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‘We present new second-order prolongation and restriction formulas which preserve
the divergence and, in some cases, the curl of a discretized vector field. The formulas
are suitable for adaptive and hierarchical mesh algorithms with a factor-of-2 linear
resolution change. We examine both staggered and collocated discretizations for the
vector field on two- and three-dimensional Cartesian grids. The new formulas can be
used in combination with numerical schemes that require a divergence-free solution
in some discrete sense, such as the constrained transport schemes of computational
magnetohydrodynamics. We also obtain divergence-preserving interpolation func-
tions which may be used for streamline or field line tracing. ~ © 2002 Elsevier Science (USA)
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1. INTRODUCTION

Adaptive and hierarchical grids provide some of the most efficient spatial discretizations
for multiscale computational problems. It is of great interest to extend numerical schemes
designed for a simple structured mesh to adaptive and hierarchical grids. The critical issues
of such an extension are (a) the prolongation, which is the interpolation of the solution on
a coarse mesh to the finer mesh; (b) the restriction, which provides the mapping from the
fine mesh solution to the coarse mesh; and (c) generalization of the scheme for resolution
changes, which occur at the interfaces between fine and coarse meshes.

The prolongation and restriction operations should conserve the properties of the solution
which are critical for the scheme, and these properties should also be defined appropriately
at resolution changes. Some properties, such as the conservation of some scalar quantity
(e.g., mass or energy), are relatively easy to preserve for an adaptive grid. For vector fields,
however, more complicated issues can arise, for example, if it is required that the scheme
preserves in some sense differential quantities such as the divergence or curl. For example,
in incompressible hydrodynamics the divergence of the velocity field must remain zero
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(in some appropriate discrete sense) and in magnetohydrodynamics (MHD) the same is
true of the divergence of the magnetic field. In both cases, there are numerical methods
that rely on satisfying these constraints exactly for all time. In incompressible flow the
MAC method [8] and its successors are of this type, and in MHD the constrained transport
(CT) method [7] and its variants. It is not often a constraint that the curl vanishes, and
when it is, a potential formulation can be employed. However, in fluid dynamics, espe-
cially in three dimensions (3D), the vorticity (which is defined as the curl of the velocity
field), is an important quantity that can only be generated through rather specific physical
mechanisms, but once it exists it may be convected over large distances. Therefore it is
desirable that vorticity be created only by the proper mechanisms and not by numerical er-
rors. Control over vorticity can be exerted by strategies similar to those employed to control
divergence [11].

To extend schemes of this “constrained evolution” type to adaptive and hierarchical
grids, we present formulas ensuring that the prolongation of a discrete vector field onto a
refined grid will generate values of the discrete divergence and curl bounded by the values
on the coarse grid. In particular, if the coarse field is divergence- or curl-free, then the
refined field will be also. In different areas of computational physics, there are traditions
concerning the representations of vector fields. For incompressible fluid mechanics it is
common to store the normal components of the velocity on the faces of control volumes.
In MHD, the normal components of the magnetic field are often stored in the same way.
When dealing with Maxwell’s equations, one may adopt Yee’s strategy [16] of placing the
magnetic field components normal to the faces and the electric field parallel to the edges
(or vice versa), but this is equivalent to representing both fields normal to the faces of two
overlapping grids. Each of these strategies may be described as staggered. By contrast, some
schemes call for all variables to be stored in the same place, that is, to be collocated. This
is important for Godunov-type schemes that use information derived from estimated wave
strengths. Recently, there has been a trend to combine the two strategies by appropriately
interpolating between the two differently stored fields [2, 4, 6, 9, 13, 15]. With respect to
mesh refinement, collocation can be vertex based and cell-center based as shown in Fig. 1.
We give results for two cases: staggered and vertex-based collocated storage. Cell-centered
collocated storage does not seem to lend itself to divergence-preserving prolongation and
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FIG. 1. Three possibilities for the storage of a 2D vector field showing the relative placement of coarse-(large
arrows) and fine-resolution (small arrows) discretizations. The coarse cell (thick lines) is divided into four fine
cells (thin lines).
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restriction formulas, because the divergence or curl for a cell depends on the data in the
possibly finer or coarser neighboring cell centers.

We present formulas for 3D Cartesian grids with resolution changes of a factor of 2. The
simpler 2D case is also described. For structured, but non-Cartesian grids or for resolution
changes that differ by more than a factor of 2, similar formulas can be derived following
the ideas described in the following.

2. NOTATION

The vector field components parallel to the x, y, and z axes are denoted by U, V, and W
on the coarse grid, and by @, ¥, and @ on the fine grid, respectively. Although this notation
is more common for the velocity field, for MHD cases they represent the magnetic field
components. The coarse- and fine-grid cell spacings are AX, AY, AZ and Ax =AX/2,
Ay =AY /2, Az=AZ/2, respectively. When the aspect ratio of the computational cell is
not unity, it greatly simplifies the derivations as well as the implementation, if fluxes are
used instead of field components. Therefore we introduce the coarse fluxes U = AYAZ U,
V=AZAXV,and W=AXAYW and the analogously defined fine fluxes u, v, and w.
The volumes of the coarse and fine cells are Q=AXAYAZ and o = AxAyAz=Q/8,
respectively.

3. FACE-CENTER-BASED FORMULATION

A finite volume adaptive grid consists of coarse and fine cells. When a coarse cell with
its center at x = y =z =0 is refined into eight smaller cells, the fine cell centers will be at
+Ax/2, £Ay/2, £Az/2 (see Fig. 2). Note that the fine cell centers are not coplanar with
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FIG. 2. The placement and notation of vector components for the face-centered discretization.
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the coarse cell centers; on the other hand, the appropriate cell interfaces are coplanar. This
simple observation implies that the divergence and curl of a vector field should be defined
by the solution at cell interfaces, so that resolution changes can be handled consistently.
The most natural choice for the definition of the divergence operator uses a staggered
representation of the vector field, with the x, y, and z components defined at the cell face
centers orthogonal to the x, y, and z directions, respectively [16]. To simplify the notation
and to avoid fractional indices, the coarse cell centeris ati = j = k = 0 and the six coarse cell
facesare ati = 42, j = +2, and k = £2, respectively. For the case AX =AY = AZ =4 the
i, j, k indices coincide with the x, y, z coordinates. The indices are written as superscripts,
since subscripts will be used for other purposes. The 6 coarse vector field components are
then U*20.0 y0.£2.0 and w0.0.%2 while the 36 fine vector field components are denoted
by uELEL pELEL and wEEL withn = -2, 0, 2.
The coarse cell divergence of the vector field is defined as

1
D = — (U200 _ y=2.00 o 02,0 _ 1y0.-2.0 o 0,02 _ y00,-2 1
Q( + + ) (D
while the eight fine cell divergences for i, j, k = +1 are

dz.],k — 5(Mz-ﬁ-l,J,k _ uz—l,},k 4 vz,}+1,k _ vz.]—l,k + wl,j,k+1 _ wz,},k—l)' (2)

3.1. Restriction Operator

For the restriction operator we require that QD = >~ wd’/*, which is quite easy to satisfy
if the fluxes at the six interfaces are conserved; thus the restriction operator is uniquely
given by

U:t200 Z u:t2 1k (3)

Jjok==%1

with similar equations for the V and W components. This is clearly a second-order restriction
formula in the finite difference sense, since the difference between the interpolated U and
the “exact” value of the fine vector field it obtained at the center of the coarse face from a
Taylor series expansion is of the order of (Ay)?, (Az)?, and AyAz.

3.2. Prolongation Operator

The prolonged solution should satisfy a flux conservation similar to (3), which means
that the fine solution in the four quadrants can be written as

uiZ,j,k — %(UiZOO 4 jinl0,0 + kUZﬂ’O'O),

: 1
vl,:i:Zk Z(V:I:ZOO_|_kVO:I:20_I_ZVO:N:ZO) (4)
wi,j,:i:Z l

(W00i2+lW00:t2+]W00:t2)
4

for i, j, k==£1. Here U,, U,, etc. are numerical approximations to the tangential slopes,
or in physical terms the shear, based on the coarse solution. A simple central difference
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formula for U, would be

1
Uyz,o,o _ g(U2,4,0 — U0y, 5)

For certain applications and schemes, e.g., for total-variation-diminishing schemes, the
slopes should be limited by an appropriate limiter.

If some of the faces of the coarse cell are shared with finer neighbor cells, then we should
simply copy the fine fluxes from the neighboring cells instead of applying the formulas
(4). The following results do not depend on how the prolonged solution is obtained on the
surface of the coarse cell as long as the flux conservation is ensured.

To fully define the prolongation, we still need to determine the 12 vector components
uOELEL YELOEL gy g+ 1,210

the divergences defined in (1) and (2) satisfy

which lie on the central fine cell interfaces. We require that

d;jx =D, (6)

for all i ==+£1, j==1,k==1. This gives seven independent equations for the 12 un-
knowns, so we still have five degrees of freedom. To make the interpolation formulas as
symmetric and accurate as possible, we require that the six curls of the fine solution around
the six fine cell edges starting from the origin have the same value as the curl estimated
from the coarse cell solution. There is very little restriction on how the curl of the coarse
solution should be evaluated, but it seems natural to use the average of the same partial
derivatives as in (4). This leads to

1
Z t[(AZ)Zw:tl,Z,O _ (Ay)zvﬂ:l,o,t] — 5 Z t[(AZ)Zw:tl,t,Zn _ (Ay)2v:|:1,2n,l]’
t==*1 n,t==+1
1
Z t[(Ax)Zuo,il,t _ (AZ)Zwl,il,O] — 5 Z t[(Ax)Zuzn,il,l _ (AZ)Zwt,il,Zn]’ (7)
t=+1 n,t==+1
Z [[(A 2,,6,0,£1 _ A 2 0,t,£17 l 2.,t.2n,+1 2 2n,t,*x1
v Axyu® ) =2 3 Ay’ (Ax)?u™" 1],
t=+x1 n,t==%1

where only the left-hand sides contain unknowns. The (Ax)?, (Ay)?, and (Az)? coefficients
appear because we defined u, v, and w to be fluxes. Only five of these equations are
independent, which can be checked by adding them up with alternating signs. With the aid
of MAPLE Egs. (6) and (7) can be solved, and after some simplification the prolongation
formulas

. 1 . .
U = S w4 U + K(AD Vaye + (A Wiy, ®)
. 1 . .
o = ST VA Wy + K(A2) Uy, ©)
- 1 .. .
Wl = S w4 W (A9 Uy +1(A0) Vi, (10)

fori, j, k = 1, are obtained. The second- and third-order derivatives are defined as

1 . .
U= > iju ¥ * kw2 o

ij. k=1

0%V °W

—_— 11
dydx + 0z0x (1D
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U 1 Z ijku®-J-k AU
vz = = X .
e (Ay)? 4+ (AZ)? ~ 9xdydz

(12)

ijk==%1

When the divergence of the vector field is constant in space, in particular, if it is O everywhere,
U, « 3*U/(dx)?. The prolongation formulas (4) and (8)—(10) are clearly second-order
accurate. We note that the third-order terms Uy, V., and W,,. disappear on faces of the
coarse cell where the prolonged solution is determined with (limited) linear interpolation
(4), but it is nonzero if the prolonged solution is copied from neighboring finer cells.

In the 2D case there are three independent divergence constraints and just one curl
constraint for the inner four fine vector components % *!, v*1:0, The results have the same
form as (8) and (9); however, in 2D all the third-order derivatives in (12) are identically zero,
while the second-order derivatives simplify to Uy, = (v 172 —v=12 — 172 4 p1:2) /4 and
Vyy — (u—Z,—l _ u2,—l _ u—2,1 + MZ,])/4'

3.3. Continuous Interpolation

The prolongation formulas in the previous section define the refined vector field in a finite
set of points, ensuring that the discrete divergence and curl are preserved. One may continue
to refine the cells to find more and more points until we arrive at a continuous function which
has the same divergence and curl as the original discrete vector field. Alternatively, we can
try to find simple interpolating polynomials based on the discrete formulas and verify that
they have the desired properties. Divergence-free interpolation can be useful for tracing
magnetic field lines or streamlines of an incompressible fluid based on the discrete solution.

In 2D, let us scale the coordinates so that the computational cell occupies the —1 <
x,y < 1 square. The discrete face-center values are U (£1, 0) and V (0, £1) and we also
have some numerical approximations of the transverse gradients U, (%1, 0) and V, (0, &1).
To make the notation more compact, we use upper indices instead of coordinates. Given
these point values, we define the continuous interpolation functions as

14+ x
2

1 —x2

1 —
(UM yU10) + = (U0 43U

U = (v Vi),
(13)

_ 2
Vix,y) = I;y(VO’l—i—xVXO’l) n 1 2y(V0’_1+xVXO’_1)+1 4)’ (Uyl.O_Uy—l,O).

The first two terms on the right-hand sides are generalizations of (4), while the third terms
correspond to Uy, and Vy, in (8) and (9). It is easy to show that the divergence

A A e e e A
+ —_—

—t+—= + 14
dx ay 2 2 (14

everywhere within the cell. The z component of the curl is
V. U _ A+y»VX+d-yVi ' A+x0)U° -1 -x)U "0 15)

9x  dy 2 2 ’

which is not a constant; rather, it is a linear interpolation of the discrete derivatives that
define the discrete curl and thus should be well behaved.
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The interpolation functions (13) are continuous across cell boundaries in the normal
component, but they are discontinuous in the transverse component in general because
the transverse gradients U, and V, cannot make a perfect match at both sides of the cell.
The discontinuity vanishes with increasing grid resolution at a second-order rate. Given
the constraints on flux conservation, the discontinuity is unavoidable for these low-order
polynomials.

The 3D generalization of the 2D interpolation polynomials is straightforward:

1+x L=x - . .
UGy = T3 (UM U 10) S Uy )
N 1 _4x2 (VX(),I,O _ VXQ.—I,O + W)((),(),l _ W)E).O,—l). (]6)

V(x,y,z)and W(x, y, z) are defined analogously. The divergence of the interpolated vector
field is constant and equal to the discrete divergence. The curl also behaves the same way
as in the 2D case. Note that the third-order terms, like V., or W, in (8), do not occur in
the continuous interpolation functions.

4. VERTEX-BASED FORMULATION

In a vertex-based discretization all components of the vector field are collocated at the
vertices. The coarse-grid vertices are at £AX /2, +AY /2, =AZ/2 indexed by i, j, k =+£2,
while the fine-grid vertices are at (0, =Ax), (0, £Ay), (0, =Az) indexed by i, j, k = -2,
0, 2. Here the coarse vertices coincide with a subset of the fine vertices, unlike in a cell-
centered adaptive grid (see the middle panel of Fig. 1).

4.1. Prolongation Operator
For the coinciding vertices it is natural to make the coarse and fine solutions equal; i.e.,

ﬁ:I:2,:l:2,:i:2 — U:ﬁ:Z,:tZ,:I:Z. (17)

We note, however, that this natural choice only works for the prolongation operator. For a
divergence-free restriction operator one needs to use a more general prescription. We will
return to the restriction operator in Section 4.2.

Edges and faces are shared by four and two cells respectively. Consequently, they should
be prolonged with the use of data residing on the given edge or face otherwise the prolonged
solution could become multivalued for the same location. For edge centers this gives the
following second-order interpolations:

|
uO,:tZ,:t2 — 7(1/! 2,4£2,4£2 + u2,:|:2,:|:2)’
2
1
u:tZ,O,:tZ — 7(M:|:2,72,:l:2 + ui2’2’i2), (18)
2
1
u:i:Z,:tZ,O — E(M:I:Z,:l:Z,—Z 4 u:l:2,:t2,2)'

The edge-centered v and w components are obtained analogously. We also require that the
flux through one face of the coarse cube is unchanged by the prolongation. The flux is
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defined as the average of the normal component at the four vertices of the face; for example,
the coarse and fine fluxes in the x direction are

. 1 .
FiO0= 2 > uht, i =2, (19)
I,m==%2
. 1 s
= S owtt i =22,0,2 jk =+l (20)
I,m==%1

and we require that the fine fluxes add up to the coarse flux,

Z fiZ,j,k — FiZ,O,O‘ (21)

jk=%1

The g, h and G, H fluxes in the y and z directions and the corresponding flux conservation
equations are defined similarly. From the corner and edge interpolation formulas (17) and
(18) it follows that the orthogonal component at the face center must be a simple average
of the corner values,

1 .
uiZ,0,0 — Z Z uiz,j.k’ (22)
Jk==£2

and similar equations apply to v>*>? and w*%*2, The flux conservation will also ensure

that the average of the eight fine divergences equals the divergence over the coarse cell.

There are still 15 unknowns to determine: the 12 tangential components at the center
of the coarse faces and the 3 components at the central fine vertex. The prolongation is
constrained by the requirement that the divergences in the fine cells are all equal to each
other and thus to one-eighth of the coarse divergence. For the vertex-based formulation we
define the divergences in terms of the face-centered fluxes as

1
D= 5(Fz,o,o — F200 4 G020 _ G020 4 (002 _ [0.0.-2) (23)

A e e A e D B

for i, j, k==1. Note that this definition is different from the simplest central difference
formula in terms of the vector field components, since we average in the tangential directions
in (19) and (20). The advantage of this definition is that the coarse cell divergence is the
average of the fine cell divergences.

Besides the restriction (6) that the fine divergences are all equal, there is another constraint
to be met: Interpolation to the center of a face should only involve data on that face, so that
adjacent large cubes should be compatible. With the requirements of second-order accuracy
and rotational and mirror symmetry, the three vector components at the four corners of the
face can only be combined as

1 . : . )
MO,:I:Z,O — Z Z ul,ﬂ:Z,k + ik(aul,iZ,k +‘Bvl,:t2,k + ywl,:tz,k)’ (25)
i,k==+2
u0,0,:I:Z — Z Z ut,j,:l:Z + ij(auz,],:l:Z + yvl,j,:tz + ﬂwl,],iz)’ (26)

i j=+2
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where «, B8, and y are free parameters. The corresponding formulas for v and w can be
obtained from cyclic permutations.

With the aid of MAPLE the eight divergence equations can be solved for the unknowns
a, B, y, u®%0 1900 and w00, Although there are seven independent equations and only
six unknowns, due to the good choice of parameters, we can find a whole family of solutions
parameterized by o: = —«, y =1/8, and the vector components for the central vertex
are some linear combinations of the coarse solution and «. The simplest and most natural
choice is @ = 8 =0, which gives

1 . ik .
0,£2,0 __ i,+2.k i,+2.k
u =3 Z u + g w (27)
i, k=12
0042 1 a2 Wi
u =7 Z u + gv , (28)
i, j=+2
1 . 3ij .. 3ik ..
u0,0,0 — _ Z Mt,j,k + %Ul,],k + l?wz,J,k’ (29)
i\ jk=%2

and the prolongation formulas for v and w can be obtained with cyclic permutations. The
prolongation formulas (18), (22), and (27)—(29) are all second-order accurate.

There is a simple reduction to the 2D case. The fine vector field at the edge centers of the
coarse cell are defined as linear interpolations of the corresponding corner values, while the
solution at the center of the coarse cell will be

1 o 30
W= 23wt ng, (30)
i, j==+2
1 L. kI
020 = i Z v+ %u”-’. (31)
i, j=+2

4.2. Restriction Operator

It does not seem to be possible to design a local divergence-preserving restriction operator
for the vertex-based storage. To see this, suppose that we want to coarsen eight fine cells into
a single coarse cell while leaving all the neighboring fine cells unchanged. All the vector
components collocated at the eight corners of the coarse cell are shared with neighboring
fine cells; actually each coarse vertex is shared with seven fine cells. Therefore it is quite
difficult to change the solution at the corners without changing the divergences in the fine
cells sharing the same corner. On the other hand, if we keep the fine solution unchanged in
the corner vertices of the coarse cell, the coarse divergence (23) will not be the average of
the eight fine divergences (24) in general. This is because the fine vector components at the
edge and face centers of the coarse cell contribute to Zi’ y d"/¥ as can be seen from
substituting (20) into (24).

It is still possible to design a global divergence-preserving restriction operator, which
should be applied to all cells in the computational domain. Multigrid applications, for
example, require such global restriction operators. The basic idea is that the coarse solution
must contain the sum of fine fluxes from the surrounding fine cells. When the coarse values
are combined into coarse fluxes (19) and added to obtain a coarse divergence (23), the result
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should be identical to the sum of fine fluxes over a closed surface. This goal is achieved by
the second-order restriction formulas

Ui.j,k — 1 Z fi+l.j+m,k+n
5 s

=42 m,n==%1
- 1 S
ok § ' +, j+m,k+n
Vil = E gl J s (32)
m==2 l,n==+1
. 1 L
Wt,j,k — 5 E ht+l,j+m,k+n’
n=%£2 I,m==1

where f, g, and & are defined in (20). With these second-order restriction formulas, the
coarse divergence will be the average of the fine divergences in the 64 fine cells touching
the coarse cell from inside and outside.

5. PROJECTION

In the previous sections we presented restriction and prolongation operators that use local
information only, and they preserve the divergence (and in some cases the curl) of the vector
field because of the carefully chosen difference formulas. A more general, but also more
costly, approach to the problem is the use of operators with global dependence on the data.

One can obtain a divergence-free prolongation or restriction algorithm by using some
arbitrary interpolation formulas to obtain an intermediate restricted or prolonged solution
*, v*, w*, and then by projecting the intermediate solution to a divergence-free solution.
The same idea, but in a different context, has been described earlier (e.g., [3]). For sake of
completeness we present the algorithm here in our notation. The projection consists of two
steps: First, we solve an appropriate discretization of the Poisson equation

u

u* JIv*  ow*
V= — + — 4 —— 33
é o T 3 + P (33)

for the scalar field ¢, and then we correct the field components as

« 09
u=u*——,
0x
d
vzv*_g, (34)
d
w=w*——¢.
a0z

It was shown by T6th [15] that even for discontinuous vector fields, the projection step
gives a consistent solution with the same order of accuracy as the order of the preliminary
solution as long as (i) the Poisson and the correction equations are discretized and solved
to the same or higher order of accuracy and (ii) a divergence-free solution of this order
of accuracy exists. The discrete Laplace operator in the Poisson equation (33) must be the
combination of the discrete gradient operator applied in the correction equation (34) with
the discrete divergence operator applied on the preliminary solution in (33), so that the
projected solution will be divergence-free in the discrete sense.
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6. NUMERICAL EXAMPLE

We show results for the face-centered formulation defined by Egs. (4) and (8)—(10).
For (4) minmod limited slopes are used when there are no neighboring finer cells. These
restriction and prolongation formulas have been implemented in the parallel 3D MHD code
BATSRUS, which uses block adaptive mesh refinement [12]. In MHD, the three vector
components U, V, and W correspond to the three components of the magnetic field By,
By, and B, respectively. In these tests the magnetic field is evolved with the flux-averaged
constrained transport scheme [2, 15] generalized for the block adaptive mesh refinement
(AMR) grid. The generalization is quite straightforward. The only nontrivial part is the
correction of the electric field at resolution changes: The electric field defined on coarse
edges should be replaced with the average of the electric fields of the finer grid sharing
the same edge. The constrained transport scheme is combined with a dimensionally unsplit
second-order Godunov-type scheme (artificial wind [14]) using limited reconstrucion for
the cell interfaces. The combined scheme is fully conservative, second order in space and
time, and conserves the divergence of the magnetic field.

The test problem is the Kelvin—Helmholtz instability in the presence of a magnetic field.
The same problem has been discussed in [10], where the problem was solved on a static grid
in 2D. For sake of completeness the test problem is described here too. The ideal MHD equa-
tions are solved with inifinite conductivity. The initial condition has uniform density p = 1,
pressure p = 1,and magnetic field B, =0.129, B, = B, = 0. The magnetic field is in normal-
ized units in which the Alfvén speed is simply v =|B|/. /0 = 0.129. The adiabatic index is
y =35/3 so that the sound speed is ¢; = +/yp/p = 1.29 = 10v4. The shear flow is given by
uy, = 0.645 tanh(x/0.05), which has a smooth transition of width 0.05 at the x = O plane. The
amplitude of the shear flow corresponds to Mach number 0.5 and Alfvénic Mach number 5.
There is no flow in the z direction; i.e., u, = 0. The instability is initiated with a small veloc-
ity perturbation within |x| < 0.2 of the form u, =0.01 exp(—(x /0.2)2) cos(2mry). Outside
the |x| < 0.2 strip u, =0.

The perturbation has a wavelength of 1 in the y direction, so the simulation domain
is taken to be |x| <1, |y| <0.5, and |z| < 0.5 with periodic boundaries at y ==+0.5 and

-0.5 0.0 0.5
X

FIG. 3. The initial grid. Cell centers are shown as + signs. The velocity perturbation u, is plot in gray scale
in the range —0.01 (white) to 0.01 (black).



PROLONGATION AND RESTRICTION FORMULAS 747

102§ ;
1031 .
204l ]
a0
107 .
O

0 1 2 3 4

time

FIG. 4. The growth of the initial perturbation. The integrated kinetic energy in the x direction, pu?/2, is
plotted against time.

z==0.5. The size of the box in the x direction is sufficiently large so that the zero-gradient
boundary conditions at x = =£1 do not influence the results during the simulation.

The initial grid is shown in Fig. 3. The grid is built up from 4832 blocks, each consisting
of 4 x 4 x 4 cells. The cell sizes vary between 1/16 and 1/128, and the finer cells are
concentrated along the x = 0 plane. The grid is coarsened and refined every 300 time steps.
The criterion for refinement is the vorticity V x u, and about 20% of the cells are refined
and coarsened each time. The total number of blocks is limited to 5000, which corresponds

Ed1.05
1.00
0.95
0.90

0.85

|- 0.0
0.05
1 0.04
0.03
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FIG. 5. The solution and the grid at time # =3.033. Streamlines and density (top) and magnetic field lines
and grid resolution (bottom) are shown.
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FIG. 6. The divergence of the magnetic field at time # = 3.033.

to 320,000 cells. Since the total number of refined and coarsened cells is limited irrespective
of the symmetries of the solution, the initial translational invariance in the z direction is
lost during the simulation. Once the resolution varies in the z direction, so will the solution,
which is Kelvin—Helmholtz unstable.

The simulation is run for 2000 time steps, which corresponds to + = 3.033. By this time
the instability has become nonlinear and has already saturated. The time dependence of the
average kinetic energy in the x direction, pu2 /2, is shown in Fig. 4. The solution and the
grid at this time are shown in Fig. 5. Although the grid went through six adaptation by this
time, the divergence of the magnetic field remains zero to machine precision, as shown in
Fig. 6, which demonstrates the correctness of the restriction and prolongation formulas as
well as of the implementation.

We note that BATSRUS contains several other means of controlling the error in the
divergence of the magnetic field, such as the 8-wave scheme [12], the diffusive control
or parabolic approach [5], and the projection scheme [3]. The quantitative evaluation and
comparison with these alternative approximations, however, would take us beyond the scope
of this paper. Many of these schemes were compared on uniform grids in [15].

The initial condition of this test problem has a uniform magnetic field, which is
divergence-free in the numerical sense (1) automatically. For less fortunate cases, the pro-
jection of the initial condition to a divergence-free face-centered magnetic field (33), (34)
has also been implemented in BATSRUS, and it works as expected.

7. CONCLUSION

We designed restriction and prolongation operators that work for face-centered staggered
and vertex-centered collocated vector fields in two and three dimensions. For the face-
centered storage both the prolongation and restriction operators can act locally; thus they
can be used for adaptive, hierarchical, and multigrid type schemes. For the vertex-based
storage the prolongation operator is general, but the restriction operator only works if it is
applied globally. Therefore the vertex-based restriction operator can be used for multigrid
schemes, but not in the adaptive mesh refinement context. This suggests the use of face-
centered storage for AMR schemes which require the divergence-free property.
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It appears that for cell-centered collocated storage divergence-preserving restriction and
prolongation operators can only be defined in a global sense, e.g., for multigrid, but we did
notexplore these possibilities. On the other hand, we showed how global divergence cleaning
can be used to obtain high-order divergence-free solutions. If restriction and prolongation
are not applied too frequently, e.g., for AMR, projection is a very general solution to the
problem. Projection can also be used to obtain a numerically divergence free initial condition
from an analytic solution or from a solution obtained with a non-divergence-free scheme.

Finally, the prolongation formulas derived for the staggered discretization were gener-
alized to divergence-preserving interpolation functions. These interpolation functions can
be used for tracing streamlines and field lines based on a discrete solution. If the discrete
solution is divergence-free and the tracing algorithm is sufficiently accurate, the use of the
divergence-preserving functions guarantees that there are no sources or sinks of the vector
field even at a finite resolution, so the traced streamlines or field lines have the correct
connectivity.

We demonstrated that the face-center-based formulation works in practice for adaptive
mesh refinement. The quantitative evaluation and comparison with alternative approxima-
tions, however, would take us beyond the scope of this paper.
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