorithi
into pure finite volume schemes. This shows that these schemes are conservative in the
volume sense too. In this form, the amount of averaging relative to the base scheme bec
quite apparent. It should be stressed that the above finite volume forrteatieal with
the original staggered schemes in terms of the cell centered varjabtes e, andB. In
the next section two new algorithms are introduced, the first of them discards all the spz
averages. The neeentral differencébased schemes maintéih- B=0 in a more natural
discretization than (27).

4.5. Field- and Flux-Interpolated Central Difference Schemes

A further step in the direction of simplifying the idea of constrained transport is to u:
simplecentral differencing CD) for the induction equatioan the original grid To make
the scheme second order accurate in timina centeredpproximation is taken for the
electric field, so, e.g., for ideal MHD

B (VX B) + (v B)i k

Qjk=—(Vx B)TIl/z — 5 (28)
and the magnetic field is updated as
pXM+L _ gxn _ AtQ' k+1 — S2j k-1
N " 28y (29)
By,n-&-l _ By,n At Q]-t,-l,k Qj—l k
e = Bkt 2AX

It is easy to prove that the central difference definition (26)VofB is exactly con-
served during the time step, which is more natural than the constraints (15) or (=
The finite volume equivalent of thidield-interpolated CD approach uses the flux



618 GABOR TOTH

vxB T B’ vxB
B* B*
. V.B 2 viB
itfy
¥
A|
vxB T B’ vxB v;(B

FIG.5. The field-interpolated central difference (field-CD) approach (left) and its finite volume interpretatic
(right). The electric field2 = —v x B is temporally interpolated between the values obtained ftdhand the
auxiliary solutionU*. The magnetic field is updated by simple central differencingf The finite volume flux
f_y can be obtained from a two-cell stencil, formally. The stencilfiplooks similar, but rotated by 90

definitions
- vx B2+ vx B
j+1/2k = — 2
30
n+1/2 n+1/2 (30)
=y (v x B)]-’k + (Vv x B)j,k+1
fikiye =+ >

in (23) as shown in Fig. 5.
Itis also possible to combine the upwind flux components of the base scheme into a
centered electric field approximation

Qjx = %(— jxi*l/z,k —f jxfl/z,k + f ]},,i(*fl/z + f j},/i(il/z) (31)
which can be used in the central difference formula (29). The finite volume flux correspor
ing to thisflux-interpolatedCD scheme can be easily read from Fig. 6.

It should be emphasized thatin the simple central difference formula (29) the electric fi
Q2 is obtained from the shock-capturing base scheme using either temporal interpola
(field-CD scheme) or spatial interpolation (flux-CD scheme). These interpolations prov
sufficient coupling between odd and even cells; thus no checker-board like instability aris
The numerical tests also confirm that the CD schemes are stable. Both CD approa
are second order accurate in space for uniform grids and should be “almost” second o
accurate for mildly stretched grids. Generalization to arbitrary curvilinear grids is descrikb
in Appendix B.

4.6. Boundary and Initial Conditions

The CD and CT approaches maintadin B =0 as long as the initial and boundary con-
ditions are compatible with the numerical constraints (26) and (27), respectively. Cert
boundary types, e.g., periodic, are easy to implement; others, like inflow, outflow, ol
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FIG. 6. The flux-interpolated central difference (flux-CD) approach (left) and its finite volume interpretatic
(right). The cell centered electric fiefdis constructed from the upwind fluxd$. The magnetic fiel® is updated
by simple central differencing d2. The finite volume ﬂuxf_y can be obtained from 6 upwind flux components.
The stencil forf, looks similar, but rotated by 90

perfectly conducting wall, may require more careful considerations of the discrete form
V -B=0. In particular, the perfectly conducting wall requires that fluxes are zero accrc
the boundary. For the flux-interpolated CT and CD schemes, the upwind corrections par
to the boundary can produce a non-zero flux accross the boundary if the flux interpolati
(19), (21), or (31) are applied carelessly.

The discretized initial conditions given in terms of the magnetic field components do 1
satisfy the discret® - B =0 condition in general. In that case the analfifield should be
integrated to an analytic vector potentfgland the discretB; i values should be obtained
from finite differencingA;  for the CD schemes, or from finite differencing and averaging
Ajt1/2k+1/2 for the CT schemes.

5. PROJECTION SCHEME

5.1. Removing the Unphysical Part of the Magnetic Field

The projection schemevas proposed by Brackbill and Barnes [7] as a correction t
the magnetic field after the time step is completed by some arbitrary numerical sche
The name comes from the idea that Biefield provided by the base scheme in time stey
n+ 1 is projected to a divergence-frB&™ field. It is well known that a vector field can be
decomposed unambiguously into the sum of a curl and a gradient

B* =V x A+ Vé, (32)

where the curl of the vector potential contains the physically meaningful part Bf.
Taking the divergence of both sides, a Poisson equation

V2p =V.B* (33)

is obtained, which can be solved for the scalar functpomhen it is easy to correct the
magnetic field to

B"! = B* — V¢. (34)



620 GABOR TOTH

The numerical divergence &+ will be exactly zerdif the Laplace operator ir{33) is
evaluated in two steps as a divergence of the gradient with the same difference opera
as used for calculatingy - B* and V¢ in Egs.(33) and (34), respectivelylf the Laplace
operator is evaluated in Fourier space then this requirement translates to Eq. (5.6) in [2
follows directly from (34) that the correction does not affect the current dedsityy x
B"=v x B*.

5.2. Minimal Correction

Let us solve the following problem: Given the auxiliary solut®hwith a finite diver-
gence, what ishe closest divergence-fr&field? We wish to minimize the function

N
1 *112 1 *y 2
d(B1, Bz, ... By) = 5IIB — B'| zéi;(si—si) (35)
for the 2N unknownsB, BY with the constraints
N
(V-B) =Y D}|Bf+D!;B/ =0 (36)
j=1

for all grid cells indexed by =1... N. The discrete difference operatdes and DY are
N x N matrices, wheréN is the number of all the grid points. This conditional minimum
problem can be solved with the use of the Lagrange multiptiersequiring that

a[dB) + > ®i(V-Bi]
9B B

(Bf —=B")+ ) @D} =0 (37)
i

and similar equations can be obtained for Bi’eunknowns. The solution is

BX — BX,* _ DX’Td)

BY = BY* — DY, 39)
where the superscripi indicate transposed operators. To determine the Lagrange mul
plier @, let us substitute (38) into (36). The final equation dois

0= D*B** + DYBY* — (D*D*T + DYDY T)®. (39)

If the discrete operato®* andDY areantisymmetrice.g., the central difference operators
on a uniform Cartesian grid, then Eqgs. (38) and (39) are equivalent with the correct
equation (34) and the Poisson equation (33), respectivelypand .

In other words, on uniform Cartesian grids the projection scheme makes the smal
possible correction to remove the divergence of the magnetic field provided by the b
scheme. On nonuniform or non-Cartesian grids the difference operators may not be ex:
antisymmetric, still the projected field should be fairly close to the minimal solution. In tf
continuum limit, the projection provides the solution for the conditional minimum problen
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5.3. Conservation, Consistency and Order of Accuracy

It is quite widely believed that the projection scheme makes an error in the conservat
of the total energy and/or in the conservation of the magnetic flux and/or that it cannot
used to obtain discontinuous solutions.

Addressing the first worry is trivial: the total energyis an independent variable of
any numerical scheme that discretizes the MHD equations in a conservation form; thi
change in the magnetic field does not affect the total energy at all. Kinetic energy d
not change due to projection either, since momentum and density are not affected. V
does change is the magnetic energy, and consequently, the thermal energy, or even
specifically, the temperature. A change of the temperature has no consequences as lon
remains positive, since there is no reason to believe that the temperature associdted wil
was more correct than the one obtained from the projected solufibh Getting a negative
temperature can be a problem, of course, but that can occur quite easily independent ¢
projection scheme too, since the base scheme usually does not guarantee positivity c
temperature either. It could equally occur that the base scheme provides a negative
perature which becomes positive after projection. In certain cases, e.g., when the mag
energy density is much larger than the thermal energy density, one may prefer to sacr
the exact conservation of total energy for the sake of robustness. After the projection :
the total energy may be modified as

(Bn+l)2 _ (B*)Z

en+1 — e* 4
2

(40)
thus keeping the thermal energy and temperature provided by the base scheme fixed
same option has been described by BS for their flux-CT algorithm.

Conservation of magnetic flux is a more delicate problem. Of course, magnetic flux
conserved in a global sense, sif&das modified by a gradient to obtaB"** (34), thus the
integrated magnetic flux can only change at the boundaries. What can be more problen
is the conservation of magnetic fllacally, especially next to discontinuities, where the
correctness of the jump conditions relies on the conservation properties of the sch
and where the divergence of the auxiliary solutihis usually large. In other words, the
numerical error invV - B* at the discontinuity could be spread all over the computations
domain by the projection scheme, and thus the projection scheme would not be consi:
or at least the projection would reduce the order of accuracy of the base scheme. Nume
experience shows, however, that the projection scheme does not suffer from this prob
the discontinuities are correctly represented and the numerical error is not increase
the smooth parts of the solution by the projection. The numerical tests in this paper \
also support this observation. In the following paragraphs | present a rigorous proof of
consistency of the projection scheme and | also show that its order of accuracy cannc
worse than that of the base scheme or a CT/CD type discretization.

Suppose that we are solving a discontinuous problem. | shall consider a single time
of sizeAt starting from an initial condition which is taken to be exact, and | will estimate th
error made by the various schemes in one time step. Let me denote the analytic solution
the time step by2. The numerical solutioB* provided by a consistent and conservative
base scheme has to satisfy

|IB* — B?| < O(AXK, At™), (41)
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where the norm - || is defined in (35) and the exponehktandm give the actual order of
accuracy of the base scheme. For discontinuous problems the order of accuracy is us
lower than it is for smooth problems, bkit- 0 andm > 1 should hold for a sufficiently fine
resolution. The solutioB° provided by any of the CD/CT schemes should also satisfy

IB* — BY| < O(AXK, At™) (42)

with k' >0, m' > 1, andV - B® =0 in the appropriate discretisation. As it was proven in
Subsection 5.2, the projection scheme charigfeto the closestdivergence-free discrete
representatioBP; therefore

IBP —B*|l < |IB° — B*|. (43)
Using simple geometrical inequalities it follows that

IBP — B?|| < |IBP — B*|| + ||B* — B¥|| < ||IB® — B*|| + ||B* — B?|
< |IB® = B?|| + 2||B* — B3|| < O(AXN", At™), (44)

where the exponents aké= min(k, k') > 0 andm” = min(m, n’) > 1; i.e., the projection
scheme is a consistent discretization and it has the same order of accuracy as the wol
the base scheme and the CT/CD scheme.

It should be mentioned that the consistency is a necessary but insufficient condit
for convergence to the analytic solution at a fixed physical time, because the numbe
time steps increase with resolution and the growth of the cumulative errors depends or
stability properties of the scheme. Unfortunately, no proof of numerical stability and/
convergence is known for any of the considered base schemes (or for any of the sche
derived from them) when they are applied to a non-linear system of partial different
equations, like the system of MHD equations. Still, it is of practical importance to proy
consistency and order of accuracy, otherwise the results of a scheme should not be trt
even if the numerical results seem to suggest stability and convergence for increasing
resolution.

One can also estimate the change due to a non-zero valwe Bf in a single cell.
The solution of this problem is the “Green-function” of the discrete Laplace operator.
conservative base scheme, however, will not credd éield containing a single mag-
netic monopole, since that is not allowed by flux conservation. The errgr-B* is the
result of an error irB* which is due to some flux being too large or too small betweel
two cells. Therefore the “Green function” of the projection scheme is the magnetic fie
produced by the projection of the fie]-yy’,;k = —Bjyflqk =1 andB* =0 everywhere else,
which corresponds to a magnetic quadruple in term& dB. The resulting field is depicted
in Fig. 7. Clearly, the numerical error causes significant (above 5%) changes only withi
cells distance from thégj, k) cell. In three dimensions the Green function falls even faste
with distance. Since this distance is comparable to the number of cells resolving a typ
discontinuity, the projection scheme does not spread the errors significantly.

5.4. Direct versus lterative Poisson Solvers

The price to pay for the nice properties of the projection scheme is the Poisson prob!
(33), but that can be solved efficiently with either direct or iterative sol\dost direct
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FIG.7. The “Green function” for the projection scheme. The Green function is the projection of the magne
field (generated by a single erronous fléixshown by the two longest arrows shifted to the bottom left corner.
The divergence of this field is a magnetic quadruple indicated by-thied— signs. The projected divergence-free
field is represented by the rest of the arrows centered around the middle of the plot. Note the fast decay ©
correction.

Poisson solversrork for relatively special cases, e.g., uniform Cartesian grid with periodi
boundary conditions, only, and they require about 20 to 30% of the total CPU time [:
35]. Another possibility [37] is to calculate the full matrix for the projection operato
(I —VV~2V .) once and for all and apply it directly in every time step. This direct approac
is restricted to moderate grid sizes only, since the memaory requirement for the full ma
grows with the square of the number of grid points.

One should realize, however, that unless some discretization-& is particularly
optimal for the numerical scheme, the “exact” (to precision of round off errors) solutic
of the Poisson problem is not necessary. It may well be sufficient to solve the Pois
problem to some accuracy and require uPWBi”*H < € wheree is a small value relative
to the typical|V - B*| error generated in one time step. For this particular Poisson proble
(33), iterative solversare not just flexible, but also surprisingly efficient. The numerica
errors inV - B* usually arise as local errors of opposite signs (short wavelength) which ¢
removed by the conjugate gradient type solvers [17, 45] rather efficiently. The very sn
long wavelength errors do not have to be removed at all, since an approximate solutio
the Poisson problem is quite acceptable. For this reason, using a (generally more effic
but much more complicated) multigrid solver for the projection step [50] may not pay o
By applying a few iterations of the conjugate gradient type linear solver, one can reduce
numerically generated divergence of the magnetic field sufficiently. In my experience,
projection scheme with an iterative solver requires about 15% of the total execution ti
on Cartesian grids (more efficient than direct solvers) and about 30% on general struct
grids.

Even on parallel computers, the conjugate gradient type methods are quite efficient
the fraction of the time spent on the projection does not change much by increasing
number of processors [20]. In fact, many of the high-resolution simulations in this paj
were done on 16 processors of a Cray T3E parallel computer and the fraction of time sj
on the projection remained below 30%.
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5.5. Initial and Boundary Conditions

Even if the discretized initial magnetic field has a finite divergence, the projection sche
can eliminate it before the first time step. Therefore the projection scheme is not sensi
to discretization errors in the initial condition. On the other hand, it is important to choo
good boundary conditions f@rin the Poisson equation (33) so that the corrected magnet
field B"! satisfies the boundary conditions for the physical problem. RMJA mentions t
restrictions on the boundary conditions as a draw back for the projection scheme. It shc
be emphasised thdtis not the projection scheme, but their particular Poisson so(fest
Fourier transform) that restricts the possible boundary conditions to a few simple case:

Here | briefly describe how the boundary conditions can be implemented when a ¢
jugate gradient (CG) [17], stabilized biconjugate gradient (BICGSTAB) [45], or similg
Krylov subspace type iterative solver is used to solve the Poisson equation. This implen
tation works successfully in the Versatile Advection Code for a waste number of tests :
applications. The iterative schemes require a subroutine which evaluates a matrix vector |
tiplication: the matrix is the Laplace operator and the vector is an iterage idre boundary
conditions applied during the evaluation of the discrete Laplace operator will determine
boundary conditions for the solutighand for the magnetic fiel8"+1 = B* — V¢.

The simplest way to implement the boundary conditions is by putting two layers
ghost cells around the physical cells. The unknows (the description here is for a 2D
Cartesian grid, but this can be easily generalized to 3D and/or non-Cartesian grids) belor
the physical cells only, but the two layers are needed, since the Laplace operator is evalt
as the discrete divergence of the discrete gradient, both extending the stencil by one ce
all directions. The values af in the ghost cells are calculated according to the boundar
conditions on the magnetic field. Let me concentrate on the ghost cells next je-the
edge of the computational domain and denote the ghost cells by indices-0lanhile
the physical cells are indexed from=1to N in the x direction.

If B is periodic ¢ should also be periodic, i.@,-1 k = ¢n—1.k andgo x = dn k. FoOrshifted
periodicboundary conditiong_1 x = dn—1.k+k andegok = dn k+k , WhereK is the number
of cells by which the periodicity is shifted in the direction (see Subsection 6.3 for an
application). Afixed(supersonic inflow or outflow) boundary condition Brimplies that
the gradient ofp should be zero for the first layer of ghost cells, which can be achieve
by settinggox =0 and¢_1 k = ¢1«. For acontinuous(approximation of open) boundary,
ok = ¢—1k = 0 can be used. When the orthogonal comporis antisymmetriand the
tangential componer®Y is symmetric (perfectly conducting wall) then the boundary con
dition on¢ should be symmetrig_; x = ¢k andgo x = ¢1. k. Sometimes the symmetry of
the problem demand3* to be symmetric an8Y antisymmetric at th& = 0 boundary, then
an antisymmetric condition should be applieddn.e.,¢_1 x = —¢2k andeok = —d1.k-

In summary, the projection scheme can be used efficiently in all geometries for whi
the Poisson equation can be solved efficiently. Iterative methods provide a very flexil
efficient, and parallelizable algorithm.

6. NUMERICAL TESTS

6.1. Versatile Advection Code

The aim of developing the Versatile Advection Code (VAC) [40, 41] is to provide th
astrophysicist and physicist community with a modern, versatile, and user-friendly softwe
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which can be adapted to the application, and which runs efficiently on work stations, vec
and parallel super computers as well.

VAC uses various shock-capturing numerical methods: two versions of flux correc
transport (FCT) schemes [6, 27], the Lax—Wendroff type total variation diminishing (TVL
[16] and the TVD-MUSCL [46] schemes with Roe-type approximate Riemann solve
[33, 34], and the TVD Lax—Friedrichs (TVDLF) method [48]. For the TVD type scheme
different slope limiters are available, including the most rolmistmod the sharpemono-
tonized centra(MC, also referred to as Woodward) limiter, and the (overly) stzanper-
beelimiter. For exact specifications of these algortihms, see [44]. In multidimensions, t
schemes can be used in a dimensionally split [39] or unsplit manner. Explicit, semi-impli
or fully implicit time stepping [23, 43] algorithms are available for time integration. Th
simulations can be done on 1-, 2-, or 3-dimensional structured finite volume grids using
same dimensional independent source code written ifotiigannotation syntafd2]. In
two spatial dimensions both slab and cylindrical symmetry can be assumed in the ignc
third dimension. Cartesian and polar grids are handled as special cases for sake of efficit

The code is designed to solve conservation laws of the form (9) with possible sou
terms. The different numerical schemes and equations are implemented in modules
they can be combined arbitrarily. The implemented equation modules are the hydrodyne
and adiabatic hydrodynamic equations, the isothermal or polytropic MHD equations, :
the full MHD equations. Source terms for resistivity, viscosity, heat conduction, radiati
cooling, and external gravity are readily available; other types of source terms can be def
in user written subroutines.

For MHD applications, the divergence of the magnetic field can be kept zero with t
constrained transport or the new central difference approaches (Section 4) or by the
jection scheme (Section 5). The Poisson equation (33) is solved by the CG or BiCGST
iterative methods. These iterative algorithms work for arbitrary boundary conditions unili
direct solvers based on fast Fourier transforms. Also implemented in VAC are Powe
eight-wave Riemann solver and the corresponding source terms (see Section 3).

Parallel execution of the code is achieved by an automatic translation to high performa
Fortran. All explicit schemes, including the iterative Poisson solvers, are fully parallelizab
Inthis paper VAC will be used as aresearch tool for computational methods, butithas alre
been successfully used in many physical applications [18, 19, 21, 22, 26, 30, 36]. The c
is available fromhttp://www.phys.uu.nl/~toth/ via registration.

6.2. Base Scheme and Measurement of Numerical Error

| wish to compare the numerical methods aimed aMh®& = 0 constraint; therefore for

any test problem thbase schemwill be fixed. Since the transport-flux-interpolated CT
scheme of RMJA is defined for a one step TVD base scheme only, | chose this method a
base scheme whenever possible. The one step TVD method requires dimensional spl
for numerical stability. Second order accuracy in time is achieved by altering the order
x andy sweeps after every time step the same way as it is done by RMJA and DW. Inr
applications the time step is varied dynamically based on the Courant—Friedrichs—Le
(CFL) condition. In principleAt should only be changed after every second step. If th
time step changes in every step, the formal second order temporal accuracy is lost, alth
the variation ofAt is typically small; thus the error is very small. In any case, in most of th
test problems, the time stext is set to a fixed value which the final tinig,x is an integer
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multiple of and for which the Courant number is approximatéh 0.8 during the whole
simulation.

There are a few minor differences between the TVD algorithm used by RMJA and t
one used in the test cases below: (1) RMJA use the original flux definition by Harte
while | chose the simpler and equally accurate Roe-type flux (see [44]); (2) | use f
monotonized central (MC) limiter by default, since it usually gives sharper discontinuiti
than the minmod limiter and it is simpler than Harten’s steepener; (3) no entropy fix w
used in these test simulations. Note that these choices are not due to limitations of
Versatile Advection Code but decisions in favour of the better and/or simpler algorithn
VAC actually contains Harten’s flux among three others, also Harten’s steepener, and
different versions for the entropy fix (including the one used by RMJA). As far as it can |
judged from the comparison with several published test results, the base scheme used
is at least as good as the base schemes of RMJA and DW.

For a quantitative comparison of the various schemes handlingtBe= 0 constraint, the
numerical error should be calculated and compared. In the absence of an analytic solu
a high resolution numerical solution is used as a basis for comparison. The high resolu
solution iscoarsenedo the resolution of the simulations to be compared by averaging out
fine grid values contained in the coarse cells. For example, when the schemes are comj
at a 50x 50 resolution and the high resolution grid has 40800 cells, for each coarse cell
8 x 8= 64 high resolution cells are averaged. The averaging corresponds to an integra
over the coarse cell, so the coarsened solution is a very accurate numerical solution ir
finite volume sense. In principle one shoatthrsen the conservative variabkesd calculate
derived functions of these; however, in certain cases this procedure can lead to non-phy
results, e.g., negative temperature. To avoid this possibitiyaisen the derived quantities
themselves for the reference solutions used in this paper. As a check, the coarsening
done both ways for a few test problems, and the resulting errors were found to cha
insignificantly, as expected.

The relative numerical error of variableobtained on amN x M grid is defined as

N Mo, high
_ >im1 > ke |Ujk — Uj k
- N M | high

>im1 Zk:l‘uj.k
whereu"" js the coarsened high resolution solution. | will measure the numerical error f
the physically most meaningful primitive variables. The averaged ér®defined as an

average ofu for all the (non-zero) primitive variablas For convergence studies the grid
resolution is indicated as a subscript 8gr.

su (45)

6.3. Rotated One-Dimensional Problems

In all tests of this section, a one-dimensional problem, which can be solved either anal
cally or very accurately with a 1D simulation, is rotated by an angdtetest the capabilities
of the schemes in 2D, where the zero divergence of the magnetic field is not maintainec
the base scheme.

When the rotation angle is= 0 (or 90"), the projection, 8-wave, and transport-flux-CT
schemes reduce to the base scheme, while the other CD and CT schemes are different
the base scheme even in this slab symmetric caseaFagarm(Ax/Ay), which is 45
for aspect ratio of unity, case happens to be very special as well: the centered (26) anc
staggered (27) discretizations become identical for the diagonal symBiatey B _1 k1.
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Therefore the initial conditions can satisty- B = 0 for both discretizations and all the CT
and CD schemes will conserve this property. Moreover, due to the symmetryxratigy
fluxes, the flux-CT and flux-CD schemes become identical. Finally, the parallel compon
of the magnetic field; (which must be a constant in one-dimensional problems) is als
conserved to round off errors by all the CT and CD schemes. This explaingyapd

B: are almost exactly constant in the plots of RMJA and DW for the rotated shock tu
problems. | note that DW incorrectly attribute the minute oscillations in their Fig. 5in [1:
and Fig. 13 in [12] to truncation errors; in fact those oscillation are due to round off erro
For a general angle, however, the conservation & is accurate to truncation errors at
best.

6.3.1. Smooth Alen waves. This test problem compares the accuracy of the schem
for smooth flow. Thecircularly polarizedAlfv'en waves are analytic solutions of the MHD
equations for arbitrary amplitudes. The test presented in this paper is similar to DWenAlfv
test (Fig. 10 in [12]), but there are significant differences: (1) the eéxifwaves used by
DW are linearly polarized, therefore the gradient of the magnetic pressure is not ze
which causes a small but finite distortion of the initial sine wave with time; (2) DW sets tl
fluid velocity vy = —va to compensate the Aléri speed; thus the wave is actually standing
relative to the grid. | will useircularly polarized Alf\én waves and | will examine both the
travelling @, = 0) and standingy, + va = 0) wave cases.

It should be mentioned that BS also modeled the propagatioreatrly polarized oblique
Alfv'en waves as their third test problem. As | pointed out above, such a travelling wz
is notan exact solution of the non-linear compressible MHD equations, although the ne
linear terms are much smaller than the numerical errors in any of their simulations.
main problem with their test is of a different nature. Balsara and Spicer’s third test invol\
Alfv'en waves polarized in the direction on a two-dimensional—y domain, while the
flux-CT algorithm differs from the base scheme in ByeandB, variables only! The latter
variables are constants in space and time for this test except for the small non-linear effi
This explains why BS find essentially no difference when the test is done with or withc
the CT discretization. The tiny differences between their Figs. 5 and 6 should be entil
due to the fact that the non-linear effects slightly pertBgand By, and these are handled
differently by the base scheme and the CT scheme. We shall see that there is a much
pronounced difference between the different discretizations when therAlfaves involve
the By and By variables directly.

The circularly polarized Alfeh wave propagates at an angle- 30° relative to the
X axis, and it has a unit wave length in that direction. The computational box is pe
odic with 0< x < 1/ cose and O<y < 1/sina. The initial conditions are =1, v; =0,
p=0.1, By=1, vy =0.1sin[27(x cosx + ysina)] = B,, andv, = 0.1 cos[2r (x cosu +
ysina)] = B, with y =5/3andy = 0. Therr /2 phase shift betwee, andB, = By coso —

By sina ensures that the magnetic pressure is constant. Theelspeed ijva| =
By/+/p =1, thus by timet = 1 the flow is expected to return to its initial state. The wave i
moving towardsx =y =0.

The computational domain is resolved by ldn< N grid; thus the cells have an aspect
ratioAx/Ay = tana = 1/+/3. For this special choice, the initial condition satisfiesB = 0
both in the centered (26) and in the staggered (27) discretizations. The simulation is ru
a final timetax= 5 with a time stepAt =0.8/N. The seven schemes and the base schen
are compared for resolutioMé= 8, 16, 32, and 64 in Table Il. The errros are averaged fo
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TABLE Il
Convergence of Average Errors for Alfvén Waves

Travelling waves Standing waves
8 816 852 Soa 8 816 852 Soa
Projection 0.716 0.135 0.032 0.012 Projection 0.299 0.079 0.031 0.01
Base scheme 0.711 0.133 0.033 0.012 Base scheme 0.321 0.112 0.034 0.1
8-wave 0.713 0.134 0.033 0.012 Flux-CD/CT 0.315 0.122 0.037  0.01:
Tr-flux-CT 0.852 0.193 0.044 0.014 Field-CT 0.268 0.102 0.044 0.021
Field-CD 1.016 0.336 0.087 0.025 Field-CD 0.294 0.106 0.044 0.021
Flux-CD/CT 0971 0393 0.105 0.029 8-wave 0.351 0.127 0.050  0.02
Field-CT 0.927 0.566 0.163 0.044 Tr-flux-CT 0.549 0.287 0.111 0.046

thev,, vz, By, andB, variables, since the other primitive variables do not take part in th
Alfv’en wave, and their errors are much smaller. All schemes converge approximately
second order rate, but there are large differences in the average errors, which is domir
by amplitude and phase errorsih andv,; as shown in Fig. 8.

The simulations were repeated with= 1 so that the Alfen wave is standing relative
to the grid. The time step is reducedao = 0.4/N to maintain the Courant condition. The
results in Table Il and Fig. 9 show that the schemes behave rather differently for this se
The projection scheme and the base scheme are the most accurate for both the travellin
standing wave problems. The transport-flux-CT scheme produces under and overshoo
coarse resolutions.
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FIG. 8. The orthogonal componeri; =(\/C_%By — By)/2 of the magnetic field in the travelling) (=0,
va = —1) Alfven wave problem. The initial condition (full line) is shown for tNe= 64 resolution. The solutions
at timet =5 are shown for the different schemes at resolutiNins 8 (dotted), 16 (dashed), and 32 (dot-dash
lines).
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FIG.9. Conditions the same as Fig. 8 except that the results are shown for the staneirig£ —v,) Alfven
wave problem.

As acheck, | also did the travelling wave problemdct 0, i.e., the wave moves parallel to
thex axis. For this case the projection, 8-wave, and transport-flux-CT schemes are iden
with the base scheme which was verified by the numerical results. The error of the flux-
scheme is about 1.3 times larger than the error of the base scheme at all the resolutions
field-CD, flux-CD, and field-CT schemes all give very similar errors, which are about 1.3
1.7 times larger than the error of the base scheme at the different resolutions. The stan
wave problem is solved exactly by all the schemes foratke0 case since the fluxes are
zero analytically as well as numerically.

6.3.2. The 2D shock tube testThe initial left state iSp, v, v., p, B), BL) =(1, 10,0,

20, 5/+/47, 5/+/4r) and the initial right state i§l, —10, 0, 1, 5/v/4x, 5/+/4x) for this
Riemann problem. The? and B* components are zero. The adiabatic index and the re
sistivity arey =5/3 andn =0. The same problem with its exact solution can be found i
[10, 32]. The 2D test witlx = 45> was solved with the transport-flux-CT scheme by RMJA
and with the projection scheme in [32], and the plotted results look very similar (see a
[25]). First | make the comparison for the seven different schemes and the base sch
with a rotation angler = tan! 2~ 63.4°. Since the magnetic field is uniform initially, for
this test problem the initial condition satisfi®s B =0 for any rotation angle and for any
discretization.

The computational domain is a narrow strip witkk®& <1 and O<y <2/N, and it is
resolved by aN x 2 grid. The top and bottom boundaries are of the shifted periodic typ
(see Subsection 5.5) according to the translational symmetry {(rthel) direction, while
the left and right boundaries are fixed according to the initial condition (see Fig. 10). T
computation is stopped at tintgax= 0.08 cosx = 0.08/+/5 before the fast shocks would
reach the left and right boundaries. This setup is more economic than udig as grid,
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FIG. 10. The grid used for the 2D shock tube problem rotated by tan* 2. The ghost cells on the top and
bottom (double shaded area) are copies of the computational domain (middle unshaded part) but shifted to th
and right by four cells. In the rest of the ghost cells (single shaded area) the variables are fixed to the initial
and right states. The flow (dark and light gray squares) has a translational symmetry-i2tiie direction, and
the normal vector of the discontinuities point in ttie 2) direction.

but the results are otherwise identical. In all figures the first(jow 1) of the physical mesh

is plotted. The discontinuities look more spread out than in the plots of RMJA, since the fil
times differ by a factor 0£/10, which means that the effective resolution is approximatel
3 times lower for the simulations presented here for the same vaNelofother words, the
plots in RMJA are cuts along thie=k diagonal, which is orthogonal to the discontinuities,
while the plots in this paper are cuts parallel to xhexis, which is at an angle relative to
the shock normal.

The seven schemes and the base scheme are compared at a rebbi86. The final
time is reached in 170 time steps With = tya,/170~ 2.1 x 10~*. The errors are measured
against a high resolution 1D simulation with 1024 grid cells runnirig2®.08 in 1600 time
steps. The high resolution result is coarsened by a factor of 4 and the vector compon
are rotated by to match the low resolution simulations. Both the minmod and MC slop
limiters were tried for the base scheme. Formally the errors are slightly smaller for the N
limiter, due to the sharper discontinuities, but there are more pronounced oscillations in
smooth regions. The numerical errors (45) reported in Table Il correspond to the minn
limiter. The schemes are listed in the order of their numerical errors averaged for all
primitive variables.

The results show that the non-conservative 8-wave formulation performs the worst for
test. The error is most significant in the parallel magnetic field component, which should
a constanB; = 5/+/4r ~ 1.4105. Figure 11 showB, = (B* +2BY)/+/5 for six different
schemes. The 8-wave scheme is in error everywhere between the two fast shocks by 3 tc

TABLE Il
Numerical Errors in the 2D Shock Tube Test fora =63.4° and N = 256
8 Sv, Sv, sp 5B, 5B, 5
Field-CD 0.0074 0.0175 0.0936 0.0052 0.0046 0.0102 0.0231
Flux-CD 0.0075 0.0175 0.0965 0.0052 0.0036 0.0107 0.0235
Projection 0.0076 0.0177 0.0948 0.0055 0.0062 0.0093 0.023¢
Flux-CT 0.0075 0.0176 0.0996 0.0052 0.0016 0.0098 0.0235
Base scheme 0.0075 0.0178 0.1006 0.0055 0.0037 0.0078 0.02:
Tr-flux-CT 0.0075 0.0177 0.1020 0.0054 0.0020 0.0089 0.0239
Field-CT 0.0075 0.0174 0.1214 0.0059 0.0043 0.0178 0.0291

8-wave 0.0076 0.0180 0.1027 0.0056 0.0413 0.0092 0.0307
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FIG.11. The parallelcomponentofthe magneticfieldinthe 2D rotated shock tube testis shown for six differ
schemes. The analytic solutionis a uniform velye= 5/+/47. The non-conservative 8-wave formulationisin error
by several percentage everywhere between the left and right moving fast sheeRsl(— 0.9). The conservative
schemes, including the base-scheme (middle top panel), show significant errors close to the discontinuities

This error is due to the non-conservative source terms plotted in Fig. 12. When the sol
terms (and the 8th wave of the Riemann solver) are not included, the base scheme proc
correct jumps accross the discontinuities as it is shown in the middle top panel in Fig.
The conservative schemes also have errors at the discontinuities, but the errors betwee
discontinuities are smaller and they converge to zero with increased resolution. Figure
compares the convergence behaviour of the 8-wave scheme and the field-interpolated c
difference schemes by showily attmax/2 andtmay. The results at half time correspond to
half the resolutiofN = 128) due to the self similarity of the solution of Riemann problems
The average deviation from the analytic valueBjf= 5/+/4r does not decrease for the
non-conservative 8-wave scheme, while it converges to zero for the conservative field-
scheme as expected.

To be fair I should say that in many shock tube problems the 8-wave scheme performs:
and the conservation across the jumps is satisfactory (see, e.g., the next subsection)
present test problem was selected to demonstrate a potential weakness of non-conser
schemes. On the other hand, it was carefully checked that other choices for the base sct
e.g., dimensionally unsplit TVD-MUSCL or adding the non-conservative source terms
operator splitting, do not fix or diminish the problem. It was also checked that the er
is not a consequence of the initial startup errors: when the simulation is continued v
the 8-wave scheme starting from the divergence-free output of the projection or field-
scheme at an intermediate time, the incorrect jump in the parallel magnetic field appe
with the same magnitude as in Fig. 12.

Among the conservative schemes, the field-CT scheme is the least accurate due to
oscillations behind the slow rarefaction wave (see the bottom left panel in Fig. 11). It w
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FIG. 12. In the rotated shock tube problem, the incorrect jumps of the parallel magnetic field (top left) f
the 8-wave formulation are due to the source terms (bottom left and right) in the non-conservative form of
induction equation (13). The source terms are proportional to the numerical vé&¥ueBftop right), which has
large oscillations at the discontinuities independent of the resolution.

checked that these oscillations do not reduce if an entropy fix (the same as in RMJA) \
used, or if the time step was reduced by a factor of 2. The rest of the schemes (top six
in Table Ill) can be ordered differently depending which variable we take for comparit
the errors. The relative errors are largest in the orthogonal velocity componenhsinise
much smaller than the Cartesian componéwntsand|vY|, but the numerical errors in*
andvY do not cancel fon, = (v¥ — 2v*)/+/5. The gap between the best six and worst twc
schemes remains significant even if the edor is not taken into account. The magnetic
field is most accurate for the flux- and transport-flux-CT schemes. In terms of the aver
error, the most accurate algorithm for this problem happens to be the simple field-CD sche
(see Fig. 14), although one should not take the differences between the top six sche
very seriously. Despite the reservations emphasised by DW, the projection scheme sc
this superfast flow (the velocity exceeds the fast magnetosonic speed by a factor of
significantly more accurately than the field-CT scheme proposed by the same authors.
is a practical demonstration of the theoretical arguments discussed in Subsection 5.3.
It is interesting to check the numerical valueVof B for the various schemes. Table IV

shows the maximum and average valuepwfB| according to both the central difference
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TABLE IV
DivergenceB in the 2D Rotated Shock Tube Test

633

|V'Bj.k| |V'Bj+1/2.k+1/2|
Max Avrg Max Avrg
Base scheme 141.5 3.43 48.9 3.27
8-wave 142.5 3.62 57.0 1.91
Projection 0.3 0.01 130.9 4.73
Field-CD 1012 101 84.2 3.81
Flux-CD 102 108 68.5 3.91
Field-CT 65.9 5.63 1042 101
Flux-CT 73.5 2.09 102 105
Tr-flux-CT 102.8 2.95 104 102
By By
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FIG. 13. The convergence behaviour of the parallel component of the magnetic field is shown for the n
conservative 8-wave (top) and the conservative field-CD (bottom) schemes for the 2D rotated shock tube test
plots at half time (left) correspond to a resolution of 128 points, while the results at the final time make use
the full resolution of 256 grid cells. The results by the non-conservative method do not converge to the cor
uniform solution, while the conservative scheme convergé te 5/+/4r everywhere except for a fixed number
of cells in the vicinity of the discontinuities.
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FIG. 14. The solution of the 2D rotated shock tube problem by the field-CD scheme (symbols) onxa 25¢€
2 grid. For comparison, the non-rotated 1D solution with 1024 grid cells is also plotted (line).

(26) and the cell corner centered (27) definitions for all seven schemes and the base sct
As expected, the central difference definition for the CD schemes and, similarly, the
corner centered discretization for the CT schemes are around the round off erroiTiee
projection scheme keeps the cell centered discretization beBusihg 20 iterations of the
conjugate gradient solver in every time step. It was checked that the results hardly che
if the Poisson problem was solved much more accuratelyawit®.01, but of course such
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TABLE V
Average Errors in the 2D Rotated Shock Tube Test

o =634 a=45
8128 8256 8128 8256
Field-CD 0.0345 0.0231 0.0249 0.0132
Projection 0.0351 0.0235 0.0238 0.0130
Flux-CT 0.0336 0.0235 0.0253 0.0134
Flux-CD 0.0341 0.0235 0.0253 0.0134
Tr-flux-CT 0.0340 0.0239 0.0258 0.0140
Base scheme 0.0336 0.0238 0.0376 0.0258
Field-CT 0.0437 0.0291 0.0316 0.0165
8-wave 0.0413 0.0307 0.0374 0.0264

a precision requires more iterations. It is quite interesting to see that for all the six sche
(3rd to 8th rows in the Table V) that ke&p- B very small in one discretization, in tie¢her
discretizationV - B is not at all small when compared to the 8-wave scheme or the ba
scheme. There seems to be no straightforward relationship between the overall accura
a method and its ability to keep - B small in some particular discretization.

The schemes were also compared at half the resoluiea {28) and the overall picture
remains the same: the 8-wave and the field-CT schemes are significantly less accurate
the other four schemes. The convergence rate is around first order for all the primi
variables except for the orthogonal velocity component, for which the errors diminish
10 to 20% only as the resolution goes frdin= 128 to 256.

| repeated the test problem for the rotation angie 45° as well (same as used by RMJA)
with tmax= 0.08/+/2. For this special choice of angléhe divergence d is zero to machine
accuracy for all CT and CD schemes in both the central difference (26) and the cell cot
centered (27) discretizations and the uniform parallel component of the magnetic fi
B, =5/+/4r is also conserved accurately. The 8-wave scheme produces incorrect ju
conditions, and it converges toB which is in error by 5% to 10% between the fast shock
waves. Table V summarizes the average errors for rotation angte$3.4° and 45 and
resolutionsN =128 and 256. In all four cases there is a gap between the five most and
two least accurate methods, while the base scheme seems to do the problers-\GRH°
better than withx = 45°. Comparison of values 6f .5 ands,ss indicates an approximately
first order convergence rate for the conservative schemes=0t5° and somewhat worse
for « =63.4° due to the error in, .

6.3.3. The 2.5D shock tube tesfThis rotated shock tube problem is a 2.5D test since a
three components of the velocity and magnetic fields are non-zero. The initial left and ri
states of this Riemann problem age, v, vi, vz, p. By, BL, B;) =(1.08,1.2,0.01, 0.5,
0.95,2/+/4r,3.6/+/47, 2/+/47) and (1,0,0,0, 1, 2//4r, 4/ 4, 2//47), and y =
5/3, n=0. The same Riemann problem with its exact solution can be found in [10, 3.
Since the initial condition contains a jump in the magnetic field, this test is easiest to
with a rotation anglex =45 which ensure$/ - B=0 both in the cell centered (26) and
the corner centered (27) discretizations. This test is identical with RMJA for the transpc
flux-CT scheme and with [32] for the projection scheme except for the final time, whi
is tmax= 0.2/+/2, exactly half of the value used by RMJA. This test problem is also dor
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TABLE VI
Convergence of Average Errors in the 2.5D Shock Tube Test

Minmod MC limiter
8_128 5_256 8_128 5_256
Projection 0.0182 0.0111 0.0129 0.0074
8-wave 0.0190 0.0119 0.0131 0.0071
Tr-flux-CT 0.0188 0.0114 0.0156 0.0093
Field-CD 0.0190 0.0115 0.0156 0.0093
Flux-CD/CT 0.0197 0.0120 0.0171 0.0107
Base scheme 0.0206 0.0124 0.0187 0.0121
Field-CT 0.0213 0.0134 0.0192 0.0126

in [25]. Again anN x 2 grid is used withN = 256; thus the effective resolution is half of
RMJAS. The time step idt =tmax/120. The high resolution 1D solution is obtained with
the base scheme orm\a= 1024 grid at = 0.2 usingAt = 0.00025.

For this test case the monotonized central limiter is clearly superior to the minmod limi
since it gives smaller errors due to the sharper discontinuities and the oscillations are \
small. The average errobsare shown for the seven schemes and the base scheme at
resolutionsN =128 and 256 in Table VI. Although the special choicexashould favour
the CT and CD algorithms (sind®, is exactly conserved by them) the average error is th
smallest for the 8-wave and projection schemes. For this test problem the non-conserv:
source terms of the 8-wave scheme do not introduce a significant error. In Fig. 15 the res
of the 8-wave scheme are shown together with the reference high resolution solution.
field-CT scheme gives the worst result: its average error is approximately 1.5 times lat
than that of the most accurate schemes.

6.4. Orszag-Tang Vortex

The Orszag—Tang vortex problem [28] has been used in many papers [11, 12, 25, 35
50] as a two-dimensional numerical test for MHD codes, although the choices for the len
andtime units differ. Here | use the same normalization asin [44]. The computational dom
is asquare with & X, y < 2 and periodic boundary conditions. The initial vortex structure
is defined by = 25/9,vy = — siny, vy = sinx, By = —siny, By = sin2, p=5/3,v, =0,

B, =0, and the equation parametersgre 5/3 andy = 0. In the numerical initial condition
y = p=1.667 andp = 2.778 were used, but for the coordinates a double precision valt
is taken for 2Zr to make the periodicity accurate.

Three different resolutions are taken for tNex N grid: N =50, 100, and 200. The
numerical errors are calculated relative to “high resolution” results Witk 400. Even
at this high resolution the numerical results differ somewhat depending on the numer
scheme. To make the comparison fair, two high resolution results were obtained with
projection and the field-CT schemes, and the numerical errors reported in Table VIl are
averages of the errors relative to the two high resolution runs. The time stdpH2/N
for all the simulations.

The Orszag—-Tang vortex problem starts from smooth initial data, but gradually the fls
becomes very complex as expected from a transition towards turbulence. Atzith¢he
flow is still quite smooth, although some discontinuities are already present. The accurac
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FIG. 15. The solution of the 2.5D rotated shock tube problem by the 8-wave scheme (symbols) ox a 25
2 grid. For comparison, the non-rotated 1D solution with 1024 grid cells is also plotted (line).

the schemes for dominantly smooth problems can be compared at this time. Table VII |
the average relative errors for the primitive variables for the three resolutions. The er
are more or less evenly distributed among the primitive variables and the ordering of
schemes is essentially independent of which primitive variable the errors are measure
All seven schemes and the base scheme converge with a convergence rate of approxin
1.6, which is worse than the second order accuracy expected for completely smooth f
but better than the first order accuracy obtained in dominantly discontinuous problems.
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TABLE VII
Convergence of Averaged Errors in the Orszag-Tang Test

t=1 t=3.14
850 8100 8200 350 8100 8200
Field-CD 0.0250 0.0085 0.0026 Field-CD 0.1150 0.0617 0.0300
Field-CT 0.0284 0.0096 0.0029 Projection 0.1280 0.0709 0.0340
Projection 0.0287 0.0109 0.0035 Field-CT 0.1393 0.0720 0.0355
Flux-CT 0.0321 0.0114 0.0035 Flux-CT 0.1352 0.0737 0.0358
8-wave 0.0305 0.0119 0.0043 Flux-CD 0.1380 0.0775 0.0373
Flux-CD 0.0347 0.0122 0.0037 Tr-flux-CT 0.1527 0.0837 0.0439
Base scheme 0.0324 0.0128 0.0044 8-wave 0.1420 0.0867 0.047
Tr-flux-CT 0.0349 0.0134 0.0045 Base scheme 0.1784 0.1097 (0.070%

@ Obtained with the minmod limiter.

averaged relative errossof the most accurate field-CD and the least accurate transpo
flux-CT schemes differ by about a factor of 1.5.

The situation changes a lot when the schemes are compdredat4, which is approx-
imately the same time for which the different quantities are plotted in [11, 12, 25, 35, 4
50]. (I note that Balsara [2] ran an isothermal MHD version of this test problem to tirr
t = 3 using the same distance unit as here, but their time unit, which is presumably sme
than here, was not specified, so it is difficult to make a comparison with his results.) T
average numerical errors are reported in Table VII. The errors per primitive variable he
similar values a8 and they all show the same order among the schemes. The base sch
fails for the Orszag—Tang problem at resolutldr= 200 due to accumulation of errors that
eventually resultin non-physical states. A solution could only be obtained with the minm
limiter.

There are lots of things that can be read from the table. The convergence rate dropps
1, which shows that the integrated errors defined in (45) are dominated by the errors at
discontinuities. For the same reason, the errors are much larger&ai 4 than they were
att =1. The base scheme is considerably less accurate than the other schemes, even f
resolutions where it succeeded with the MC limiter. The projection scheme became sec
best, while the simplest field-CD scheme kept its leading position.

The qualitative differences in resolution can be appreciated in the six gray scale |
ages of temperature in Fig. 16. | plot temperature, since it is a good indicator of shol
as well as contact discontinuities. The reference high resolution solution (bottom rig
was obtained with the projection scheme on a 40@0 grid. The other five plots are
results of five different schemes with 180L00 resolution. Only the left half of the
computational domain is shown since the right half is symmetric to the center po
X =Yy =gm. Looking at the images, the field-CD and field-CT results are obviously sharp
than the other three solutions. Only these two schemes show clearly the sharp dark (c
feature betweenx=y=1 andx=0.5, y=2. The feature can hardly be seen in the
solution from the projection scheme, and it is completely smeared out in the 8-we
and flux-CT results. Although the solution with the field-CT scheme looks sharp, it co
tains spurious oscillations arourd= 0, y = 3, some dark spots aroura= y = 3, and white
spots around = 3, y =6, which should not be there according to the high resolution sc
lution. To a much lesser extent these spurious features can also be detected in the fielc
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flux—CT

FIG. 16. The temperature distribution in the Orszag—Tang vortex problem. Only the left half of the comp
tational domain is shown, the other half is symmetric. The five schemes are compared at &0D0@solution.
The reference high resolution solution (bottom right panel) was computed onxa4@Dgrid with the projection
scheme. The temperature range is from 0.15 (black) to 1.24 (white).

result. Although the projection scheme does not look much sharper than the 8-wave
flux-interpolated schemes, according to the quantitative measure of error it is the sec
most accurate algorithm for the temperature. The average errors (measured against twc
resolution solutions obtained with the projection and field-CT methods)Tare 0.0323,

0.0330, 0.0335, 0.0357, 0.0373, 0.0385, 0.0416, and 0.0463 for the field-CD, project
flux-CT, flux-CD, 8-wave, transport-flux-CT, field-CT, and base schemes, respectively.

6.5. Cloud-Shock Interaction

This problem models the disruption of a high density cloud by a strong shock wave. T
test problem is taken from DW [12] and it is presented here to test the different scher
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on highly superfast flows. The computational domain+sX y < 1 resolved by a uniform

N x N grid. The initial condition contains a discontinuity parallel to thaxis atx = 0.6
with the left and right state&o, vy, vy, vz, P, Bx, By, B;) =(3.868590, 0, 0, 167.345 0,
2.1826182—-2.1826182and(1, —11.2536 0, 0, 1, 0, 0.564189580.56418958 with y =
5/3, n=0. The discontinuity is a combination of a fast shock wave and a rotational di
continuity in B,. The rotational discontinuity has no effect on the evolution of other flov
variables. The circular cloud is locatedat 0.8, y = 0.5 with aradius 0.15, densigy= 10,
and pressur@ = 1 in hydrostatic equilibrium with the surrounding plasma. There is a fixe
boundary condition on the right at=1 due to the supersonic inflow, while the other
boundaries are approximately open using the zero-gradient boundary condition.

It was found that the dimensionally split one step TVD scheme can easily fail due
non-physical states produced during the violent collision of the shock and the cloud e
when the minmod limiter and an entropy fix were used. Although the difficulties can |
avoided by significantly reducing the time step and/or by making the edge of the clo
smoother, | decided to use another base scheme, the two step TVD-MUSCL scheme
a Hancock predictor step, with no dimensional splitting, and with the monotonized cent
slope limiters applied on the primitive variables. This base scheme is not compatible w
the transport-flux-CT algorithm, so that is not tested. The time step is adjusted dynamic
so that the Courant number never exceeds C =0.6 and the last time step reaches exact
final timetyax= 0.06. Using this base scheme the test problem could be solved successf
with all the tested schemes at all the tested resolutions with two exceptions. The field-
scheme failed at higher resolutions just a few steps before completion, but a subtle che
of averaging the electric field instead of the magnetic and velocity fields fixed this proble
This minor modification does not change the essential characteristics of the scheme.
base scheme has also failed for tie= 200 resolution, which could only be done by using
the minmod limiter instead of the sharper MC limiter.

The simulations were carried out at resolutidhs- 50, 100, and 200. Two reference so-
lutions were obtained with the projection and the field-CD schemes at a resd\utiof00.
The results of the projection scheme are shown in Fig. 17 which should be compared \
Figs. 18 and 19 in [12]. The magnetic field solutions look very similar if we take int
account that DW plot more contourlines in the post shock region, suppress contourli
in the preshock region, and cut off the edges of the simulation domain. The density p
also compare well, although certain details, like the two “eyes” visible in DW's Fig. 18 :
x=0.4,y=0.4 and 0.6 do not show up in Fig. 17 or in any of the results obtained by tt
other schemes. This may be due to the color coding of the DW plot.

All the schemes perform very similarly for this problem; their averaged numerical errc
differ by less than 5% frondso= 0.2, 8100= 0.15, andd,go= 0.08 and the errors of the
individual primitive variables also agree within 10%. The only exception is the base sche
at N =200 resolution, wher@zooz 0.14 due to the use of the minmod limiter. The relative
errors are highest for thg andBy variables which are zero initially. The convergence rate
is approximately first order betwedh = 100 and 200 which is expected for a dominantly
discontinuous problem.

6.6. Rotor

Thistest problemistakenfrom BS. The computational domainisaunitsquaxe@ < 1
resolved byN x N grid cells. The inital thermal pressure and magnetic field are uniforr
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FIG.17. The magnetic field lines and the density distribution in the cloud-shock interaction problem solved
the projection scheme on a 4@0400 grid. The density range goes from 1 (white) to 44 (black) with a logarithmic
gray scale.

with By =0. There is a dense rotating disk of fluid wjshk= 10, vy = —vo(y — 0.5)/r, and
vy = vo(X — 0.5) /1o out to a radial distance < ro, wherer =[(x — 0.5)2 + (y — 0.5)%]*/2
is measured from the center point angd=0.1. The ambient fluid is at rest with=1
andvy =vy =0 forr >r,=0.115. The fluid between the rotating and the ambient fluic
at ro<r <ry; has linear density and angular speed profiles with1+9f, vy =
— fuo(y —0.5)/r,andvy = fvg(x —0.5)/r,wheref = (ry —r)/(ry —ro) isa“taper” func-
tion, which helps to reduce initial transients. Note that the rotor is not in equilibrium, sin
the centrifugal forces are not balanced. The magnetic field, as it winds up, will confine:
rotating dense fluid into an oblate shape. There is no resistivgy0.

By mistake the final time and the plots in BS do not correspond to the initial conditic
described in the text (BS, private communication). First | will solve the problem as defin
in the text of BSwo =2, p=1, By =5/+/4r, and adiabatic index = 1.4. The final time
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tmax= 0.15 will be used in thidirst rotor problem when the flow looks similar, although
not identical, to the plots of BS. Theecond rotor problemwhich was used to obtain the
plots in BS, is defined byo =1, p=0.5, B, = 2.5/+/47, and adiabatic index = 5/3. For
this problem the final time ifhax=0.295 as in BS. (I note that Londrillo and Del Zanna
[25] solve the first rotor problem witty =r; = 0.1 and a final time = 0.18.)

For the first rotor problem, experiments with the one step TVD base scheme showed
many of the algortihms fail due to negative pressure; thus the more robust dimension
unsplit TVD-MUSCL base scheme is used. The MC limiter is applied on the primitiv
variables. This base scheme excludes the transport-flux-CT algorithm from the test.
remaining six schemes and the base scheme were tested at resd\itiob@, 100, and
200. The reference solutions were obtained with the projection and flux-CT schemes |
Fig. 18) with N =400. In all runs, the time step is dynamically set so that the Coura
number does not exceed 0.6 and the final time is reached exactly. The errors, aver:
relative to the two reference solutions, are listed in Table VIII on the left side.

The second rotor problem, which has a factor of two higher thermal pressure relat
to magnetic and dynamic pressures, could be solved successfully using the dimensiol

0.8

0.4

0.2

081

0.6

0.4

FIG. 18. The density, thermal pressure, Mach number, and magnetic pressuteOat5 for the first rotor
problem. The solution was obtained by the flux-CT scheme on &40 grid. The 30 contourlines are shown for
the ranges @83< p < 1295, 00202< p < 2.008, O< |v|/c < 8.18, and 00177< B?/2 < 2.642, respectively.
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TABLE VIII
Convergence of Averaged Errors in the Rotor Tests

First rotor test withp=1 Second rotor test with = 0.5
850 8100 8200 850 6100 8200
Projection 0.1145 0.0603 0.0276 Projection 0.1146 0.0625 0.032/
8-wave 0.1152 0.0621 0.0285 8-wave 0.1153 0.0657 0.0354
Flux-CT 0.1191 0.0624 0.0298 Field-CD 0.1250 0.0652 0.0337
Base scheme 0.1185 0.0637 0.0329 Base scheme 0.1176 0.0667 0.03
Field-CD 0.1340 0.0728 0.0354 Flux-CT 0.1218 0.0682 0.0369
Flux-CD 0.1344 0.0716 0.0355 Flux-CD 0.1283 0.0696 0.0361
Field-CT 0.1537 0.0893 0.0488 Tr-flux-CT 0.1195 0.0708 0.0491
Field-CT 0.1404 0.0777 0.0453

2 Obtained with the minmod limiter.

split one step TVD base scheme using the MC limiter. The only exception is the transp
flux-CT scheme at resolutioN =200, where the minmod limiter had to be used to avoic
break down due to unphysical states. Also, the reference high resoNitie400 solutions
were obtained with the projection and the field-CD schemes using the TVD-MUSCL be
scheme, since the one-step TVD scheme with the MC limiter failed for this resolution (us
the minmod limiter would probably help, but it would degrade the accuracy of the referer
solutions). The same quantities that were plotted by BS in their Fig. 2 are shown for
high resolution result obtained with the projection scheme in Fig. 19. There is an excell
agreement. The relative errors of the various schemes at different grid resolutions are i
in Table VIl on the right.

For both rotor problems, all schemes converge at an approximately first order rate.
projection scheme and the field-CT schemes are the most and least accurate amon
compared methods. The ratio of their relative errors is around 1.5 and 1.3 for the first.
second tests, respectively. It should be noted that the average errors do not reflect a
properties of the results. For example, many of the schemes produce undershoots in pre
and the corresponding sound speed, which reflect as spurious peaks in the Mach nu
[V|/cs. The pressure undershoots hardly influence the épofo avoid such undershoots,
one may prefer to use an energy correction like (40). For the first rotor problem, a t
with the field-CD scheme @&l = 200 resolution showed that the energy correction remove
the pressure undershoots while the other variables or the overall accuracy hardly cha
Therefore the second rotor problem was solved with the energy correction for all the sche
and resolutions. In all the runs, the total energy conservation is violated by less than 0
during the whole computation due to the correction.

To get an impression of qualitative differences, contourplots of the Mach number in
second rotor problem are shown for seven different schemes together with the base scl
and a high resolution reference solution in Fig. 20. The central part shows signific
distortion of the circularly rotating velocity field for the base scheme and the field-C
schemes. The error looks similar to the one shown by BS in Fig. 3 for their dimensione
split base scheme. BS argue that the error is related to the error in the divergence o
magnetic field, but the simulations presented here do not support this explanation.
field-CT scheme, which maintaing- B =0 to machine accuracy in the CT discretization,
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FIG.19. The density, thermal pressure, Mach number, and magnetic presser@.&95 for the second rotor
problem. The solution was obtained by the projection scheme on & 400 grid. The 30 contourlines are shown
for the ranges 332< p < 10.83, 0007 < p < 0.776, O< |v|/cs < 3.64, and 0007 < B?/2 < 0.702, respectively.

shows very distorted velocity contours, while the 8-wave scheme, which has finite error
V - B, does not suffer from this problem.

7. CONCLUSIONS

The main points of the algorithmic sections are the following:

e The 8-wave formulation is non-conservative which may cause incorrect jump cc
ditions occasionally.

e Staggered variables can be eliminated from all the constrained transport type al
rithms; thus the CT schemes can be viewed as finite volume discretizations.

e The new central difference based schemes are considerably simpler than the ar
gous constrained transport type methods.

e The field-interpolated CD scheme does not require spatial interpolation.

e The CT and CD schemes can be generalized to arbitrary curvilinear grids, to a
symmetry, and to resistive MHD.
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FIG.20. The Mach numbejv|/cs for the second rotor problem in the central part of the computational domair
The seven schemes and the base scheme are compared at Ad@eesolution. The reference high resolution
solution (bottom right panel) was computed on a 40000 grid with the projection scheme. The 30 contourlines
are shown for the Mach number ranging from 0 to 3.3.

e The projection scheme is consistent and has the same order of accuracy as the
scheme even for discontinuous (e.g., superfast) flows.

e The projection scheme canbeimplemented in an efficient, parallelizable, and flexi
way using iterative Poisson solvers.

Let us summarize the properties of the seven schemes: the 8-wave formulation, the f
and the (transport-)flux-interpolated CT and CD schemes, and the projection method.
seven schemes can be regarded as some modificatidraséaschemevhich is assumed to
be second order accurate in space and time for smooth solutions and conservative in a
volume sense, so that discontinuities are handled properly. All seven schemes maintail
second order accuracy for smooth solutions. The 8-wave formulation spoils conservat
the other six schemes are conservative. The 8-wave formulation conséngso the
accuracy of the truncation error, the CT and CD algorithms con&ér&in some particular
discretization down to round off errors, while the projection scheme removes the diverge
of the magnetic field to the accuracy of the Poisson solver. It is important to note that
CT schemes maintai - B=0 in a cell corner centered sense (27) while the CD an
the projection methods use a more natural cell centered discretization (26). Due to
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differences in handling - B, the schemes are more or less sensitive to discretization errc
in the boundary and initial conditions. The projection scheme removes the errors from
initial condition, and errors due to the boundary conditions influence only the edges
the computational domain. The 8-wave scheme requires the zero divergence to be sati
to second order accuracy in the initial and boundary condition. Finally the CT and C
schemes require that the initial and boundary conditions are compatible with their partict
discretization ofV - B =0 to the accuracy of round off errors.

The projection algorithm is identical with the base schem® iB* =0 to start with.
The transport-flux-CT scheme coincides with the base scheme only for one-dimensic
problems with slab symmetry in the other directions. The other CT and CD algorithr
modify the result of the base scheme in general. The CT and CD schemes are restri
to structured meshes, the projection scheme works for any grid on which the Pois
equation can be solved (this includes unstructured grids), while the 8-wave form can
used independent of the grid type. The projection step is a global scheme, since it reqt
the (approximate) solution of a Poisson problem. The other schemes are local, althougt
CT and the flux-CD algorithms have considerably larger stencil than the base scheme.

The numerical test results are summerized in Table IX for the ten test problems presel
in this paper. The relative errors that were shown in the other tables for the individt
problems are all normalized to the errors of the most accurate scheme for the given prob
The normalized errors are averaged for the different grid resolutions.

The last row of the table contains a correction factor for each scheme. The correc
factors are the cubic root of the cost factors shown in Table 1, since in a 2D simulati
the grid resolutionNy, Ny and the number of time stepg should be decreased by this
factor to keep the CPU time the same as if only the base scheme was used. For the ma]
of the test problems, the convergence rate is approximately first order; thus the error
grow proportional to the correction factor due to the decreased resolution. For sec
order convergence rate (this only applies to the two éidfwave tests) the error should be
multiplied with the square of the correction factor. Even for the most expensive projecti

TABLE IX
Numerical Errors Relative to the Most Accurate Scheme for Each Test

Project. Field-CD Flux-CT Flux-CD 8-wave Tr-flux-CT Field-CT Base

Rotated 1D tests

Alfv'en travelling 1.000 2.177 2.491 2.491 1.005 1.290 3.562 1.002
Alfv’en standing 1.000 1.374 1.219 1.219 1.599 3.221 1.339 1.168
2D shocke =63  1.022 1.005 1.000 1.007 1.268 1.014 1.269 1.006
2D shocka =45 1.000 1.031 1.047 1.047 1.801 1.080 1.298 1.782
2.5D shock tube 1.000 1.137 1.234 1.234 1.023 1.132 1.392 1.333
True 2D tests

Orszag =1 1.259 1.000 1.324 1.415 1.425 1.568 1.127 1.498
Orszag =3.14 1.132 1.000 1.188 1.233 1.411 1.383 1.187 12893
Cloud-shock 1.007 1.069 1.000 1.036 1.013 — 1%0721.348
Rotorp=1 1.000 1.220 1.052 1.216 1.023 — 1.530 1.094
Rotorp=0.5 1.000 1.058 1.098 1.116 1.050 1.230 1.289 1.071
Correction factor  ~1.06 1.006 1.018 1.013 1.023 1.022 1.014 1.000

2 Required use of the minmod limiter at some resolution(s).
b Required averaging of the electric field at some resolution(s).
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scheme, the correction factor is orfyl.06 (it depends on the number of iterations, bu
this is a typical number), while the least expensive field-CD scheme has a correction fa
1.006; thus the corrections will not change the errors dramatically. It is also important
note that these factors are based on CPU timings, which are inherently implementat
compiler, and machine dependent. The correction factors shown in the table are prob
upper estimates, since they are calculated for 2D problems using a one-step TVD schi
For more expensive base schemes, e.g., TVD-MUSCL, the correction factors are sme
In 3D one should take the fourth root instead of the cubic root when transforming the C
cost to resolution.

Although a single number cannot fully characterize the quality of a numerical solutic
and the tests cannot represent all aspects of numerical MHD simulations, the overall tre
are quite clear. Based on the table and the detailed comparison of the solutions, the folloy
points can be made:

e The numerical error is typically dominated by the error close to discontinuities a
first order convergence rates are typical for discontinuous solutions.

e The base scheme is less robust than the modified schemes.

e The 8-wave scheme can produce incorrect jump conditions across discontinui
in certain problems.

e The field-CT scheme produces spurious oscillations in many test problems wh
degrade its accuracy.

e The transport-flux-CT scheme is more complicated, less versatile, and typically |
more accurate than the flux-CT scheme.

e The projection, the new field-CD, and the flux-CT schemes are the most accut
for these test problems.

Itwould be interesting to see how well the different schemes can solve steady state probils
how they can be combined with implicit time integration, or how they can be adapted
hierarchical or adaptively refined meshes; however, these questions are out of the sco
this paper and subject of future research.

APPENDIX A

Momentum Conservation and Lorentz Force

| prove that it is impossible for aonservativdwhich is a necessary property to obtain
correct weak solutions) scheme to guarantee that the discretized acceleration due t
Lorentz force isorthogonalto the magnetic field in every cell to machine accuracy. The
latter property will be called the “orthogonality property” for short. Let’'s assume that son
“perfect” discretization of the MHD equations is conservative as well as it has the orthc
onality property. For sake of simplicity we may assume that this perfect scheme is t
dimensional, first order accurate in time, and it advances from timengtep + 1 in a sin-
gle update. Such a scheme should maintain momentum conseryagjon; ; = const and
orthogonality ofB and the acceleratianpv)/dt due to the Lorentz forcé x B for an arbi-
trary initial condition that satisfie® - B = 0 in some discrete sense. Therefore it is sufficien
to construct a single counter example to show that such a perfect scheme does not exi

Let the initial condition be = const p = const v=0 everywhere. This ensures that mo-
mentum can only change due to the magnetic stresses (cf. Eq. (2BYEe0 in all cells
neighboring cell, j; thus the acceleration has to be parallel toyttais in the neighboring
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FIG. 21. The discrete magnetic field of the counter example is represented by the solid arrows. The das
arrow points in the direction of the Lorentz force for the central cell.

cells, which means thatv* cannot change in these cells. On the other hand, in(icgl)

the magnetic field can have a finil8 component, e.gB*; =1, and a small non-zerg”
component, e.g.Bi{’j = AxX, which is due to some truncation error. If the current has :
finite value, e.g.,]fj =1, then the momenturfpv); ; has to change, since the scheme is
consistent, and the magnitude of the Lorentz fgdce B| ~ 1 is finite. This non-zero mo-
mentum change will have to have a non-zero component ir theection according to the
orthogonality property, sindg; j is not parallel to thex axis. Indeed, th8* components in
the neighboring cells can be chosen such that the culyert (V x B); j; #0, for example,
BY_1=15 B, ;=B ; =1 andB,; =05 as itis shown in Fig. 21. Itis quite easy
to see that th&’ - B =0 condition can be satisfied for every cell for a given discretizatiol
of V. B, since the number of free parameters, i.e., the componeitsathe surrounding
cells, greatly exceeds the number of constraints. In particular, the centered discretiza
(26) gives(V - B); j =0 for the above described initial condition.

As the “perfect scheme” advances the solution with a finite time step, the moment
(,ovx)i”jrl will become non-zero due to the non-zeroomponent of the acceleration, while
in all the neighboring cellgpv,)"*t =0, since there the acceleration due to the Lorent:
force has to be exactly orthogonal to tBdield according to the orthogonality property.
Consequently, the totalvy momentum is not conserved, which means that the “perfec
scheme” is not conservative.

APPENDIX B

Generalization of CD/CT Schemes to Curvilinear Grids and Axial Symmetry

Evans and Hawley [14] emphasised that their CT approach is not restricted to Ca
sian grids. Here | briefly show how the CT and CD approaches can be combined w
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a Godunov-type scheme on arbitrary (non-orthogonal) curvilinear grids. Instead of
general relativistic notation used by Evans and Hawley, | will use the generalized cool
nate notation which is more widespread in the computational physics literature.

In this appendixé, n, ¢ denote the generalized coordinatesy, z the Cartesian coordi-
nates, and any subscripting by these variables indicates a partial derivative, €.§x/9£.
In the generalized coordinate system the grid is uniform, i.e j,thel cell center is located
atj A&, kAn, | Az. Letusintroduce the curvilinear magnetic and electric field component

B, B, BT = ——_J.(B%, BY, B)T B.1
( ) dtJ ( ) (B.1)

(EE, &M, EHT =37V L (EX,EY, ED)T, (B.2)

where the superscripi® indicate the transpose. The Jacobian transformation matrices ¢

& & & Xe Ye Z¢
J=|nx ny nz|, J7LT = X Yo Zy |- (B.3)
fx Cy Cz XC YC ZC

Note thatB3 is defined with a 1detJ coefficient in (B.1).
In the curvilinear variables, the induction equation (6) takes the same form as in
Cartesian case! For example, the first component is

aBE gt agn

ot T on T ac 8.4)

which can be trivially discretized according to the CT or CD approaches, and this guaran
thatV - B=9:8° + 9,B8" + 3. B° remains zero in a discrete sense analogous to (15) or (2¢

The updated curvilinear componeriscan be transformed back to the Cartesian com
ponentsB = detJ J~! - B. The elements of the Jacobian matrix can be approximated n
merically, e.g., the elements df ! are

Xj+1k! — Xj—1k,|l

Xe )i =

(Xe)j kil 2AE 65

(% )4y = kL= Xkt '
n)jkl = ZAT) ’

etc., and the elements dfcould be obtained by inverting—*; however,J is not needed
in an efficient implementation.

In two dimensions the equations greatly simplify, sidée= £7 = 0. For slab symmetry
in the 3rd direction, the central difference approach (29) becomes

At
» [(XJ+1 k — Xj-1, k)( jk+1 T 5j{.k—1)

— (Xj 1 — Xj k1) (&f j+ik — 51'21*)]
(B.6)

n+1 \
Bl = Bk — g [0k = Yi-0 (s =€)

— (Yjk+1 — Yjk- 1)( j+1k — 5j§—1,k)]’
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where&¢ = E? = can be approximated by (28) or (31). The (quadrupole) cell volume
defined as

Vjk =4A&Andetd ™ = (Xj11k — Xj—1) (Vj ka1 — Yjk-1)
= (Xjk+1 — Xj k=D (Yj+1.k — Yj-1.k)- (B.7)

If the magnetic field components are updated according to (B.6) then the followi
discretization

& &
Bj i1k — Bj_1k " B?,k+1 - B}’.k—l (B.8)

9: 85 + 0,B" =
iy 2AE 2A7

is conserved to machine accuracy, whife=y, B* — x, BY, B” = —y; B* + x; BY, and the
coefficients are defined as in (B.5). To get the usual dimensiorg f&, definition (B.8)
can be divided by x.

For axial symmetry in the third dimensioff; =z, E? =r Q2 in (B.6) and the cell volume
Vi« (B.7) should also be multiplied by the radial distamameasured from the symmetry
axis. If the code is already written in curvilinear vector components, B'gB? on a polar
grid, then the only required transformation to obt&iis a multiplication by YdetJ (which
is simplyr for polar coordinates).

In an efficient 3D implementation the three curvilinear electric field comporg&ats
J-LTE are calculated first. Next the three component88fat are obtained according
to a CD or CT discretization of (B.4) and its cyclic permutationg im, ¢. Finally the
Cartesian field components are updated

B™! =B" + AtdetJJ~1. 3B/at, (B.9)

where det] =1/detJ~! can be calculated and stored in the first time step. Note that tf
curvilinear magnetic field componertssor the Jacobiad themselves do not occur in this
implementation.
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