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Abstract

Space weather describes the various processes in the $insigstem that present danger to human health and
technology. The goal of space weather forecasting is toigeeoan opportunity to mitigate these negatitéeets.
Physics-based space weather modeling is characterizadfmgrdte temporal and spatial scales as well asfbgrdint
relevant physics in dierent domains. A multi-physics system can be modeled bytawad framework comprising
several components. Each component corresponds to a plagsi@in, and each component is represented by one or
more numerical models. The publicly available Space Wedttoeleling Framework (SWMF) can execute and couple
together several components distributed over a parallehina in a flexible andfécient manner. The framework
also allows resolving disparate spatial and temporal soaith independent spatial and temporal discretizations in
the various models.

Several of the computationally most expensive domainsafrtimework are modeled by the Block-Adaptive Tree
Solarwind Roe-type Upwind Scheme (BATS-R-US) code thatsmwe various forms of the magnetohydrodynamic
(MHD) equations, including Hall, semi-relativistic, mufipecies and multi-fluid MHD, anisotropic pressure, rédéea
transport and heat conduction. Modeling disparate scaisWBATS-R-US is achieved by a block-adaptive mesh
both in Cartesian and generalized coordinates. Most rigoeathave created a new core for BATS-R-US: the Block-
Adaptive Tree Library (BATL) that provides a general toolkir creating, load balancing and message passing in a
1, 2 or 3 dimensional block-adaptive grid. We describe tigerdthms of BATL and demonstrate itsheiency and
scaling properties for various problems.

BATS-R-US uses several time-integration schemes to adldnedtiple time-scales: explicit time stepping with
fixed or local time steps, partially steady-state evolutipaint-implicit, semi-implicit, expliciimplicit, and fully
implicit numerical schemes. Depending on the applicatigsfind that dfferent time stepping methods are optimal.
Several of the time integration schemes exploit the blaggel granularity of the grid structure.

The framework and the adaptive algorithms enable physasgd space weather modeling and even short-term
forecasting.

Keywords: 65D99 Numerical approximation, 77A05 Magnetohydrodyremi

1. Introduction

Space weather involves the physical processes in the Suh-&sstem that fiect human life and technology.
The most dramatic space weather events are giant eruptio@gronal Mass Ejections (CMES) starting at the solar
surface, expanding into the heliosphere and going by théhEad further on at speeds around a 100¢skan even
more. The sudden change of the solar wind speed, plasmaydandiinterplanetary magnetic field create magnetic
storms in the magnetosphere that is formed by the interacfithe solar wind and the Earth’s magnetic field. The
magnetic storms are responsible for spectacular auroraelbas they can break down radio communication, degrade
the accuracy of the global positioning system (GPS), ancad@electronic instruments on satellites. In extreme cases
the magnetic storm can induce high voltage spikes along pgrigs that can burn out transformers and cause black-
outs in Northern America and Scandinavia. CMEs are oftencat®d with Solar Energetic Particles (SEPs) that
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Figure 1: Spatial and temporal scales of space weather



propagate along the magnetic field and can reach the Eartmigttar of tens of minutes. The shock waves created
by the CMEs can also accelerate particles to high energibs. ifitreased radiation can be harmful to astronauts,
the crew and passengers of flights going near the polar reglbnan also destroy sensitive on-board instruments in
satellites. Being able to model, and eventually predicdgcspveather is important for safety as well as for protecting
technology.

Physics-based space weather modeling is a challenginggpnoBig. 1 shows the various space weather domains
and physical processes on a spatial scale versus tempatalot. In the lower left corner the auroral zone is
characterized by spatial scales of about 100 kilometersemgoral scales of a second. At the other extreme the
size of the Solar system is of the order of 100 astronomicis (AU), and the solar cycle drastically changes the
solar activity every 11 years. It is not feasible, or evenessary, to capture all these phenomena in a single model.
But even if we model a single space weather event, a CME takesocthree days to travel 1 AU from the Sun to the
Earth, while the fects in the upper atmosphere occur on a scale of secondslameters. The physics of the various
domains varies substantially as well. The solar conveaa@nre is driven by radiative cooling; the solar corona, the
heliosphere and the outer magnetosphere consist of lovitddéualdy ionized plasma with magnetic field; the inner
magnetosphere and the radiation belt contain trapped Imgigg particles that are not in thermal equilibrium; while
the upper atmosphere contains marfjegient ionized as well as neutral atoms and molecules at nigingh densities
to make collisions important.

Software frameworks are suitable to model multi-physicgtesys, because they can usetent models for the
different domains of the system. The domains may be adjacenthoodlaer or overlap in space. Each model can
solve diferent equations usingftérent spatial and temporal discretizations. The frameusorkesponsible for the
parallel execution of the models and the data transfer reduiy the coupling of the models. A framework can also
provide various utilities and a shared library of genergbathms, like linear solvers, interpolation algorithrtis)ing
utilities, etc.

There are only a couple of software frameworks developephgsics-based space weather modeling. The Center
for Integrated Space weather Modeling (CISM) has devel@pkxbsely coupled framework [1] where each model
runs as a separate executable. The executables are eitiped by flat files or by a general communication library
Intercom [2] and the grid interpolation can be handled by@kerture library [3]. The use of these libraries has been
demonstrated with a limited number of models and coupliogais[1]. The CISM framework minimizes changes to
the original physics models.

The Space Weather Modeling Framework (SWMF) [4, 5] has faid a diferent strategy. Each physics domain
in the SWMF corresponds to a component. Each componentiissepted by one or more component versions. A
component version is a physics model plus the appropriappars and couplers. The components are compiled into
libraries, and they are linked to the core of the framewort #re shared libraries to form a single executable. The
SWMF distributes the components over a parallel maching eaecutes and couples them in d@hioéent manner [6]
using the Message Passing Interface (MPI) library for comigation. We note here that the physics models can also
be compiled into individual executables and used as stimeaodes. The software architecture of the SWMF is
similar to the Earth System Modeling Framework (ESMF) [7§l are have demonstrated that the SWMF can indeed
be coupled with an ESMF component.

While CISM’s main objective was to minimize code changeg, 8WMF development optimizes for ease of
use, diciency, and flexibility. We have to do substantial code clasn@nd development) when a new model is
incorporated into the SWMF, but the resulting software isye@ use, it can be run on any parallel machine (no
need to start dierent codes in a single parallel job), and it can rfficeently due to the flexible andigcient parallel
execution algorithm [6]. Since the SWMF has many more u$ens tievelopers, the benefits of our approach greatly
outweigh the costs.

The SWMF provides a user-friendly interface. While the v input and output formats of the various models,
currently there are ten, were quitefdrent from each other, the models in the framework are clhedirby a single
input parameter file written in a general, flexible and usemfly format that is part of the General Input Parameter
Handling Toolkit (GIPHT) developed for the SWMF. GIPHT issteibed in some detail in Appendix A. The model
outputs are also regulated and unified to some extent. Tifizrmity helps the users to master running the multitude
of models with a less steep learning curve.

The computationally most expensive domains of the SWMF arvdeted by the Block-Adaptive Tree Solarwind
Roe-type Upwind Scheme (BATS-R-US) code [8, 9]. In the pastade BATS-R-US has evolved from a single
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purpose ideal MHD model into a general, highly modular sgattgsics modeling tool. This distinguishes BATS-
R-US from many other MHD codes used in space weather modedihigh are typically applied only in a single
domain. For example in the CISM framework the solar coramaheliosphere and the magnetosphere are modeled
by the MAS [10], the ENLIL [11] and the LFM [12] codes, respeety. In the SWMF all three of these domains, and
several others, are modeled by a single code, BATS-R-US.i§ hchieved by a layered modular software architecture,
where the numerical schemes are general, while the equatiorapplication specific codes are encapsulated into
interchangable modules.

BATS-R-US uses a block-adaptive mesh with either Cartesiggeneralized coordinates that includes spherical,
cylindrical and even toroidal grids. While block-adaptyréds are ubiquitous in astrophysics, aerospace engingeri
and the general CFD community, many MHD codes in space phyldie MAS, ENLIL, LFM, and OpenGGCM [13],
use static although typically stretched grids. The GUMIG8e[14] uses a cell-based adaptive grid but it is restricted
to first order accurate schemes and serial execution. TheAWRVAC [15] code is the closest to BATS-R-US: it
also uses a block-adaptive grid and it is also designed fdwpteu(mostly astrophysical) applications.

BATS-R-US was designed around the block-adaptive grid,iisdan integral part of the software. As we kept
extending the range of applications, the limitations of dhiginal design became apparent, for example using two-
dimensional adaptive grids was not possible. To furthemanh the capabilities of BATS-R-US, we have created a
new Block-Adaptive Tree Library (BATL) that provides a gealetoolkit for creating, load balancing and message
passing in a 1, 2 or 3 dimensional block-adaptive grid. GulyeBATL can be used as an alternative to the original
BATS-R-US core in a limited range of applications, but evatly it will completely replace the core of BATS-
R-US, and it will also be available for other numerical caddhere are a number of similar libraries available,
like PARAMESH [16], CHOMBO [17], SAMRAI [18], but we opted tdevelop BATL from scratch, so that it is
fully compatible with the needs of BATS-R-US, and it regsigeminimal overhead only. This paper describes the
algorithms of BATL and demonstrates it§ieiency and scaling properties.

Unlike most space physics MHD codes, BATS-R-US has sevienalintegration schemes to optimally adapt to
the particular application. Local time stepping allowd fasnvergence towards steady state. When only a small part
of the solution evolves in time, we can use a partially stestdte algorithm. For fast moving waves and shocks the
explicit time stepping is optimal. S$fisource terms can be handled with a point-implicit schemelid®ise transfer
and heat conduction require semi-implicit time discrdima When the whole system of equations igfs& fully
implicit time stepping can be employed. The explicit and ligiptime stepping can be combined when only part of
the computational domain requires the implicit scheme.[Mény of these algorithms operate on a block-by-block
basis, thus the temporal and spatial adaptivity are intdee.

The framework and the adaptive numerical schemes employttkimodels enable us to model space weather
events faster than real time with reasonable spatial angdeathresolutions. We have simulated the October 28, 2003
coronal mass ejection and the resulting magnetic stormnftb& geo-&ective of the so-called Halloween storms)
from the solar surface to the thermosphere of the Earthrfista real time on 256 SGI Altix CPUs [20, 21].

The SWMF is already used for short-term forecasting of speegther. The global magnetosphere (BATS-R-
US), the ionosphere and the radiation belt models of the SWiklfe been running at real time speed for several
years 247 on a small (currently 56-core) cluster at the Communityi@o@mted Modeling Center (CCMC) at NASA
Goddard Space Flight Center. The simulation is driven b¥tieee satellite data, and it provides an about 1 hour
forecast (the time it takes for the solar wind to propagatenfthe ACE satellite location to the inflow boundary of
the model) that is available as part of the Integrated Spaesth®r Analysis system (ISWA) [22], where it is used to
predict magnetospheric configuration, radiation beltestatectric potential, and even the induced electric spikes
powerlines [23].

The SWMF source code with all its components is freely abéglafter registration at [4]. Several of the SWMF
components are accessible at the CCMC [24] for runs-one=qlihis paper reviews and describes in some detail the
current capabilities of the SWMF and BATS-R-US, focusinglmmadaptive numerical techniques we have developed
over the past decade. Section 2 describes the techniqueisauaeapt to the varying physics, section 3 addresses
spatial adaptation, and section 4 describes adaptatitre itimhe discretization. We conclude with section 5.
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2. Adaptive Physics

We employ various strategies to adapt our simulation tankhé multitude of physical systems that are part of
space weather. At the highest level we use the frameworkvidedthe system into individual physics domains, and
we model each domain with aftérent component of the framework. This allows us to usfiedint equations, spatial
and temporal discretizations in each domain. At the leved sfngle component, we can use a modular software
architecture to allow for a variety of equations, initiabdmoundary conditions, source terms, and numerical schemes

2.1. Adaptive physics in the SWMF

Fig. 2 shows the structure of the SWMF. There are about a doaemponents or physics domains represented
by the thumbnail pictures. The green arrows show how the dwvaae coupled together according to the physical
processes represented by the physics models. For exanepientdr heliosphere is one-way coupled to the global
magnetosphere model, because the solar wind speed isiabgahways super-magnetosonic at the upstream bound-
ary of the global magnetosphere model. On the other hand, ehtise physics domains near the Earth are two-way
coupled. In an actual simulation one can use any meaninghdet of the components with the selected physics
models. If the simulation starts from the Sun, it is typigativen by synoptic magnetogram datafeiential emmis-
sion measure tomography, and flare and CME observationsil&ions restricted to magnetospheric components are
usually driven by the solarwind data obtained by satellifestream of the Earth, for example ACE, Wind or Geotail.
We also use the F10.7 flux for some of the empirical relatigossim the ionosphere, thermosphere, radiation belt and
polar wind models.

2.1.1. Layered Architecture

The SWMF has a layered architecture as shown in the left gHrtég. 3. The top layer is an optional graphical
user interface. This interface can be used to configure amgid®the code, to construct and check the input parameter
file, to run the code and to visualize the output. The user mexecute various scripts from the command line to
do the same steps.
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physics components.

The second layer contains the control module, which is nesipte for distributing the active components over
the parallel machine, execute the models, and couple th#me apecified frequency. The control module can run the
models in multiple “sessions”. In each session the SWMF hedriodels can read in a new set of input parameters
and then run until the specified number of iterations or satioih time is reached. At that point a new session can
start. The last session completes the whole simulation. SMIMF can also instruct the models to save restart files.

The third layer contains the physics domain components.h Eamponent can have multiple versions. Each
component version consists of a physics model with a wragpeéione or more couplers. The wrapper is an interface
with the control module, while each coupler is an interfadth @nother component. The wrapper consists of a small
number of standard methods that instruct the model to liziéiaset input parameters, run, finalize or save a restart
file. The couplers are not standardized, because there angveey diferent couplings in the SWMF. On the other
hand the existing couplers follow a few well defined patteamsl they can be used as templates for future couplings.
The physics models can also be compiled into stand-alormigdgles. In this case a small main program is added to
the libraries containing the physics model and the optishaled library and utilities.

The fourth and lowest layer contains the shared library Aeditilities that can be used by the physics models as
well as by the SWMF core. These libraries can also be useddstamdalone physics models if they are compiled that
way. The libraries provide physical and numerical constactinversion between coordinate systems and time units,
interpolation on regular and irregular grids, sortingehin solvers with preconditioners, advection schemespuatri
modules for the parallel ray tracing algorithms, readimuirparameter files, saving and reading plot files and lookup
tables. The utilities contain various algorithms to read process dierent space physics data files, empirical models
for various space physics systems, a library for timing amdiljng, and a NOMPI library that allows compiling the
code in a serial mode when the MPI library is not negdeailable.

2.1.2. Physics-based and empirical models

Table 1 shows the current components of the SWMF and thegdsised and empirical models that can represent
these components. In practice the SWMF is almost never rtim &l its components at the same time, but we
typically use a subset of the available components. For pi@me can run together the solar corona (SC) and the
inner heliosphere (IH) models driven by solar synoptic neaggrams, or the global magnetosphere (GM), inner
magnetosphere (IM) and ionosphere electrodynamics (IE)atsalriven by satellite observations of the solar wind.
In some cases the physics-based models can be replaced mpaital model, for example an inner magnetosphere
model maybe run in standalone mode using the empirical Tsge [25] and Weimer [26, 27] models to represent
the magnetic field of the magnetosphere and the electricmpatef the ionosphere, respectively.

The empirical models use various observations as inputpetexs. These models are rather inexpensive to run,
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Table 1: physics-based and empirical models of the SWMF

Component name ID Physics-bagesmpirical models
1. Eruptive Event Generator EE BATS-R-8Breakout, flux-rope
2. Lower Corona LC BATS-R-US
2. Solar Corona SC BATS-R-US
4. Inner Heliosphere IH BATS-R-US
5. Outer Heliosphere OH BATS-R-US
6. Solar Energetic Particles SP Kota, FLAMPA
7. Global Magnetosphere GM BATS-R-YSI'syganenko
8. Inner Magnetosphere IM RCM, CRCM, HEIDI, RAM-SCB
9. Radiation Belt RB RBE
10. Polar Wind PW PWOM
11. lonosphere Electrodynamics IE RNVeimer
12. Upper Atmosphere UA GITMMSIS, IRI

so they can be executed as simple subroutine and functitsr €ah the other hand the empirical models typically
provide only partial information about the physical stat@aomain, for example the Tsyganenko model provides
the magnetic field but not the other plasma parameters. Thanmthat the empirical and physics-based models
are fundamentally dlierent, and their implementation into the SWMF reflects thise empirical models are simple
libraries in the utility layer of the architecture which cha accessed by any of the physics models both from the
SWMF and in stand-alone mode. On the other hand the physidsisare implemented in the component layer with
the wrappers and couplers as shown in Fig. 3.

As Table 1 shows, several components can be represented BATS-R-US code. Since the SWMF is compiled
into a single library, the components cannot contain mag@eternal subroutines or functions with identical names.
We have an automated script that copies the BATS-R-US cddsé@parate directories and replaces all the potentially
conflicting names with a unique name, for exampd@ule ModFaceFlux is renamed tdH ModFaceFlux in the
IH component. This way the renamed BATS-R-US codes reptiegevarious components can be compiled together
and they can be configured and run witlfelient parameters. Next we briefly describe each componenthen
corresponding model(s).

TheEruptive Even{EE) generator component is responsible for creating a CMi may be done by a physics-
based model of flux emergence from the convection zone, ordmhreimpler, and less expensive empirical models
that insert an unstable flux rope into the steady solar cosohdion, or insert an arcade and apply shearing motion
at the lower boundary of the corona model [28, 29]. In the msybased EE model, BATS-R-US solves the MHD
equations with an optically thin radiative loss and empir@oronal heating term in a box of several megameters that
should ideally include a whole active region and simulate émergence of a flux rope from the convection zone.
Currently the physics-based EE model only works in a stdadeamode [30, 31], and we use the empirical models
to generate CMEs in the SWMF [32, 33].

The Lower Corona(LC) domain starts at the photosphere and goes out to a few i into the solar corona.
BATS-R-US solves the MHD equations with empirical heatingdtions, heat conduction, and radiative cooling on a
co-rotating spherical grid with highly stretched radiabodinates to capture the transition region [34].

The Solar Corona(SC) model describes the corona out to about 25 solar radout latest model, BATS-R-US
solves the two-temperature MHD equations with Alfvén wheating and heat conduction on either Cartesian or
spherical grid in a frame corotating with the Sun [35].

The Inner HeliospherglH) model typically extends from about 20 solar radii to trbit of the Earth and has
been extended to 10 AU. BATS-R-US solves the ideal or twopemaiture MHD equations on a Cartesian grid in either
co-rotating or inertial frame, and it can model the propeagedf CMEs from the Sun to the Earth [36, 37, 5].

The Outer HeliospheréOH) extends from about 30 AU to 1000 AU, beyond the outer sddéhe solar system.
BATS-R-US solves the MHD equations for ions combined with ttydrodynamic equations for multiple neutral
populations [38, 39].

TheSolar Energetic Particl¢SP) domain consists of one or more one dimensional field Jwaich are assumed
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to advect with the plasma. The solar energetic particleslaate and diuse along the field lines using either the
FLAMPA [40] or the Kota SEP [41] models.

The Global MagnetosphereGM) domain surrounds the Earth and it extends about 30 Eadin(Rg) towards
the Sun, a few hundrdg: towards the magnetotail, and abouti0in the orthogonal directions. BATS-R-US solves
the ideal, semi-relativistic, Hall, anisotropic, or mtitth MHD equations on a Cartesian or possibly spherical grid
[42, 43, 44]. The Tsyganenko empirical models can provigentiagnetic field as a function of observed solar wind
parameters and planetary indexes [25].

The Inner Magnetospher@M) consists of the closed magnetic field line region arotimel Earth. The RCM
[45, 46] solves for the bounce averaged and isotropic buggmesolved particle distribution of electrons and vasiou
ions. The CRCM [47], HEIDI [48] and RAM-SCB [49, 50] modelsalresolve the pitch angle distribution.

The Radiation Belt(RB) domain coincides with IM but it models the relativisgtectrons. The RBE [51, 52]
model solves the bounce-averaged Boltzmann equation.

The Polar Wind (PW) domain consists of the open magnetic field line regicar tige Earth. The PWOM [53]
solves the field-aligned hydrodynamic equation for elewdrand several ions along many field lines. The field lines
are advected by the ionospheric drift.

Thelonospheric ElectrodynamigtE) model is a two dimensional height-integrated sphésagace at a nominal
ionospheric altitude (at around 110 km for the Earth). Thil | 84] code uses the field-aligned currents to calculate
particle precipitation and conductances based on empigtationships, and then it solves for the electric pognti
on a 2D spherical grid. There are also several empirical tisddelE, including Weimer's models [26, 27].

The Upper AtmosphergUA) contains the thermosphere and the ionosphere extgrfdim around 90 km to
about 600 km altitude for the Earth. The GITM [55] code soltresequations of multi-species hydrodynamics with
viscosity, thermal conduction, chemical reactions, iewnal friction, source terms due to solar radiation, ettao
spherical grid in a corotating frame. The MSIS [56] and IRT[[8mpirical models provide statistical average states
for the upper atmosphere and ionosphere, respectivel\s€lden be used to define the lower boundary conditions for
the Polar Wind model, for example.

2.1.3. Model coupling

The various models are coupled together at regular intgreéher based on simulation time or iteration number.
The relevant physical quantities are passed wffitient MPI communication. Deadlocks are carefully avoidgld [

In addition to transferring the data, we have to transfortwben coordinate systems, take care of unit conversions,
and interpolate betweenftirent grids. Often the models are moving or rotating redativeach other so that the
mapping has to be recalculated every coupling time. A furtbenplication arises for adaptive grids that may change
between two couplings. We have developed utilities to take ©f coordinate transformations and interpolation
between various grids. Unit conversions are handled byiregithat all information passed between models are in
Sl units.

Since the models use widelyffirent grids and time steps, coupling through a simple iatermay not work well,
especially when the flow is slower than the fast magnetospged. A possible solution is to overlap the models. For
example the inner boundary of the inner heliosphere modgidgided by the solar corona model at 20 solar radii,
while SC obtains its outer boundary conditions from IH at @kasradii. The overlap serves as affiau to suppress
numerical artifacts due to theftBrences between the spatial and temporal resolutions.

In some cases the coupling between the physics models esqgome complicated and expensive calculations.
For example the inner magnetosphere and the radiation el require the magnetic field geometry and the
plasma state along the closed magnetic field lines of theafjloagnetosphere model. Since the GM grid is large and
it is distributed over many processors, the tracing of mégfield lines is quite challenging. We have developed a
couple of highly parallel andfgcient schemes for tracing multiple field lines [42, 52] thi&dwas us to obtain mapping
information, integrate quantities along the lines, or astistate variables and positions along the lines.

2.2. Adaptive physics in BATS-R-US

BATS-R-US plays many roles in the SWMF: it models the EE, LC, 81, OH and GM components. In each of
these models, and in many other applications, BATS-R-U$esallitferent sets of equations: radiative, ideal, Hall,
two-fluid, anisotropic, semi-relativistic, multi-spesier multi-fluid MHD. In addition to the basic equations, ther
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tively. The numerical fluxes depend on the selected equatiodule, the source terms may also be defined in the user motléevarious time
stepping schemes are independent of the details of theiegsidieing solved with the possible exception of the impficeconditioner.

are various source terms that also change from applicadi@pplication: collisions, charge exchange, chemistry,
photo-ionization, recombination, etc. The boundary aitéhirconditions vary greatly as well.

We introduced a layered modular software architecturehaws in Fig. 4, to handle all these applications with
a single base code. The state variables of the equatiomsyste defined by the equation modules, while the rest
of the application dependent details are implemented ia&y modules. The€onfig.pl script is used to select the
equation and user modules that are compiled together watlcdide. There are currently 37 equation modules and
42 user modules (obviously not all combinations are pospilshich means that BATS-R-US can be configured for
quite a few dfferent applications. The equation modules are about 158 tinky, the user modules vary from a few
hundred to a few thousand lines, depending on the numberanglexity of the various methods implemented. For
each user method there is an ‘empty’ version that is comfiiedefault. This allows us to add new user methods
without modifying the existing user modules.

2.3. Systems of equations in BATS-R-US

In this section, we describe the basic sets of the equati@iste implemented in BATS-R-US: hydrodynamics,
ideal MHD, Hall-MHD with electron physics, anisotropic MHBIHD with Alfvén wave heating and electron thermal
heat conduction, multi-species and multi-fluid MHD. All #gegoverning equations are recast as

ou

5 +V-FU) =S Q)
whereU denotes the vector of conserved state quantfiésthe flux vector, an® indicates source terms that cannot
be written as a divergence of a flux. These include externaices like gravity, Coriolis and centrifugal forces,
charge exchange with neutrals, radiative cooling, phoiaation, as well as internal sources, like chemical reasti

or collisions among dierent ion species. Many of these terms are application dkgmenand they are given in the
user modules. There are also several ‘source’ terms thaaicospatial derivatives, but cannot be written in a pure
divergence form.



2.3.1. Hydrodynamics
The simplest set of equations in BATS-R-US are the Euler #gusfor hydrodynamics:

ap 3

2 V-0 = 0 2)
6g¥tu+v'(puu+lp) = 0 3)
%+V-(ua+up) = 0 4)

wherel is the identity matrix and the primitive variablgsu, andp are the mass density, velocity, and the thermal
pressure, respectively. The total hydrodynamic energgitieis

2
u
p PP

=it

()

wherey is the adiabatic index. The hydrodynamics equations are issecode verification with standard test prob-
lems. The equations also apply to the neutral fluids in muitifMIHD.

2.3.2. ldeal magnetohydrodynamics
The ideal MHD equations can be written in (near) conseredtivm as

dp
LT v =
5tV (eu) 0, (6)
%+V.puu+|(p+%82)—88} - _BV-B, @)
B
66—t+V-(uB—Bu) = -uV-B, (8)
Z—?+V~u(e+p+%82)—u~BB} = —u-BV-B, (9)

whereB is the magnetic field in normalized units so that the magmsieneability of vacuunuy = 1. The total
energy density is , ,
p _pu B
=y 1t2 T
The source terms proportional 8- B on the right hand sides were introduced to control the nuwak&rror in
V- B [58, 8]. In this 8-wave formulation the numerical B errors are propagated together with the flow, leading to
improved robustness and accuracy of the numerical scheme.

There are several alternative methods implemented in BRT$S to maintain the solenoidal constraint. The
projection [59] scheme can remove tfie B error by solving an elliptic problem. The constrained tpors scheme
[60] generalized to AMR grids [61] maintains tl¥e B = 0 condition to round-fi error at the expense of staggering
the magnetic field. For the MHD Roe solver, we have also dgezlaa new 7-wave scheme [62]. Finally, in the
hyperboligparabolic cleaning method of [63], a new scalar field is adiethe MHD variables that couples the
induction equation to th& - B error:

(10)

§+V-(UB—BU)

5 = Vo (11)
) c?
Z+dv-B = - (12)

p

Solving the modified induction equation and the equatiopfaill make theV - B error propagate with, and difuse
by cp. Bothc, andcy has to be uniform over the computational domain, but theyveay with time. We typically set
Cn to be somewhat less than the largest wave speed in the dasndirgt the time step is not limited by the hyperbolic
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cleaning. The parabolic ter#(cﬁ/c%)«,a is evaluated in a split and implicit way. After updatiafat time leveln with
the pure hyperbolic term, the obtaingdvalue is further modified to

5«

‘pn+l _ [ ’ (13)
1+ Atci/c3
whereAt is the time step. This scheme is unconditionally stablehsovilue ofc, does not limit the explicit time
step.

In regions of small thermal to magnetic gaddynamic pressure the conservative scheme can occdgipraduce
negative pressure. We therefore also have the option te $ofthe pressure

Ip

=+ V- (pu) =~ - 1)pV -, (14)
instead of the energy equation. The pressure equationghotibe used in regions where shocks occur, because the
non-conservative equation will not recover the correctguonditons. An additional problem arises when the pressure
equation without explicit resistivity is applied in a regiovhere the magnetic field reconnects (due to numerical
diffusion). In this case the total energy is not conserved, ame 6 the magnetic energy is lost without producing the
corresponding Joule heating. Therefore we are solving thatlpressure and energy equations, and switch between
them according to some criteria, for example shocks can &tifted by steep pressure gradients. We have also
implemented geometric criteria, like the inside of a sphemind a planet, to define regions where no shocks or
reconnection are expected.

It is often advantageous to split the magnetic field into aasl\dit part and a numerical pat = By + B, [64],
where the analyti®, is divergence free, but not necessarily curl free. We alBymo be time dependent. The
advantage of this splitting is the improved accuracy andstiess of the MHD scheme in regions where gradients of
Bg are large. TypicallyBy captures the dipole field of a planet or the magnetic field &aive region. The rotation of
a tilted planetary dipole field results in a time depend&tield. In solar application8y is calculated as a potential
field up to some radius (the “source surface”) and it is takemetradial outside. If the radius of the source surface is
inside the computational domain, as is usually the caseg thi#l be a finite curren¥ x By there. The source terms
containing thedBy/ot andV x B0 terms in the momentum, induction and energy equationsharersin [65].

Fig. 5 shows a simulation of a magnetic flux rope emerging fleenconvection zone into the corona through the
photosphere [30]. This is a physics-based mechanism taupeodoronal mass ejections. The MHD equations are
solved with a non-ideal equation-of-state based on the OAles [66]. There are also source terms corresponding
to the 8-wave scheme, as well as gravity, radiative coolimg, an empirical heating function. The computational
domain is a box with G< x,y < 10,000 km and-10,000< z < 5,000 km in the vertical direction. The photosphere
is atz= 0. The grid uses four levels of grid refinement with 25 millwels ranging from 35 km to 560 km in size.

2.3.3. Semi-relativistic MHD

The classical Alfvén sped8/+/po is not bound by the speed of light Near strongly magnetized pland&s/jo can
indeed exceed Inthese applications we use the semi-relativistic MHDagiquns [67, 65] that retain the displacement
currentdE/dt in the induction equation and provide the physically cartguit on the wave speeds. This is also
helpful in allowing larger time steps and reducing the nuoadiffusion which is proportional to the wave speeds in
the shock capturing schemes. In magnetospheric simutaitias customary [12, 13] to artificially reduce the speed
of light to ¢’ < ¢ so that the simulation runs faster and the numeridélision is smaller. While this so-called Boris
correction [67] is not fully justified in time accurate simatibns, it often results in more accurate results at a lower
cost than solving the ideal MHD equations or the semi-nékttc MHD equations with the true speed of light. See
[65] for the semi-relativistic MHD equations and their wars approximations, and [68] for a detailed discussion on
the numerical fects of the Boris correction in magnetospheric simulations

2.3.4. Hall magnetohydrodynamics
In ideal MHD, the electric field is simply approximatedis- —uxB. In Hall MHD, it is given by the generalized

Ohm’s law as

JxB Vpe

E=-uxB+nd+ .
OeNe  QeNe

(15)
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t=8 min

Figure 5: Simulation of a magnetic flux rope (white tubes) egimg from the convection zone into the corona. The surfddéephotosphere
is shown by the horizontal plane that is colored accordinthéovertical velocity. The inset shows the same plane froovab The convection
patterns look quite realistic.
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Here, we introduced the resistivity the current density = V x B, the electron pressung, the electron number
densityn. and the elementary charge~ 1.6 x 107*° coulombs. The second term on the right hand side is the Ohmic
dissipation term, the third is the Hall term and the last tesitihe Biermann battery term (often called the ambipolar
term). The electron inertia term is neglected.

Substituting this electric field into the ion momentum andliction equations and adding a separate equation for
the electron pressure, the Hall MHD equations become

9p _

B4V (o) =0, (16)

WU 9 lpuu+1(p+ pet 282 -BB| =0, (17)

at 2

0B Vpe|

EJFVX —uexB+nJ——qene]—O, (18)

o 2

6—::)+V~(pu)z(y—l)[—pv'u"'__(pe—p)]’ (19)
Tie

9 2

%+V’(peue)2(7_1)[_pev’ue+77‘]2+ T_'(p_pe)]’ (20)

e

where the electron velocity vector is obtained as

UQ:u_

) 21

Gehe (21)
Here we assumed that the ions are singly charged so¢hkabh; = p/M; wheren; is the ion number density ard; is

the ion mass. The second term on the right hand side of the@bgaressure equation (20) is the Ohmic dissipation.

The last terms in the ion and electron pressure equatio®safid (20), are due to the collisional heat transfer between
the electrons and ions, established on the time scale

2 M
e= =——. 22
e 3 Uqgne (22)
We also solve for the total energy density:
0 \Y
®.y. (¢ + P)U + (e + Pe)Ue + Bzue—BB'ue—Bx(nJ— pe)} =0, (23)
at OeNe
where ) )
B B . p pu _ Pe
e=e+eet s_y—l+ 2 T (24)

are the total energy density, the hydrodynamic ion energagitie and the internal electron energy density, respec-
tively. Similar to the ideal MHD equations, we keep the optio switch between energy and pressure as described in
sub-section 2.3.2.

There are two numerical challenges in the Hall-MHD equation

1. The current and electron pressure gradient in the inoluetnd energy equations introduce second order spatial
derivates.

2. The Hall term results in the whistler waves with a speetliiapproximately inversely proportional to the wave
length and therefore it is inversely proportional to thelgasolutionAx.

The first problem is overcome by using centrafeliencing for the calculation of the current and electrorsgues
gradient that appears in the second order derivatives dmbdider interpolation is used near the resolution changes
to fill in the ghost cells, so that a second order accurateetization can be achieved [43]. The second problem can
render the finite volume schemes first order, and in [43] tleeaisymmetric limiters, like the monotonized central
limiter, is advocated to make the numerical scheme secatet accurate.
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Figure 6: Generating magnetic field with the Biermann bgtterm. The left panel showB; after a single time step at tim®.05. The error
relative to the analytical solution is shown in the right glan

An interesting test of the Biermann battery terV,pe/(gene), in the generalized Ohm’s law (15) is the generation
of magnetic field from zero initial magnetic field. For thistewe use the initial condition® = 0,u = 0, ne =
No + N1 COSKyX), andpe = Po + P1 coskyy). The resulting magnetic field is

9B, _ kkynapa sin(kxX) sinkyy)
ot~ [no+nicosk]?

(25)

We useky = ky = 7/10,ng = pp = 1 andn; = p1 = 0.1 on alx|, lyl < 10 double periodic domain. The solution and the
error after a single time step are shown in Fig. 6. The smedirés concentrated around= 0 where the densitge

has a local maximum, which is clipped by the slope limitere Ndve verified that the code reproduces the analytic
solution with second order accuracy. Verification testdtierHall term implementation are shown in [43].

2.3.5. Pressure anisotropy

Up to this point we assumed that the ion pressure is isotrapitcan be described by a single scalar quantity.
In collisionless space plasmas the ion pressure distobuan become anisotropic. The ion pressure tensor can be
approximated as

P=p.I+(p - p.)bb (26)
wherep, andp, are the perpendicular and parallel pressure componeritsegpect to the direction of the magnetic
field given byb = B/B. In the currentimplementation, we assume that the elegressure is isotropic, although we

may generalize for anisotropic electron pressure in theéutThe ion momentum equation with anisotropic pressure
can be written as

p(;—l: +pU-VUu+ VP =qgne(E + U x B) — nQgened, 27)
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where the last term on the right hand side is the collisionat@ntum transfer from the electrons to the ions. For the
generalized Ohm'’s law (15), the ion momentum equation caedest into conservation form

dpu B?

P 4V [puu+P+Ipe+1— —BB|=0. (28)

ot 2
The time evolution of the electron pressure and magnetid feektill given by (20) and (18), respectively. The
perpendicular and parallel ion pressures are

op. \v} +(y—1)—(pPe—p
t V-(pu) = —-p.V-u+pb-(Vu)-b+(y 1)Tie(|0e 1), (29)
op 2 v +(y—-1)—(pe- 30
ﬁtH V-(pu) = -2pb-(Vu)-b+( l)Tie( e~ P .

where we have assumed the adiabatic index tgr be 5/3. The collisional heat transfer between the ions with
anisotropic pressures and the electrons is on the elemroequilibration time scalee given in (22).
For the sake of simpler implementation in BATS-R-US, we edtr the parallel pressure and the “scalar” pressure

_2p.+p
p - 3 s
which is a third of the trace of the pressure tensor. The adganof this approach is that the relationship between
pressurep and energy densitg remains the same as in (24). When needed, the perpendicelssupe can be
expressed ag, = (3p- p))/2.
The equations fop ande are

(31)

o 2

IRV (pu) = —(p— 2)V-u+(p-p)b-(VU)- b+ (y - 1)-=(pe- p), (32)

ot 3 Tie

g—f +V-|eu+P-u+ (ge+ Pe)Ue + B?Ue — BB-Ug — Bx(nJ - Vpe)] =0. (33)
el le

The electron velocityle is defined by (21) for Hall MHD, ot = u can be taken in ideal MHD. Again we have the
option in BATS-R-US to switch between the energy and presirmulations as outlined in sub-section 2.3.2.
As a verification example, we simulate a circularly poladi2dfvén wave propagating at the Alfvén speed

2 _
Un = ,/w. (34)

This wave can destabilize if the parallel pressure is largrigh. Here, we will restrict ourselves to the stable wave
solutions. For this test we switchedfdhe Hall and Biermann battery terms. The initial conditiansists of a
uniform background, = 10,p = 1, p, = 6, p. = 50, and zero velocities on the 1D periodic domiain< 6. This
corresponds to the Alfvén speed = 12. This background is modulated with a sine perturbatiom iandu, with
amplitude 0.12 and iBy, andB, with amplitude 0.1. The phaseftiirence between theandz perturbations ig/2 and

the wavelength is 6. A convergence study is shown in Fig. THerRusanov scheme with the monotonized central
(MC) [69] and Koren [70] slope limiters. The convergencerit approximately second order toward the analytic
solution.

Note that while the total energy equation (33) is in consamueorm, the parallel pressure equation (30) can not
be recast in pure divergence form. Shock capturing scheagedre conservation laws to get proper jump conditions.
Energy conservation only replaces one of the two presswratieqs. However, the anisotropy behind a shock is
constrained by the fire-hose, mirror, and proton cyclotrmtabilities. If the criteria for these instabilities aretn
we reduce the anisotropy so that the plasma becomes stadite alye use the energy equation and the instability
criteria to get proper jump conditions. In addition, we hamplemented a relaxation term that artificially pushes the
pressure towards isotropy on a given time seal@his relaxation can mimic the ion-ion, ion-electron, oredon
interactions. More detail on the implementation of the ain@pic pressure and the applications in space science will
be reported elsewhere.
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Figure 7: Convergence study for the circular polarized Atfwaves with anisotropic pressure. The two curves arératavith the monotonized
central (MC) and Koren limiters, respectively. The dasliee indicates the second order convergence rate.

2.3.6. Alfvén waves and heat conduction
In regimes where the space plasma is collisional, the fildph@d electron thermal heat conduction can not always
be ignored. We therefore have implemented Spitzer’s éofied formulation for the electron heat flux

Qe = —keTo/?bb - VT, (35)

whereT, is the electron temperature. The fogent x, depends on the choice of the Coulomb logarithm In
Suficiently far from the Sun and planets, the plasma is no longiismnal so that the Spitzer formulation no longer
holds. We therefore smoothly diminish the heat conductmaficient from the full value within the given radius
I'collisional 1O Zz€ro beyond the given raditgisioniess The electron heat flux enters the electron pressure equatio
TP+ V- () + (/= V-G = (= 1| -V - e+ 13+ = (p- )| (36)

In the energy equations of ideal MHD, Hall-MHD, and MHD withisotropic pressure, Eqs. (9), (23), and (33),
respectively, the contributio¥ - ge is added to the left hand side. For ideal MHD, we agd-(1)V - ge to the left
hand side of the pressure equation (14) as well. Similareédhll and Bierman battery terms, the heat conduction
also introduces second order spatial derivatives. We useataliferencing for the electron temperature gradient
calculation and third order interpolation is used Tgmear the resolution changes analogous to [43].

One of the suggested mechanisms to heat and accelerateldhevea is by the Alfvén waves. We use the
Wentzel-Kramers-Brillouin (WKB) [71, 72] approximationifthe short wavelength Alfvén waves. The time evolu-
tion of the wave energy density is given by

P v (B un] = G- DEV-u-Q, 37)
T v Eu-u] = ~Ow-DEV-u-Q (38)

whereup = B/4/p is the Alfvén speed angl, = 3/2 is the dfective polytropic index for the Alfvén wave energy
density. The +' superscript indicates the obliquely propagating Alfugaves in the direction oB, and similarly
the superscript-' indicates the Alfvén waves antiparallel ®. For the wave dissipation Q, a phenomenological
description of the Kolmogorov dissipation is used

(E5)*?
Vi
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whereL = C/ VB is the correlation length of the Alfvén waves aBds an adjustable input parameter. A similar
dissipation is used for the-' waves. These Alfvén wave equations assume isotropicieagure. We further assume
that the wave dissipation will heat the iogg, = Q* + Q~, and the pressure associated with these waves

Pw = (yw — 1)Ew (40)

will accelerate the solar wind plasma. Hdtg = E}, + E, is the total wave energy density. The momentum and
energy equations, (17) and (23), are modified to

dpu
iy,
ot

?9_$+v-[(e+ D+ Pe-+ Pu + BY/2)U— BB - U+ G + (Ej; — Ep)ua| = 0

puu+l(p+pe+pw+%82)—BB =0, (41)

(42)

where the total energy densiy= s+ se+B?/2+E,, consists of the total hydrodynamic ion energy, the integtedtron
energy, magnetic energy, and wave energy density. For atewvee, we have neglected the Hall and Biermann battery
in these conservation laws. Also not shown are sources dgmatity, Coriolis, and centrifugal forces.

In Fig. 8, we show a 3D solar wind MHD simulation with the Adfiv waves, electron pressure equation, and heat
conduction using the HLLE solver [73, 74]. The obtained @yestate was performed on a domain|y|, |2 < 24Rs,n
with five levels of refinement using»4 4 x 4 Cartesian blocks. The cell sizes vary froff13Rs,, near the Sun to
0.75Rsynnear the outer boundary. Two additional levels of refineraemtsed near the heliospheric current sheet (see
the AMR grid in the figure). The final number of grid cells is 2:lion.

The inner boundary is taken at 1.035 solar radii. If the aeofte grid cell is inside this radius, it is regarded as
a ‘false’ cell, and it is not updated. The boundary condgiane applied on the cell faces between ‘true’ and ‘false’
cells. Although this procedure corresponds to a raggedseidnd the scheme is only first order accurate at the inner
boundary, the results remain acceptable for strongly ntaggtebodies, because the magnetic field suppresses flows
parallel to the surface. For non-magnetized bodies the usgherical grids is preferable, because then the resulting
inner boundary surface is a perfect sphere, and one can sgmiynd order accurate boundary conditions using regular
ghost cells.

The Alfvén waves applied at the inner boundary drive thenbdal nature of the solar wind with the fast wind in
the polar region and slow wind near the equator. The few s=ddzld lines show the location of the helmet streamer
with the closed field lines and the coronal holes with somendigéd lines. See [35] for more detail.

2.3.7. Multi-species and multi-material equations

It is often necessary to distinguishfidirent ion species in space plasmas, because they héeedt properties
with respect to photoionization, collisions with neutralbarge exchange, etc. If the plasma is collisional then the
velocities and temperatures of the ion species are appat&lyithe same. The multi-species plasma can be modeled
by solving additional continuity equations for each speamelexed bys = 1.. . Nspecies

%ps +V-(psu) =S,,, (43)

ot
whereps andS,, are the mass density and the source term for speciespectively. Since we also solve for the total
densityp, at the end of each time step we may either replagéth ) ps, or we may adjust the species densities to
add up tao.

In some applications of BATS-R-US (not in space physics) eedtto distinguish multiple materials that do not
mix with each other, but dier from each other in their properties, e.g. the equatioriatés Here we may use the
multi-species equations by simply solving for the densitgach material. The numericalftlision will eventually
result in areas where there are multiple species with pesitensities. As long as there is a dominant species we
can use the corresponding material properties. At the iahteterfaces, however, the species densities can become
comparable. Here we may use some weighted average of theiahpteperties. An alternative approach is to use
levelset functions which go through zero smoothly at theemalinterfaces. The levelset functions are initialized a
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Figure 8: 3D solar wind simulated with BATS-R-US using Adfvivaves, electron pressure equation and heat conducti@nratlial velocity in
the xzplane shows the bimodal fast-slow wind due to the Alfvévega A few selected field lines depict the helmet streamercanohal holes.
The radial magnetic field is shown on the surface of the Sun.
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the signed distance from the interfack:is positive inside materiad and negative outside. Tlik functions satisfy

simple advection equations

86_dts + V- (dsu) = dsV - u. (44)

Numerical ditusion may still result in regions where multigdefunctions are positive or where they are all negative,
but due to the smoothness of the distance functilgtise numerical dfusion is less than for the discontinuous density
functionsps.

2.3.8. Multi-fluid MHD

When the diferent ion and neutral species are collisionless, theircitids and temperatures carffdr signifi-
cantly. In this case we need a multi-fluid description, wheaeh fluid has its own density, velocity and temperature.
Here we briefly describe the multi-fluid MHD equations tha anplemented in BATS-R-US. For the derivation of
the multi-ion MHD equations see [44].

We allow an arbitrary number of ion and neutral fluids indekgds = 1... N, andn = Nign + 1... Nfid,
respectively. For the ion fluids the following equations sob/ed

% +V-(osls) = S, (45)

B%Stus + V- (psUsUs + Ips) =
nes(Us — U,) x B+ EZZZ@ X B - VPe) + Sy (46)
% +V x (—ue xB - Z;Z) = 0, (47)
vV (o) = ~(-DpTus+ Sy, (48)
e V() = ~(r- )PV e+ Sy, (49)

whereng, gs, Us and ps are the number density, electric charge, velocity and predsr the ion fluids, respectively.
The charge averaged ion velocity

nsu
U, = 25 AsNsUs (50)
OeNe
defines the average velocity of the positive current casyis the electron velocity can be written as
J
Ue = Uy — . 51
¢ ! OeNe 1)

The electron number density can be obtained from chargealigyitlene = >, Ns0s. The source termS,_, S, ., Sp,
andSy, are due to various processes, including gravity, chargeasnge, recombination, photo-ionization, etc. In the
above equations the resistivity is neglected. One may algotthe Hall and Biermann battery terms in the induction
equation (47) and the electron velocity equation (51) tdadatioe stithess due to the whistler waves. In this case
Ue = Uy.

The multi-ion MHD equations (45)49) cannot be written in conservation form because ohtfie, multipliers
on the right hand sides of the momentum equation (46). Toon®the conservative properties of the scheme we
allow to also solve for the total momentum dengity= Y psus which obeys a conservation law. At the end of each
time step the individual momentgu* can be adjusted so that they add up to the total momeptitm. With respect
to energy conservation, there is no simple equation fordted energy density. We have the option to solve for the
hydrodynamic energy densities = psu2/2 + ps/(y — 1) as

0e. n
6_t5 + V- [(€s + Ps)Us] = Us- |Nss(Us — U,) X B + nzgz

(I X B=Vpe)| + Se., (52)
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instead of the ion pressure equations (48). As long as tlotretepressure and the magnetic energy density are small
relative to the kinetic energy density, the jump conditianlsbe approximately correct across a shock wave. This is
approximately true for the bow shocks around planets.

Finally we also have to cope with the issue of positivity. e tmulti-species case a small negajixe while
physically incorrect, may not cause any numerical probléasept for some source terms), and it can be easily
corrected if necessary. In the multi-fluid case we have totaai positivity ofps and ps otherwise the wave speeds
become imaginary. In regions where some fluids have veryl staakity relative to the total, we maintain a lower
limit on ps (some small fraction, e.g. 16to 10°°, of p) and set the velocitys and temperatur&s = ps/(Ksns) of
the minor fluid to the average velocity and temperature oioallfluids combined. This is a physically meaningful
state that can interact correctly with regions where theesthnid occurs with significant density. See [44] for further
details on multi-ion MHD.

The neutral fluids satisfy the Euler equations with souromse

6pn

s +V-(onn) = S, (53)
dppu
% + V- (onUnun + Ipp) = Spntins (54)
0
% £V (Putn) = —(—1)paV-Un+Sp,, (55)
(56)
and we also solve the energy equation
0
B—Ei” +V - [(€ + Pn)Un] = Se,. (57)

for the total neutral fluid energy densiy = pnu2/2 + pn/(y — 1).

The ion-fluids are strongly coupled by the magnetic field, socalculate the numerical flux function (e.g. Ru-
sanov or HLLE) for all the ion fluids together. In particultre fastest wave speeds are estimated as the maximum
(minimum) of the fast magnetosonic speeds Ci4s; for the total ion fluid (with total mass density, momentum and
pressure) and the sound wave spagds ¢ of the individual ion fluids. In addition, we use a point-irgil scheme
to evaluate the terms proportional to;( u,) on the right hand sides of the momentum and energy densitytens
(46) and (52), which may become numerically unstable wittmpke explicit evaluation.

The neutral fluids, on the other hand, are typically weaklypted to the ions and each other, so one can use
separate wave speeds for each neutral fluid in the numectoahse. BATS-R-US also allows usingdidirent numerical
flux functions for the ions and the neutrals.

An interesting multi-fluid application is the outer helibspe, where the interstellar neutrals can charge exchange
with the solar wind and the shocked interstellar plasma flidpending on the region where the charge exchange
happens, the neutrals will haveffdirent velocities and temperatures. Since the neutrals cae freely across the
magnetic field, the resulting neutral distribution cannetdescribed with a single Maxwellian fluid. A reasonable
approximation is to use multiple neutral fluids (or populas), each with its own density, velocity and pressure [39].
Fig. 9 shows a most recent simulation of the interaction efdblar wind with the interstellar material and magnetic
field. This time accurate simulation requires 1.4 billiomd(k 10°) cells ranging from 0.03 to 31.25 AU in size (10
levels of grid refinement). The computational domain exsefitdmr = 30AU to |x,|y],|Z < 1000 AU, and the
simulation took 230,000 time steps so far. BATS-R-US rantmoua 2,000 CPU cores of the Pleiades supercomputer
for several weeks. The fine grid is required to resolve thg serall (about 0.7 AU) separation of the sectors of the
current sheet in the heliosheath. The sectors are formetbdhe tilt of the solar magnetic field relative to the rotatio
axis of the Sun. The scientific significance of the resultslvéldiscussed in another publication.

2.3.9. Radiative transfer

For the sake of completeness we mention that BATS-R-US canaten solve for radiation transfer in the flux
limited multi-group difusion approximation. This capability is used in high enelgysity applications outside the
scope of space physics [75, 76]. We will describe the eqastmd the numerical algorithms in a future publication
(van der Holst et al., 2011, submitted to ApJ. Suppl.).
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Figure 9: Part of they = O cut of a 3D outer heliosphere simulation with BATS-R-USnhgsl ion and 4 neutral fluids. The coordinates are in
astronomical units. The magnetic field strength [nT] is shawcolor, the streamlines indicate the flow field. Note how fime ripples of the
current sheet are compressed as the solar wind crossesrttiedion shock.
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3. Adaptive Spatial Discretization

The spatial discretization in BATS-R-US is based on totaiateon diminishing (TVD) [69, 77] type numerical
schemes with second and third order (in smooth monotonioms}[70] accurate slope limiters. We have developed
a second order accurate oscillation free interpolatiorsehfor the grid resolution changes [78]. A large variety of
numerical flux functions are available, including the locak-Friedrichs or Rusanov [79], HLLE [73, 74], Artificial
Wind [80], HLLD [81], Roe [82] and Godunov [83] fluxes. The Rumv, HLLE and Atrtificial Wind schemes work
for all systems of equations, the HLLD and Roe schemes arkeimgnted for ideal MHD only, while the Godunov
scheme (exact Riemann solver) can be used for hydrodynafftiesoptimal combination of flux functions, limiters,
and divergence control methods is highly application depat and having a large number of choices can be regarded
as an algorithmic adaptivity.

BATS-R-US was designed around a 3D block-adaptive grid.hEdack has the same number of cells, but the
blocks can have dierent sizes in physical space. The blocks can be split intol@ren (refinement), or 8 blocks can
be merged into one (coarsening). While cell-based adaptffiers the most flexible grid structure, block adaptivity
has a lot of advantages: each block is a simple structureldadjawing simple numerical schemes, the fixed sized
blocks are easy to load balance, the data correspondingltark tan easily fit into the cache, and the fixed length
loops can bef@ciently optimized (unrolled) by the compiler [84].

The block-adaptive grid algoritm has been improved andneldd a lot over the years. It has been generalized to
handle arbitrary number of variables and generalized dnatels. We implemented message passing over the poles
of spherical and cylindrical grids, added message pasdinglbfaces edges and corners, etc. We wrote various
algorithms, including block-to-block as well as singleffien communication. Recently, however, we faced a new
challenge: generalizing the AMR algorithms to two spatiahehsions. Since the original BATS-R-US algorithms
have been hard coded for three spatial dimensions, gersrah to 2D (and 1D) would have required an almost
complete rewrite. We have decided that we might as well Btamrt scratch and design a new, separate Block Adaptive
Tree Library, BATL.

We will first discuss block-adaptive grids with generalizesrdinates, then the new AMR library, BATL.

3.1. Generalized coordinates

Generalized coordinates allow a continuous mapping fromgacélly Cartesian coordinate system into a gen-
eral curved system. Simple and practically important examare stretched Cartesian grids, as well as cylindrical,
spherical and toroidal coordinates. In BATS-R-US we im@eted the generalized coordinates in combination with
Cartesian vector components. This means that the goveegjngtions are kept in the Cartesian form, only the ge-
ometry of the grid is modified. This choice allows a generalementation as well as avoids singularities along the
symmetry axis of cylindrical and spherical coordinates.

The connectivity of grid cells across the symmetry axis dincirical and spherical grids is complicated. To keep
the algorithm simple, resolution changes are allowed atmrighot around the symmetry axis (see [15] for a more
general algorithm that allows resolution changes arouadiis). An additional problem is that the cells around the
symmetry axis become very thin. For an explicit time intéigrascheme, this can severely limit the time step. We
have developed a simple yet conservative ‘supercell’ #lgorwhich averages the cells around the symmetry axis
after every time step. To make the scheme second order aecadanited least-squares slope is calculated from the
cells surrounding the supercell, and the cell values indidesupercell are filled accordingly. See Appendix B for
more detail.

Spherical coordinates can be very useful for space sciémedagions, since the grid will then be aligned with
the surface of the Sun, planets, or moons. Fig. 10 shows datioruof a Coronal Mass Ejection (CME) from the
Sun using the breakout mechanism [28, 29]. An elongatediariseadded in the closed field line region of the steady
state solar wind. This arcade mimics a quiescent filamentlaadrientation is such that there is a magnetic null on
the leading edge. The simulation was performed on a spherichextending over the rang@syn < r < 24Rsyn,

0 <6 < r and 0< ¢ < 2r. The grid is constructed as follows: We start with a grid éstirsy of 128x 128x 256
cells, partitioned in 4 4 x 4 blocks. The mesh is uniform in the angle directions, busaskgarithmic stretching

in the radial coordinate. Near the poles, the resolutioreiehsed by one AMR level and in addition the supercell
algorithm is used to avoid too small time steps. Near theobpheric current sheet of the solar wind, the resolution
is increased by one AMR level. The initial CME eruption phésaccurately captured by increasing the number

22



L

T
WY
Y

AN SRR TR
WA

AN

Figure 10: A few selected field lines of the breakout CME dauptThe colors represent the various initial magnetic flysteams: central breakout
arcade in red, neighboring arcades in green, and the otérgrbelmet streamer and open field lines in blue. The mesheinzandr = Rsyn
plane demonstrate the spherical AMR grid.

of AMR levels by two in the regionr(6, ¢) € [Rsun 3.14Rsu] X [-14°, 14°] x [-36°,36°]. The final grid consists

of 134,752 4x 4 x 4 blocks yielding a total of 8.6 million mesh cells with theaast cell size at the bottom of the
arcade, where/r, A9, Ap) ~ (0.006Rsyn 0.35°, 0.35°). By applying shear flow near the polarity inversion linelaét
magnetic arcade, the field near the null starts to reconmelcteanoves the overlying helmet streamer field, resulting
in a run-away breakout CME eruption.

3.2. Block Adaptive Tree Library — BATL

We decided to write BATL in Fortran 90 using the MPI library fmmmunication, so it requires the same software
environment as BATS-R-US or the SWMF. We also considereatusie LASY precompiler [85] that allows writing
code for arbitrary number of spatial dimensions, as it wasdo MPI-AMRVAC (see Keppens et al. in this issue), but
we opted to write the code in plain F90 so that the source codasy to read for other developers. We also decided
to avoid the use of pointers and derived types, althoughadheylefinitely suitable for representing the dynamic and
complex tree structure of an AMR grid (these language elésngare heavily used in the original BATS-R-US code
as well as in MPI-AMRVAC). The reason for this choice has toadth the limitations of the MPI libraries available
on today’s supercomputers: information contained in ugor derived types cannot be passed. Therefore we use
simple integer indexes instead of pointers, and arrays mathed indexes instead of derived types. This makes the
code simpler, moreficient and still flexible enough. The whole AMR grid structusn be described by a single
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Figure 11: A 2D block adaptive grid. The left panel shows gl&irblock (thick square) witm; = 4 timesn, = 2 cells (thin solid lines), and
ng = 2 layers of ghost cells (dotted lines). The right panel shawadaptive grid witiN; = 3 timesN; = 2 root blocks. Only the first dimension
is refined, so the refinement ratios age= 2 andr, = 1. The shaded block is at leviek 1 and its integer coordinates are= 4 andc; = 1.

integer array. For example the index of the second child tid@node is stored afree_IA(Child2_, iNode) while
the AMR level is stored asTree TA(Level_,iNode) whereChild2_andLevel_are named indexes, i.e. integer
constants. The array nam&ree_IA follows our naming standard: the initialindicates that it is of type integer, the
_IA suffix indicates that it is an array indexed by some general indgfo{lowed by a node index4). This integer
array is easy to communicate through MPI or to save into adiledstart.

3.2.1. Grid structure

BATL supports 1, 2 or 3 dimensional block-adaptive gridsevehevery grid block has; x np x ng cells. In 2D
gridsng = 1, while in 1D gridsn, = ng = 1. Theny, np andns constants (integer parameters in terms of F90) are
set by aConfig.pl script before BATL is compiled. This makes the 1D and 2D aygilons #icient, because the
operations related to the ignored dimensions are eliminateompile time. Due to the restrictions of Fortran 90, the
arrays containing various data for the blocks always haneetbpatial indexes, but the last one or two dimensions may
have a single element. The grid blocks are surroundeasdgyers of ghost cells to facilitate information exchange
between the blocks. The value of the constant is set before compilation for the sakeftitEnt optimization. For
2D and 1D grids no ghost cells are required in the ignored dgioms. In the used dimensions the cell indexes go
from 1 - ng to n; + ng. The left panel of Fig. 11 shows a block with = 4,n, = 2,n3 = 1 andng = 2.

In BATL the grid refinement ratio can be 2 only, on the otherdhaat all dimensions have to be refined. For each
dimension wher@g; > 1 the refinementratin can be 1 or 2. If; = 1 then dimensioncannot be refined or coarsened,
if ri = 2, there is refinement in dimensionThis means that every block can hayers = 2,4 or 8 children blocks.
Thery, rp andrs constants are also set by thenfig.pl script before compilation. A possible application of pairti
AMR can be a spherical grid where the refinement is done itutigiand longitude only, but not in the altitude (radial)
direction. In the refined dimensions the number of cellsas to be an even number amd> 2ng must hold so that
the ghost cells of a coarser neighbor are covered by the finek.bThese restrictions arise from the ghost cell filling
procedures at resolution changes that we will discuss bélbe right panel of Fig. 11 shows an adaptive grid that is
refined in the first dimension only; = 2 andr, = 1.

At the lowest refinement level the root blocks are arrangemlamN; x N, x N3 root grid. TheNz, N, andNs
integers are set during run time so the shape of the root gricoe changed without recompiling BATL. Since the
root grid size occurs in the outer loops only, making them @stant would not improve theffeciency of the code
significantly. In 2D griddN; = 1, while in 1D gridsN, = N3 = 1. Starting with each root block the refinement creates
a binary-, quad- or octree down to the finest level of blocks.

The topology of the adaptive grid is described by a sete#nodesor nodes, for short. The nodes are identified
by a global node index. All nodes have the following inforioatstored in theiTree_IA integer array:

e the status of the node (used, unused, to be refined, to becoedgirstc.);
e the current, the maximum allowed and minimum allowed AMRelevfor this node;

e the three integer coordinates with respect to the whole grid

24



0.3) 13
(-1.1) (0.1) 1) (3.3)
(0,2) 3.2

(-1,0) (0,0) (1,0) (1.1)
0.1) (CH]
(-1,-1) (0-1) (1,-1) 00 | @) | 20) | 3.0

Figure 12: The left and right panels show the indexing of thigimbor directions, and neighbor blocks, respectivelybn

¢ the index of the parent node (if any);

¢ the indexes of the children nodes (if any);

¢ the processor index where the block is stored for active siode
¢ the local block index for active nodes.

The three integer coordinatesspecify the location of the node with respect to a virtuafomn grid of the given
level. At levell the ranges of integer coordinates aye- 1... Niri', wherel = 0 corresponds to the root level. The
maximum number of levels is limited to 30 because we use B&idped integers to store the coordinates. This is
more than sflicient for our current applications. Thoe coordinates are useful for many purposes: the parity of
specifies the location of the node with respect to the patenkbone can easily find blocks that are at the edges of the
computational domain, and the (generalized) physicaldioates can be easily calculated from the integer indexes.

The node information (18 integers per node in 3D) is repdidain all processors, which simplifies the algorithms
substantially, and it allows a lot of functionality withoter-processor communication. As long as the total number
of nodes does not exceed a few million, storage should nohbiesae on most supercomputers with a gigabyte or
more memory per core. If it becomes necessary, the nodemiation could be distributed among the processors to
reduce the storage requirements.

To speed up the information exchange between the grid bleakprecalculate neighbor information. For each
block (active node) we store the AMR levelfidirence with respect to the neighbors in all directions,uidicig
diagonal directions. In 3D there are 26 directions, but @dsiest to store 27 integers in x3 x 3 array. We also
store the node indexes of all the neighbors inxa4tx 4 array, where indexes 0 and 3 correspond to the neighbors
on the two sides, while indexes 1 and 2 correspond to the tivebaf the block which is needed to distinguish the
finer neighbors in the tangential direction. Fig. 12 shows ltwe directions and neighbors are assigned to indexes
in 2D. For the sake of storage reduction, the neighbor in&tion is distributed over the processing elements, and
it is available for the local blocks (active nodes) only. 1i8tg 27+ 64 = 91 integers per block is a minor overhead
compared to the other data associated with grid blocks.

The neighbor information can be obtained by traversing tee tip and down. This results in affieient but
complicated algorithm. An alternative approach that we insBATL relies on the integer block indexes and the
efficient binary search algorithm of finding the block that cevarpoint. For each block we loop through all the
possible neighbors (see Fig. 12) and generate a point@ositi normalized generalized coordinates) that should lie
inside that neighbor. We take into account periodicity/angoles of a sphericalylindrical grid by appropriately
shifting the point position. Then we use the binary seargorithm to find the block that contains the point. This
scheme is relatively simple and still quitfieient.

3.2.2. Grid geometry

Up to this point, we kept the discussion of BATL fully genenaih respect to the grid geometry. Indeed, BATL is
intended to support arbitrary grid geometries, includirggt€sian, spherical, cylindrical, toroidal, or even adity
stretched grids. The whole computational domain is a brickégeneralized coordinatebut this can correspond to
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a spherical shell, a cylinder, or a distorted torus in reatsp Similarly, every grid block is uniform in the generatiz
coordinates, but not necessarily in the Cartesian spagethEsake of ffliciency we precompute useful geometrical
information: cell sizes (in generalized coordinates)efaceas, face normals, cell volumes as well as the cartesian
coordinates of the cell centers. This information is distted over the processors, and it is indexed by the locakbloc
index.

In each dimension, one can either use boundary conditicgally implemented by setting the ghost cells) or
the dimension can be set to be periodic. Periodicity is ginmpblemented by setting the neighbors of the block to
the opposite side of the grid. This works for the azimuthardmate of cylindrical and spherical grids, as well as
for toroidal and poloidal coordinates of toroidal grids.idGgeometries that have a singular pole (e.g. spherical and
cylindrical grids) require special message passing achespolar axis. Alternatively, the cells surrounding théego
can be merged into a supercell. All of these algorithms dhg ifuplemented into the 3D AMR code of BATS-R-US,
but the current implementation of the new BATL code is regtd to 1, 2 and 3D Cartesian and axially symmetric 2D
R - Z geometries.

3.2.3. Refinement, coarsening and load balancing
The grid is adapted in the following stages:

Based on some criteria assign the blocks for refinemerdgansening.

Enforce proper nesting criteria.

Coarsen tree by deactivating children nodes and actiyéttie parent node.
Refine tree by adding new active children nodes and dadictiythe parent node.
Load balance the nodes by assigning them to the processors

Restrict, load balance and prolong grid block data.

7. Remove the coarsened tree nodes and compact the tree.

oakwNPE

A block is refined if any of its siblings require refinementtioe nesting criteria require its refinement and it has not
reached the maximum allowed level. The block is coarsenatl the siblings allow the coarsening, the block has
not reached the allowed minimum level and the coarsening doecontradict the proper nesting. The proper nesting
requires that the AMR levels of neighboring grid blocks catydliffer by one. We apply this restriction to neighbors
in all diagonal directions so that we can keep the messagéngealgorithm relatively simple.

For purposes of load balancing the active nodes, i.e. bjarksordered by a space filling curve. The root nodes
are simply ordered in the usual array order by looping oventliimension by dimension. The trees starting from
the root nodes are ordered recursively by looping over thigreim again dimension by dimension. This ordering
corresponds to the Morton space filling curve. Another papcdhoice that we actually use in the original BATS-R-
US code is the Peano-Hilbert space filling curve. It was fotmad Morton and Peano-Hilbert space filling curves
provide similar data locality, and the Morton ordering isehwsimpler. In the simplest case, load balancing means
that we cut the space filling curve indd, equal pieces, wherd, is the number of processors. BATL also supports
a more complicated load balancing procedure, when therdifiegent types of blocks, and each type is distributed
evenly among the processors. For example the blocksfterelt AMR levels, or explicitly and implicitly advanced
blocks can be load balanced separately. To do this the splérg durve iscoloredaccording to the block type, and
then the curve of a given color is cut ink4 equal pieces. In general the number of blocks per type ismottager
multiple of Ny, but we ensure that the number of blocks of a given type asagethe total number of blocks per
processor varies by at most 1.

The data is restricted (coarsened) by averaging the 2, 4 pe&éills into a coarse cell. On non-Cartesian grids the
volumes of the fine cells are taken into account, so that taeseming is conservative. This is a second order accurate
procedure in the finite volume sense. We ¢ispyd the already restricted data to minimize communication

The data is prolonged (refined) by interpolating the coaega dnto the fine grid. To make the procedure con-
servative and oscillation free, we calculate the gradieneach coarse cell with centralfférencing, and then limit
the slopes with the monotonized central limiter with an atfjbles parameter. This requires that the coarse data is
sentcopied with one extra layer of ghost cells to the processa@relthe prolongation is done. On non-Cartesian
grids, the coarse data is multiplied by the coarse cell velMgbefore calculating the slopes, and the interpolated fine
data is divided back by the fine cell volume times the totahegfient ratio/;r1r,rz at the end.
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The coarsening, load balancing and prolongation are doh@opyng over the nodes three times. The actual work
is done only by the processors that send/andeceive the data, so the expensive part of the algorithdoie in
parallel. The MPI communication is done block by block, soaaa fill up the holes created by sending data to
another processor with the received data. This mimimizgisdbes not eliminate, the number of holes in the arrays
containing the block data. We use a logical alvaysed B to keep track of the local block indexes that are not used.
This array can also be used to switch on afichtocks for various time stepping schemes.

After the load balancing of the data is done, the tree nodesctintained the coarsened blocks can be removed.
This will create holes in the tree data array. Since the tega & relatively small, we can remove the holes by
compactinghe tree: the used nodes are moved next to each other, whiledbxes of the parent and children nodes
are corrected.

3.2.4. Message passing

Message passing fills in the ghost cells of the blocks basddformation taken from the neighboring blocks.
When the neighbor block is at the same grid level, the ghdist aee simple copies of the normal cells of the neigh-
boring block. When the neighbor is at a finer or coarser lelielghost cell is filled in with restriction and prolongation
operations, respectively, similar to the coarsening afidement steps. Here, however, conservation of variables in
the ghost cells is not necessary. Conservation of the dwafaéme is ensured by the face flux correction step [86].
On the other hand it is important to ensure that no spuriocilatsons form at the resolution changes. This requires
careful prolongation schemes [78].

Message passing of ghost cells is done at least once evegystep (or iteration), and it involves a lot of data
movement, so it is important to make iffieient. Ghost cells are filled in for various purposes. In saasges it
is suficient to fill in the ghost cells in the up to 6 principal direxts only, in other cases the diagonal (edge and
corner) ghost cells have to be filled in as well. The numberhafsg cell layers that need to be filled in can vary
from 1 tong. For some time discretization schemes only a subset of titkblneed to be updated with new ghost
cell information. When the grid is coarsened or refined, ibteoff blocks and the location of resolution changes gets
modified. For some purposes it is necessary to use secondamcigate restriction and prolongation, for others first
order, or special prolongation and restriction procedaremeeded. BATL has to provide all this functionality in 1,
2, or 3 dimensions.

For the sake officiency all the data sent from processor A to processor B lscteld into a single kier, and then
all the buters are sent with non-blocking MPI sgreteive communications. For second order accurate praterg
it is necessary to fill in the ghost cells with same or finer uhyileg cells first, so that there are ghost cells available
for the prolongation operation. Then the prolonged ghdts eee message passed in a second stage.

The remaining task is to pack and unpack th&du In the original BATS-R-US algorithm the order of blocksla
the ranges of sent cells and received ghost cells are prdatdd and saved into integer arrays. This allows sending
the data only, which minimizes the size of the MPI messages.th® other hand, every time the communication
pattern changes (e.g. due to AMR), the index arrays have tedadculated.

In BATL a different algorithm is used: we store the index of the receiviogkband the cell index ranges into
the bufer together with the data. While this slightly increaseshiser size, it greatly simplifies the algorithm. The
data to be sent s calculated the same place as the receluirigibdex and cell index ranges, and all this information
is stored into the real ltter array. The unpacking is trivial: the receiving processads the block index and array
ranges first, and then reads théfbudata directly into place. In 2D there are 5 extra real nusiteesend, in 3D there
are 7. As long as the number of variables sent is large, tbidteein an acceptable overhead. The algorithm can be
improved by storing the block index and the index range imi@tion into a single real number, since there are only a
finite number (less than 100) possibilities for the indexges Then the overhead relative to the data becomes truly
negligible.

We use this approach in the message passing of face centdvas that is needed for the flux correction step at
the resolution changes. Here we send the sum of the up to 4afiedlfixes to the coarse neighbor, where the sum of
these fluxes will replace the flux calculated on the coarddaet. The coarse block indey, the block face index
ir < 6 and the index of the block subfaige< 4 (there are up to 4 fine neighbor blocks sharing each faceeafdhrse
block) are combined into a single real numbet 100 + 10ir + is. This number is inserted before the data, the
face fluxes, for each face. There are at least 2 (in 2D) or 4@i)ncdarse cell faces and typically 8 or so variables sent
per fine block face, so the overhead of sendigbelow 10%.
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Figure 13: Weak scaling of BATS-R-US using the BATL messaagsmg scheme. A multi-material hydrodynamics problerpligesi on a uniform
grid with 40,960 grid cells per CPU core using® x 8 (diamonds) and 1& 16 x 16 (triangles) blocks, respectively. The dashed line iatgis
ideal scaling.

For the sake of convenience BATL implements methods to stotecorrect the face fluxes in addition to the
message passing.

3.2.5. Performance and scaling

We have performed parallel scaling studies on the Pleianiepuater at NASA Ames using the Harpertown (Xeon
E5472) nodes of the SGI ICE system connected with an Infimilpetwork. Fig. 13 shows the weak scaling from 1 to
16,384 CPU cores. The 3D multi-material hydrodynamics 8qos (see subsection 2.3.7) are solved with the explicit
HLL scheme and Koren’s limiter. The equations of state ofttiree materials are obtained from lookup tables, so
it takes negligible time. In essence the computational vpaenkcell update is fairly small which makes scaling more
challenging. The problem size grows proportional to the benof processors: there are 40,960 cells per processor.
The number of processor cores vary from 1 to 16,384, so thedagrid contains about 671 million cells. The scaling
curve is based on the timings of the first 100 time steps whaies from 23 seconds on 1 core to 71.5 and 45.5
seconds wall-clock time on 16,384 cores with the 8x 8 and 16x 16 x 16 block sizes, respectively. Thex#4 x 4
blocks scale reasonably well up to 8000 cores (not showrg.tiffings do not include any® operations.

To test strong scaling we redo the same simulation but witkeslfproblem size on 64 to 8,192 processor cores.
The uniform grid contains 40,960 blocks with<88 x 8 cells each, altogether about 21 million cells. The timings
are based on the first 100 time steps. Fig. 14 compares steatiggs with three dferent ghost cell filling schemes:
BATL with processor-to-processor communication desdhilbesubsection 3.2.4, current BATS-R-US algorithm with
precomputed processor-to-processor communication, A@HR-US with block-to-block communication. Interest-
ingly the three schemes give very comparable results. kagzthat the deviation from ideal scaling does not depend
much on the communication algorithm, and it is probably deteed by the hardware network characteristics.

4. Adaptive Temporal Discretization

We use BATS-R-US to solve steady state as well as time aecprablems. Often the steady state solution is used
as an initial condition for a time accurate simulation. Aecating convergence towards steady state can be achieved
with local time stepping as well as gradual grid adaptatdfhen we start from a steady state simulation, in some
cases the initial evolution happens in a small fraction efdbmputational domain. We can substantially speed up the
simulation by using a time stepping algorithm that distiisges between steady and evolving grid cells.
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Figure 14: Strong scaling of BATS-R-US using various messaassing schemes: BATL (diamonds) versus BATSRUS messeping with
processor-to-processor (triangles) and block-to-blacjuéres) communication. A multi-material hydrodynamicsbfem is solved on a uniform
grid with 40,960 blocks of & 8 x 8 cells. The number of CPU cores range from 64 to 8,192. Theedbiine indicates ideal scaling.

In time accurate simulations the simplest time stepping@sehuses the same time step in all the grid cells with
an explicit time discretization. Both the adaptive grid ainel physics of the simulated problem can make this simple
explicit time stepping inficient. The adaptive grid creates cells of verffatient sizes, thus the CFL condition may
give widely varying time step limits. The maximum propagatspeed may also vary substantially in the domain.
Both of these issues may be addressed by subcycling, i.diffeeent cells take dierent number of time steps to get
to the same time level.

In some cases the equations aré stie. the numerical stability restricts the time step to hachmsmaller than
what would be dictated by accuracy considerations. Depgrath the mathematical properties of théfsgrms, we
can use point-implicit, semi-implicit or fully implicit the discretization schemes to allow larger time steps. We hav
also developed an expligimplicit scheme that advances some of the grid blocks eitigliand the rest implicitly.

The rest of this section briefly describes the various tirepging algorithms implemented in BATS-R-US.

4.1. Local time stepping towards steady-state solution
Convergence towards steady state can be greatly accelératmploying diferent local time steps in every grid
cell. The local time step is limited by the local stabilityngbtions only. By taking the maximum possible time step
(in an explicit time stepping scheme) the residual can pyapethrough the computational domain in fewer iterations.
Formally the scheme can be written as
UMt = UP + AGR; (U (58)

whereU; is the vector of state variableR; is the discretized right hand side of the partidfeliential equation
oU/at = R(U), andAt; is the local time step for grid cell The superscripts andn + 1 indicate the current and next
time levels, respectively. When we reach steady stéte!, = U, so thatR; becomes zero irrespective of the value of
At;. This means that the discrete steady-state solution igstenswith the PDER(U) = 0.

For the MHD equations the situation is a bit more complicatElde variation of the time step from cell-to-cell
corresponds to a space dependent fagtiorfront of the time derivative. The discrete induction etijprais therefore
consistent with the following PDE:

0B
— =_V
@ xE (59)
Let us take the divergence of this equation:
0B o(V-B)
Va - E +a ot =0 (60)
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It is clear thatV - B is not conserved iV« is not zero! Since th& - B = 0 condition is a consequence of the initial
condition only, the local time stepping will lead to a steadgte solution that has non-zeVo- B, unless we do
something. Indeed, we have to use some modification of thectiah eqution so that the divergence free condition
depends on the boundary conditions and not on the initiatlitioms. Possible modifications include the 8-wave
scheme, the parabolityperbolic cleaning, and the projection scheme. The caimgtd transport scheme, on the other
hand, cannot be combined with the local time stepping tosvatelady state, because it relies on the initial condition
to maintain the divergence-free magnetic field.

The current BATS-R-US code does not stop automatically wsteady state is reached to a given accuracy
(although it would be easy to add this option). Such an autienségopping condition is not guaranteed to work,
because the numerical solution may never settle to a pesfeatly state, but rather exhibit some very small (and
insignificant) oscillations. In our practice, we set the fn@mof iterations in advance and either monitor some global
guantities (like total mass, momentum and energy)@ncbmpare consecutive snapshots to check for changes in the
solution. If the steady state is not accurate enough, thésrestarted and more iterations are performed.

In combination with the local time stepping, we also use ipldtsessions and grid adaptation to speed up the
convergence towards steady state. Fig. 15 shows a few sstagstim a simulation that finds an approximate steady
state solution for the magnetosphere. We solve the anjgotkéHD equations (neglecting the Hall term and electron
pressure) with local time stepping. The initial conditicastthe solar wind values everywhere on a coarse grid with
only 2 levels of grid refinement. In the first session the firsteo Rusanov scheme is used and the grid is refined at
iterations 100, 200 and 300, and eventually the grid costaiB million cells with sizes ranging frony8Rg near
the inner boundary to R further away. After 1000 iterations the second sessionitoes with the second order
Rusanov scheme using the robust but somewlitsive minmod limiter. The third and final session starts &®0
iterations, where we switch to the Artificial Wind schemehMtoren’s limiter. By iteration 3000 an approximate
steady state is reached that can be used as a starting paéntifiee-accurate run. The whole simulation takes about
6 minutes wall clock time using 120 cores on our Linux clusiéiis run is a good example how numerical, temporal
and spatial adaptivity can be combined to optimize the perémce of the code.

4.2. Local time stepping for time accurate simulations

The current BATS-R-US code uses the same time step in eviehgelt in time accurate mode. Another option
that is often used in AMR codes is to make the time step prap@tto the cell size [86]. This requires subcycling the
finer levels, load balancing each grid level separately,ibaldo requires interpolation in time at resolution chasige
The dficiency of the simpler constant time step algorithm compasdkto the variable time step algorithm as long
as the number of cells at the finest level is a large fractich@total number of cells.

In many applications the fastest wave speed varies by oodensagnitude within the computational domain. For
example in the magnetosphere the Alfvén speed is aroui®3@nys near the poles of the Earth, while the fastest
speed is around 500 kmnin the solar wind. Applications like this can benefit fromrad stepping algorithm, where
the local time step is limited by the local stability conditionly.

We have implemented an algorithm in BATL that usefadent time steps in fferent blocks, yet the whole
simulation advances in a time-accurate manner. The afgorbainly follows [87]. The basic idea is to calculate the
smallest of the stable time steps over all blocks, then @paéamaster clock” with this time step, but advance blocks
with a locally stable time step when their individual timéiddehind the master clock. The ghost cells of the blocks
are interpolated in time during the message passing.

For the sake of parallelfieciency the block time steps are rounded down to integer poofe2 times the smallest
time step. This creates relatively few groups of blocks wddmtical time steps (i.e. they are advanced at the same
time) which makes load balancing much easier. It also makedlix-correction step much simpler to implement
than in case of arbitrary time steps that can overlap arbijtrdn fact, the Berger and Colella scheme (that employs
time steps proportional to the cell size of the AMR grid) carrégarded as a special case of the above algorithm. For
constant wave speeds the two algorithms coincide.

We also plan to allow local time step adjustments during tobaj time step in case the stability conditions require
this. This may be required if the solution changes a lot imglsi global time step. This may slightlyfeet the load
balancing, but will avoid stability issues. We have alredéynonstrated second order accuracy and stability of the
local time stepping scheme for the pure advection equatianoAMR grid. The local CFL number is the same (0.8)
as for the fixed time step algorithm. Full integration of tkbeame into BATS-R-US will be done in the near future.
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Figure 15: Obtaining an approximate steady state solutioriife magnetosphere. The six snapshots are taken atdterdj 100, 200, 1000,
2000, and 3000 from top left to bottom right. The parallelsstge is shown on a logarithmic scale with colors. The blamslindicate the grid
resolution changes. The inner boundary indicated by thektgacle is at 25Rg. This close-up shows the solution near the Earth inytke O

plane.
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4.3. Partially steady-state scheme

In certain applications, a large fraction of the computadicdomain is in steady-state, and the time evolution is
limited to a small region. An example is a CME erupting in aadiestate (in the rotating frame) solar corona. To
simulate these types of problem@eently, we have developedpartially steady-statalgorithm [20] that advances
only a part of the computational grid, while the rest beingaimapproximate steady state is not evolved. Since
BATS-R-US uses a block based grid, the computational gréglis into changing, boundargndsteadyblocks. The
boundary blocks are at the edge of the changing domain. Téegahg and boundary blocks are evolved, while the
steady blocks are not. As soon as a boundary block startsatmetsignificantly (e.g. the velocity changes by more
than one partin a million) it is assigned to a changing statnd its neighbors become boundary blocks. The changing
and boundary blocks are load-balanced between the prasesBuis algorithm can speed up the simulation of the
initial phase of a CME eruption by a factor of 4 to 6 [20].

4.4, Point-implicit scheme

If the equations contain some ftsource terms that depend on the local information only (radigpderiva-
tives), one can use a point-implicit scheme. Examples delthemical reactions, recombination, photo-ionization,
collisional terms, and the terms proportionaltq € u.) in the multi-ion MHD equations (46) and (52).

Here we describe an operator split approach. First we do glic#xipdate without the Hfi source terms:

At
UMHZ = UM+ S Rep(U") (61)
U* = U+ AtRexp(U™?) (62)

whereReyp is the non-sii part of the right hand side.
Next we add the dfii source tern‘ﬁ:"n‘;;, to theUimp set of variables that ardtacted bySmp (andUeyp denotes the
rest of the variables):
U.T;é = |mp| + (1 IB)AtSimpI(U ) +ﬁAtSimpl(Uexp|, Un+;|) (63)

which is first order in time foB = 1 and second order in time f@r= 1/2. The second source term can be linearized
around time levek:
Simpl

Ut = Uz + AtSmpi(U* )+,8At

impl — “~imp

(Un+l |mp|) (64)

impl

The above linear equation can be solved cell-by-cell (hdnreerame point-implicit) foUn+l by inverting anNimp x

Nimpi Matrix, whereNimp is the number of implicit variables. For the rest of the \/ﬁl@ﬂUQQﬁ Uexpr

Although both the expliciE and point-implicitP operators (withg = 1/2) are second order accurate in time, the
combinedE(At)P(At) scheme is only first order accurate unless we employ somensyrzation of the operators.
One method that is particularly appealing in this particoése is Strang-type splitting, because we can take adyanta
of the fact that the time step in the point-implicit operd®ois not limited by stability constraints. Then one can use
the sequenc&(At)P(2At)E(At) to advance the solution byA? with second order accuracy. This scheme saves one
point-implicit solve relative to the first order scheme, #@rid twice more dicient than the usual Strang type splitting
E(At/2)P(At)E(At/2). There are many other ways to achieve second order aggureltiding Godunov splitting, or
using an unsplit scheme and adding the impliciff stburce term in both (61) and (62). Some other possibilittes a
described in [88].

The Jacobian matri##Simpi/0Uimpl can be calculated numerically as

6Simpl,v _ Simpl,v(uk + 6w5w) - SimpI,v(U*) (65)
anmpI,w Ew

wherev andw are indexes 1..Nimp of the implicit variablesg,, is an array with all zeros except for a single one
corresponding tav-th implicit variable, finallye, is a small perturbation for variable

Ew = E|Uimpl,w| + Xw (66)
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wheree is the square root of the machine precision of real numbgpscélly 1076 to 1078 for double precision reals)
andyw is a very small positive number relative to the typical val@é|Uimpwl, Which is needed to avoid division
by zero ifUimp,w happens to be zero in a grid cell. Note that we use a positidenbations, > 0 so that positive
variables (like density or pressure) remain positive.

Numerical derivatives provide a general algorithm thatkgdor an arbitrary sff source term and for an arbitrary
set ofUimpl variables. On the other hand it involves calculating thes®termNimp + 1 times, which may be costly
if Nimpi is large angbr the source term is complicated. Sincéfstource terms are implemented in the user modules,
we allow the user to provide an analytic Jacobian calculdtio the sake of giciency.

4.5. Semi-implicit scheme

If the stiff terms involve spatial derivatives, the point-implicit seale can not be applied. In this case a semi-
implicit approach can be used. Examples include heat cdimhug@sotropic or field-aligned), resistivity, or radiai
transfer in the gray or multigroupfiision approximation. Again, only a subset of the variablgg are dfected by
the stit part of the right hand sidRimp!.

Our semi-implicit applications typically involve Laplaoperators with variable céiécients and some point-wise
source terms (e.g. energy exchange between ions and elgctmothe radiation energy density). In general these
terms have the following form

Rimpl =CV. (K . VUimp|) + K- Uimpl (67)

wherex andK are the difusion and energy exchange @deent matrices, respectively, a@ds some cofficient array
related to “heat capacity”. The Laplace operator can beeliged with simple central eferences in the uniform part
of the grid, but resolution changes require special diszaton to achieve second order accuracy (see [43]).

For the semi-implicit temporal discretization first we apfiie explicit operator to advance the solution to time
level . This is an intermediate time level ftkyp, but it is the final update for the rest of the varlablégXpl

Before proceeding, we Imearliq‘n’;;, by “freezing” the coéicients at time levet:

expl'

Rn+1 C'V - (K* . VUH+;I) + K*- Un+1 (68)

impl — impl

Now the implicit variables can be updated as

U = U+ (1- BALR;, ) + BAR (69)

impl — impl

This equation is a large coupled linear system due to thefroz codficients and the spatial derivatives in (68). We
use Krylov sub-space type iterative solvers, like Predimid Conjugate Gradient (PCG) (see [89] and refernces
therein), BICGSTAB [90], and GMRES [91] to solve the linegstem. To make the solvers moréieient, we
typically need to use a preconditioner, and solve

lepl

aUlmpI

( - BAt )'Auimpl = P AtRimpi(U") (70)

where AUimpl = UImpl Ul*mpl and P is the (left) preconditioner operator, which is some appration of (| —
BAORImpl/OUimpl)~ 1 SmceR”*lI is linearized, calculating the Jacobian matrix elementselkasP is fairly straight-
forward. TypicallyP is applied grid block by grid block independently, which aponds to a specific form of
additive Schwarz preconditioning. Currently we use a Blobwtdomplete Lower-Upper decomposition (BILU) pre-
conditioner, but we plan to explore multilevel precondiiitg in the future.

We note that in the PCG algorithm the multiplication wiRhs part of the scheme, and cannot be written in the
form of (70). The PCG algorithm works for symmetric positdefinite matrices only, but we found it to be the most
efficient Krylov method when applicable. GMRES works for nomsyetric and non-positive matrices too, and it is
the most robust of all Krylov type schemes. GMRES, howevecpmes expensive both in CPU time and memory
requirements if a lot of iterations are needed. In this ca6&ISTAB is preferred, as it requires less memory, and the
cost of the iterations is constant.

In some cases the linear system (69) can be simplified beBing the iterative schemes. For example, if the
diffusion codicients are zero for some unknowns, they can be solved fordgyting the appropriate submatrix of
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K. This will result in a new linear equation with fewer unknasviin example can be electron heat conduction with
electron-ion energy exchange. If the ion heat conductiaregigible, the ion energy density can be solved for, and
the linear system will become a scalar equation for the mla@nergy density.

4.6. Fully implicit scheme

In some cases the ftpart of the equations cannot be easily identified, and ailataées are involved. An example
can be the MHD equations around a strongly magnetized p(argetJupiter or Saturn), where the strong magnetic
field and low density result in a very high Alfvén speed, It tlynamics is dominated by the much slower convective
motion and rotation. In this case we have to use a fully inifjpdicheme to allow larger time steps.

In a fully implicit scheme all the variables and all the terare handled implicitly, so it can be regarded as a
special case of the semi-implicit scheme wilhp = U, Rimp = R andU* = U". The trapezoidal scheme (69)
with 8 = 1/2 is usually not robust enough for hyperbolic equationsnsteiad we utilize the second order Backward
Difference Formula (BDF2):

Un _ Un—l
At

whereB = (At + Atn_1)/(2At, + At,_1) [88, 19]. One could solve this non-linear system of equetioy employing a
full Newton iteration, but in all of our applications we fodithat to be lessficient than solving the linearized form
corresponding to the first Newton iteration:

U™l = U" + At,

BRU™) +(1-p) (71)

(72)

n_n-1
P. [I - Atnﬂ%] AU = P At, [ﬁR(U”) +(1 —ﬁ)&}

At

whereP is the preconditioner matrix arf@ is a spatially first order upwind-type discretization in treeobian. The
use ofR; helps making the Jacobian matrix diagonally dominant, vhging the second ord&ron the right hand
side still keeps the overall scheme second order accurate.

Explicit calculation of the Jacobian with the complex nuit@rdiscretization and boundary conditions is very
difficult to do. It is much simpler and more general to use a Janefbée evaluation:

n n
[I - Atnﬁ@] AU = AU - AR AV “RUD | o (73)
ouU €

wheree is a small number. We also need to use a preconditioner to thakecheme fécient. This requires the
calculation of an approximate Jacobian matrix, which iselbagn the first order local Lax-Friedrichs scheme and it
is evaluated with numerical derivatives of the flux and sedtmctions. Additional terms (e.g. for Hall MHD) are
added as needed. The BILU type preconditioner is againictestrto each grid block (see [19] for more detail). In
each Krylov iteration, the matrix-vector products are gldted with the Jacobian-free method (73) followed by an
explicit multiplication with the preconditioner matrix.

We have demonstrated that the fully implicit scheme can ypeedspeed-ups of order 10 to 20 compared to the
explicit scheme [19, 43].

4.7. Expliciimplicit scheme

In some applications the PDE is onlyfsth a part of the computational domain. For example in the retmgphere
simulations the equations areftear the Earth, because the Alfvén speed is order 30,00 kvhile the actual
dynamics happens at much lower speeds, order efLlQ0Okm's. Such a sff system can greatly benefit from an
implicit time integration. Far from the Earth, however, thmiting speed is set by the flow of the solar wind, which
also determines the dynamics. Here an explicit time integranakes more sense.

The explicifimplicit scheme [19] provides a hybrid and adaptive apphdacficiently handle the above situation.
At the beginning of each time step, we set the global time Atdpased on accuracy and robustness considerations.
Then we check each grid block for the CFL stability conditidhthe condition is fulfilled, the block is assigned
to be an ‘explicit block’, otherwise it is assigned to be anpiicit block’. Next the explicit and implicit blocks are
load balanced separately. We use the logical aitaysed B (see subsection 3.2.3) to switch the implicit blocks
temporarily, and advance the explicit blocks from time lavio n + 1. Then the ghost cells of the implicit blocks are
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filled in with a message passing. Finally we switdfitbe explicit blocks, and advance the implicit blocks witle th
implicit scheme as described in the previous subsectior.eKplicifimplicit scheme can be 2 to 5 times faster than
the fully implicit scheme, and it also uses substantialyslenemory (see [19] for more detail).

5. Conclusions

We have been working on space weather modeling, and in deseace physics modeling for more than a
decade. We started with a single-purpose although véigient MHD code BATS-R-US, and we have developed
it into a multi-purpose, flexible and rather complex magr&ia code. We have also created the Space Weather
Modeling Framework that can execute and couple multiple efgpdncluding BATS-R-US. During this extensive
development we have adapted our algorithms to the varicalteciyes. Instead of creating a multitude of codes, we
chose to maintain a single code with a layered and modulawacé architecture. We are confident that this approach
has paid & tremendously. Having a single software base greatly regdtiheemaintenance work, and it allows using
various improvements in multiple applications without tiplé implementations.

Developing a complex scientific software requires somd lgf@ftware engineering. The SWMF with its models
consists of about 300,000 lines of Fortran code, and 50,0@8 of scripts and Makefiles. BATS-R-US is about
100,000 lines of Fortran 90 code. We have developed forndihgestandards, use version control (with CVS), and
do nightly tests on several platforms withffdirent compilers, operating systems and number of procesSdre
nightly tests allow us to discover bugs and unwanted sffbzes of new features early. The version control software
allows multiple developers to contribute to the same code bk also allows recovering previous versions of the code
in case something went wrong and it was not discovered byigitelntests. The coding standards provide uniformity
of the coding style so that the code remains readable andtaivzable for the ever changing set of developers and
users. While software engineering is hardly ever discusséis journal, it is a crucial part of large scale scientific
software development.

Although the SWMF and BATS-R-US have reached consideralieesses, and they are currently used for space
weather modeling as well as short-term forecasting [28,still not possible to provide accurate long-term preditt
of space weather. As we are constantly working on the impneve and development of the SWMF and BATS-R-US,
it is our hope that reliable long-term physics-based spativer forecasting will become reality in the not-so-dista
future.
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Appendix A. General Input Parameter Handling Toolkit — GIPH T

Most scientific software reads input parameters from a sngkt file with a fixed format. Documentation is
typically incomplete and often out of date. The objectivehaf General Input Parameter Handling Toolkit (GIPHT)
is to handle the input parameters for scientific softwarenmoae user-friendly, better documented and more reliable
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#RUN ######HHHHHHHH AR AR R R R

#STOP
-1 MaxIteration
10.0 tSimulationMax

#BEGIN_COMP GM === == oo oo e

Refine the grid every 30 steps

#AMR

30 DnRefine

T DoAutoRefine
10. PercentCoarsen
30. PercentRefine
800 MaxTotalBlocks

Switch to second order scheme

#SCHEME

2 nOrder
Rusanov TypeFlux
minmod TypeLimiter
#TIMESTEPPING

2 nStage

0.8 Cf1Expl

HEND_COMP QM === = mm mm oo oo oo e

#END ########HHHHHH AR R R R

Figure A.16: A segment of the input parameter file in the GIFbfmat. The final simulation time of the session is given #BT0P command.
The other commands select the numerical scheme used by theo@lgonent.

manner than the current practice. This toolkit makes the $VWd the ever increasing number of physics models
in it more accessible, better documented and better magdalWWe believe that other scientific softwaffogs could
also benefit from the GIPHT.

The main concept of GIPHT is to keep the input parameters impls, easy-to-read and modify text file, while
the possible options for the input parameters are formagcdbed and documented in a separate XML (extended
markup language) file. Using the XML description GIPHT can

e provide a GUI to edit the input parameters,

e check the input parameters for correctness,

e produce PDF arfdr HTML manuals describing all parameters,
e generate a Fortran 90 code template to read the input pagafilet

The use of the various parts of GIPHT is optional. One cantbdiinput parameter file directly with any text editor
and run the code without using GIPHT at all.

The input parameter file consists of a series of commandsAtelll by parameters that belong to the command and
optional comments as shown in Fig. A.16. The commands aogrézed from the initia# character. The parameter
values and (optional) names are given line by line. The patanvalues can be of type integer, real, logical (Boolean)
or string. The list of parameters may depend on the valuesngiv previous parameters in the same command, but
interdependencies between commands are avoided. Theseraeespecial commands, such#8&GIN_COMP and

36



#END_COMP that enclose theectionof input commands belonging to a given component (this isleédy the SWMF
only), or the#RUN command that indicates the end of the curisggsiorand the beginning of a new session. When
the code reads theRUN command, it executes the simulation with the parametefrsapbint, and when it reaches a
stop condition, it reads in the parameters of the next sesJibe simulation ends when the last session of#tND
command is reached. The order of commands within each sdss&esentially arbitrary. Only commands that change
defaults or previous settings have to be put in the file. Thepis the input parameter files at a managable length. It
also allows adding new commands without changing the exjstiput files.

The commands and the parameters are described in XML filee SMMF and all models that use GIPHT
have their own PARAM.XML files. Fig. A.17 shows an examplettiascribes th&¢ TIMESTEPPING and#SCHEME
commands and their parameters. For each command, the fitss paformal description that gives the type, range
and default values for the parameters as well as interdemeies among the parameters. This part is used to check
the correctness of the input parameter file as well as to genére pull down menus in the parameter editor. The
second part provides an example for the command and its pteesras it appears in the input parameter file, and a
manual describing the command, the meaning of the paraspéfes on usage, etc. This part is used to produce the
manuals and it is also displayed in the parameter editor. XMk description of the #SCHEME command shows
examples of conditional statements (for example the sliopiéel is only read for second order scheme) and explicit
list of input options. The conditional expressions (ég0rder == 2) use Perl syntax that are evaluated by the Perl
scripts of GIPHT.

Fig. A.18 shows a snapshot of the parameter editor. Theredits in a standard web browser that interacts with a
mini web server (also part of GIPHT). The mini web serversfars user inputs from the web browser to various Perl
scripts that can load, modify and save the input paramegerfthe same scripts create the dynamic HTML page from
the input parameter file and the XML description that is showthe browser. For example if the user selects the value
1 from the pull-down menu for theOrder parameter of th&SCHEME command, then the Perl scripts immediately
regenerate the page and thgpeLimiter parameter will disappear. The user can click on@HECK button in the
upper-left corner any time to check the correctness of thamater file. The error messages will be highlighted and
shown next to the command that caused the error.

The parameter editor shows the manual for the command bditegle GIPHT also contains scripts and Makefiles
that can generate a PDF godHTML manual of all the commands described in the XML files fact we are
dynamically generating the SWMF manual every night and nitakecessible through the web. This means that the
user manual is as up-to-date as the XML files, which usuadly ar

Finally GIPHT also provides a script that can generate Bor80 code that reads in the commands and the
parameters. The code is actually very simple, becausestaisgdule that takes care of reading the input parameter
file, distributing it over the processors, finding sessi@estions and commands. Each parameter is read with a single
call to the generieead_var method that can read all four parameter types (integer, lcgatal and string).

We stress that GIPHT is a toolkit and not a highly integratgstean. One can use any subset of the tools and
modify them as needed. For example one can simply use theaRoniodule to read in the input parameter files into
a Fortran code. Although there is a script to generate a @mplortran code, it can also be written from scratch.
If the XML description of the input parameters exists, ona ganerate the manuals gadcheck the correctness
of the input file from the command line. The input files can bieedwith any standard text editor or the GIPHT
parameter editor, as desired. GIPHT is currently part optiidicly available SWMF, but we may make it accessible
as a separate package if there ifisient interest.

Appendix B. Supercell Algorithm

We describe our supercell algorithm for a 2D cylindricabgrihere the pole is at = 0. The supercell contains
the cells indexed by = 1 andj = 1...N,, and it is surrounded by grid cells indexed witk 2. At the end of each
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<command name="TIMESTEPPING">
<parameter name="nStage" type="integer" min="1" max="2" default="2" />
<parameter name="CflExpl" type="real" min="0" max="1" default="0.8" />

#TIMESTEPPING
2 nStage (1 or 2)
0.80 Cf1Expl

The nStage parameter defines the number of stages in the Runge-Kutta scheme.
The CflExpl parameter sets the CFL number for explicit time integration.

Default is 2-stage scheme with Cf1Expl=0.8
</command>

<command name="SCHEME">
<parameter name="nOrder" type="integer" min="1" max="2" default="1"/>
<parameter name="TypeFlux" type="string" input="select" case="upper">
<option name="RUSANOV" default="T" />

<option name="HLLE" />
<option name="HLLD" />
<option name="ROE" />
</parameter>
<if expr="$nlOrder == 2">

<parameter name="TypeLimiter" type="string" input="select"
case="lower">
<option name="minmod" default="T" />

<option name="mc" />
<option name="koren" />
</parameter>

<parameter name="LimiterBeta" type="real" min="1" max="2"
default="1.5" if="$Typelimiter ne ’minmod"’/>

</if>
#SCHEME
2 nOrder (1 or 2)
Rusanov TypeFlux
mc TypeLimiter ! Only for nOrder=2
1.5 LimiterBeta ! Only if TypeLimiter is NOT ’minmod’

The nOrder parameter determines the spatial and temporal accuracy of
the scheme. The TypeFlux parameter (Rusanov, HLLE, HLLD, Roe)

defines the numerical flux function. The TypeLimiter (minmod, mc, koren)
selects the slope limiter for second order scheme. The BetalLimiter
parameter (from 1.0 to 2.0) is used by the MC and Koren limiters.

The default is the second order Rusanov scheme with the minmod limiter.
</command>

Figure A.17: A segment of the XML file describing the #TIMESHBING and #SCHEME commands. The actual manual is much mtaiede
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(Fasanor 1) Hor (oting ‘bota’ Z beta limiter is less robust than the mc limiter for
Type . v( ) the same beta value
minmod 1% TypeLimiter (string)
Possible values for LimiterBeta (for Limiters othen than minmod) are between 1.0 and 2.0 :
v #TIMESTEPPING Fz@ LiniterBeta = 1.0 is the same as the minmod limiter
Linitereta = 2.0 for the beta limiter is the same as the superboe limiter
2 nStage LimiterBeta = 1.5 is a typical value for the me/me3 limiters
08 CfiExpl LimiterBeta = 1.2 is the recommended value for the beta limiter
_ ‘The default is the second order Rusanov scheme with the minmod limiter.
4 Section GM Sfal
A Session2 e
Done Z

Figure A.18: Snapshot of the GIPHT parameter editor. Theftmme shows the selected session and section (Seg&dn) 2f the file, and the
command being edited (#SCHEME). The frame on the right dositthe manual page corresponding to this command. The foamntie left
contains the graphical representation of the parameterTiie parameters of the highlighted #SCHEME command can lgfied by selecting
options from the pull down menus. Clicking on the blue, ogray red icons allow the insertion, copying, or deletion @fenands, sections, or
sessions, respectively.
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stage of the time stepping scheme we calculate the follogiramtities:

Uy = N%Zjluij (B.1)
(xU) = Zmax(Q —X,j)U3 (B.2)
(X*U) = imax(q +X2,))U3 (B.3)

]
(yUy = Zj:max(Q ~y2))U3 (B.4)
(y*U) = Zj:max(Q +y2)U3 | (B.5)

whereU; ; is the intermediate solution obtained by the original scéein addition, we need the following purely
geometrical quantities

Xy = <1yl

N (B.6)
j

(=) = 330%, (B.7)
J

where we exploited the rotational and mirror symmetrieshefdrid around the axis. The'2 cosdficient is needed
because the left and right slopes only use half of the grid eelrrounding the supercell. The summation over the
processors requires a singieI_allreduce call. Then we calculate the following least squares typedefl right
slopes in thex andy directions

Uc = (DU - (U /(%) (B.8)
Ue = ((XU)=(xD(U))/ () (B.9)
U = (MU= U /() (B.10)
Up = (yUY= (DU /(Y) (B.11)

We use the MC limiter witlg = 1.5 to obtain the limited slopes

Uy minmod[BUy_, AUy, (Uy_ + Uy, )/2] (B.12)
Uy = minmod|gUy-_.BUy..(Uy- +Uy.)/2| (B.13)

and finally calculate the cell values within the supercelldachj as
U = (U) + xUx + YUy (B.14)

Note that the update is conservative. For smoothly varyrige limiter function takes the least squares slope fit to
the cells surrounding the supercell, which makes it secoddraccurate. We also allow for a supercell with a radius
of 2 ordinary cells. For spherical grids the supercells ayg@iad up to a given radial distance only. The cells inside
the supercell are ignored when the time step limit is catedlaand this allows about a factor of 2 to 3 times larger
explicit time steps than the original scheme. The supeatgdrithm also allows the solution to propagate across the
poles in a smoother fashion. There are much more sophisticghemes to deal with the pole problem, for example
filtering is routinely applied in atmospheric dynamics co{#?].
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