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We present a conservative second order accurate finite volume discretization of the

magnetohydrodynamics equations including the Hall term. The scheme is generalized to

three dimensional block adaptive grids with Cartesian or generalized coordinates. The

second order accurate discretization of the Hall term at grid resolution changes is descri-

ibed in detail. Both explicit and implicit time integration schemes are developed. The

stability of the explicit time integration is ensured by including the whistler wave speed

for the shortest discrete wave length into the numerical dissipation, but then second order

accuracy requires the use of symmetric limiters in the total variation diminishing scheme.

The implicit scheme employs a Newton-Krylov-Schwarz type approach, and can achieve

significantly better efficiency than the explicit scheme with an appropriate preconditioner.

The second order accuracy of the scheme is verified by numerical tests. The parallel

scaling and robustness are demonstrated by three dimensional simulations of planetary

magnetospheres.
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1. INTRODUCTION

Ideal or resistive magnetohydrodynamics (MHD) provides a fairly accurate
physical model for a wide range of laboratory and space plasma problems. In
certain applications, however, some of the MHD approximations become invalid,
and the simulations deviate from physical reality. An essential example is recon-
nection of the magnetic field. Flows around unmagnetized planets and moons also
show features, such as asymmetry of the pile-up boundary, that cannot be modeled
with classical MHD.

One option to better describe the physics is using full or hybrid particle schemes
(see e.g. [3]). While particle and hybrid schemes can successfully model these
problems, these algorithms are very costly, especially for three-dimensional (and
possibly time-dependent) simulations. An alternative approach is to maintain the
fluid description of the plasma but allow for the decoupling of the ion and electron
fluids.

The Hall term is part of the generalized Ohm’s law and it describes the relative
speed between ions and electrons. The magnetic field lines are frozen in the electron
fluid, but not in the ion fluid due to the Hall effect. The Hall effect is important
at length scales shorter than the ion skin depth. Including the Hall term modifies
the induction equation and the total energy density equation of MHD.

Hall MHD seems to be the minimal modification required to reproduce the fast
reconnection process successfully modeled by particle and hybrid schemes [3]. In
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FIG. 1 The block-adaptive grid structure. Blocks are refined into 8 octants (left
panel). The blocks communicate via layers of ghost cells (right panel).

terms of magnetospheric physics, it is found that the Hall effect is important for
both the dayside magnetopause [13] and the nightside magnetotail [14].

Modeling the magnetic reconnection by various methods has been studied in
detail for the Geospace Environment Modeling Challenge [3, 25, 16]. For this non-
driven reconnection problem the reconnection rate increases as the Hall parameter
is increased. On the other hand [12] found that for externally driven magnetic
reconnection the presence of the Hall current does not necessarily enhance the
total reconnected flux.

In this paper we descibe a finite volume Hall MHD scheme on a three-dimensional
block adaptive Cartesian or generalized coordinate grid with both explicit and im-
plicit time discretization. To put our work in context, we briefly describe some of the
published Hall MHD schemes that are similar to our effort. There are many codes
that use relatively simple numerical techniques (e.g. explicit time integration with
hyper-resistivity) on structured two-dimensional grids. These schemes would not
be efficient for 3 dimensional calculations and do not generalize to adaptive grids.
Three-dimensional Hall MHD has been successfully modeled by pseudo-spectral
codes (e.g. [11, 5]), but spectral schemes are not suitable for adaptive grids. The
VooDoo code by Huba [7, 8] is a 3D high order finite volume scheme using a gas
kinetic type flux function and explicit time discretization with subcycling for the
Hall physics. We use a similar finite volume approach for the spatial discretization,
but use different flux functions and we use implicit time integration scheme instead
of subcycling. Chacon and Knoll [4] have developed an implicit scheme for the
incompressible Hall MHD equations in 2 dimensions. Our time integration scheme
is similar, but the formulation of the MHD equations is quite different, since we use
the usual MHD variables, while Chacon and Knoll use the vector potential and the
stream and vorticity functions. The preconditioner is also quite different. Proba-
bly the closest to our effort is the recently developed Magnetic Reconnection Code
(MRC) [2], a massively parallel Hall MHD code with a patch based adaptive mesh
refinement, CWENO type numerical flux, and Newton-Krylov type (semi-)implicit
time integration scheme. In the published papers known to us, MRC has been
applied to the Hall MHD equations in 2 dimensions.
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We develop a parallel, explicit and/or implicit 3D Hall MHD scheme and im-
plement it into the BATSRUS code [17]. BATSRUS solves the MHD equations
with second-order shock-capturing total variation diminishing (TVD) schemes on a
block-adaptve grid. Block-adaptive grids [19] consist of self-similar blocks as shown
in Figure 1. Each block has a simple logically Cartesian geometry. The grid is
refined by dividing a block into 8 smaller blocks, while coarsening is achieved by
merging 8 smaller blocks into a larger one. The BATSRUS code achieves excellent
scaling on distributed memory parallel super-computers both with explicit and with
implicit time-stepping. The implicit scheme is based on the Jacobian-free Newton-
Krylov-Schwarz (NKS) method and it can be efficiently combined with the explicit
scheme on a block-by-block basis [21].

Our goal is to add the new Hall MHD capability into BATSRUS while preserving
compatibility with all the essential features: shock-capturing, high resolution second
order TVD schemes, efficient explicit and implicit time stepping, block-adaptive
grid for both Cartesian and non-Cartesian geometries, and good parallel scaling
on distributed memory computers. We also allow for solving the Hall MHD in a
limited region by introducing a spatially varying coefficient for the Hall term.

Section 2 presents the Hall MHD equations in conservation form and we discuss
the analytic properties that are important for the discretization. In section 3 we
describe the second order discretization. Simple numerical tests as well as some
typical geophysics applications are presented in 4. The tests demonstrate the second
order accuracy of the scheme and the efficiency of the implicit time stepping scheme.
We also demonstrate good parallel scaling up to more than thousand processors.
We conclude in section 5.

2. EQUATIONS

In Hall MHD the electric field is modified from the resistive MHD expression

E = −v × B + ηJ (1)

to the Hall MHD form

E = −v × B + ηJ +
1

ne
J × B (2)

where v, B, and J are the velocity, magnetic field and current vectors, respectively,
η is the resistivity, n is the number density and e is the electron charge. Note
that the magnetic units are chosen such that the magnetic permeability of vacuum
µ0 is unity. For sake of simplicity we neglect the electron pressure gradient term
∇pe/(ne), although it can be discretized the same way as the Hall term J×B/(ne).
The electron inertia is also neglected.

The electric field enters the induction and energy equations thus the MHD
equations including the Hall term become

∂ρ

∂t
= −∇ · (ρv) (3)

∂ρv

∂t
= −∇ · (vρv + Īp + Ī

B2

2
− BB) (4)

∂e

∂t
= −∇ · [v(ε + p) + (v + vH) · (ĪB2 − BB) − B× ηJ] (5)

∂B

∂t
= −∇× [−(v + vH) × B + ηJ] (6)
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where Ī is the identity matrix, ρ and p are the mass density and the thermal
pressure. The Hall velocity is defined as

vH = − J

ne
= −∇× B

ne
(7)

while the total energy density is

e = ε +
B2

2
=

p

γ − 1
+

ρv2

2
+

B2

2
(8)

where ε is the hydrodynamic energy and γ is the adiabatic index.
For space physics simulations it is often useful to split the magnetic field into

an analytic part and a numerical part B = B0 + B1 [20]. The analytic B0 is a
divergence and curl free potential field (e.g. the dipole field of a planet), while B1

contains the rest of the field. We allow B0 to be time dependent. The advantage
of this splitting is that the numerical solution is more accurate and robust where
gradients of B0 are large. Also one can introduce a ’reduced’ total energy density

e1 = ε +
B2

1

2
(9)

that does not contain B0 or B2
0 which allows much more accurate and robust

results in regions where B0 is large. The splitting results in the following energy
and induction equations:

∂e1

∂t
= −∇ · [v(ε + p) + (v + vH) · (ĪB2

1 − B1B) + vHB0 · B1 − B × ηJ]

−B1 ·
∂B0

∂t
(10)

∂B1

∂t
= −∇× [−(v + vH) × B + ηJ] − ∂B0

∂t
(11)

There are only a few extra terms relative to classical MHD in the induction and
energy density equations all proportional to vH . This seemingly small modification
of the MHD equations is quite challenging to implement in a conservative, accurate
and efficient manner. There are two challenges:

• There is a second order spatial derivative of the magnetic field in the induction
equation that cannot be rewritten into a simple Laplace operator.

• The maximum wave speed increases from the fast magnetosonic wave to the
whistler wave speed that is approximately inversely proportional to the wave
length.

The first problem is especially difficult because of the adaptive block structure of
the BATSRUS code. It takes a lot of care to obtain a spatially second order accurate
discretization at resolution changes. The second problem is important, because the
shortest wave length that can be represented on the grid is twice the grid resolution
∆x, so the fastest wave speed can be estimated as [8]

cw = |v| + cf +
|B|π
en∆x

(12)
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FIG. 2 The stencil for calculating the face centered current on a 2D grid.

where cf is the classical MHD fast magnetosonic speed. The maximum stable time
step for an explicit time integration scheme is

∆t <
∆x

cw
∝ ∆x2 (13)

for small enough ∆x. This can make the explicit time integration algorithms rather
inefficient as the grid resolution is increased. An implicit scheme can potentially
overcome this problem, since the time step is not limited by the CFL condition.

An additional difficulty arises, since the numerical dissipation required for the
stability of the explicit numerical scheme is also proportional to the fastest wave
speed of the hyperbolic system of equations, and this can reduce the spatial order
of accuracy by one order. To see this, let us consider the usually first order accurate
local Lax-Friedrichs scheme

Un+1 − Un

∆t
= −Fn

i+1 − Fn
i−1

2∆x
+

ci+1/2(U
n
i+1 − Un

i ) − ci−1/2(U
n
i − Un

i−1)

2∆x
(14)

where U is one of the conservative variables, F is the corresponding physical flux
function, and c is the fastest wave speed. The superscripts denote the time level and
the subscripts correspond to the spatial grid indexes. The index i + 1/2 identifies
the cell face between the cell centers i and i+1. The second term on the right hand
side is the numerical dissipation and to lowest order in ∆x it is proportional to

∆x
∂

∂x

(

c
∂U

∂x

)

(15)

Since c ∝ 1/∆x the local Lax-Friedrichs scheme is inconsistent for the Hall MHD
equation.

In the following section we will describe our solutions to these challenging prob-
lems.

3. NUMERICAL DISCRETIZATION

3.1. Spatial discretization of the current for uniform grid

A second order conservative scheme requires a second order accurate calculation
of the physical fluxes at the center of the cell faces. Since the flux for the magnetic
field B contains the Hall term J × B/ne and J = ∇× B, we have to calculate the
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current with second order accuracy at the cell faces. For the x face of a uniform
Cartesian grid one can use simple central differencing and averaging as needed:

Jx
i+1/2,j,k =

Bz
i,j+1,k + Bz

i+1,j+1,k − Bz
i,j−1,k − Bz

i+1,j−1,k

4∆y
−

By
i,j,k+1 + By

i+1,j,k+1 − By
i,j,k−1 − By

i+1,j,k−1

4∆z

Jy
i+1/2,j,k =

Bx
i,j,k+1 + Bx

i+1,j,k+1 − Bx
i,j,k−1 − Bx

i+1,j,k−1

4∆z
−

Bz
i+1,j,k − Bz

i,j,k

∆x
(16)

Jz
i+1/2,j,k =

By
i+1,j,k − By

i,j,k

∆x
−

Bx
i,j+1,k + Bx

i+1,j+1,k − Bx
i,j−1,k − Bx

i+1,j−1,k

4∆y

and similar formulas apply to the other faces. Note that the normal derivatives
use the two closest cell centers only, while the tangential derivatives require 4 cell
centers and averaging in the i direction. Consequently one needs to use the first
layer of ghost cells not only at the faces between the blocks but also along the 12
edges of the block. Figure 2 shows the stencil used for calculating the 3 components
of the current at the x face center on a 2D grid.

3.2. Spatial discretization of the current at resolution changes

The second order accurate central difference formulas (16) used to calculate the
curl of B on a uniform grid can be used at resolution changes as well if the ghost
cells are filled in with at least 3rd order accurate magnetic field. An alternative is
to use a one sided derivative. For example the y gradient of Bz at the cell center j
can be approximated as

(

∂Bz

∂y

)

j

=
−3Bz

j + 4Bz
j+1 − Bz

j+2

2∆y
(17)

We use this latter approach to avoid the use of ghost cells in the tangential (relative
to the face) derivatives on the coarse side of resolution changes. On the fine side we
take the first approach, ie. interpolate the magnetic field to the fine ghost cells with
third order accuracy. This is not a unique choice, there are many other possible
discretizations.

3.3. Spatial discretization of the magnetic field at resolution changes

Let us consider a face orthogonal to the x direction indexed by 1/2, j, k and
assume that the ghost cells 0, j, k cover the domain of a coarser block. We are
interested in calculating the current for the fine block because the flux on the
coarse side is overwritten by the sum of the 4 fine fluxes [1] in a conservative AMR
scheme. The interpolation of the magnetic field has to be third order accurate
so that the derived current can be second order accurate. Third order accuracy
is quite complicated to achieve in finite volume discretization, so we take a finite
difference approach and regard the cell center values to be point values (and not
cell averages).
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FIG. 3 The weights used to interpolate the magnetic field to the fine ghost cell
(dashed circle) with 3rd order accuracy on a 2D grid. First the coarse ghost cell
centers (large dots) are interpolated in the vertical direction, next the interpolated
value (circle) and the fine cell centers (small dots) are interpolated in the horizontal
direction.

The first step is to interpolate the coarse cell values in the tangential direction
to the yj , zk coordinates. For example the j = k = 1 index is interpolated from
3 coarse cell values covering the fine ghost cells j, k ∈ {−1, 0}, j, k ∈ {1, 2} and
j, k ∈ {3, 4}. In general when both j and k are odd numbers the interpolation
formula is

B−1/2,j,k =
5B−1/2,j−3/2,k−3/2 + 30B−1/2,j+1/2,k+1/2 − 3B−1/2,j+5/2,k+5/2

32
(18)

Note that the 3 coarse cells are collinear with the fine cell along a diagonal line in
the y, z plane. Cells with even j and k or even and odd j and k use a different set
of coarse cells but the weights are the same. Next the fine cells inside the fine block
and the interpolated coarse cell value are interpolated in the x direction along the
j, k grid lines

B0,j,k =
8B−1/2,j,k + 10B1,j,k − 3B2,j,k

15
(19)

The same interpolation scheme is used for the other 5 faces. Figure 3 shows the
interpolation weights for the 2D case.

The edge ghost cells are filled in with a similar approach. For example the edge
ghost cells indexed by 0, 0, k are interpolated from 2 fine cells inside the fine block
and the coarse cell values interpolated in the z direction

B0,0,k =
8B−1/2,−1/2,k + 10B1,1,k − 3B2,2,k

15
(20)

where

B−1/2,−1/2,k =
5B−1/2,−1/2,k−3/2 + 30B−1/2,−1/2,k+1/2 − 3B−1/2,−1/2,k+5/2

32
(21)
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for odd values of k and

B−1/2,−1/2,k =
5B−1/2,−1/2,k+3/2 + 30B−1/2,−1/2,k−1/2 − 3B−1/2,−1/2,k−5/2

32
(22)

for even values of k. The edges parallel with the x and y axes are filled in similarly.

3.4. Discretization of the current for non-Cartesian geometries

We use the generalized coordinate approach to calculate the current with second
order accuracy on non-Cartesian grids. The formulas developed in the previous
subsections for taking gradients in the x, y and z directions can be used without any
change to obtain second order accurate derivatives of the magnetic field components
Bx, By and Bz with respect to the generalized coordinates ξ, η, ζ. From these one
can obtain the x, y and z derivatives using the coordinate transformation matrix
T = ∂(ξ, η, ζ)/∂(x, y, z), for example

∂Bz

∂y
=

∂ξ

∂y

∂Bz

∂ξ
+

∂η

∂y

∂Bz

∂η
+

∂ζ

∂y

∂Bz

∂ζ
(23)

The elements of matrix T can either be calculated analytically, or they can be
obtained numerically by discretizing and inverting T−1 = ∂(x, y, z)/∂(ξ, η, ζ). Ele-
ments of T−1 at the face i + 1/2, j, k are obtained with the following fourth order
accurate formulas:

(

∂x

∂ξ

)

i+1/2,j,k

=
27(xi+1,j,k − xi,j,k) − (xi+2,j,k − xi−1,j,k)

24∆ξ
(24)

(

∂x

∂η

)

i+1/2,j,k

=
9

(

∂x

∂η

)

i,j,k
+ 9

(

∂x

∂η

)

i+1,j,k
−

(

∂x

∂η

)

i−1,j,k
−

(

∂x

∂η

)

i+2,j,k

16

(

∂x

∂ζ

)

i+1/2,j,k

=
9

(

∂x

∂ζ

)

i,j,k
+ 9

(

∂x

∂ζ

)

i+1,j,k
−

(

∂x

∂ζ

)

i−1,j,k
−

(

∂x

∂ζ

)

i+2,j,k

16

where the transverse gradients are obtained as

(

∂x

∂η

)

i,j,k

=
8(xi,j+1,k − xi,j−1,k) − (xi,j+2,k − xi,j−2,k)

12∆η
(25)

(

∂x

∂ζ

)

i,j,k

=
8(xi,j,k+1 − xi,j,k−1) − (xi,j,k+2 − xi,j,k−2)

12∆ζ
(26)

Here we can safely use the ghost cells, since the coordinates of the ghost cell centers
are exact. The formulas for the y and z faces can be derived in an analogous fashion.

3.5. Second order explicit scheme

The main challenge for the explicit time integration scheme is to preserve the
stability without losing the order of accuracy. In the previous subsections we showed
how the current can be discretized at the cell interfaces. Using this current it is
straightforward to construct the second order accurate physical flux. The remaining
task is to use a numerical dissipation that is stable and second order accurate. As

8



we have shown the naive implementation of the first order Lax-Friedrichs scheme
(14) is inconsistent for the Hall MHD equations.

We use the MUSCL approach [22] to get a consistent and second order accurate
TVD scheme. The state variable U is extrapolated from the left and right cell
centers to the cell face at i + 1/2 as

UL
i+1/2 = Ui +

1

2
∆̄Ui

UR
i+1/2 = Ui+1 −

1

2
∆̄Ui+1 (27)

where ∆̄Ui is the limited slope in cell i. The divergence of the numerical flux (the
last term in 14) is modified to

Φi =
ci+1/2(U

R
i+1/2

− UL
i+1/2

) − ci−1/2(U
R
i−1/2

− UL
i−1/2

)

2∆x
(28)

In classical MHD c does not depend on ∆x and the numerical dissipation is a second
order term as long as the limited slopes are consistent, i.e. ∆̄Ui → (Ui+1−Ui) when
(Ui+1 − Ui) → (Ui − Ui−1). For Hall MHD we need higher order accuracy, and it
turns out that only a certain class of limiters can be used. The simplest, most
robust and quite commonly used minmod limiter is defined as

∆̄Ui = minmod(Ui+1 − Ui, Ui − Ui−1) (29)

where the minmod function returns 0 if the arguments have different signs, oth-
erwise it returns the argument with the smallest magnitude. The minmod limiter
is asymmetric in the sense that it either takes the left slope or the right slope,
depending on the second derivative of the solution. Due to the asymmetry the nu-
merical flux in (28) is proportional to c∆x2∂3U/∂x3 (here we take c to be constant
for simplicity) so the scheme is first order accurate only in general.

On the other hand the monotonized central limiter

∆̄Ui = minmod

[

β(Ui+1 − Ui), β(Ui − Ui−1),
Ui+1 − Ui−1

2

]

(30)

with 1 < β ≤ 2 is symmetric as long as the last argument, (the central difference)
has the smallest magnitude. This is true in sufficiently smooth parts of the solution
and away from local extrema. Substituting the central difference into equations
(27) and then into (28) we get

Φ =
ci+1/2

(

Ui+1 − Ui+2−Ui

4
− Ui − Ui+1−Ui−1

4

)

2∆x
−

ci−1/2

(

Ui − Ui+1−Ui−1

4
− Ui−1 − Ui−Ui−2

4

)

2∆x
(31)

For sufficiently smooth solutions this can be rewritten up to the lowest order non-
zero terms in ∆x as

Φi = −
(ci+1/2 + ci−1/2)

∂4U
∂x4

∣

∣

∣

i
∆x4 + (ci+1/2 − ci−1/2)

∂3U
∂x3

∣

∣

∣

i
∆x3

16∆x
(32)
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Since according to (12) c ∝ 1/∆x the first term on the right hand side is pro-
portional to ∆x2. The second term contains the difference (ci+1/2 − ci−1/2) that
can be approximated as (∂c/∂U) · (∂U/∂x)i∆x ∝ O(1), so the second term is also
proportional to ∆x2. This proves that the use of a symmetric limiter achieves the
required second order accuracy.

We note that for ordinary MHD (or any hyperbolic system where the wave speed
does not depend on the wave length) the MC limiter has a third order dissipation
in smooth regions as opposed to the asymmetric minmod (or superbee) limiters
that have second order dissipation at best. One can also construct limiters with
different weights in the left and right extrapolations that give third order accuracy
for the physical fluxes as well. Using

∆̄LUi = minmod

[

β(Ui+1 − Ui), β(Ui − Ui−1),
2Ui+1 − Ui − Ui−1

3

]

(33)

∆̄RUi = minmod

[

β(Ui+1 − Ui), β(Ui − Ui−1),
Ui+1 − Ui − 2Ui−1

3

]

(34)

for the left and right extrapolations in (27), respectively, results in a third order
accurate scheme in sufficiently smooth regions away from local extrema. This is
the same as Koren’s limiter [9] but with an adjustable β parameter.

Finally we point out the similarity between the dissipation terms arising from
the symmetric limiter and the fourth (or higher) order hyper-resistivity used in
several Hall MHD codes (e.g. [3, 25, 24]). If we substitute the dominant term of
cw in (12) into the first term of (32) we obtain the numerical dissipation

Φi = −|B|π
8en

∂4U

∂x4

∣

∣

∣

∣

i

∆x2 (35)

This is essentially the same form as the fourth order hyper-resistivity often used to
stabilize the induction equation. Note, however, that the TVD scheme switches to
lower order dissipation where the solution is not smooth, while the hyper-resistivity
is applied uniformly everywhere. Another difference is that the TVD scheme is ap-
plied to all of the Hall MHD equations, while the hyper-resistivity is only applied to
the induction equation, and the other equations are usually stabilized in a different
manner.

We also note that the explicit Hall Diffusion Scheme (HDS) described by Sullivan
and Downes [15] also results in a fourth order hyper-resistivity term once the update
equations for the By and Bz components (equations 29 and 30 in their paper) are
substituted into each other. The HDS scheme is essentially a two stage formulation
of the one stage hyper-resistivity scheme.

3.6. Implicit time discretization

We use the Newton-Krylov-Schwarz (NKS) approach to formulate the implicit
time integration scheme for Hall MHD. Thanks to the general implementation of
the implicit scheme in the BATSRUS code [21], once the explicit Hall MHD scheme
is implemented, the implicit time integration works as well. To make it efficient,
however, the preconditioner needs to take into account the Hall term. This is not
a simple task. For sake of simplicity and efficiency the preconditioner is based on
the Jacobian that uses the nearest 6 neighbor cells only on a 3D grid. Due to
the higher order derivatives, the stencil of the Hall term is much more extended.
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We found that the preconditioner becomes much more effective if the Hall term
is discretized on a stencil that is as compact as possible. In particular, when the
current is calculated for the X face at i + 1/2, j, k, all x derivatives should use only
the i + 1 and i cell centers only.

An additional difficulty arises due to the particular choice of the implicit scheme.
For sake of efficiency a spatially first order local Lax-Friedrichs (or HLL or Roe)
discretization is used in the matrix-free calculation of the Jacobian. The corre-
sponding error term is c∆x∆t which is second order for classical MHD, but it is
only first order accurate for Hall MHD, since c ∝ 1/∆x and for the implicit scheme
the time step is decreased as ∆t ∝ ∆x as the resolution is increased.

To resolve this problem, we exploit that for the implicit time step it is not
necessary to include the full whistler wave speed into the numerical flux function.
In fact, our numerical tests confirmed that it leads to significant degradation of
accuracy, if we use the full speed c = cw in the numerical flux. Since the stability
of the implicit scheme does not depend on the numerical dissipation, one can use a
reduced speed

c = |u| + cf + W
π|B|
∆xen

(36)

where W < 1. According to Chacon and Knoll [4] a good choice is W ∝ ∆texpl/∆t
where ∆texpl is the time step for the explicit scheme. This way W ∝ ∆x, the c
used in the numerical flux becomes independent of the resolution, and the second
order accuracy is recovered. An even simpler choice is to set W = 0 that seems to
work fine in our experience.

3.7. Preconditioner

The general preconditioner described in [21] (and implemented in BATSRUS)
calculates the Jacobian with the assumption that the face flux in the Lax-Friedrichs
scheme is

Fi+1/2,j,k =
Fi,j,k + Fi+1,j,k

2
(37)

and Fi,j,k is a function of the local state variable Ui,j,k only. The Hall term in the
cell centered flux function used by this preconditioner is

FH(B)i,j,k = (vHB− BvH)i,j,k = −
(

JB − BJ

ne

)

i,j,k

(38)

where the current Ji,j,k is evaluated with a cell centered approximation. As we
take the partial derivatives ∂Fi,j,k/∂Ui,j,k, the current Ji,j,k will behave as a con-
stant multiplier, since it depends on the magnetic field in the neighbor cells only.
Unfortunately this neglects the most important terms that are responsible for the
whistler wave, and make the preconditioner useless for a Hall term dominated prob-
lem. To obtain an efficient preconditioner, we need to add the partial derivatives
that are not included by the general preconditioner algorithm.

The face flux of the magnetic field contains the current Ji+1/2,j,k that is dis-
cretized by (16) and depends on the cell values Bi,j,k, Bi,j±1,k, Bi,j,k±1, Bi+1,j,k,
Bi+1,j±1,k, and Bi+1,j,k±1. For sake of computational efficiency, the preconditioner
is limited to the adjacent cells (i±1, j, k), (i, j±1, k), and (i, j, k±1) so that the ap-
proximate Jacobian is restricted to a block heptadiagonal matrix. This means that
we drop all fractions in (16) that have four terms in the numerator. The remaining
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two fractions describe the orthogonal (with respect to the face) derivatives of the
tangential components of the magnetic field. Substituting these current terms into
the discretized induction equation results in

RH(By
i,j,k) = −∆x−2

[

(

Bx

ne

)

i+1/2,j,k

(Bz
i+1,j,k − Bz

i,j,k) +

(

Bx

ne

)

i−1/2,j,k

(Bz
i−1,j,k − Bz

i,j,k)
]

(39)

RH(Bz
i,j,k) = +∆x−2

[

(

Bx

ne

)

i+1/2,j,k

(By
i+1,j,k − By

i,j,k) +

(

Bx

ne

)

i−1/2,j,k

(By
i−1,j,k − By

i,j,k)
]

(40)

and similar terms for the y and z faces. Here RH = −∇·FH is the change of B due
to the Hall term. The partial derivatives of the Bx/(ne) terms are properly approxi-
mated by the general algorithm that calculates [(∂F/∂U)i+1−(∂F/∂U)i−1]/(2∆x).
The extra terms that correspond to the partial derivatives of the current with re-
spect to the magnetic field, are obtained analytically and added to the Jacobian
matrix, e.g.

∂RH(By
i,j,k)

∂Bz
i+1,j,k

= −∆x−2

(

Bx

ne

)

i+1/2,j,k

(41)

Although we dropped a lot of terms from (16), the preconditioner still contains
the essential terms that are responsible for the whistler waves. To see this, let us
take the case when the ambient magnetic field is homogeneous and aligned with
the x axis, the velocity is zero, and the density is also homogeneous. Then (39) is
a discretization of

∂By

∂t
= −Bx

ne

∂2Bz

∂x2
(42)

∂Bz

∂t
= +

Bx

ne

∂2By

∂x2
(43)

that can be combined to

∂2By

∂t2
= −

(

Bx

ne

)2
∂4By

∂x4
(44)

Substituting By = exp i(kx − ωt) gives the dispersion relation

ω2 =

(

Bx

ne

)2

k4 (45)

and the wave speed for a fixed wave number is

c =
ω

k
=

k|Bx|
ne

=
2πB

λne
(46)

that is the whistler wave speed. Substituting λ = 2∆x results in the last and
dominant term of (12).

12



3.8. Preconditioner for generalized coordinates

To derive the preconditioner in generalized coordinates, we start from the dis-
crete form of the induction equation for a particular grid cell and we deal with the
contribution of the Hall term only:

RH(B) =
1

V

∑

s

As

nse
· (BsJs − JsBs) (47)

where V is the cell volume, s indexes the faces of the cell, and As is the out-
ward pointing area vector for face s. The current Js is discretized with partial
derivatives with respect to the generalized coordinates multiplied by the coordi-
nate transformation matrix T = ∂ξ/∂x as in (23). For component Bj the above
equation becomes

RH(Bj) =
1

V

∑

s

As
i

nse

(

Bs
i ǫjkl − Bs

j ǫikl

)

T s
kα∂αBs

l (48)

where ǫ is the Levi-Civita tensor and summation is implied for repeated indexes.
The i, j, k, l indexes are for the Cartesian coordinates x, y, z, while the α index is
for the generalized coordinates ξ, η, ζ.

Just like in the Cartesian case, the partial derivatives of RH with respect to
Bs

i and Bs
j are properly taken into account by the general algorithm. We only

need to calculate the extra terms that correspond to the derivatives of Bl. Since
we constrain the preconditioner matrix to the neighboring cells, only the discrete
difference along the direction α = σ normal to face s is kept when taking the
derivatives:

∂σBs
l = ±BS

l − Bl

∆σ
(49)

where BS
l is the magnetic field at the center of the neighbor cell on the other side of

face s. The plus sign is taken for the face pointing toward the positive σ direction.
Now we are ready to calculate the extra elements of the ∂RH/∂B matrix needed
for the preconditioner:

∂RH(Bj)

Bl
=

1

V

∑

s

∓As
i

nse
(Bs

i ǫjkl − Bs
j ǫikl)

T s
kσ

∆σ
(50)

∂RH(Bj)

BS
l

= ± As
i

V nse
(Bs

i ǫjkl − Bs
j ǫikl)

T s
kσ

∆σ
(51)

One may further simplify the preconditioner by taking the cell center values n, Bi,
Bj and Tkσ instead of the face centered values ns, Bs

i , Bs
j and T s

kσ, respectively.
For sake of computational efficiency we have implemented this simplified form.

As a consistency check we show that the preconditioner developed for the gen-
eralized coordinates simplifies to the Cartesian preconditioner for Cartesian coor-
dinates, when Tkσ/∆σ = δkσ/∆xk and As

i /V = ±δis/∆xs. Here δ denotes the
Kronecker delta and σ = s = k = i. With these the above formulas simplify to

∂RH(Bj)

Bl
=

∑

s

Bs
sǫsjl

∆x2
sn

se
(52)

∂RH(Bj)

BS
l

= − Bs
sǫsjl

∆x2
sn

se
(53)

This is the Cartesian preconditioner written in a general notation. For example,
for s = x, j = y, l = z and S = i + 1 the last equation coincides with (41).
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FIG. 4 The z component of the magnetic field at the initial (left panel) and final
(right panel) times for the whistler wave test on a periodic non-uniform grid. The
crosses indicate the cell centers.

4. NUMERICAL TESTS

4.1. Propagation of the whistler wave

To verify the accuracy of the algorithm and the correctness of the implementa-
tion, we simulate the propagation of the whistler wave in a periodic box. In our
standard runs we use the second order MUSCL scheme with the Lax-Friedrichs flux
and the MC limiter with β = 1.5. The explicit runs use a two stage Runge-Kutta
scheme with a CFL number 0.8. The implicit runs use the BDF2 scheme, a time
step linearly proportional to the cell size, and a reduced numerical flux with W = 0
in (36). We apply the 8-wave scheme to control the divergence of the magnetic field
in the two-dimensional test, although this is not really necessary in these test runs.
Any deviation from these standard parameters will be noted.

We start with the grid aligned case on a uniform grid. The computational
domain is −100 < x < 100 with periodic boundaries. The initial condition is
uniform for the following variables: ρ = 1, vx = −0.001, Bx = 100 and P = 1, so
the Alfvén speed is cA = Bx/

√
ρ = 100 and the sound speed is cS =

√

γp/ρ ≈ 1.291
where γ = 5/3. The choice of a non-zero vx avoids the problems with normalization
in the implicit scheme. To make the whistler wave speed comparable to the Alfvén
speed, we set the ion mass per charge M/e = 35.1076 (an admittedly arbitrary
number in the normalized units). We will study the longest wave that fits into
the computational domain, so the wave length is λ = 200 and the wave number
is k = 2π/λ = π/100. The exact formula for the phase speed of the right going
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TABLE 1
Relative errors for whistler wave test on a uniform grid

n expl/mm explicit impl/W=1 implicit impl/mm expl/rot impl/rot
16 1.236 0.42261 0.875 0.15352 0.19424 0.30733 0.18311
32 0.614 0.08537 0.465 0.03856 0.04881 0.06167 0.04266
64 0.265 0.01926 0.243 0.00100 0.01234 0.01388 0.01034

128 0.118 0.00519 0.124 0.00277 0.00316 0.00373 0.00304

whistler wave relative to the fluid is

cw =
ω

k
=

w

2
+

√

c2
A +

w2

4
≈ 169.345 (54)

where w = (M/e)(k|B|)/ρ ≈ 110.294, and the amplitude ratio of the transverse
velocity and magnetic perturbations is

|δvy,z|
|δBy,z|

=
|Bx|
cwρ

≈ 0.590511 (55)

The whistler wave is initialized with

vy = −0.00590511 cos(kx) (56)

vz = +0.00590511 sin(kx) (57)

By = +0.001 cos(kx) (58)

Bz = −0.001 sin(kx) (59)

Note that this is a circularly polarized wave, and the velocity (and the electric field)
is right-hand circularly polarized. The pressure, the density and the x components
of the velocity and magnetic field are not affected by the wave. The final time is
set to tmax = λ/|ux + cw| ≈ 1.18103 so that the wave arrives back at the original
position by the end of the run. The numerical error is calculated from the difference
between the initial and final vz :

En =

∑n
i=1 |vz,i(tmax) − vz,i(0)|

∑n
i=1 |vz,i(0)| (60)

where i = 1 . . . n indexes the grid cells in the whole computational domain. We
could use the error in vy, By or Bz just as well, and the results would remain
essentially the same.

We repeat the simulation with 4 different resolutions using n = 16, 32, 64, 128
cells, respectively. The explicit scheme requires 141, 489, 1811, and 6955 time steps
respectively, ie. the time step ∆t is roughly proportional to 1/∆x2. For the implicit
scheme the time step is set to be proportional to 1/∆x and it takes 40, 80, 160
and 320 time steps to finish the runs, respectively. As expected, the implicit time
stepping becomes relatively more efficient at finer resolutions.

The first four columns of Table 1 contain the errors of the explicit runs with
minmod and MC limiters and the implicit runs with W = 1 and W = 0 in (36)
both with the MC limiter, respectively. The fifth column is the implicit schem
with W = 0 and the minmod limiter. In accordance with the analysis presented in
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TABLE 2
Relative errors for whistler wave test on a non-uniform grid

n explicit implicit expl, rot. impl, rot.
24 0.2514 0.05218 0.2632 0.07958
48 0.0517 0.01244 0.0522 0.01968
96 0.0114 0.00305 0.0124 0.00490

subsection 3.5 the explicit scheme with the minmod limiter provides a roughly first
order convergence rate only, while the MC limiter gives almost perfect second order
convergence. Similarly, the implicit scheme using a numerical flux based on the
full wave speed gives first order convergence rate only, while setting W = 0 in (36)
provides second order convergence rate, in full agreement with the discussion in
subsection 3.6. The implicit scheme with W = 0 and the minmod limiter converges
at a second order rate although the results are less accurate than for the MC limiter
(columns 4 and 5). It is interesting to note that the implicit scheme is more accurate
than the explicit scheme (compare columns 2 and 4). This is due to the fact that
explicit scheme requires the full numerical flux with W = 1 for stability, while the
implicit scheme is stable with a less diffusive numerical flux too.

We repeated the test on a two-dimensional uniform grid with rotated initial
conditions. The rotation angle is α = tan−1 0.5 = 26.56◦ so there is a translational
symmetry in the (1,2) direction as shown in Figure 4. The boundary conditions
remain periodic in the X direction, while we apply a sheared zero gradient in the
(1,2) direction along the Y boundaries. The length of the computational domain is
increased by a factor of 1/ cos(α) =

√
5/2 to −111.803 < x < 111.803 to maintain

the periodicity in the X direction. All the vector variables (velocity and magnetic
field) as well as the perturbation are rotated by α. As the last two columns of
Table 1 shows, the convergence rate remains second order. Somewhat surprisingly
the errors for the rotated explicit run are somewhat smaller than in the grid aligned
case. This is probably due to the fact that the numerical flux is proportional to
|Bx| and |By|, which is different in the rotated case than in the grid aligned case.

The next set of tests are done on a non-uniform grid. We refine the middle
part of the grid for |x| < 50 in the 1D case, and |x|, |y| < 50/ cosα in the 2D case.
The error is calculated the same way as for the uniform grid (equal weight for all
cells). The results are shown in Table 2 for the explicit and implicit schemes with
grid-aligned and rotated initial conditions. The number of cells refer to a 1D cut,
e.g. n = 48 corresponds to the base grid with n = 32 which is refined in the middle
adding another 16 cells. The time step for the explicit scheme is determined by
the smaller cells. For the implicit scheme we also used the same time step as on
the uniform grid corresponding to the finer cells, so the number of explicit and
implicit steps for n = 24, 48, 96 are 489, 1811, 6955 and 80, 160, 320, respectively.
The results confirm that the scheme remains second order accurate at resolution
changes.

4.2. Reconnection in the GEM challenge

The Geospace Environmental Modeling (GEM) magnetic reconnection challenge
[3] is a very well studied 2D reconnection problem. There are several published
solutions obtained with other Hall MHD codes, so this problem is suitable to further
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FIG. 5 The current (color) and some magnetic field lines at t = 30 for the Hall
MHD simulation of the GEM reconnection problem.
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FIG. 6 The reconnected magnetic flux versus time for constant resistivity in the
GEM reconnection problem.
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verify our implementation.
The computational domain is Lx = 25.6 times Lz = 12.8 centered around the

origin (for sake of comparison we follow [3] and use x and z coordinates). The
initial condition is

Bx = tanh(2z) − Ay(π/Lz) cos(2πx/Lx) sin(πz/Lz) (61)

Bz = Ay(2π/Lx) cos(2πx/Lx) sin(πz/Lz) (62)

p = 0.6 − tanh(2z)2/2 (63)

with v = 0, By = 0 and ρ = 2p so that the normalized temperature is 1/2. The
adiabatic index is γ = 5/3. The perturbation of the magnetic field is defined
through the vector potential with amplitude Ay. Without this perturbation the
current sheet is in pressure equilibrium. The boundary conditions are periodic in
the x direction, and floating (zero gradient) for the other boundaries (instead of
ideally conducting). The simulation is run until t = 40.

The initial perturbation forces the reconnection site to be at the origin. We
found, however, that in the Hall MHD simulations the configuration evolves into
two reconnection sites and an island in the middle (see Figure 5), as long as the
initial perturbation is small (Ay = 0.1). For larger initial perturbation (Ay = 0.5)
the single reconnection site is stable. We note that the formation of an island in
the GEM challenge problem is not unique to our code (J. Huba, L. Chacon private
communications).

The computational domain is resolved by 64 times 128 rectangular grid cells
with ∆x = 0.4 and ∆z = 0.1. We use the second order Lax-Friedrichs scheme,
the MC limiter and β = 1.2. For the resistive MHD simulations (with no Hall
term) the resistivity is set to η = 0.005. In the Hall MHD runs the resistivity is
the same and the normalized ion mass per charge is 1. Figure 6 shows the time

dependence of the reconnected flux
∫ Lx/2

0
Bzdx for classical resistive and Hall MHD

simulations. The results agree quite well with Figure 1 in Birn et al. [3] despite the
split reconnection site in the Hall MHD simulation. We checked that starting with
a larger perturbation results in a single reconnection site and the reconnection rate
remains about the same.

4.3. 3D Magnetosphere Simulations and Parallel Scaling

Finally we tested if the code gives physically reasonable results for magneto-
sphere type problems. We are solving the flow of the solar wind around the Earth.
The solar wind flows in the x direction, the dipole is aligned with the z direction,
and the magnetic field of the solar wind has a pure Bz component only that is
opposite of the orientation of the dipole field in the equatorial plane. For classi-
cal MHD the solution is perfectly symmetric in the ±Z and ±Y directions. For
Hall MHD we expect the solution to be asymmetric which means that By can be
non-zero in the Y = 0 plane.

Figure 7 shows the magnetosphere solution together with the grid structure
in the Y = 0 plane. Both the day-side (left of the body) and the magnetotail
reconnection regions are highly resolved with 1/32 RE (Earth radii) cells. There
are 71000 4×4×4 grid blocks with more than 4.5 million cells altogether. Figure 8
shows the solution obtained with local time stepping. The By component has
the typical quadrupolar structure at the magnetotail. The day-side reconnection
site moved northward which suggests that the solution is unstable. This is most
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FIG. 7 Magnetosphere solution in the Y = 0 plane. The black crosses show the
grid cell centers. Distance is measured in Earth radii.
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FIG. 9 Scaling of the explicit, implicit and explicit/implicit time stepping schemes
for a fixed size magnetosphere problem.

likely a particular manifestation of the tearing mode instability, also known as Flux
Transfer Events (FTE) in the space physics literature (e.g. [18]). The presence of
this instability as well as the lack of perfect convergence of the local time stepping
scheme suggests that the solution is time dependent despite the fixed boundary
conditions.

We have repeated the simulation in time dependent mode with a slightly reduced
resolution. The grid consists of 4848 blocks of size 8×8×8 cells, or about 2.5 million
cells altogether. The cell sizes range from 8 to 1/16 RE. The high resolution is
concentrated around the reconnection region in the magnetotail and Hall MHD is
solved in this region only. Outside this region the Hall term is neglected. In this
time accurates simulation we have indeed found that the solution shows a quasi-
periodic behavior with periodic plasmoid formation. The physical interpretation
of these results are outside the scope of this paper, on the other hand this rather
expensive simulation provides an excellent demonstration of the parallel scaling and
efficiency of the explicit and implicit Hall MHD schemes.

We present scaling results on an SGI Altix super computer (columbia at NASA
Ames) for short runs (25 seconds) starting from a restart file saved at about 2
hours simulation time. Figure 9 shows scaling curves for explicit, implicit and
explicit/implicit time stepping, respectively. For the explicit scheme the stability
condition required ∆t = 0.00295 s time steps, while the time step for the implicit
scheme was 1 s. The figure demonstrates a near perfect scaling of the explicit
scheme from 32 to 1616 processors, which is quite remarkable for strong scaling
with a fixed problem size. Note that there are only 3 blocks per processor when
the code runs on 1616 processors.
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The fully implicit and explicit/implicit algorithms are about 14 and 20 times
faster on 32 CPU-s than the explicit scheme, respectively. The implicit time step is
about 330 times larger than the explicit time step, and the implicit scheme requires
about 25 Krylov iterations per step. The Krylov iterations are less expensive than
the full explicit time step, because the Jacobian-free evaluation uses the first order
scheme (no limiters), but the construction and application of the preconditioner
also takes up significant time. The overall gain of the fully implicit scheme over the
explicit scheme happens to be close to the simple estimate of 330/25 = 13.2.

As the figure shows the implicit schemes scale quite well up to 256 processors.
In the explicit/implicit scheme most of the blocks (about 3400) require implicit
time steps for the selected time step, so there is relatively little difference between
the efficiency of the implicit and explicit/implicit algorithms.

5. CONCLUSIONS

We have developed a second order accurate Hall MHD scheme for block adaptive
Cartesian or general structured grids using both explicit and implicit time integra-
tion. For steady state solutions the explicit scheme can be used in combination with
local time stepping. Care should be taken to use symmetric type limiters (like MC)
instead of asymmetric limiters (like minmod or super-bee) to achieve second order
accuracy in smooth regions. For time accurate runs the implicit scheme is much
more efficient than the explicit scheme if the whistler wave speed is dominant. The
preconditioner has to take into account the terms responsible for the whistler wave.
Using the implicit scheme the Hall MHD simulation ran about 3-4 times slower
than the classical MHD simulation, which is quite reasonable given the stiffness of
the Hall MHD equations due to the whistler wave.

The efficiency and good parallel scaling of our Hall MHD scheme enables us to
do steady state and time accurate simulations in 3D. We have already used the
Hall MHD code to simulate Titan’s interaction with the surrounding plasma [10].
This steady state simulation uses a spherical grid with logarithmic stretching in the
radial direction. As shown by Ma et al. [10] the Hall MHD results match the values
measured by the Cassini satellite significantly better than the results obtained with
classical MHD simulations. We plan to use the Hall MHD code to study many
space physics problems in the future.

While Hall MHD captures the most important kinetic effects, it does not de-
scribe the full physics. Comparing Hall MHD and hybrid model results [24, 6, 23],
it was found that the off-diagonal elements of the pressure tensor play an impor-
tant role. We plan to extend our code to use a non-isotropic pressure equation with
field-aligned and orthogonal components. We are also working on extending our
code to multi-fluid Hall MHD with ions of different mass.
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[21] G. Tóth, D. L. De Zeeuw, T. I. Gombosi, and K. G. Powell. A parallel ex-
plicit/implicit time stepping scheme on block-adaptive grids. J. Comput. Phys.,
217:722–758, 2006.

[22] B. van Leer. Towards the ultimate conservative difference scheme. V. A second-
order sequel to Godunov’s method. J. Comput. Phys., 32:101–136, 1979.

[23] L. Yin and D. Winske. Simulations of current sheet thinning and reconnection.
J. Geophys. Res., 107(A12), 2002.

[24] L. Yin, D. Winske, S. P. Gary, and J. Birn. Hybrid and hall-mhd simulations
of collisionless reconnection: Dynamics of the electron pressure tensor. JGR,
106(A6):10,761–10,776, 2001.

[25] Ma Z. and A. Bhattacharjee. Hall magnetohydrodynamic reconnection: The
geospace environment modeling challenge. JGR, 106, 2001.

23


