
Flexible, Efficient and Robust Algorithm for

Parallel Execution and Coupling of

Components in a Framework

Gábor Tóth a

aCenter for Space Environment Modeling University of Michigan, 2455 Hayward,
Ann Arbor, MI 48109

Abstract

We describe a general algorithm suitable for executing and coupling components
of a software framework on a parallel computer. The requirements of a flexible,
efficient and robust algorithm are defined precisely, and the motivation for the
requirements is demonstrated on several examples. In short, the requirements are
the following: (i) the algorithm should allow arbitrary distribution of processors
among the components, (ii) it should allow arbitrary coupling schedule between the
components, (iii) it should not use any inter-processor communication other than
already required by the components and their couplings, and (iv) it should never get
into a dead-lock. We show that the proposed algorithm based on the Temporal and
Predefined Ordering of Tasks (TPOT) satisfies all these requirements. The TPOT
algorithm has been implemented in the Space Weather Modeling Framework. The
flexibility and efficiency of the algorithm is demonstrated with several examples.

Key words: software framework; concurrent execution; parallel algorithm; space
weather

1 Introduction

General frameworks are becoming more and more important in the numer-
ical simulation of complex phenomena. Just in the areas of geophysics and
plasma physics there are several frameworks under development [1–8]. Frame-
works provide a way of executing and coupling multiple software components.

1 This work has been partially supported by the Hungarian Science Foundation
(OTKA, grants No. T037548 and T047042)

Preprint submitted to Elsevier Science 5 November 2005

Each software component is responsible for solving some subtask in a rela-
tively independent manner, the data exchange between the framework and
the components and/or between the components should happen via standard-
ized interfaces. The framework concept allows independent development of the
software components, it allows replacement of a component with alternative
versions, and it allows assembling a coupled system which can model more
complex phenomena than the individual components are able to.

The development of the general execution and coupling algorithm, which is the
subject of the present paper, has been motivated by the development of the
Space Weather Modeling Framework (SWMF) [1,2]. In general terms, space
weather is the dynamic interaction of solar and terrestrial phenomena which
can affect human life. The SWMF aims at simulating and predicting space
weather by combining a multitude of components, which model various physics
domains spanning from the solar corona to the heliosphere, magnetosphere,
ionosphere and upper atmosphere. The models have mostly been developed
independently over several years, they use different numerical schemes to solve
different equations. The components use different programming styles, which
excludes combining them into a tightly integrated software.

In the SWMF the execution of the components is tied together by the notion
of simulation time. In the typical simulations all the components should model
the same time interval. They should interact when their simulation times are
the same (or close). In general it is allowed to run the components in different
time intervals. It is also possible that some (one directional) interaction be-
tween two components has some delay in time, but that can be hidden from
the framework if the sending or the receiving component stores the data until
it is needed. In other applications, the simulation time can be replaced with
any monotonically growing quantity, like iteration number, or the amount of
data processed, or the line number in some text etc. The only assumption we
make is that there is a monotonically increasing quantity which measures the
progress of the components and which can be used for scheduling the inter-
action between the components. For sake of simplicity we will refer to this
quantity as simulation time, or simply time.

For sake of a clear distinction, the actual time of running the framework
will be referred to as wall clock time, while the CPU time is the wall clock
time multiplied by the number of CPU-s working on some problem. A parallel
component shows ideal speed up if the CPU time is independent of the number
of CPU-s, ie. the wall clock time is inversely proportional with the number of
CPU-s. In this paper the word “scaling” will be used in this meaning as well,
i.e. speed up for a fixed problem size.

One of the many challenges in creating a framework is the design of a flexible,
efficient and robust algorithm for the execution and coupling of the compo-

2

nents.

• Flexibility means that the framework should allow more or less arbitrary
processor layout and coupling schedules between the components.

• Efficiency means the minimization of the total execution time of the cou-
pled system on a given number of processors. An efficient algorithm should
allow parallel components to execute on an ideal number of processors and
it should minimize the idle time of processors.

• Robustness means that the execution should always complete, the pro-
cessors should not get into a dead-lock, when all processors are waiting for
information from another processor.

In the next session the problem is defined in mathematical terms, and we show
how some simple and/or naive approaches fail to satisfy the above criteria. In
session 3 the proposed algorithm, named Temporal and Predefined Ordering of
Tasks (TPOT, to be pronounced like ’tea-pot’) is described and its properties
are analyzed. In particular, it is proven rigorously that the TPOT algorithm
is robust, i.e. it never gets into a dead-lock. The usefulness and efficiency of
the algorithm will be demonstrated with some example runs in Section 4. The
final section concludes the paper with some generalizations and outlook to
related problems.

2 Definition of the Problem

This section defines the problem of parallel execution and coupling of com-
ponents in mathematical terms. The clear definitions will help to discuss and
solve the various difficulties which arise in a complex framework.

2.1 Basic Definitions

To facilitate a short and accurate description of the problem, we begin with
some basic definitions of processor layout, time stepping, coupling and the
initial and final state of the simulation.

2.1.1 Components and Processor Layout

The set of components is defined as

C := {c | 1 ≤ c ≤ NC , c ∈ N} (1)

3

where NC is the number of components. The identification of the components
with an integer makes the ordering of components simple. The set of processors
available for the framework is defined as

P := {p | 1 ≤ p ≤ NP , p ∈ N} (2)

where NP is the number of processors. Each component is running on a non-
empty subset of the processors

Pc ⊂ P c ∈ C (3)

For serial components Pc has exactly one element, while for parallel compo-
nents NPc

≥ 1. Similarly each processor is working on a subset of the compo-
nents

Cp ⊂ C p ∈ P (4)

In principle Cp can be empty, which means that some processors do not take
part in the execution of the components. If the number of components NCp

≤ 1
for all processors, then the processor layout contains no overlap. In general,
however, NCp

can range from 0 to NC .

2.1.2 Time Stepping and Coupling

At any given point in the execution of the framework, each component has a
unique simulation time

tc ∈ R c ∈ C (5)

which is known by the processors in the subset Pc. This simulation time must
be advanced by the component on all the processors in a consistent manner.
The advancing of the component by one time step on processor p ∈ Pc consists
of the following stages:

Sc := start advancing component c (6)

Fc := finish advancing component c (7)

tc := tc + ∆tc (8)

where ∆tc > 0 is the same for all processors p ∈ Pc, but it may vary from
time step to time step. The first stage acts as a block on processor p: once
the time step is initiated no other work can be done until it completes. Since
the components normally perform communication among the processors in Pc

4

during the time step, the time step will complete if and only if Sc is executed
on all p ∈ Pc:

Fc if and only if Sc on all p ∈ Pc (9)

The coupling between two components can be identified with a set of two
component indexes. Not all pairs of components are coupled, so it is useful to
introduce the set of couplings K as a subset of all possible pairs:

K ⊂ {{c, d} | c, d ∈ C} (10)

Note that the interaction of more than two components can be replaced with
a series of pairwise couplings which take place at the same simulation time.

The coupling between two components is scheduled to take place at time

t{c,d} ∈ R {c, d} ∈ K (11)

which must be known on the processors p in

P{c,d} := Pc ∪ Pd (12)

The coupling consists of the following substeps:

S{c,d} := start coupling components c and d (13)

F{c,d} := finish coupling components c and d (14)

t{c,d} := t{c,d} + ∆t{c,d} (15)

where ∆t{c,d} > 0 is the same for all processors p ∈ P{c,d}, but it may vary
from one coupling to the next one. The first stage acts as a block on processor
p: once the coupling is initiated no other work can be done until it completes.
Since the components perform communication among the processors in P{c,d}

during the coupling,

F{c,d} if and only if S{c,d} on all p ∈ P{c,d} (16)

2.1.3 Relations between time stepping and coupling

A necessary condition for running a component is that its simulation time is
less than all the coupling times which involve the component. Formally the
condition is

Sc only if tc < t{c,d} ∀{c, d} ∈ K (17)

5

The time step ∆tc is normally set by the component, and it may vary during
the execution due to numerical stability conditions or accuracy requirements.
It depends on the implementation if the component is allowed to exceed the
next coupling time after its time step is finished, or the time step is truncated
such that tc becomes equal with the closest coupling time, i.e. the time step
is limited by the condition

∆tc ≤ min{t{c,d} | {c, d} ∈ K} − tc (18)

If the above condition in enforced, the couplings will take place when both
components have the same simulation time as the coupling time, i.e. tc =
td = t{c,d}, which may improve the temporal accuracy of the solution. On the
other hand, not all components may be able to limit their time steps, and it
can also be inefficient if a large fraction of the time steps are reduced due to
frequent couplings. In the SWMF implementation, condition (18) is generally
enforced, but some components can be exempt, which is determined as an
input parameter.

A necessary condition for coupling two components is that their simulation
times have reached (or exceeded) the coupling time. For the coupling of com-
ponents c and d on a processor p ∈ Pc the condition is

S{c,d} only if t{c,d} ≤ tc (19)

while on processors p ∈ Pd the condition is

S{c,d} only if t{c,d} ≤ td (20)

Finally if there is an overlap between the layouts, then on processors p ∈ Pc∩Pd

both conditions must hold.

2.1.4 Initial and Final Time

The framework starts the execution from simulation time tstart and finishes
execution when all components reach (or exceed) the final time tfinish. This
time interval may be divided into smaller parts, which we may call sessions

which are delimited by some action that requires communication between all
the components. In the SWMF, for example, the set of active components and
the input parameters can be modified at the beginning of each sessions.

A session starts at time tmin and stops at tmax. Initially

tc ≥ tmin c ∈ C (21)

6

t{c,d} ≥ tmin {c, d} ∈ K (22)

The framework successfully finishes the session if all components reach the
final time and all couplings are complete:

tc ≥ tmax ∀c ∈ C (23)

t{c,d} ≥ tmax ∀{c, d} ∈ K (24)

It depends on the application if couplings scheduled for the final time tmax

should be performed or not. Here we assume that such final couplings are not
needed, but this is not a crucial assumption.

2.2 Flexibility and Efficiency Considerations

The number of processors selected for a component is restricted by several
reasons:

• Not all components are parallel;
• The parallel components may require a minimum number of processors to

fit into the memory;
• Parallel components may not work on arbitrarily large number of processors;
• Parallel components do not scale perfectly to arbitrary number of proces-

sors.

Therefore the algorithm has to allow that components use an arbitrary number
of processors out of the total number used by the framework. Given limited
computer resources the algorithm must also allow the overlap of the layouts
of the components as well. The coupling of the components should be very
flexible too. Some components need to communicate very often, others need
to communicate less frequently. The optimal communication pattern depends
on the particular simulation and cannot be hard coded.

The computational cost (total CPU time) of the components to simulate a
certain interval of simulation time can vary by orders of magnitudes. Depend-
ing on the total number of processors, the optimal distribution of processors
among the components vary.

2.2.1 Concurrent Execution

On a large number of processors we may split the set of processors P into
disjoint parts and assign a number of processors to each component propor-
tional to their computational cost as shown in the left panel of Figure 1. This
way the wall clock time can be approximately equal, which minimizes the

7

Sequential executionConcurrent execution

w
al

l c
lo

ck
 ti

m
e

P
a processorsb

P
c

P

w
al

l c
lo

ck
 ti

m
e

processors

Fig. 1. Comparison of the purely concurrent (left) and purely sequential (right) exe-
cution models. The computational work is color coded by the component executing:
a (red), b (green), c (blue). The areas covered by the three colors are the same in
both execution models (which assumes perfect scaling)

idling time, and gives approximately optimal performance. On small number
of processors, however, it may be impossible to split the number of processors
proportionally to the computational work, or the component may need more
memory than available on the subset of processors which would be optimal
for speed.

2.2.2 Sequential Execution

On a smaller computer we may assign all the processors to all the components,
so they can execute sequentially (in turns) as depicted in the right panel of
Figure 1. As long as all components scale well to the number of available pro-
cessors, this strategy can give nearly optimal performance. On large number of
processors, however, the scaling will break down, and the sequential approach
becomes inefficient.

2.2.3 Mixed Execution

When many components are included into the framework, each having its
limitations for parallel execution, the optimal execution model on a limited
number of processors is a mixture of the sequential and concurrent execu-
tion strategies. It is a very non-trivial problem to find the optimal processor
layout and coupling schedule, and this paper does not attempt to solve the

8

w
al

l c
lo

ck
 ti

m
e

w
al

l c
lo

ck
 ti

m
e

processorsprocessors

Fig. 2. Two examples of mixed execution models. The left panel shows how a serial
component (red) can be run along two large parallel components (green and blue)
which cannot run concurrently. The right panel shows how a very large component
(red) which requires all the processors can be run together with two parallel compo-
nents (green and blue) which can run most efficiently on a subset of the processors.

optimization problem. On the other hand an efficient algorithm must allow a
mixture of concurrent and sequential execution, so that the optimal speed can
be achieved. Figure 2 shows two simple examples for mixed execution model.

2.2.4 Minimal Communication

All communications between processors act as a block of execution. In case the
processors need different times to reach the communication point, the block
leads to idling processors, which is a waste of computational resources. There-
fore an efficient algorithm must minimize the inter-processor communication.
Ideally the framework should not add any extra communication relative to the
unavoidable communication required by the execution and coupling of com-
ponents. This means that an efficient algorithm should use locally available
information only.

2.2.5 Fine Grained Time Stepping

It is tempting to design an algorithm which allows the components to progress
uninterrupted as long as they do not require coupling with other components.
This approach corresponds to a coarse grained time stepping. Although such
an approach is conceptually simple, it can lead to an inefficient execution
pattern. Assume, for example, that components b and c need to be coupled at

9

Fine grained time stepCoarse grained time step

a b
P P

w
al

l c
lo

ck
 ti

m
e

processors

20

a b
P P

w
al

l c
lo

ck
 ti

m
e

processors

29

Fig. 3. Comparison of the efficiency of coarse grained (left) and fine grained (right)
time stepping. The computational work is color coded by the component executing:
a (red), b (green), c (blue). Components a and b use the disjoint processor subsets
Pa and Pb, respectively, while component c uses the union set Pa ∪ Pb. For coarse
grained time stepping, the processors are idle (no color) for a significant fraction of
the wall clock time and the overall execution time (29) is slower than for the fine
grained time stepping (20).

every second of simulation time, while component a is coupled (for example
with component b) at every 10 seconds only. Assume further that components
a and b run on disjoint processor sets Pa and Pb (Pa∩Pb = ∅), while component
c uses all the processors used by a and b (Pc = Pa ∪Pb). For sake of simplicity
let us take the wall clock time spent to be equal to the simulated time interval
for all three components.

With coarse grained time stepping, component a is advanced by 10 seconds at
a time and as can be seen from the left panel of Figure 3, it will take 29 seconds
wall clock time to advance all 3 components by 10 seconds of simulation time,
while the processors will be idle for 9 seconds. On the other hand, if fine
grained time stepping is used and component a is advanced with 1 second (or
smaller) time steps, then it is possible to complete the 10 seconds simulation
time in 20 seconds wall clock time. In this case there is no idle time at all as
shown by the right panel of Figure 3.

The conclusion is that an efficient algorithm should use fine grained time
stepping to advance the components.

10

2.3 Robustness Considerations

A robust algorithm should be able to complete the simulation for an arbi-
trary processor layout and coupling schedule. This requires that the frame-
work should never get into a dead-lock, when all the processors are waiting
for other processors in a circular fashion. In this subsection various types of
dead-lock situations will be shown. The examples will motivate the choices
made in the design of the proposed robust algorithm.

2.3.1 Dead-lock due to inconsistent order of time stepping

One could design an algorithm where the order of time stepping the compo-
nents varies from processor to processor. For example one could measure the
wall clock time for each component, and advance the component which used
up the least wall clock time so far. Let us examine if this approach can lead to
problems. Assume that we have two components a and b which use the same
subset of the processors (Pa,b := Pa = Pb) and they execute on more than one
processors (NPa,b

> 1). Since the measured wall clock time is not necessarily
the same on all processors, it can happen that on processor p ∈ Pa,b the time
step of component a is started (Sa), while on processor q ∈ Pa,b the time step
of component b is started. Using the notation defined in (6), the algorithm
does the following:

Step p q

1 Sa Sb

2 idle idle

where ’Step’ monotonically increases with the wall clock time, and serves as
an identifier to the sequence of algorithmic steps on the processors. Since
operations Sa and Sb are blocking the execution, and neither Sa nor Sb are
executed on all processors of Pa = Pb, the time steps cannot complete, and
the algorithm is in a dead-lock.

The conclusion is that the order of the time stepping of any two components
must be deterministic and identical on processors used by both components.

2.3.2 Dead-lock due to incorrect order of couplings

When there are several couplings scheduled for the same simulation time, it
is important to execute them in an order which does not allow a dead-lock.

11

Assume, for example, that components a, b, and c are executing concurrently
on the disjoint subsets Pa, Pb and Pc and they are to be coupled pair-wise at
the same simulation time t{a,b} = t{b,c} = t{a,c}. If the algorithm is not designed
correctly, it can happen that processors in Pa start the coupling S{a,b} first,
the processors in Pb execute S{b,c} first, and the processors in Pc start the
couplings with S{a,c}. Using the notation defined in (13) the incorrect parallel
algorithm does the following:

Step Pa Pb Pc

1 S{a,b} S{b,c} S{a,c}

2 idle idle idle

The result is a circular dead-lock, since the start of the coupling blocks the
execution, but there is no coupling which has been started on all the involved
processors.

To avoid such dead-locks, the couplings must be ordered, and the couplings
should be executed in that order on all processors. The ordering can be defined
by a one-to-one correspondence (or bijection) between the elements of K and
the integers between 1 and NK:

f : K ↔ {k | 1 ≤ k ≤ NK, k ∈ N} (25)

where NK is the number of couplings. The order of the couplings can be given
as an input parameter for the framework.

For the above example we may assume that f({a, b}) < f({b, c}) < f({a, c}).
If the algorithm starts the couplings in the order defined by increasing values
of f , the execution will progress the following way

12

Step Pa Pb Pc

1 S{a,b} S{a,b} S{b,c}

2 F{a,b} F{a,b} idle

3 S{a,c} S{b,c} idle

4 idle F{b,c} F{b,c}

5 idle progress S{a,c}

6 F{a,c} progress F{a,c}

7 progress progress progress

where F means that the coupling is finished as defined in (14).

2.3.3 Dead-lock due to rushing ahead

We show that condition (17) for running a component (executing Sc) is not
sufficient to avoid potential dead-locks. Let us assume that components a and
b are running on disjoint processor subsets Pa and Pb, while component c is
using the processors Pc = Pa ∪ Pb. At the beginning let all components start
from time ta = tb = tc = 0. Component a, b and c take time steps ∆ta = 1,
∆tb = 2 and ∆tc = 10, respectively. Components a and b are scheduled for
coupling at t{a,b} = 5, and component c is not coupled to anything up to
t = 30.

The algorithm will run component b for one time step, where it will start
coupling {a, b}, while component a would need to do five time steps to reach
the coupling time. According to the condition (17), however, processors on Pa

will advance both a and c in turns. Since c is running on Pb as well which is
blocked by b, it will not be able to complete the second step, and a dead-lock
occurs. Using the notation introduced in (6)−(13), the following happens:

13

Step Pa Pb

1 Sc Sc

2 Fc Fc

3 tc := 10 tc := 10

4 Sa Sb

5 Fa Fb

6 ta := 1 tb := 5

7 Sc S{a,b}

8 idle idle

Note that the processors on Pb cannot tell when component a will reach the
coupling time t{a,b}, because there is no communication with processors Pa

prior to the coupling. Therefore the dead-lock has to be resolved by not al-
lowing component c to ’rush ahead’ even if it satisfies condition (17), i.e. it
has not reached any coupling time which involves component c. The extra
condition should be based on information available on Pa, which includes the
component time ta and the coupling time ta,b.

3 Algorithm

Based on the considerations and lessons learned in sections 2.2 and 2.3, we con-
struct a scheduling algorithm which uses a Temporal and Predefined Ordering

of Tasks (TPOT). In the following subsections the TPOT algorithm is defined,
an implementation is provided and then the correctness and robustness are
proved.

3.1 Mathematical definition of TPOT

The basic idea of the algorithm is to execute all tasks (couplings and time-
stepping) in the order of simulation time, and if the simulation times are equal,
then in a predefined order.

In general the framework has to execute the following tasks: couplings between
components and time stepping components. We can define the set of current
tasks W (stands for ’work-to-do’) as executing the next coupling for all pairs
of components in K and doing the next time step for all components in C.

14

Since there is exactly one task for each element of K and C, and K and C are
disjoint, the set W can be defined as

W := K ∪ C (26)

For each element w ∈ W we can assign a unique integer index in the range
1 . . . (NK + NC) by generalizing the coupling order function f defined in (25)
to an order function for all tasks:

g : w →











f(w) if w ∈ K

w + NK if w ∈ C
(27)

Note that the coupling tasks are indexed with smaller numbers than the time
stepping tasks. For each processor p the subset of couplings it is involved in is

Kp := {{c, d} | (c ∈ Cp or d ∈ Cp) and {c, d} ∈ K} (28)

and then the subset of tasks that processor p is involved in is defined as

Wp := Cp ∪ Kp (29)

The TPOT algorithm can now be described in a single sentence: each pro-

cessor should execute its tasks in the order of the simulation times

associated with the tasks, and if the simulation times coincide, then

in the order defined by the order function g. More precisely, for tasks
w, z ∈ Wp

Sw should preceed Sz if (tw < tz or (tw = tz and g(w) < g(z))) (30)

3.2 An implementation of TPOT

Here we describe a possible implementation of the TPOT algorithm both in
form of text and in form of a pseudo-Fortran code.

Each processor p ∈ P on which there is at least one component (NCp
> 0)

executes the following steps

(1) Set the minimum local time τp to the minimum of the simulation times
tw associated with the local tasks w ∈ Wp

(2) It τp has reached the final time tmax exit.

15

(1) TIMELOOP: do
(2) τp = min{tw | w ∈ Wp}
(3) if (τp ≥ tmax) exit TIMELOOP
(4) COUPLELOOP: do k = 1, NK

(5) c = couple order(k,1); d = couple order(k,2)
(6) if ((c /∈ Cp .and. d /∈ Cp)) cycle COUPLELOOP
(7) if (t{c,d} == τp) then
(8) call couple comp(c,d)
(9) t{c,d} = t{c,d} + ∆t{c,d}

(10) endif
(11) enddo COUPLELOOP
(12) STEPLOOP: do c = 1, NC

(13) if(c /∈ Cp) cycle STEPLOOP
(14) if(tc == τp) then
(15) call run comp(c)
(16) tc = tc + ∆tc
(17) endif
(18) enddo STEPLOOP
(19) enddo TIMELOOP

Fig. 4. Pseudo-Fortran implementation of the TPOT algorithm. The line numbers
are shown for sake of easy references.

(3) Start and finish all couplings {c, d} ∈ Kp with t{c,d} = τp in the order
determined by the coupling order function f . Increase the coupling time
by ∆t{c,d} when coupling is done.

(4) Start running all components c ∈ Cp with tc = τp in the order determined
by the component indexes. Increase the component time by ∆tc when the
time step is done.

(5) Go back to step 1.

Figure 4 shows a pseudo-Fortran implementation of the algorithm. The two-
dimensional integer array couple order provides the two component indexes
in the order of the couplings. In essence couple order(k,:) = f−1(k). The
array should be initialized the same way on all processors. The subroutines
couple comp and run comp implement the S{c,d}, F{c,d} and Sc, Fd steps de-
fined in (13)−(14) and (6)−(7), respectively.

3.3 Proof of correctness

This subsection shows that the TPOT algorithm satisfies the necessary con-
ditions defined in (17), (19)−(20), and (23)−(24). Each statement will be
accompanied with a reference to the corresponding line number in Figure 4.

16

PROOF. A coupling between components c and d is started (line 8) on pro-
cessor p only if {c, d} ∈ K (line 5) and (c ∈ Cp or d ∈ Cd) (line 6). These
conditions are the same as {c, d} ∈ Kp. A further condition is that t{c,d}
equals τp (line 7), which implies conditions (19)−(20), since tc ≥ τp if c ∈ Cp

and td ≥ τp if d ∈ Cp (line 2). Thus no coupling is started before the local
components have reached the coupling time.

The running of component c is started (line 15) on processor p only if c ∈ Cp

(line 13) and tc equals τp (line 14). Since t{c,d} ≥ τp, ∀{c, d} ∈ Kp (line 2), this
implies that

tc ≤ t{c,d} ∀{c, d} ∈ Kp (31)

Note that this is not the same (yet) as condition (17), which requires that
tc < t{c,d}. Here we can exploit the feature of the algorithm, which orders the
coupling tasks before the time stepping tasks. For all couplings {c, d} ∈ Kp for
which t{c,d} equals tc, the S{c,d} must have been called (line 8) before Sc is called
(line 15). Therefore when the time step gets started (line 15), the originally
equal coupling times had already been increased (line 9) and condition (17)
holds. Thus no extra time stepping is done after the coupling time has been
reached.

The algorithm stops on processor p when τp ≥ tmax (line 3) which implies
conditions (23)− (24), since tc ≥ τp, ∀c ∈ Cp and t{c,d} ≥ τp, ∀{c, d} ∈ Cp,
respectively (line 2). Consequently the algorithm does not finish without exe-
cuting all couplings and time steps. 2

3.4 Proof of robustness

In this subsection we prove that the TPOT algorithm cannot get into a dead-
lock. We start with an intuitive and constructive proof which roughly follows
the true execution of the algorithm, and finish with a more rigorous proof,
which starts with the assumption that there is a dead-lock, and shows that
such an assumption leads to contradicting.

PROOF 1 At any point in the execution, the component times and coupling
times are consistent across all processors, and so is the task indexing function
g defined in (27). Consequently the tasks are ordered the same way on all
processors, although the processors only know about a subset Wp of the tasks.
Let us select the task w which is the first in the global ordering (i.e. it has
the smallest tw, and among the tasks with the same simulation time it has the
smallest index g(w)). For any processor p ∈ Pw, the minimum simulation time

17

Table 1
Simulation time steps (∆t) and CPU costs (∆T) for the components of the SWMF

Component ID c ∆tc ∆Tc ∆tc/∆Tc maxNPc

Solar Corona SC 1 0.397 11.48 0.035 22408

Inner Heliosphere IH 2 60.000 81.81 0.733 2880

Solar Energetic Particles SP 3 60.000 6.01 9.983 1

Global Magnetosphere GM 4 4.000 125.54 0.032 2494

Inner Magnetosphere IM 5 5.000 0.53 9.434 1

Radiation Belt RB 6 300.000 17.79 16.863 1

Ionospheric Electrodynamics IE 7 8.000 4.26 1.853 2

Upper Atmosphere UA 8 10.000 38.16 0.262 32

must be τp = tw since w is the task with the smallest time. Since the processors
try executing the tasks in the same order, on all p ∈ Pw the Sw will be called
before starting any other (potentially blocking) tasks. Both for time stepping
and coupling tasks the sufficient condition of completion is that all involved
processors call Sw, therefore the task will be completed and the processors
will progress to the next task. Since the number of tasks is finite, eventually
all tasks will be completed and the algorithm will finish successfully. 2

PROOF 2 An alternative proof starts with the assumption that the algo-
rithm has reached a dead-lock. In that case all processors must have started
some task wp but never returned from Swp

. We can now select task w as the
first of the set of wp tasks arranged by the task order. All processors involved
in task w (p ∈ Pw) must have called Sw the last time, since Sw is called before
any other of the unfinished tasks, and task w is not yet complete. According
to the conditions (9) and (16), however, this means that Sw will complete
successfully, which contradicts the assumption of the dead-lock. 2

4 Application

To demonstrate the usefulness of the TPOT algorithm, we present some emu-
lated timings for the SWMF involving 8 components with 9 pairwise couplings.
The execution time is calculated by a Perl script which can emulate the par-
allel execution of the components, it takes the processor synchronizations into
account, and adds up the CPU time spent on running the components and
the idle times for each processor. The script uses timings from actual SWMF
runs to estimate the execution time of the components and it uses Amdahl’s
law [9] to estimate the scaling behavior of the parallel components based on

18

Table 2
Coupling frequencies in the SWMF

Coupling c d ∆t{c,d}

SC-IH 1 2 60.0

SC-SP 1 3 60.0

IH-SP 2 3 60.0

IH-GM 2 4 60.0

GM-IM 4 5 40.0

GM-RB 4 6 300.0

GM-IE 4 7 8.0

IM-IE 5 7 40.0

IE-UA 7 8 80.0

the timings of the components on different number of CPU-s. The time spent
on the couplings is currently neglected. The script can give reasonable esti-
mates for doing the simulations on different number of processors and with
different processor layouts and coupling schedules. Using emulated timings
instead of actual timings allows very fast evaluation of the various execution
strategies, and the results are easier to interpret than the timings of actual
SWMF runs which include coupling times, I/O operations and uncertainties
due to the communication hardware. It has been verified in several runs that
the emulated timings and the actual timings are reasonably close, and thus
these idealized timing results provide a good basis of comparison.

Table 1 shows the typical time steps ∆t and the associated CPU time costs
(estimated for a single processor) ∆T on an SGI Altix supercomputer for
each component. The single-processor performance (defined as simulation time
divided by CPU time) varies between 0.032 and 17. This means that if we
wish to get real time speed (wall clock time equal to simulation time), some
components will have to run on at least 32 CPU-s, while other components
cannot keep even a single CPU busy.

Not all the components of the SWMF are parallel. The last column in Table 1
shows the maximum number of processors that the component can use. In case
of the truly parallel components the maximum number of processors is limited
by the total number of blocks, which are the basic un-dividable units of the
domain decomposition in those components. In practice the non-ideal scaling
limits the maximum number of processors for the SC, IH and GM components
to a few hundred, above which the performance (simulation time/wall clock
time) starts to degrade.

The coupling frequencies are based on the time steps of the involved com-

19

ponents as well as accuracy requirements. They vary between 8 seconds and
five minutes as shown in Table 2. The simulation is done from tmin = 0 to
tmax = 600 seconds simulation time. The total CPU time needed is

Topt = tmax

∑

c

∆Tc

∆tc
≈ 39768 s (32)

This CPU time is a lower limit that can be achieved only when all components
run on a single CPU and there is no idle time. We can define the optimal wall
clock time on Np processors as

Sopt =
Topt

Np

(33)

and define the efficiency as

ε =
Sopt

S
(34)

where S is the actual execution wall clock time in seconds. If the number of
processors exceed the number of components, the efficiency must drop below
the maximum 100% because of the non-perfect scaling of the parallel compo-
nents. In addition to that there may be idle times on some of the processors
due to the imperfect load balancing and/or coupling schedules.

Let’s compare various execution strategies for Np = 128 processors. The op-
timal wall clock time is Sopt ≈ 310 seconds. In purely sequential execution
mode, where all components use as many processors as they can and the
processor layouts are overlapped, SWMF will finish the simulation in about
S = 870 seconds, which corresponds to an efficiency ε ≈ 36%. If we modify
the layout such that the components with limited number of CPU-s do not
overlap, but the SC, IH, and GM components use all the CPU-s, the total
time reduces to 794 seconds. A pure concurrent layout should be based on the
relative performance of the parallel components. The serial components (SP,
IM and RB) occupy 3 CPU-s. The IE component could use 2 CPU-s, but it is
fast enough on 1 CPU. The remaining 124 CPU-s should be divided between
IH, UA, SC and GM such that they run at approximately the same speed.
Based on the performance numbers in Table 1 and the scaling behaviors, we
assign 3 processors to IH, 6 processors to UA, 58 processors to SC and 57
processors to GM to achieve an optimal load balance. This fully concurrent
layout results in a wall clock time of 410 seconds with an efficiency ε ≈ 76%.
The efficiency is mostly limited by the scaling behavior of the GM and SC
components. If the total CPU time Topt would use the costs of GM and SC on
about 50 processors (as opposed to 1), the efficiency would be ε ≈ 92%.

20

Table 3
Wall clock time S and efficiency ε on 128 processors

Layout and number of processors used by UA IH SC GM S ε

overlap 32 128 128 128 870 36%

SP,IM,RB,IE,UA disjoint, SC-IH-GM all 32 128 128 128 794 39%

disjoint 6 3 58 57 410 76%

disjoint except for SC-IH overlap 6 61 61 57 410 76%

In case the IH component does not fit onto 3 processors, it may be overlapped
with other components. Since IH is coupled to SC and SP only, it is natural to
overlap IH with SC, so the two components do not have to wait for each other.
This results in a mixed layout with SC and IH overlapped on 61 processors,
GM running on 57 processors, UA on 6 processors and SP, IM, RB and IE
on 1 processor each. The resulting wall clock time is 410 seconds, which is
the same as for the fully disjoint layout. In both cases the wall clock time
is determined by the GM component running on 57 processors, but the SC
and IH components are also utilizing their processors to almost 100%. The
various layouts and the corresponding timings and efficiencies are summarized
in Table 3.

Let’s now compare the execution strategies for 32 processors. The optimal wall
clock time is Sopt ≈ 1240 seconds. In the purely sequential execution mode
the SWMF will finish in 1735 seconds. If the SP, IM, RB and IE components
have non-overlapping layouts, while UA, IH, SC and GM use all 32 processors,
the wall clock time improves only to 1704 seconds. The reason for the modest
improvement is that the serial components cannot execute concurrently, be-
cause their time steps and costs are very different, and the couplings result in
a lot of idle time. In a purely concurrent layout which is optimized for load
balance, the SP, RB, IM, IE and IH components use 1 processor each, the UA
uses 2 processors and the SC and GM components use 12 and 13 processors,
respectively. The wall clock time is 1553 seconds, which is determined by the
SC component, but GM is also running 98% of the time.

In practice, however, the IH component does not fit onto a single processor
due to the memory requirements. If we overlap SC and IH on 13 processors,
while GM still uses 13 processors, the overall wall clock time improves to 1523
seconds. The improvement is due to the better use of the processor which
was occupied by IH in the concurrent layout (and was idle 50% of the time),
and is shared by SC and IH (with almost no idle time) when the SC and
IH components overlap. This change suggests that we can further improve
the speed by eliminating idle time on the least used processors. Our final
layout overlaps the SP, RB, IM and IE components on a single processor. The
UA, IH and SC components are overlapped on 16 processors, finally the GM
component uses the remaining 15 processors. With this layout the SWMF

21

Table 4
Wall clock time S and efficiency ε on 32 processors

Layout and number of processors used by UA IH SC GM S ε

overlap 32 32 32 32 1735 71%

SP,IM,RB,IE disjoint, UA-SC-IH-GM all 32 32 32 32 1704 73%

disjoint 2 1 12 13 1553 80%

disjoint except for SC-IH overlap 2 13 13 13 1523 81%

SP-IM-RB-IE overlap, SC-IH-UA overlap 16 16 16 15 1401 89%

same as above but large time steps 16 16 16 15 1691 73%

finishes the simulation in 1401 seconds which corresponds to an efficiency of
ε ≈ 89%.

Finally we demonstrate that fine grained time stepping pays off in practice
too. A simple way to mimic coarse grained time stepping is to increase the
time steps ∆tc to be equal to the largest common denominator of the coupling
frequencies ∆t{c,d}, and the computational cost ∆Tc is also increased propor-
tionally. In effect the components will get from coupling to coupling in a single
(or a few) time steps. For the purely disjoint or fully overlapping layouts this
change makes no difference at all. For the mixed layouts, however there is
a change in performance. In particular, let’s take the best layout found for
the fine grained time stepping on 32 processors: SP-RB-IM-IE overlapped on
1 processor, UA-IH-SC overlapped on 16 processors, and the GM component
uses the remaining 15 processors. With the increased time steps the simulation
takes 1691 seconds instead of the 1401 seconds obtained with the fine grained
time stepping. The efficiency drops from 89% to 73%.

The various layouts, the timings and efficiencies are listed in Table 4.

5 Conclusions

This paper presented a general algorithm for scheduling the parallel execution
and coupling of components in a software framework. The TPOT algorithm
requires no extra communication between the processors, it allows arbitrary
processor layouts and coupling schedules, and it cannot get into a dead-lock.
These features allow to select optimal layout and coupling schedules for a
given number of processors. The TPOT algorithm has been successfully used
in the Space Weather Modeling Framework.

The SWMF is implemented as a single executable. For a multiple-executable
framework the TPOT algorithm will work, but there may be alternatives. If

22

each executable corresponds to a component, and multiple components can
run on the same processor, then some of the potential dead-lock situations
may be resolved by the multitasking environment. For example starting the
execution of component a will not block the execution of component b on the
same processor, so the dead-lock situations described in subsections 2.3.1 and
2.3.3 will be avoided. This means that a multiple-executable approach may
allow more flexibility in the scheduling algorithm. Note, however, that even in
the multiple-executable case it is possible to get into trouble: for example the
situation described in subsection 2.3.2 with the circular couplings will lead to
a dead-lock.

We have not attempted to solve the general optimization problem, which can
be formulated in various manners. For example one can look for the optimal
processor layout for a given coupling schedule and number of processors, or
one can try to find the minimum number of processors that achieves a required
execution speed. In case the cost of the execution of the components or the cost
of the couplings change significantly during the run, it may be necessary to do
dynamic load balancing. This dynamic load balancing could use the timings
made during the run, in particular the idle times should be minimized. The
cost of the load balancing itself should also be taken into account.

Even in the idealized case, when the parallel components scale perfectly and
the couplings have zero cost, it is not trivial to find the optimal processor
layout. When the non-ideal scaling and the cost of the couplings (which also
depends on the number of processors involved) is taken into account, the
optimization becomes even more difficult. It is likely that the optimal layout
can only be determined by a numerical algorithm, and due to the very large
number of combinatorial possibilities, the algorithm has to be able to search
for the optimal layout in an intelligent manner.

References

[1] G. Tóth, I. V. Sokolov, T. I. Gombosi, D. R. Chesney, C. R. Clauer, D. L.
De Zeeuw, K. C. Hansen, K. J. Kane, W. B. Manchester, R. C. Oehmke, K.
G. Powell, A. J. Ridley, I. I. Roussev, Q. F. Stout, O. Volberg, R. A. Wolf, S.
Sazykin, A. Chan, B. Yu, J. Kóta, Space Weather Modeling Framework: A New
Tool for the Space Science Community, J. Geophys. Res. (Space Physics) in press

[2] G. Tóth, O. Volberg, A. J. Ridley, T. I. Gombosi, D. L. De Zeeuw, K. C.
Hansen, D. R. Chesney, Q. F. Stout, K. G. Powell, K. J. Kane, R. C. Oehmke,
A Physics-Based Software Framework For Sun-Earth Connection Modeling, in
Multiscale Coupling of Sun-Earth Processes, Elsevier Publ. Co., Amsterdam, The
Netherlands, A. T. Y. Lui, Y. Kamide, and G. Consolini, eds., (2005) 383.

23

[3] C. Hill, C. DeLuca, V. Balaji, M. Suarez, A. da Silva, and the ESMF Joint
Specification Team, The Architecture of the Earth System Modeling Framework,
Computing in Science and Engineering, 6 January/February (2004).

[4] Gurnis, M.; Aivazis, M.; Tromp, J.; Tan, E.; Thoutireddy, P.; Liu, Q.; Choi,
E.; Dicaprio, C.; Chen, M.; Simons, M.; Quenette, S.; Appelbe, B.; Aagaard,
B.; Williams, C.; Lavier, L.; Moresi, L.; Law, H., GeoFramework: A Modeling
Framework for Solid Earth Geophysics, American Geophysical Union, Fall
Meeting (2003) abstract #NG12D-06

[5] Luhmann, J. G., S. C. Solomon, J. A. Linker, J. G. Lyon, Z. Mikic, D. Odstrcil,
W. Wang, M. Wiltberger, Coupled model simulation of a Sun-to-Earth space
weather event, J. Atm. S.-T. Phys., 66 (2004), 1243

[6] Buis, S.; Declat, D.; Gondet, E.; Massart, S.; Morel, T.; Thual, O., PALM :
A dynamic parallel coupler for Data Assimilation, EGS - AGU - EUG Joint
Assembly, Nice, France (2003) abstract #54

[7] Williams, Timothy J.; Crotinger, James A.; Cummings, Julian C.; Lin, Zhihong,
GTC++: An Object-Oriented, Parallel, Gyrokinetic PIC Simulation, American
Physical Society, Division of Plasma Physics Meeting, New Orleans, LA (1998)
abstract #F3Q.12

[8] Leboeuf, Jean-Noel; Decyk, Viktor; Dimits, Andris; Shumaker, Dan, Gyrokinetic
calculations of ITG turbulence in general toroidal geometry within the Summit
Framework, American Physical Society, 45th Annual Meeting of the Division of
Plasma Physics, Albuquerque, New Mexico (2003) abstract #LP1.064

[9] G. Amdahl, Validity of the Single Processor Approach to Achieving Large-Scale
Computing Capabilities, AFIPS Conference Proceedings, 30 (1967) 483-485,

24

