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[1] We have successfully simulated the magnetosphere of Uranus for the time period of the
Voyager 2 flyby in January 1986. On the basis of the Voyager measurements, a self-
consistent numerical solution is obtained with the parallel block adaptive three-dimensional
(3-D) MHD code BATS-R-US. The time-dependent simulation has been carried out with a
new explicit-implicit time integration scheme. By comparing corotating steady state
solutions and a fully time-dependent 3-D simulation with the Voyager data, we show that the
magnetosphere of Uranus at the time of the flyby can be regarded as stationary relative to the
frame corotating with the planet. We obtained excellent agreement with the observed
magnetic field vector along the whole path of the flyby, which includes the near-Uranus
offset dipole field as well as several current sheet crossings in the tail. The location of the
bow shock and the magnetopause also agree to high accuracy. We are confident that our
numerical solution is a good representation of the three-dimensional magnetosphere of
Uranus during the flyby. The numerical solution shows a twisted magnetotail with field lines
that are also stretched due to the flow of plasma in the magnetotail. INDEX TERMS: 2756
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1. Introduction

[2] In January of 1986, Voyager 2 had a close encounter
with Uranus, and the observations carried out during that
several-day-long period give the main base of our knowledge
of this planet. The most surprising result was the extraordi-
narily large angle between the rotation and magnetic dipole
axes (58.61�). The magnetic dipole axis is displaced by
0.31 RU along the rotation axis from the center of the planet
and has a magnitude of 22,836 nT RU

3 , where RU denotes the
radius of Uranus. These numbers resulted from the analysis
of the magnetometer data by Ness et al. [1986], who
introduced the offset tilted dipole (OTD) model. Later, the
Q3 model created by Connerney et al. [1987] gave more
precise values for these data and determined the dipole and
quadrupole components of the magnetic field.
[3] The structure of the magnetosphere of Uranus at the

time of the encounter is shown in Figure 1. Thick and dashed

lines denote the bow shock and magnetopause, respectively.
The rotation axis (R) is tilted by approximately 8� away from
the direction toward the Sun and lies almost exactly in the
plane of Figure 1. The magnetic dipole axis (M) is rotating in
the anticlockwise direction if one looks at it from the Sun,
causing much of the magnetosphere to rigidly corotate.
[4] Although the Voyager data obtained in 1986 has been

analyzed in several papers (for example, Behannon et al.
[1987], Connerney et al. [1987], Lepping [1994], Bridge et
al. [1986], and Ness et al. [1986]), no self-consistent numer-
ical modeling of the magnetosphere of Uranus has been
published in the past 17 years. This is not surprising because
the numerical codes that can solve the MHD equations in
three dimensions with the resolution required by magneto-
spheric simulations have become available only recently. The
key features of our numerical code which make these
simulations possible are adaptive mesh refinement, implicit
time stepping techniques, and parallel computing.
[5] Numerically modeling the magnetosphere of Uranus

is a demanding test of modern computational schemes due
to the fact that we have to solve the time-dependent MHD
equations in three dimensions in an extended domain for
several days of real time. In order to validate our model, we
compare with Voyager 2 data. The agreement between
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measurements and simulated results can confirm the accu-
racy of our physical assumptions as well as the accuracy of
our numerical techniques. A successful comparison yields
more than just a confirmation that we are solving the right
equations with good numerical methods. In effect we
transform a one-dimensional (1-D) data set measured along
the path of Voyager into a full three-dimensional time-
dependent representation of the magnetosphere of Uranus.
This transformation relies on our understanding of magne-
tospheric physics.
[6] The structure of this paper is as follows: first we

describe the physical model, i.e., the ideal MHD equations
both in inertial and rotating frames. Section 3 presents the
code and the numerical techniques used in the simulations.
Our gradual approach to the final time-dependent simulation
is described in section 4. The necessary transformations and
processing of the measurements are detailed in section 5.
The numerical results are presented in section 6. Finally, we
close this work with a physical interpretation of the numer-
ical model.

2. Equations

[7] We solve the ideal MHD equations in conservative
form:

@r
@t

þr � ruð Þ ¼ 0 ð1Þ

@ ruð Þ
@t

þr � ruUþ pþ B2

2m0

� �
I � BB

m0

� �

¼ rgþ rW2dþ 2ru�6 ð2Þ

@b

@t
þr � uB� Buð Þ ¼ 0 ð3Þ

@e
@t

þr � u eþ pþ B2

2m0

� �
� u � BBð Þ

m0

� �
¼ rg � uþ rW2d � u;

ð4Þ

where I is identity matrix, r denotes the mass density of the
plasma, u is the plasma velocity vector, B is magnetic
induction, p is the pressure, g is the gravitational
acceleration, m0 is the magnetic permeability of vacuum,
and g is the ratio of specific heats which we take to be 5/3.
When solving in a reference frame rotating with Uranus,
terms appear in the momentum and energy equations that
represent the Coriolis and centrifugal forces. These terms,
characterized by an angular velocity vector 6 and a radial
position vector d (orthogonal to the rotation axis), are also
included.
[8] The total energy density e is the sum of the thermal,

kinetic, and magnetic energy densities:

Figure 1. Schematic picture of the magnetosphere with the bow shock (thick line) and the
magnetopause (dashed line) of Uranus. M and R denote the magnetic dipole and rotational axes,
respectively. The rotational axis is tilted downward by approximately 8� from the Sun–Uranus line. The
arrows on the right represent the solar wind.
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e ¼ p

g� 1
þ ru2

2
þ B2

2m0
: ð5Þ

Solving the conservative system of equations with a
conservative numerical scheme ensures that the jump
conditions across shock waves, such as the bow shock,
are correctly obtained. Inside the bow shock, however, we
have the option of using the nonconservative pressure
equation

@p

@t
þr � puð Þ þ g� 1ð Þpr � u ¼ 0 ð6Þ

instead of equation (4) to avoid negative pressures that can
arise from discretization errors in regions dominated by
strong magnetic fields (i.e., with very low plasma-beta).
In all simulations presented in this paper, the pressure
equation (6) is used within 19 RU. Since the bow shock is
outside this region, the proper jump conditions are obtained.

3. BATS-R-US Numerical Scheme

[9] The BATS-R-US (Block Adaptive Tree Solar-wind
Roe Upwind Scheme) [Powell et al., 1999] is a shock-
capturing numerical scheme that solves the time-dependent
ideal MHD equations in 3-D. BATS-R-US is used mostly
for simulating magnetospheres of planets and comets and
for space environment modeling. It is being developed at
the University of Michigan.
[10] BATS-R-US uses block-adaptive mesh refinement

(AMR) to create the most suitable grid for a given problem
according to the physical conditions and circumstances. The
block-based AMR is well suited to parallel computers, since
blocks can be distributed evenly among the processors. The
grid resolution can be changed on either physical or
geometrical basis. The equations are discretized spatially
with total variation diminishing [Harten, 1983] MUSCL
(Monotonic Upwind Scheme for Conservation Laws) type
[van Leer, 1979] finite volume schemes. In the simulations
presented in this paper the numerical flux is based on the
second-order local artificial wind scheme by Sokolov et al.
[2002]. The error in the divergence of the magnetic field is
kept at the truncation error level with the eight-wave
scheme [Powell, 1994].
[11] There are various options for time discretization.

Steady state solutions can be efficiently obtained with local
time stepping. In this case, the time step is set individually
for every grid cell based on the local numerical stability
conditions. Although the cells march toward steady state at
different rates, the final steady state solution is the physi-
cally correct one due to the balance of fluxes and sources for
all cells independent of the time step.
[12] In order to follow the time evolution of a system,

local time stepping cannot be used because the same time
step is required for every cell. There are two classes of
time-accurate time stepping methods: explicit and implicit.
In explicit time stepping schemes the time step is set by the
cell with the most restrictive stability condition. The stabil-
ity condition requires a wave to propagate a distance less
than one cell length during a single time step. In magneto-
spheric simulations this can lead to very small time steps
because the smallest cells are close to the planet where the

magnetic field and hence the magnetosonic speeds are large.
This restriction can be eliminated by the use of implicit time
stepping schemes [Keppens et al., 1999; Tóth et al., 1998].
The time step in an implicit scheme is not limited by the
wave speeds and therefore can be much larger than for an
explicit scheme. However, the implicit scheme is more
costly to compute. In BATS-R-US a highly parallel and
efficient implicit numerical scheme has been implemented
which uses Krylov subspace iterative solvers combined
with Schwarz-type preconditioning. The preconditioning is
done on a block by block basis. The efficiency is further
improved by using explicit time stepping in the blocks
which are stable for the given time step.
[13] For the time-accurate run presented in this paper, the

explicit scheme would use 0.023 s time steps, while the
implicit scheme can be run with 75 s time steps. Although
the implicit scheme is a factor of 35 times more expensive
per time step, it still runs about 90 times faster than the
explicit time stepping thanks to the 3250 times larger times
steps.
[14] In terms of accuracy the implicit and explicit

schemes obtain essentially the same solution when the time
variation is slow (quasi-steady state) because the implicit
scheme uses the same ‘‘right-hand side’’ discretization as
the explicit scheme. For a true steady state the explicit and
implicit solutions coincide. For fast transients the explicit
scheme is more accurate. In the simulations presented in this
paper, the quasi-steady state assumption is fulfilled, since
the rotation of the solution with a period of 17.24 hours is
very slow relative to the 75 s time steps.

4. Modeling Strategy

[15] As it can be seen in Figure 1, during the Voyager
flyby the rotational axis of Uranus was nearly aligned with
the Uranus-Sun axis. If we neglect this small deviation and
further assume that the upstream boundary conditions, i.e.,
the solar wind parameters, are cylindrically symmetric
around the rotation axis, then it is plausible to assume that
there is a corotating steady state solution. Obtaining such a
steady state solution requires less effort than doing a full
time-dependent simulation. In addition, it is generally easier
to interpret a steady state solution than a time-dependent
one. For these reasons, we present a corotating steady state
model as well as a fully time-dependent model. The
corotating steady state model solution serves as an initial
condition and also as a reference solution for the time-
dependent calculations.
[16] We use the following three coordinate systems for

the simulations. As illustrated in Figure 2, the USO (Uranus
Solar Orbital) system is defined by the XUSO axis pointing
toward the Sun, the YUSO axis lying in the orbital plane and
pointing opposite to the direction of motion of Uranus, and
the ZUSO axis completes the right-handed system. The
inertial USO system is used for time-dependent simulations.
[17] The USM (Uranus Solar Magnetic) frame rotates

around the XUSM = XUSO axis so that the USM and USO
systems are aligned every 17.24 hours, which is one
Uranian day. In the USM system the magnetic axis always
lies in the XUSM–ZUSM plane, and the YUSM axis completes
the right-handed system. The USM frame is therefore a
rotating frame. If the tilt of the rotation axis relative to XUSM
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is neglected, then the dipole is stationary in the corotating
frame. We use this orientation for modeling the magneto-
sphere as a corotating steady state. Without this approxi-
mation, the rotation and the magnetic axes are not stationary
in the USM system, they wobble back and forth by
approximately ±8�, and the angular velocity of the USM
system is not exactly constant. Far from the planet, where
the structure of the magnetosphere is mostly determined by
the solar wind, the wobbling of the field near the planet is
probably not very essential.
[18] The final coordinate system we define is the UGR

(Uranographic) system. In this system the XUGR axis coin-
cides with the real rotation axis that is tilted downward by
7.9� relative to the XUSO = XUSM axis. The UGR frame is
fixed to the surface of the planet. For sake of convenience
the ZUGR axis is defined such that the XUGR–ZUGR plane
contains the magnetic dipole. At the instance when the
USM and USO frames coincide, the UGR system can be
obtained from the USM/USO system by a 7.9� rotation
around the YUSO axis. The UGR coordinate system is used
to compare the measured and simulated data sets near the
planet where the intrinsic magnetic field dominates over the
effect of the solar wind.
[19] The computational domain extends from �704 RU

to +64 RU in the X direction and �128 RU to +128 RU

in the Y and Z directions and the planet is centered at the
origin; thus the boundaries are sufficiently far from the
planet and there is no interference with the numerical
solution along the Voyager trajectory. We wish to use the
results of the corotating simulations as an initial condition

for the time-dependent simulation. Because of this, it is
useful to preserve the cylindrical symmetry of the grid as
much as possible. For this reason, after some exploratory
simulations, we designed a geometrically refined grid
specifically adjusted for the Uranus magnetosphere. The
block structure of this grid is depicted in Figure 18. The
locations of the resolution changes are shown as black
lines in the two cut planes. Each Cartesian block contains
4 � 4 � 4 cells. In the various simulations the smallest
cells near the planet are 1/8 to 1/4 RU, while the largest
cells far away are 8 RU. The computational domain is
resolved with 5000 to 8000 blocks, which corresponds to
0.3 to 0.5 million grid cells.
[20] We impose supersonic inflow boundary conditions

at x = 64 RU, which means that the solar wind values are
set for all the MHD variables in the ghost cells. The
boundary condition at x = �704 RU is simple outflow,
which is well approximated with maintaining zero gradient
in all flow variables. The other four edges of the computa-
tional domain at y = ±128 RU and z = ±128 RU are
sufficiently far from the major features of the solution so
that the flow hardly changes at these boundaries. Here the
zero gradient boundary conditions were used for the simu-
lations done in an inertial frame to minimize effects on the
interior solution. On the other hand, the fixed solar wind
values were used at these boundaries for the simulations
done in the corotating frame to better enforce the solid
rotation of the solar wind relative to the computational box.
[21] The plasma conditions near Uranus are not well

known, making the setting of inner boundary conditions

Figure 2. Coordinate systems used for modeling. The XUSO,USM axis points toward the Sun and the
XUGR axis makes an angle of 7.9� to it. The XUSO–YUSO plane corresponds to the orbital plane and VU

denotes the orbital velocity of Uranus. The magnetic axis m lies in the XUSM–ZUSM, as well as in the
XUGR–ZUGR planes.
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difficult. For the models presented here, we assume that
the plasma is rigidly corotating with the planet to at least
to a few planetary radii. We apply rigid corotation at our
inner boundary at 3 RU. Taking the inner boundary at the

surface of the planet would require finer and more grid
cells, which would slow down the computation. On the
basis of our experience with modeling the terrestrial
magnetosphere we feel that placing the inner boundary
at 3 RU is an acceptable approximation. We take the
temperature and the density at the inner boundary to be
50,000 K (similar to the solar wind value) and 0.4 amu/cm3

(which corresponds to a 4 times compression of the
0.1 amu/cm3 solar wind density due to a strong shock),
respectively. In our exploratory simulations various densi-
ties were prescribed at the inner boundary, but they did not
seem to have a significant effect on the structure of the
magnetosphere.
[22] The magnetic field B is split into a dipole component

B0 and the deviation field B1 = B � B0 [see, e.g., Ogino and
Walker, 1984; Tanaka, 1994]. This splitting does not assume
that B1 is small, but the discretized form of the split MHD
equations allows more accurate numerical representation of
the dipole field near the planet. In particular the splitting
allows us to impose very simple boundary conditions at the
inner boundary. We allow B1 to float, but it remains
negligible relative to B0. In case of the time accurate
simulation B0 depends on time due to the rotation of
Uranus. The time derivative of B0 is disretized as a source

Table 1. Data Used for Modeling

Parameter Value

Uranus Data
Mass 8.6832 � 1025 kg
Radius (RU) 25,559 km
Rotation period 17.24 h
Obliquity 97.9�
Magnetic dipole moment 22,836 nT RU

3

Angle between the magnetic
and rotation axes

58.61�

Dipole shift along the rotation axis 0.310 RU

Solar Wind Data
Solar wind velocity 450 kms�1

Plasma density 0.05 and 0.1 amu/cm3

Plasma temperature 54,541 K (4.7 eV)

Inner Boundary Conditions at r = 3 RU

Plasma density 0.4 amu/cm3

Plasma temperature 50,000 K

Figure 3. Comparison of the measured (crosses) and the fitted offset dipole (continuous line) magnetic
fields in the UGR frame near Uranus. The small jump at x 	 15 RU marks the crossing of the
magnetopause.
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term in the induction equation, and it is integrated with the
implicit scheme.

5. Voyager Data

[23] Voyager 2 data were used to set the upstream solar
wind conditions for the simulations. In this data set the
magnitude of the magnetic field outside the bow shock was

below 1 nT on both the inbound and the outbound trajec-
tories [Ness et al., 1986]. The individual components of the
magnetic field show oscillations around zero with small
amplitudes without any obvious average direction. Since the
solar wind field is not known while Voyager was inside the
magnetosphere of Uranus, given the available observations
it seems reasonable to take the solar wind magnetic field to
be negligible during the flyby. This is rather fortunate

Figure 4. Variation of bx in the 48-s averaged Voyager data set (top) and in the 80-min smoothed data
used for comparisons with the simulations in the magnetotail.

Figure 5. The magnetic field lines and the logarithm of pressure (in nPa) in the inertial stationary
approximation, in the X–Z plane. Note the asymmetric shape of the bow shock.
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because it allows us to obtain a steady state solution in the
corotating frame. If the interplanetary magnetic field was
not negligible, it would break the cylindrical symmetry of
the solar wind. Although in the time-accurate simulations
we do not need the symmetry of zero magnetic field, we
choose to retain the zero value used in the corotating
simulations.
[24] Voyager plasma data were used to set the velocity,

density, and temperature of the solar wind. In each of our
simulations the solar wind flowed exactly from the positive
direction of the XUSO axis, with the velocity and temperature
taken from Bridge et al. [1986]. The values used are listed
in Table 1. Our initial simulations used the nominal Voyager
density of 0.05 amu/cm3 for the plasma density, but later we
experimented with rSW = 0.1 amu/cm3 to obtain a better
agreement with data in the magnetotail region. This increase
of density is somewhat justified by examining the plasma
data that shows approximately this density at the outbound
bow shock crossing time when Voyager left the magneto-
sphere. Of course, we do not have direct knowledge of
the solar wind parameters while Voyager was inside the
magnetosphere.
[25] Values for the magnetic dipole moment and dipole

tilt of Uranus can be found in the work of Ness et al. [1986]

and Connerney et al. [1987]. Using these values as a
starting point, we have fit the Voyager data in USO
coordinates to the field due to an offset, tilted dipole. We
retain the dipole magnitude and tilt from the literature and
vary the offset and orientation to obtain the best fit, shown
in Figure 3. The dipole parameters used in the simulations
are given in Table 1.
[26] In order to compare the Voyager data with the

simulations, we need to transform it from its native coordi-
nate system (USO) to the USM coordinate system. This step
requires us to know a certain instant of time when the two
frames coincided. The process of fitting the dipole orienta-
tion and offset to the Voyager data also allows the determi-
nation of the coincidence time. We found that one of these
coincidences must have occurred at 0 hours 27 min 22 s on
23 January 1986.
[27] Our comparison with the Voyager data is carried

out using different methods for each of two distinct
regions. In the vicinity of the planet, where the magnetic
field is strong, we sample the simulation every 8 min
(480 s) along the Voyager trajectory. This spacing is
the most reasonable given the model resolution. The
Voyager magnetic field data contains 48-s averages of
the measured quantities, so in this region we compare our

Figure 6. Comparison of the measured (crosses) and simulated (continuous line) data series in the
magnetotail for the inertial stationary simulation. Above the figures are the RMS differences between the
two data sets in nT. Note the phase shift between the curves due to approximations made in this model.
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simulation with every 10th Voyager magnetic field mea-
surement. When Voyager is in the magnetotail, the small
magnitude of the magnetic field, the observed noise, and
the large scale lengths suggest that smoothing the original
data would be beneficial. We apply an 80-min sliding
average to the original data; thus in the magnetotail every
point extracted from the simulation is compared with the
average of the data in an 80 min interval. Figure 4 shows
the original and smoothed observational data for the Bx

component, as an example.

6. Simulation Results

6.1. Inertial Stationary Approximation

[28] As a zeroth order approximation, we model Uranus
as a nonrotating sphere with a fixed orientation of its
magnetic dipole. Although this arrangement is highly sim-
plified, the steady state solution obtained in this nonrotating
system can be rotated around the XUSO axis, thus making
comparison with the Voyager data possible. This procedure,
however, is only a crude approximation, since the inertial
forces and the relative rotation of the solar wind were
neglected during the simulation. The inertial stationary
solutions are useful to explore the basic size and shape of

the magnetosphere of Uranus and also serve as a baseline
for the more complex corotating simulations.
[29] In this simulation the magnetic dipole axis lies in

the X–Z plane tilted by 31.39� toward the Sun relative to
the Z axis and it is offset by �0.31 RU along the X axis.
The solar wind density is taken to be the nominal
0.5 amu/cm3. The smallest cells are 0.125 RU at the
maximum resolution resulting in around 8300 blocks or
half million cells.
[30] We use the local time stepping with explicit time

discretization to obtain a steady state solution after 7000
iterations. The solution is shown in Figure 5. It is interesting
how the strong tilt of the dipole makes the bow shock
asymmetric. The magnetic field lines are reconnecting at
around �30 RU. As in any numerical MHD model, the
location of the X point depends on the numerical resistivity
and it may differ significantly from the true location,
however this has relatively small effect on the magnetic
field away from the reconnection site. The measured and
simulated data series in the magnetotail are compared in
Figure 6. The plasma sheet crossings are marked by the
jumps in the magnetic field components. Although the
rotation of the dipole was neglected in this simulation,
the agreement of the numerical solution and the observa-

Figure 7. Comparison of the measured (crosses) and simulated (continuous line) data series in the tail
region for the first corotating simulation with 0.05 amu/cm3 for solar wind plasma density. The phase
shift seen in the inertial steady state simulation (Figure 6) has disappeared.
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Figure 8. Comparison of the measured (crosses) and simulated (continuous line) data series in the tail
region for the second corotating simulation with 0.1 amu/cm3 solar wind plasma density. Note the
improved agreement of magnitudes relative to Figure 7.

Figure 9. Density variation along the Voyager trajectory in two corotating simulations with
0.05 amu/cm3 (triangles) and 0.1 amu/cm3 (diamonds) solar wind density, respectively. The position of
the simulated bow shocks are marked by the continuous and dotted vertical lines, while the dashed line
shows the position of the bow shock as measured by Voyager at around 21.4 RU in the XUSM coordinate.
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tions is surprisingly good. The discrepancy in magnitudes is
significant, but the most interesting feature is that the two
data series are shifted relative to each other. We interpret
this shift as the lack of twisting of the magnetotail in the
numerical solution. As the following models show,
performing the simulation in a corotating frame which
correctly includes the relative rotation of the solar wind
and the inertial forces will improve the agreement of
numerical and observational results. The worst agreement
is in the X component of the magnetic field, which leads to

an underestimate of the magnetic field magnitude. To
quantify the difference between the simulations and the
observations, we have calculated the root-mean-square
(RMS) of the difference for all the components and also
for the magnitude of the magnetic field. The RMS errors are
given in units of nT above the plots.

6.2. Corotating Frame

[31] The corotating simulations are carried out in the
USM coordinate system. The tilt of the rotation axis relative

Figure 10. The magnitude of the magnetic field as Voyager crosses the magnetopause inbound. The
results from the first (triangles) and second (diamonds) corotating simulations are compared with the
observed values (crosses). Note the good agreement between the second simulation and the measured
data.

Figure 11. The logarithm of plasma pressure (in nPa) in the magnetotail for the second corotating
simulation as a function of the planetocentric distance. The vertical lines mark the observed [Ness et al.,
1986, Table 1] current sheet crossings (dotted), magnetopause crossing (dashed), and bow shock
crossings (continuous). The partial current sheet crossing at R = 64.7 is shown as a shorter dotted line.
See the discussion in the text.
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to XUSM is neglected; thus the angular velocity 6 = (W, 0, 0)
is taken to be parallel with the XUSM axis and the radial
position vector d = (0, y, z). In the corotating simulations the
Coriolis and centrifugal forces are properly taken into
account in equations (2) and (4). Because we are in the
rotating frame, special care must be taken when applying
boundary conditions on the walls of the simulation domain.
In the corotating frame the solar wind appears to rotate with
�6; thus at the boundaries (except for the outflow bound-
ary) we prescribe the velocity as

u ¼ �6� dþ uSW ; ð7Þ

where uSW is the solar wind speed, which is parallel with the
X axis.
[32] The magnetic dipole is tilted by 31.39� in the X–Z

plane and it is offset by �0.31 RU along the X axis. The
smallest cells are 1/8 RU, as in the inertial simulation. The
steady state solution is obtained with local time stepping in
7000 iterations.
[33] Here we report the results from two simulations.

In the first simulation the solar wind density is taken to be
0.05 amu/cm3, while in the second simulation 0.1 amu/cm3

is used. First we compare the simulated and observed

magnetic field data in the tail region. Figure 7 shows
the results for the first corotating simulation with rSW =
0.05 amu/cm3. There is a marked improvement relative to
the inertial steady state results in Figure 6. The phase
differences disappeared, and the root mean square devia-
tions also decreased in all three components. We attribute
the improvement to the proper inclusion of the relatively
rotating solar wind and the inertial forces, which result in a
twisted magnetotail.
[34] The result obtained with the second corotating sim-

ulation with rSW = 0.1 amu/cm3 is shown in Figure 8. The
difference between data and simulation is further reduced.
The most significant change is in the amplitude of the Bx

component. The increased solar wind density compresses
the magnetosphere more than in the previous case and
increases Bx. This results in much better agreement with
the data: the RMS error of Bx decreased from 0.53 nT to
0.43 nT.
[35] The increased solar wind density and the resulting

compression of the magnetosphere can be clearly seen in the
change of position of the bow shock and the magnetopause.
In Figures 9–11 we compare the positions of the bow shock
and the magnetopause in the two simulations with the
observations [Ness et al., 1986]. The positions of the

Figure 12. Comparison of the measured and simulated data series in the tail region for the time-accurate
simulation in the USO frame. Note that the By and Bz components are rotated relative to the By and Bz

components obtained in the corotating simulations in the USM frame.
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inbound bow shock crossing are shown in Figure 9.
The width of the shocks in the numerical results is due to
the finite grid resolution, which is 1 RU in the vicinity of the
inbound bow shock crossing. The bow shock is captured
with three grid cells, which is typical of high-resolution
shock-capturing schemes. The extracted trajectory contains
about six to eight points across the shock, which results
from the selected 8 min time intervals between the extracted
data points and the roughly 30 km/s speed of the space craft
which corresponds to about 0.5 RU distance between the
data points. The trajectory is not perpendicular to the bow
shock which makes the apparent width larger.
[36] We take the position of the shock to be in the middle

of the steep slopes, at around x = 23 RU and x = 20 RU for

the two simulations, respectively. The observations showed
that the first crossing occurred at 21.4 RU, which is in
between the two simulation results.
[37] The positions of the inbound magnetopause crossing

can be read from the magnitude of the magnetic field shown
in Figure 10. The observed data has a sharp jump at x 	
16 RU which corresponds to the magnetopause. In the
simulation results the magnetopause is somewhat smeared
out (which is difficult to avoid for a noncompressive
discontinuity). If we take the middle of the sharp slopes,
the magnetopause is at around x = 17 RU and x = 16 RU

in the two simulations, respectively. The agreement of the
observed and simulated positions is somewhat better for the
second simulation with rSW = 0.1 amu/cm3.

Figure 13. The x component of the magnetic field in the YUSO = 0 plane. The color range is saturated
(white) near the planet. The panels are separated by a quarter rotation periods on days 3 and 4 during the
time-dependent simulation. This time series displays the periodicity of rotation.

A11210 TÓTH ET AL.: MODELING THE MAGNETOSPHERE OF URANUS

12 of 17

A11210



Figure 14. The logarithm of pressure is shown in the 10�3.5 nPa to 10�1.5 nPa range for four different
times in the X–Z plane of the USO frame. The full parabola fitted to the whole bow shock obeys x = 22 �
z2/65 (continuous line), while the half parabola fitted to the bulge obeys x = 22 � z2/80 (dashed line).

Figure 15. Magnetic field lines connected to the northern (black lines) and southern (white lines) poles.
The Bx component (colors) shows the topology of the magnetic field in the X–Z plane. Note that the color
scale is saturated near the planet.
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[38] The outbound current sheet, magnetopause, and bow
shock crossings for the second corotating simulation are
shown in Figure 11. This plot directly compares the
observed crossings [Ness et al., 1986, Table 1] with the
simulation results. The large oscillations in the pressure
from x = 0 RU to x = �68 RU result from the Voyager
trajectory passing through the rotating magnetotail. The
observed current sheet crossings coincide nicely with the
pressure maxima up to the planetocentric distance R =
70 RU. Only the partial current sheet crossing at R = 64.7
has no corresponding pressure peak (see discussion below).
The location of the magnetopause crossing can be identified
as the point where these oscillations disappear at around R =
80 RU. The observed outbound magnetopause crossing at
R = 79.6 RU almost perfectly coincides with that. Since the
bow shock is somewhat smeared out in the numerical
solution, the bow shock crossings appear as sharp gradients
in the pressure. The observed bow shock crossings nicely
coincide with the sudden gradients in the pressure, and the
final bow shock crossing observed at x = �187.6 RU is in
excellent agreement with the simulation.
[39] Regarding the partial crossing of the current sheet,

Hammond et al. [1990] speculated that it may be due to the
curvature of the current sheet which changes with the tilt of
the magnetic dipole. The dipole tilt varies (approximately)
between 22� and 38� relative to the ZUSM axis due to the
8� tilt of the rotation axis relative to the X axis. For sake of
comparison, two nonrotating steady state simulations were
carried out with 22� and 38� dipole tilts, respectively. We

find that although the trend in the bending of the current
sheet is similar to that shown in Figure 4 in the work of
Hammond et al. [1990], the effect is much milder and it
cannot explain the partial crossing. The corotating and time-
accurate simulations also show relatively mild bending of
the current sheet. The difference between the numerical
results may be attributed to several factors: we used Uranus
data as opposed to scaled Earth simulations and the numer-
ical schemes are also different. In our opinion the partial
crossing can be best explained with dynamic features in the
magnetotail which are caused by temporal changes in the
solar wind. Considering the limited data and the simplifi-
cations made in the model, the overall agreement of the
simulated and observed data is remarkable.

6.3. Time-Dependent Simulations

[40] Our time-dependent simulation is started from a
corotating steady state solution with the same physical
parameters as the second corotating simulation discussed
in the previous section, i.e., the solar wind density is taken
to be 0.1 amu/cm3. In order for the simulation to run in a
reasonable time, the finest cells near Uranus had to be
coarsened from 1/8 RU to 1/4 RU. In order to use the
steady state corotating solution as an initial condition, the
solution has to be transformed into the USO frame. We
pick an initial time for the simulation when the USO and
USM frames coincide, so only the Y and Z components of
the velocity have to be transformed with the uUSO = uUSM +
6 � d equation.
[41] In the time-dependent simulation, Uranus is rotating

around its real rotation axis, which is slightly tilted relative
to the XUSO axis, thus slightly breaking cylindrical symme-
try. The initial tilt of the magnetic dipole is 39.29� in the X–
Z plane of the USO system. The magnetic dipole is offset
along the tilted rotation axis, thus initially the dipole is at x
= �0.307 RU and z = 0.043 RU.
[42] The block adaptive grid, although as symmetric as

possible, also breaks the cylindrical symmetry due to
discretization errors. The grid consists of 5120 blocks, or
around 320,000 cells. To eliminate the effect of the initial
transients due to the differences in the geometry and the
discretization, we let the model run for 2 Uranian days in
the USO frame in time-accurate mode. Then we extract the
data along Voyager’s path during a 4.5 rotation period that
corresponds to the part of the trajectory lying between 50 RU

and �100 RU in the XUSO coordinate.
[43] We use the explicit-implicit time-stepping scheme

with a fixed 75 s time step, which gives the best computa-
tional speed for this simulation. About half of the
5120 blocks use implicit time stepping, while for the other
half the stability conditions permit explicit time stepping.
Although this scheme is almost 90 times faster than the
explicit time stepping, the simulation of the 6.5 Uranian
days (roughly 4.6 Earth days) requires almost a full day on
30 processors of our PC cluster.
[44] The comparison of simulated and observed magnetic

data in the magnetotail is shown in Figure 12. The agree-
ment is rather good, although the RMS deviation is some-
what more than in the second corotating simulation in
Figure 8. The difference seems to be caused by a small
shift in the steep gradient of the Bx component near x =
�35. It is difficult to tell whether this shift is due to the

Figure 16. Three-dimensional visualization of the magne-
topause as a blue isosurface at jBj = 0.5 nT. The Voyager
trajectory outside the magnetopause is shown as a red line in
the USM frame. Both the inbound and outbound magne-
topause crossings are visible. Note the twist of the lobes.
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coarser resolution, the discretization errors caused by the
rotation, insufficient time for the time-accurate simulation
to relax, or some other reason. Overall, however, the
time-accurate simulation agrees remarkably well with the
observations.
[45] We also investigated how much the loss of the

cylindrical symmetry affects the solution. The cylindrical
symmetry is broken by the tilt of the rotation axis as well as
by the discretization errors due to the Cartesian grid blocks.
Figure 13 shows the variation of the x component of the
magnetic field. We chose this quantity because it nicely
depicts the structure of the magnetotail. The eight panels in
the figure contain the simulation results separated by one
quarter of a Uranian day. Comparing every second plot
shows that in half a day the solution flips by 180�. The tilt
of the rotation axis does not have any obvious effect, since
the solar wind, which blows exactly from the x direction,
dominates in the magnetotail. A more careful inspection
of the figure, however, reveals that the contour lines
hitting the left edge of the plots at x = �500 RU are
not perfectly symmetric when the panels at t = 3.25 and
4.25 Uranian days are compared with the panels t = 3.75

and 4.75 Uranian days. This small asymmetry may be due
to the tilt of the rotation axis. Comparison of the left and
right columns in Figure 13 demonstrates that the solution is
almost exactly periodic. We find that the time-accurate
solution can be regarded as a steady state solution in the
corotating frame with a very good approximation.
[46] The time-dependent shape of the bow shock is

depicted in Figure 14. At 3.00 Uranian day after the
beginning of the simulation the dipole is pointing toward
+Z with a 39� tilt toward the Sun. At 3.25 days the dipole
points toward the �Y axis (out of the plane of the figure)
with a 31� tilt. At 3.50 days the dipole points toward �Z
with a 23� tilt toward the Sun. Finally, at 3.75 days it points
toward the +Y axis (into the plane of the figure) with a 31�
tilt. The overall shape of the bow shock is well fitted with

x ¼ 22RU � d2

65RU

; ð8Þ

where x and d =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
are both measured in units of the

planet radius. Close to the body, the bow shock is bulging

Figure 17. The Bx component of the magnetic field at various cuts orthogonal to the X axis in the
second (rSW = 0.1 amu/cm3) corotating simulation. The color scale is saturated in the x = 0 and x =
�100 cuts. The circles correspond to the cubic fit in equation (10), while the tilted diameters show the
a = 0.4�x/RU fit to the orientation of the current sheet.
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out at the magnetic pole pointing toward the Sun. Owing to
the rotation of the planet, the bulge caused by the tilt of the
dipole propagates downtail in a spiraling motion, and this
makes the snapshots at 3.25 days and 3.75 days asymmetric,
although at these times the dipole is in the Z = 0 plane. The
bulge can be approximately fitted with the

x ¼ 22RU � d2

80RU

ð9Þ

half parabola for x > �50 RU at all four times shown. The
symmetry of the plots at 3.0 and 3.5 Uranian days suggest
that the 8� tilt of the rotation axis relative to the X axis has
relatively little effect on the shape of the bow shock.

7. Conclusions

[47] On the basis of the comparison with the Voyager data
we believe that we have successfully reconstructed the 3-D
magnetosphere of Uranus during the flyby. The magnetic
data is well approximated with a steady state solution in the
corotating USM frame. The asymmetric shape of the bow
shock due to the large tilt angle of the magnetic dipole is
partially captured even by the much simplified inertial
steady state solution (see Figure 6), but the correct shape
can only be obtained with a corotating steady state or a fully
time-accurate simulation (see Figure 14).
[48] The open field lines follow a helical pattern as

shown in Figure 15 and expected from physical intuition.

The twisted structure of the magnetotail is visualized in
Figure 16 with an isosurface at jBj = 0.5 nT. On the basis of
cuts orthogonal to the X axis (as shown in Figure 17), the
current sheet is twisted by about h = 0.4�/RU at a roughly
constant rate. Combined with the rotation period of
Uranus, this twisting rate corresponds to a propagation
speed v = W/h 	 370 km/s. The twisting rate is determined
by a balance between the magnetic stress, which propagates
with the Alfvén speed, and the friction against the sur-
rounding solar wind which is not rotating together with the
planet. The Alfvén wave speed vA = juxj + jBxj/

ffiffiffiffiffiffiffim0r
p

is
between 450 km/s and 600 km/s in most of the magnetotail,
which is somewhat larger than the propagation speed of the
twist, as expected. To put it in another way, if there was no
friction, the magnetotail would be twisted by hA = W/vA 	
0.28�/RU, but due to the friction against the solar wind, the
lobes are more twisted with h = 0.4�/RU. The extra twist
provides the magnetic stress which balances the friction
forces.
[49] If the threshold of the isosurface is lowered to jBj =

0.01 nT or below, the whole magnetotail is captured. The
cross section with the zUSM = 0 plain is reasonably approx-
imated with the cubic paraboloid

x ¼ 16RU � d3

1000RU
2

ð10Þ

for x > �300 RU. The cross section with the yUSM = 0 plain
is rather asymmetric and cannot be well fitted with a simple
curve.

Figure 18. The ux velocity space and two magnetic field lines in the corotating frame. The velocity
component values are shown on X–Y and X–Z planes where black lines separate regions of different grid
resolutions. The white field line is closed, crosses the X–Z plane once further and twice closer to the
planet. The other field line that is colored by velocity also turns back and intersects the X–Y plane at the
outmost resolution change. Note how the color (the velocity) of the field line is correlated with its shape
and twists.
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[50] The visualization of a closed field line is shown in
Figure 18. The field line is stretched toward the tail and
twisted due to the rotation. What is less intuitive is that the
stretch of the field lines is not homogeneous. As the field
line passes through regions with varying plasma speeds, it is
stretched by different amounts. This may cause the Bx

component to become zero even for the open field lines,
as shown in the figure. Owing to this nonuniform stretching
some of the open field lines projected onto the Y = 0 or Z =
0 planes may appear as having loops.
[51] Our results indicate that the MHD equations solved

with efficient parallel numerical algorithms are capable of
reproducing the basic features of the three-dimensional
magnetosphere of Uranus from a single 1-D data set.
The quantitative comparison of the simulated and observed
data suggests that the solar wind density was around
0.1 amu/cm3 while Voyager was inside the magnetosphere.
The simulations presented in this paper reveal the dynamics
of a strongly tilted rotating dipole interacting with the solar
wind. In the future we plan to model Neptune, which also
has a strongly tilted dipole, and the rotation axis is not
aligned with the solar wind. We expect therefore a fully
time-dependent solution, which cannot be described as a
steady state in any frame. On the basis of our experience
with the Uranus simulations we are hopeful that we will be
able to model the even more challenging magnetosphere of
Neptune as well.
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