
A&A 404, 405–421 (2003)
DOI: 10.1051/0004-6361:20030547
c© ESO 2003

Astronomy
&

Astrophysics

Relativistic particle transport in extragalactic jets

I. Coupling MHD and kinetic theory

F. Casse1 and A. Marcowith2

1 FOM-Institute for Plasma physics “Rijnhuizen”, PO Box 1207, 3430 BE Nieuwegein, The Netherlands
e-mail: fcasse@rijnh.nl

2 CESR, 9 avenue du colonel Roche, BP 4346, 31028 Toulouse, France

Received 26 December 2002 / Accepted 25 March 2003

Abstract. Multidimensional magneto-hydrodynamical (MHD) simulations coupled with stochastic differential equations
(SDEs) adapted to test particle acceleration and transport in complex astrophysical flows are presented. The numerical scheme
allows the investigation of shock acceleration, adiabatic and radiative losses as well as diffusive spatial transport in various
diffusion regimes. The applicability of SDEs to astrophysics is first discussed with regard to the different regimes and the MHD
code spatial resolution. The procedure is then applied to 2.5D MHD-SDE simulations of kilo-parsec scale extragalactic jets.
The ability of SDE to reproduce analytical solutions of the diffusion-convection equation for electrons is tested through the
incorporation of an increasing number of effects: shock acceleration, spatially dependent diffusion coefficients and synchrotron
losses. The SDEs prove to be efficient in various shock configurations occurring in the inner jet during the development of the
Kelvin-Helmholtz instability. The particle acceleration in snapshots of strong single and multiple shock acceleration includ-
ing realistic spatial transport is treated. In the chaotic magnetic diffusion regime, turbulence levels ηT = 〈δB2〉/(B2 + 〈δB2〉)
around 0.2−0.3 are found to be the most efficient to enable particles to reach the highest energies. The spectrum, extending
from 100 MeV to few TeV (or even 100 TeV for fast flows), does not exhibit a power-law shape due to transverse momen-
tum dependent escapes. Out of this range, the confinement is not as efficient and the spectrum cuts-off above few hundreds of
GeV, questioning the Chandra observations of X-ray knots as being synchrotron radiation. The extension to full time dependent
simulations to X-ray extragalactic jets is discussed.

Key words. galaxies: jets – acceleration of particles – magnetohydrodynamics (MHD) – instabilities –
radiation mechanisms: general

1. Introduction

Extragalactic jets in radio-loud active galactic nuclei (AGN)
show distinct, scale-dependent structures. At parsec (pc) scales
from the core, superluminal motions have been detected using
VLBI technics. The jets decelerate while reaching kiloparsec
(kpc) scales and power large-scale luminous radio lobes. The
inner physical conditions are still widely debated. Main uncer-
tainties concern bulk velocities, matter content, emission and
acceleration mechanisms, the way energy is shared between the
magnetic field and plasma and finally effects of the turbulent
flow on relativistic particles.

Recent X-ray high resolution observations by Chandra,
combined with Hubble space telescope (HST) and radio data
allow unprecedented multi-wavelength mapping of the jet
structures which lead to improved constraints on the physics
(Sambruna et al. 2002). The kpc jets show nonthermal radio
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and optical spectra usually associated with synchrotron radi-
ation produced by highly relativistic TeV electrons (positrons
may also contribute to the flux). The origin of the X-ray emis-
sion is more controversial and could result from synchrotron
radiation or Inverse Compton (IC) re-processing of low energy
photons coming from different sources as synchrotron radiation
(synchro-Compton effect) or cosmic micro-wave background
radiation (CMBR): see Meisenheimer et al. (1996a), Tavecchio
et al. (2000), Harris & Krawczynski (2002) for recent reviews.

Different acceleration mechanisms have been invoked to
produce energetic particles, e.g. diffusive shock acceleration
(DSA), second order Fermi acceleration in a magnetohydro-
dynamic wave turbulence (FII) (Biermann & Strittmatter 1987;
Henri et al. 1999), shock drift acceleration (SDA) (Begelman
& Kirk 1990) and magnetic reconnection (see for instance
Blackman 1996; Birk et al. 2001, and references therein)1.
With some assumptions, all these mechanisms are able to

1 Ostrowski (2000) and references therein considered the effect of
tangential discontinuities in relativistic jets.
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accelerate electrons up to TeV energies and probably work to-
gether in extragalactic jets. Their combined effects have only
been briefly discussed (see however Campeanu & Schlickeiser
1992; Manolakou et al. 1999), coupled shock acceleration and
spatial transport effects have been successfully applied to hot
spots by Kardashev (1962) (see also Manolakou & Kirk 2002,
and reference therein). Nevertheless, the resolution of the full
convection-diffusion equation governing the dynamical evolu-
tion of the particle distribution function does not usually lead
to analytical solutions. The particle transport and acceleration
are closely connected to the local magneto-fluid properties of
the flow (fluid velocity fields, electro-magnetic fields, turbu-
lence). Recent progress in computational modeling has associ-
ated multidimensional fluid approaches (hydrodynamical (HD)
or magnetohydrodynamical codes (MHD)) with kinetic parti-
cle schemes (Jones et al. 2002; Jones et al. 1999; Micono
et al. 1999). These codes are able to describe the effects of
shock and stochastic acceleration, adiabatic and radiative losses
and the results are used to produce synthetic radio, optical and
X-ray maps. The particle transport is due to advection by the
mean stream and turbulent flows. In the “Jones et al.” approach
the shock acceleration process is treated using the Bohm pre-
scription, i.e. the particle mean free path equals the Larmor ra-
dius). These above-mentioned treatments neglect spatial turbu-
lent transport and introduce spurious effects in the acceleration
mechanism. This leads to an overestimate of the particle
acceleration efficiency in jets.

In this work, we present a new method coupling ki-
netic theory and MHD simulations in multi-dimensional tur-
bulent flows. We applied the method to the extragalactic non-
relativistic or mildly relativistic (with a bulk Lorentz factor
Γjet < 2) jets. Relativistic motions can however be handled in
the case of non-relativistic shocks moving in a relativistic jet
flow pattern.

The paper covers discussions about turbulent transport and
the coupling of kinetic schemes-MHD code to more specific
problems linked to jet physics. In Sect. 2 we review the most
important results concerning weak turbulence theory and ex-
pose the effect of chaotic magnetic effects on the relativis-
tic particle (RPs) transport. Section 3 presents the system of
stochastic differential equations (SDEs) used to solved the
diffusion-convection equation of RPs. We examine the limits
of the SDEs as regards different diffusion regimes and discuss
their applicability to astrophysics. Section 4 tests the ability
of SDEs to describe accurately transport and acceleration of
RPs in 2D versus known analytical results. The MHD simula-
tions of jets are presented at this stage to investigate the prob-
lem of shock acceleration. Section 5 treats RP transport and
acceleration in complex flows configurations as found in ex-
tragalactic jets. We consider the problem of curved and non
constant compression ratio shocks. We derived analytical esti-
mates of the expected particle maximum energy fixed by radia-
tive losses or transversal escape due chaotic magnetic diffusiv-
ity and MHD turbulence. We report our first results on X-ray
jets using MHD-SDE snapshots mixing spatial transport, syn-
chrotron losses and, strong single and multiple shock accelera-
tion. We conclude in Sect. 6.

2. Acceleration and spatial transport

The accurate knowledge of transport coefficients is a key point
to probe the efficiency of the Fermi acceleration mechanisms
as well as the spatial transport of RPs in turbulent sources.
We assume a pre-existing turbulent spectrum of plasma waves,
retaining the Alfvèn waves able to scatter off and accelerate
charged particles. The particle trajectories are random walks in
space and energy, superimposed on the advection motion in-
duced by the background flow, provided that the di ffusion time
is larger than the coherence time of the pitch angle cosine. If the
turbulence level, defined as the ratio of chaotic magnetic com-
ponents to total one ηT = 〈δB2〉/(〈B2 + δB2〉) is much smaller
than unity, the spatial transport parallel to the mean magnetic
field can be described by the quasi-linear theory. Before dis-
cussing any acceleration mechanism we review the main results
of this theory and some of its non-linear developments.

2.1. Particle transport theories

During its random walk on a timescale ∆t the position of the
particle is changed by an amount ∆x‖ along the mean mag-
netic field and by∆x⊥ in the transverse direction. The ensem-
ble average of both quantities vanishes, but the mean quadratic
deviations are non zero and define the parallel diffusion coef-
ficientD‖ = 〈∆x2

‖ 〉/2∆t and the perpendicular diffusion coeffi-
cient D⊥ = 〈∆x2

⊥〉/2∆t.
For a power-law turbulent spectrum S (k) ∝ ηT (k λmax)−β

completely defined by its turbulent levelηT, spectral index β
and maximum turbulent scale λmax, the quasi-linear scattering
frequency νs = 〈∆ cos2(θ)〉/∆t is (Jokipii 1966)

νs = ηT Ωs |µ|β−1 ρ̃β−1. (1)

Ωs is the synchrotron gyro-frequency ZeB/γm∗c for a particle
of charge Ze, mass m∗ and Lorentz factor γ and pitch-angle
cosine µ = cos θ. The Larmor radius rL = v/Ωs and the particle
rigidity ρ̃ = 2πrL/λmax.

The scattering time τs is the coherence time of the pitch-
angle cosine and can be related to the pitch-angle frequency νs
by τs ∼ 1/νs since the deflection of the pitch-angle typically
occurs on one scattering time. The quasi-linear diffusion coef-
ficients are

D‖ =
4
5
v2

3
τs ∼

λmaxc
3
η−1

T ρ̃
2−β,

D⊥ =
v2

3
τs

1 + (Ωsτs)2
· (2)

Nevertheless, this simple approach does not take into account
the displacement of the guide-centers of particle trajectories.
When magnetic turbulence is occurring, the magnetic field
lines are also diffusing, which will amplify the transverse dif-
fusion of particles following these magnetic field lines (Jokipii
1969). Indeed including this effect in the diffusion dynam-
ics leads to a new transverse diffusion regime, namely the
chaotic transverse diffusion (Rechester & Rosenbluth 1978;
Rax & White 1992). The work done by Casse et al. (2002)
presents extensive Monte-Carlo simulations of charged parti-
cles in a magnetic field composed of a regular and a turbulent



F. Casse and A. Marcowith: Relativistic particle transport in extragalactic jets. I. 407

part, calculated assuming power-law spectra of index β (as in
Kolmogorov or Kraichnan theories). The authors present, us-
ing averaged spatial displacements over time intervals, the be-
havior of the spatial diffusion coefficients as a function of the
particles energies as well as turbulence level ηT. The diffusion
coefficient along the mean magnetic field displays energetic de-
pendence similar to the quasi-linear theory but on any turbu-
lence level. On the other hand, the diffusion coefficient trans-
verse to the mean magnetic field is clearly in disagreement with
the neo-classical prediction (see Eq. (2)). The chaotic trans-
verse diffusion regime is occurring when the turbulence level
is large but can probably be extended to lower turbulent levels,
as first imagined by Rechester & Rosenbluth (1978). In Casse
et al. (2002) this regime was observed for all turbulence levels
down to ηT = 0.03. The resulting transverse coefficient is re-
duced to D⊥ ∝ D‖ with a proportionality factor only depending
on the turbulence level, namely

D‖ ∝
cλmax

ηT
ρ̃2−β,

D⊥ ∝ η1.3
T cλmax ρ̃

2−β. (3)

In this paper we will use the above prescription as, unless very
low ηT, the chaotic diffusion always dominates.

2.2. Acceleration processes

In a diffusive shock2 particles able to resonate with wave turbu-
lence, undertake a pitch-angle scattering back and forth across
the shock front gaining energy. The finite extension of the dif-
fusive zone implies some escapes in the downstream flow. The
stationary solution for a non-relativistic shock can be writ-
ten as f (p) ∝ p−(3+τacc/τesc). In a strong shock the accelera-
tion timescale τacc exactly balances the particle escape time
scale τesc (Drury 1983). The acceleration timescale, for a par-
allel shock is τaccDSA = 3/(r − 1) tr, where r = uu/ud is the
shock compression ratio (uu and ud are respectively upstream
and downstream velocities of the fluid in the shock frame) and
tr = (c/ud)2τs is the downstream particle residence time.

The MHD turbulence, especially the Alfvèn turbulence,
mainly provokes a diffusion of the particle pitch-angle. But the
weak electric field of the wavesδE/δB ≡ Va/c also accelerates
particles. The momentum diffusion is of second order in terms
of the Fokker-Planck description and the acceleration timescale
is τaccFII = (c/Va)2 τs. Note that even if the stochastic accelera-
tion is a second order process, τaccFII may be of the same order
as τaccSDA in low (sub-Alfvenic) velocity flows or high Alfv èn
speed media as remarked by Henri et al. (1999).

In radio jets (see Ferrari 1985, 1998, for reviews of
jet properties) one can expect typical magnetic fields B ∼
10−5/−4 Gauss, thermal proton density np ∼ 10−2/−5 cm−3 and
thus Alfvèn speeds Va/c between 7 × 10−4−0.2. In light and
magnetized jets, the second order Fermi process can be faster
than diffusive shock acceleration. We decided to postpone the

2 The shock drift acceleration mechanism has been applied to
electron acceleration in extragalactic radio sources by Anastiadis &
Vlahos (1993) and references therein. This effect will not be consid-
ered in the simulations and is not further discussed.

investigation of second order Fermi acceleration in jets to a
future work. In this first step, we mostly aim to disentangle
the diffusive shock acceleration process, the turbulent spatial
transport and radiative losses effects shaping the particle dis-
tribution. We will therefore only consider super-Alfvenic flows
hereafter.

3. Numerical framework

In this section, we present the multidimensional stochas-
tic differential equations system equivalent to the diffusion-
convection equation of RPs3.

3.1. Stochastic differential equations

The SDEs are an equivalent formulation of the Fokker-Planck
equations describing the evolution of the distribution function
of a particle population. It has been shown by Itô (1951) that
the distribution function f obeying Fokker-Planck equation as

∂ f
∂t
= −

N
∑

i=1

∂

∂Xi
(Ai(t, X) f (t, X))

+
1
2

N
∑

i=1

N
∑

j=1

∂2

∂Xi∂X j















N
∑

k=1

Bik(t, X)BT
k j(t, X) f (t, X)















(4)

at a point X of phase space of dimension N, can also be de-
scribed as a set of SDEs of the form (Krülls & Achterberg
1994)

dXt,i

dt
= Ai(t, Xt) +

N
∑

j=1

Bi j(t, Xt)
dWt, j

dt
,

i = 1, ..,N (5)

where the Wt, j are Wiener processes satisfying 〈W〉 = Wo and
〈(W −Wo)2〉 = t − to (Wo is the value of W at to). The diffusion
process described by Fokker-Planck equations can be similarly
taken into account if dWi/dt = ξi is a random variable with a
Gaussian conditional probability such as

p(t, ξ|to, ξo) =
1√

2π(t − to)
exp

(

− (ξ − ξo)2

2(t − to)

)

· (6)

The Fokker-Planck equation governing this population will be
(Skilling 1975)

∂ f
∂t
= −(u · ∇) f +

1
3

(∇ · u)p
∂ f
∂p
+ ∇i(Di j∇ j f )

+
1
p2

∂

∂p

(

Dpp p2 ∂ f
∂p
+ asyn p4 f

)

, (7)

where Di j is the spatial diffusion tensor and Dpp describes en-
ergy diffusion in momentum space. The term asyn stands for
synchrotron losses of the electrons. Its expression is

asyn =
σTB2

6πm2
ec2
, (8)

3 van der Swaluw & Achterberg (2001) have investigated the cou-
pling between 2D Hydrodynamical code and SDEs adapted to the non-
thermal X-ray emission from supernova remnants.
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where σT is the Thomson cross-section. This term can easily
be modified to account for Inverse Compton losses. In term
of the variable F = Rp2 f , these equations can be written in
cylindrical symmetry (R varies along the jet radius and Z along
the axial direction)

∂F
∂t
= − ∂

∂R

(

F

{

UR +
∂DRR

∂R
+

DRR

R

})

− ∂
∂Z

(

F

{

UZ +
∂DZZ

∂Z

})

− ∂
∂p

(

F

{

− p
3
∇ · u + 1

p2

∂p2Dpp

∂p
− asyn p2

})

+
∂2

∂R2
(FDRR) +

∂2

∂Z2
(FDZZ) +

∂2

∂p2
(FDpp). (9)

Note that this rewriting of the Fokker-Planck equation is valid
only if Rp > 0. Assuming that the diffusion tensor is diagonal,
it is straightforward to get the SDEs coefficients. These equa-
tions can then be written as

dR
dt
= UR +

∂DRR

∂R
+

DRR

R
+

dWR

dt

√

2DRR, (10)

dZ
dt
= UZ +

∂DZZ

∂Z
+

dWZ

dt

√

2DZZ , (11)

dp
dt
= − p

3
∇ · u + 1

p2

∂p2Dpp

∂p
− asyn p2

+
dWP

dt

√

2Dpp (12)

where UR/Z stand for the radial and axial component of fluid
velocity field. TheW are stochastic variables described previ-
ously. They are computed using a Monte-Carlo subroutine giv-
ing a random value ξ with zero mean and unit variance so that
we can build the trajectory of one particle in phase space from
time tk to tk+1 = tk + ∆t (Marcowith & Kirk 1999)

Rk+1 = Rk +

(

UR +
1
R
∂RDRR

∂R

)

k

∆t

+ ξR
√

2DRR∆t . (13)

Zk+1 = Zk +

(

UZ +
∂DZZ

∂Z

)

k

∆t + ξZ
√

2DZZ∆t . (14)

pk+1 = pk +

(

− p
3
∇ · u + 1

p2

∂p2Dpp

∂p
− asyn p2

)

k

∆t

+ ξp

√

2Dpp∆t . (15)

It is noteworthy that these algorithms derived from SDEs are
only valid if the particles are not at the exact location of the
jet axis, otherwise an unphysical singularity would occur. The
coupling between the SDEs and a macroscopic simulations
clearly appears here. The macroscopic simulation of the jet, us-
ing magnetohydrodynamics, would give the divergence of the
flow velocity as well as the strength and the orientation of the
magnetic field at the location of the particle. Indeed, as shown
in the last paragraph, the spatial diffusion of particles is mainly
driven by the microscopic one, namely by the magnetic turbu-
lence. Since the work of Casse et al. (2002), the behavior of
the diffusion coefficients both along and transverse to the mean

magnetic field are better known. They depend on the strength
of the mean magnetic field, on the particle energy, and on the
level of the turbulence ηT. Once the diffusion coefficients are
known, the distribution function is calculated at a time t at the
shock front by summing the particles crossing the shock be-
tween t and t + ∆t. The distribution function can in princinple
be calculated everywhere if the statistics are good enough. We
typically used 5 × 105−106 particles per run.

3.2. Constrains on SDE schemes

3.2.1. Scale ordering

Particles gain energy in any compression in a flow. A com-
pression is considered as a shock if it occurs on a scale much
smaller than the test RPs mean free path. The acceleration
rate of a particle with momentum p through the first-order
Fermi process is given by the divergence term in Eq. (12), e.g.
〈 dp

dt 〉 = −
p
3 ∇.u. The schemes used in the present work are ex-

plicit (Krülls & Achterberg 1994), i.e. the divergence is evalu-
ated at the starting position x(tk). Implicit schemes (Marcowith
& Kirk 1999) use the velocity field at the final positionx(tk+1)
to compute the divergence as (u(tk+1) − u(tk))/(x(tk+1) − x(tk)).

The particle walk can be decomposed into an advective
and a diffusive step evaluated at tk and incremented to the val-
ues R(t), Z(t), p(t) to obtain the new values at tk+1. As demon-
strated by Smith & Gardiner (1989) and Klöeden & Platen
(1991) it is possible to expand the Itô schemes into Taylor se-
ries to include terms of higher order in ∆t and in turn to im-
prove the accuracy of the algorithms. However, both because
higher order schemes need to store more data concerning the
fluid (higher order derivatives) and the schemes have proved to
accurately compute the shock problem in 1D, we only use ex-
plicit Euler (first order) schemes in the following simulations.

Hydrodynamical codes usually smear out shocks over a
given number of grid cells because of (numerical) viscosity.
The shock thickness in 2D is then a vector whose compo-
nents are ∆Xshock = ((αr ∆R), (αz ∆Z)), where (∆R,∆Z) de-
scribes one grid cell and the coefficients (αr, αz) are typically
of the order of a few. We can construct, using the same algebra,
an advective ∆Xadv and a diffusive ∆Xdiff vectors steps from
Eqs. (10)–(12). Krülls & Achterberg (1994) have found that a
SDE scheme can correctly calculate the effects of 1D shock ac-
celeration if the different spatial scales of the problem satisfy
the following inequality

∆Xadv � Xshock < ∆Xdiff . (16)

In 2D this inequality must be fulfilled by each of the vector
components, e.g.

∆Radv � αr∆R < ∆Rdiff ,

∆Zadv � αz∆Z < ∆Zdiff . (17)

These are the 2D explicit schemes conditions for the computa-
tion of shock acceleration. The two previous inequalities im-
pose constrains on both the simulation timescale ∆t, and the
diffusion coefficients DRR and DZZ .
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3.2.2. Minimum diffusion coefficients

The finite shock thickness results in a lower limit on the diffu-
sion coefficient. The condition ∆Xadv � ∆Xdiff implies a maxi-
mum value for the time step ∆tSDE that can be used in the SDE
method given a fluid velocity u (omitting for clarity the terms
including the derivatives of the diffusion coefficients)

∆tmax = ∆Xshock/|u|. (18)

In 2D we shall take the minimum ∆tmax thus derived from (17).
Inserting this time step into the second part of the restric-

tion, ∆Xadv � ∆Xdiff yields a minimum value for the diffusion
coefficient:

Dmin =
1
2
|u| Xshock. (19)

If the diffusion coefficient depends on momentum, this condi-
tion implies that there is a limit on the range of momenta that
can be simulated. The fact that the hydrodynamics sets a limit
on the range of momenta may be inconvenient in certain appli-
cations. One can in principle circumvent this problem by using
adaptive mesh refinement (Berger 1986; Levêque 1998). This
method increases the grid-resolution in those regions where
more resolution is needed, for instance around shocks. The
method is more appropriate than increasing the resolution over
the whole grid.

Another possibility would be to sharpen artificially the
shock fronts or to use an implicit SDE scheme. This approach
can be useful in one dimension, but fails in 2D or 3D when
the geometry of shock fronts becomes very complicated, for
instance due to corrugational instabilities.

3.2.3. Comparisons with other kinetic schemes

As already emphasized in the introduction, up to now, few
works have investigated the coupling of HD or MHD codes and
kinetic transport schemes (mainly adapted to the jet problem).
The simulations performed by Jones and co-workers (Jones
et al. 2002; Tregillis et al. 2001; Jones et al. 1999) present 2
and 3-dimensional synthetic MHD-kinetic radio jets includ-
ing diffusive acceleration at shocks as well as radiative and
adiabatic cooling. They represent a great improvement com-
pared to previous simulation where the radio emissivity was
scaled to local gas density. The particle transport is treated solv-
ing a time-dependent diffusion-convection equation. The au-
thors distinguished two different jet regions: the smooth flows
regions between two sharp shock fronts where the leading
transport process is the convection by the magneto-fluid and
the shock region where the Fermi first order takes over. This
method can account for stochastic acceleration in energy, but
the process have not been included in the published works. The
previous distinction relies on the assumption that the electron
diffusion length is smaller than the dynamical length as it is
the case for Bohm diffusion (see discussion in Sect. 3.2.1).
However, Bohm diffusion is a very peculiar regime appear-
ing for a restricted rigidity ranges (see Casse et al. 2002 and
Eq. (3)). The magnetic chaos may even completely avoid it. It
appears then essential to encompass diffusive spatial transport
within MHD simulations.

Micono et al. (1999) computed the spatial and energy time
transport of Lagrangian cells in turbulent flows generated by
Kelvin-Helmholtz (KH) instability. The energetic spectrum of
a peculiar cell is the solution of a spatially averaged diffusion-
convection equation (Kardashev 1962). This approach accounts
for the effect of fluid turbulence on the particle transport but
suffers from the low number of Lagrangian cells used to ex-
plore the jet medium. The SDE method has the advantage
to increase considerably the statistics and to allow the con-
struction of radiative maps. As the particles are embedded in
the magnetized jet both macroscopic (fluid) and microscopic
(MHD waves, magnetic field wandering) turbulent transport
are naturally included in the simulations.

4. Testing coupling between MHD and SDEs

So far, particle energy spectra produced by SDEs were calcu-
lated using one dimensional prescribed velocity profiles (see
however van der Swaluw & Achterberg 2001). The prescrip-
tions described plane shocks as a velocity discontinuity or as a
smooth velocity transition. The aim of this section is to present
energetic spectra arising from shocks generated by macro-
scopic numerical code. The tests will increasingly be more
complex including different effects entering in particle trans-
port and acceleration in extragalactic jets.

In the first subsection, we present very elementary tests de-
voted to control the accuracy of the particle transport by SDEs
in a cylindrical framework. In the second part, we move to jet
physics and present the MHD jet simulations and discuss the
results of particle acceleration in near-plane shocks produced
by Kelvin-Helmholtz instabilities.

4.1. Testing 2D cylindrical diffusive transport

Before proceeding to any simulations where both MHD and
SDE are coupled, we have tested the realness of our description
of the spatial transport of relativistic particles. Testing SDEs
has already been addressed by Marcowith & Kirk (1999) and
references therein but only in a one-dimensional framework.
They successfully described the particles acceleration by thin
shocks as well as the synchrotron emission occurring in the
case of relativistic electrons. Here, we have added a second
spatial SDE, for the radial transport, where extra-terms appear
because of the cylindrical symmetry. One way to test the 2D
transport is to compute the confinement time of a particle set in
the simple case of a uniform jet with uniform diffusion coeffi-
cient DRR and DZZ . Let assume we have a set of N particles at
the jet axis at t = 0. The diffusion process will tend to dilute this
population in space and after some time, most of the particles
will leave the plasma column. Indeed, the average position will
be the initial position but the spatial variance of these particles
at time t will be

√
2Dt. For the specific problem of a cylindrical

jet, let consider a cross section in the Cartesian X and Y direc-
tions while Z is along the jet axis. The set of particles will stop
to be confined once

R2
jet ≤ 2DXXt + 2DYY t, (20)
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Table 1. Computations of confinement timeTcf for different diffusion
coefficient values and theoretical value of this confinement time. Note
that the agreement is good as far as the confinement time is large.
Indeed, the time step ∆t = 5 × 10−3 to compute them is the same for
the three runs which leads to different ratio Tcf/∆t. If this ratio is too
small, the time step is not appropriate to accurately model the particle
transport.

DRR R2
jet/4DRR Tcf

0.0125 20 19.96
0.025 10 9.94
0.075 10/3 3.25
0.15 5/3 1.47

where Rjet is the jet radius and the diffusion coefficients DXX

and DYY can be related to DRR by

DRR =
〈∆R2〉
2∆t

=

〈

(X∆X + Y∆Y)2

R2

〉

1
2∆t

= DXX = DYY . (21)

In this relation, X and Y are two uncorrelated variables
(〈∆X∆Y〉 = 0). It is then easy to see that the confinement time
of a set of particles inside a jet is

Tcf =
R2

jet

4DRR
(22)

when one consider an infinitely long jet (no particle escape in
the Z direction). We have performed a series of calculations
dealing with one million particles injected near the jet axis with
different values of the radial diffusion coefficient. We have set
a time step of ∆t = 5 × 10−3 and integrated the particles tra-
jectories using the numerical scheme Eq. (15). When a particle
has reached the jet surface (R = Rjet), we stop the integration
and note its confinement time. Once all particles have reached
the jet surface, we calculate the average value of the confine-
ment time. In Table 1, we present the result of the different
computations. The good agreement between the numerical and
the estimated confinement times is a clue indicating that the
spatial transport of the particles in the jet is well treated as far
as the time step is small enough to mimic the Brownian mo-
tion of particles. Another way to test SDEs in this problem is
to look at the distribution function of these particles since the
analytical solution to the diffusion with uniform coefficients is
known. The Fokker-Planck equation, in the case of a uniform
spatial diffusion without any energetic gains or losses, is

∂ f
∂t
=

DRR

R
∂

∂R

(

R
∂ f
∂R

)

+ DZZ
∂2 f
∂Z2
· (23)

The radial dependence of f arising from this equation is, for an
initial set of particles located at the jet axis,

f (R, Z, t) ∝ 1
4DRRt

exp

(

− R2

4DRRt

)

· (24)

In Fig. 1 we plot the distribution function F = R f obtained
for a set of 5 × 105 particles located initially very close to
the jet axis. The plot is done at a given time t = 2 and with

Fig. 1. Plot of the distribution function F = R f modelized by SDE in
the case of a uniform spatial diffusion, for a fixedZ versus the radial
coordinate in jet radius unit. The solid curve is the analytical solu-
tion obtained from Fokker-Planck equation Eq. (7) which is in good
agreement with computations using SDEs.

DRR = D⊥ = 0.1. The symbols represent the numerical values
obtained using SDEs while the solid line represents the analyt-
ical solution from Eq. (24). The good agreement between the
two curves is a direct confirmation that the transport of particles
is well modelized by SDEs.

4.2. MHD simulations of extragalactic jets

In order to describe the evolution of the jet structure, we have
employed the Versatile Advection Code (VAC, see Tóth 1996
and http://www.phys.uu.nl/∼toth). We solve the set of
MHD equations under the assumption of a cylindrical symme-
try. The initial conditions described above are time advanced
using the conservative, second order accurate Total Variation
Diminishing Lax-Friedrich scheme (Tóth & Odstrčil 1996)
with minmod limiting applied on the primitive variables. We
use a dimensionally unsplit, explicit predictor-corrector time
marching. We force the divergence of the magnetic field to be
zero by applying a projection scheme prior to each time step
(Brackbill & Barnes 1980).

4.2.1. MHD equations

We assume the jet to be described by ideal MHD in an ax-
isymmetric framework. This assumption of no resistivity νm
has consequences on the particle acceleration since the Ohm
law states the electric field as E = −u × B. This electric field
will vanish in the fluid rest frame so that no first-order Fermi
acceleration can be achieved by E. In the case of a resistive
plasma, the electric field (E = B × u + νm J , J density cur-
rent) cannot vanish by a frame transformation and a first-order
Fermi acceleration will occur. In order to capture the dynam-
ics of shocks, the VAC code has been designed to solve MHD
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equations in a conservative form, namely to insure conservation
of mass, momentum and energy. The mass conservation is

∂ρ

∂t
+ ∇ · (ρup) = 0, (25)

where ρ is the density and up is the poloı̈dal component of the
velocity. The momentum conservation has to deal with both
thermal pressure gradient and MHD Lorentz force, namely

∂ρu
∂t
+ ∇ ·

(

uρu − BB
µo

)

+ ∇
(

B2

2µo
+ P

)

= 0, (26)

where P stands for thermal plasma pressure. The induction
equation for the magnetic field is

∂B
∂t
= −∇(uB − Bu). (27)

The last equation deals with the energy conservation. The total
energy

e =
ρu2

2
+

B2

2µo
+

P
Γ − 1

, (28)

where Γ = CP/CV = 5/3 is the specific heat ratio, is governed
by

∂e
∂t
+ ∇ ·

(

ue − BB
µo
· u + u

[

P +
B2

2µo

])

= 0. (29)

In order to close the system of MHD equations, we assume the
plasma as perfect gas. Thermal pressure is then related to mass
density and temperature as

P =
<
µp
ρT (30)

where < is the perfect gas constant and µp the plasma mean
molecular weight.

By definition, these simulations are not able to describe mi-
croscopic turbulence since MHD is a description of the phe-
nomena occurring in a magnetized plasma over large distance
(typically larger than the Debye distance to insure electric
charge quasi-neutrality). So, in the case of diffusion coefficients
involving magnetic turbulence, we shall have to assume the tur-
bulence level ηT.

4.2.2. Initial conditions and boundaries

We consider an initial configuration of the structure such as the
jet as a plasma column confined by magnetic field and with an
axial flow. We add to this equilibrium a radial velocity pertur-
bation that will destabilize the flow to create Kelvin-Helmholtz
instabilities. The radial balance of the jet is provided by the
opposite actions of the thermal pressure and magnetic force

BZ(R, Z, t = 0) = 1 ,

BR(R, Z, t = 0) = 0 ,

Bθ(R, Z, t = 0) = − (R/Rc)
1 + (R/Rc)2

,

P(R, Z, t = 0) =

[

1
(1 + (R/Rc)2)2

+ βp − 1

]

(31)

where Rc is a parameter controlling the location of the maxi-
mum of Bθ and βp = 2µoPo/B2

o is the ratio of thermal to mag-
netic pressure at the jet axis. All magnetic field components are
here expressed in Bo units (see next for a definition).

The FRI jets are partially collimated flows where some in-
stabilities seem to perturb the structure of the jet. Thus we will
assume in our simulation that the thermal pressure is not neg-
ligeable in the jet and that the flow is prone to axisymmetric
Kelvin-Helmholtz instabilities. Thus we will assume values of
βp larger than unity. The sonic Mach number is implemented as

uZ(R, Z, t = 0)
Co

= Ms =
Mo

cosh
(

(R/Ro)8
) (32)

where Co is the sound speed at the jet axis. This sound speed
can be related to jet velocity Ujet by the parameter Mo =

Ujet/Co. This parameter is chosen to be larger than one, as
the jet is expected to be super-fastmagnetosonic. In our sim-
ulations, we have Mo = 10 and uθ = 0. The perturbation that
can provoke KH instabilities must have a velocity component
perpendicular to the flow with a wave vector parallel to the flow
(e.g. Bodo et al. 1994). We have then considered a radial
velocity perturbation as

uR(R, Z, t = 0)
Co

=
δMo

nz

∑nz

k=1 sin(kZ2π/Lo)

exp
(

5(Z − Ro)2
) (33)

where δMo is smaller than unity in order to create a sub-sonic
perturbation and Lo is the vertical length of the box. The density
of the plasma is set as

ρ(R, Z, t = 0) =

(

0.8
cosh((R/Ro)8)

+ 0.2

)

(34)

where ρo = ΓβpB2
o/2µoC2

o is the density at the jet axis.

Physical quantities normalization: Lengths are normalized to
the jet radius Ro at the initial stage. The magnetic field physi-
cal value is given by Bo while velocities are scaled using sound
speed Co = Ujet/Mo intimately related the observed jet veloc-
ity. Once physical values are assigned to the above-mentionned
quantities, it is straightforward to obtain all the other ones. The
dynamical timescale of the structure is expressed as

τo =
Ro

Co
= 3.25 × 104 yr Mo

(

Ro

100 pc

) (

Ujet

3000 km s−1

)−1

· (35)

Note that for the single MHD simulations, the evolution of
the structure does not depend on these physical quantities but
only on the parameters βp,Mo,Rc, δMo. Nevertheless, for each
MHD-SDE computation, the physical values are injected into
SDE equations to derive the velocity divergence and the syn-
chrotron losses.

The MHD simulation are performed using rectangular
mesh of size 104 × 204 cells, with two cells on each side de-
voted to boundary conditions. The left side of the grid (R = 0)
is treated as the jet axis, namely assuming symmetric or anti-
symmetric boundaries conditions for the set of quantities (den-
sity, momentum, magnetic field and internal energy). The right
side of the box is at R = 4Ro and is consistent with free bound-
ary: a zero gradient is set for all quantities. For the bottom and
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upper boundaries (respectively at Z = 0 and Z = 8Ro, we pre-
scribe periodic conditions for all quantities, so that when a par-
ticle reaches one of these regions, it can be re-injected from the
opposite region without facing artificial discontinuous physical
quantities.

4.2.3. Inner-jet shock evolution

Kelvin-Helmholtz instability is believed to be one of the source
of flow perturbation in astrophysical jets. The evolution of this
mechanism has been widely investigated either in a hydrody-
namical framework (e.g. Micono et al. 2000 and reference
therein) or more recently using MHD framework (see Baty
& Keppens 2002 and reference therein). The growth and for-
mation of shock as well as vortices in the jet core depend on
the nature of the jet (magnetized or not) and on the magnetic
field strength (Malagoli et al. 1996; Frank et al. 1996; Jones
et al. 1997; Keppens & Tóth 1999). In the particular case of ax-
isymmetric jets, it has been shown that the presence of a weak
magnetic field significantly modifies the evolution of the inner
structures of vortices.

We present in Fig. 2 the temporal evolution of a typical
inner-jet shock obtained from our computations. After the lin-
ear growth of the instability (up to t = 19τo), the structure
exhibits a curved front shock inclined with respect to the jet
axis. In the frame of the shock, the flow is upstream super-
fastmagnetosonic, and downstream sub-fastmagnetosonic. On
both side of the shock, the plasma flow remains superalfv ènic.
This shock configuration is consistent with a super-fast shock.
Rankine-Hugoniot relations show that, at a fast-shock front,
the magnetic field component parallel to the shock front is
larger in the downstream medium than in the upstream one
(Fraix-Burnet & Pelletier 1991). In the present axisymmetric
simulations, the bending of the poloı̈dal magnetic field lines
occurring at the shock front creates a locally strong Lorentz
force that tends to push the structure out of the jet. As seen
on the following snapshots of Fig. 2, the shock front rapidly
evolves toward a plane shape. This quasi-plane shock structure
remains stable for several time units before being diluted.

4.2.4. Macroscopic quantities

The SDEs coupled with the MHD code provide approximate
solutions of the Fokker-Planck equation using macroscopic
quantities calculated by the MHD code. Indeed, flow veloc-
ity and magnetic field enter the kinetic transport equation and
there is no way to treat realistic case in astrophysical environ-
ments but to model them from macroscopic multi-dimensional
simulations. Nevertheless, one difficulty remains since MHD
(or HD) simulations only give these macroscopic quantities
values at discrete location, namely at each cells composing the
numerical mesh. Hence, these values are interpolated from the
grid everywhere in the computational domain. If the domain we
are considering is well-resolved (large number of cells in each
direction), a simple tri-linear interpolation is sufficient to cap-
ture the local variation of macroscopic quantities. When shocks
are occurring, the sharp transition in velocity amplitude is more

T=24

T=22

T=26

T=20

T=30

T=23

Fig. 2. Temporal evolution (in τo unit) of a typical internal shock oc-
curring within the jet. The grey-scales represent density levels (dark
for low density and white for high density) while solid lines stand
for poloı̈dal magnetic field lines. The parameters of this simulations
are βp = 10, Mo = 10, Rc = 1 and δMo = 0.1. This shock arises
from a initial setup prone to axisymmetric MHD Kelvin-Helmholtz
instabilities. In the early stage of the shock evolution, the shock front
displays a bow-shock shape but as the simulation goes on, the shock
front evolves toward a front shock.

difficult to evaluate because shocks are typically only described
by few cells. Thus, the calculus of velocity divergence must be
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done accurately. We adopt the following procedure to calculate
it: shocks are characterized by very negative divergence so at
each cells (i, j) we look for the most negative result from three
methods

∇ · u(i, j) = min

(

∓uZ(i, j) − uZ(i, j ± 1)
|Z( j) − Z( j ± 1)| ,

uZ(i, j + 1) − uZ(i, j − 1)
Z( j + 1) − Z( j − 1)

)

+min

(

∓R(i)uR(i, j) − R(i ± 1)uR(i ± 1, j)
R(i)(R(i) − R(i ± 1))

,

R(i + 1)uR(i + 1, j) − R(i − 1)uR(i − 1, j)
R(i)(R(i + 1) − R(i − 1, j))

)

· (36)

This approach ensures that the sharp velocity variation occur-
ring within a shock is well described and that no artificial
smoothing is created in the extrapolation of flow velocity diver-
gence. At last, note that the location of the most negative ∇ · u
corresponds to the shock location. The measurement of spectra
at shock front will then be done by looking at particles charac-
teristics passing through this location.

4.3. Realistic plane shock

In this subsection we address the issue of the production of en-
ergetic spectra by plane shocks arising from MHD simulations.
This issue is a crucial test for the relevance of SDEs using the
velocity divergence defined in Eq. (36). We stress thatall sim-
ulations performed in this paper are done using test-particle
approximation, i.e. no retroactive effects of the accelerated par-
ticles on the flow are taken into account.

4.3.1. Strong shock energetic spectrum

We have performed a series of MHD simulations of cylindri-
cal jets subject to Kelvin-Helmholtz instabilities (cf. Sect. 4.2).
We selected the case of a plane shock (quite common in the
KH instability simulations) propagating along the jet with a ra-
dial extension up to the jet radius (see Fig. 3). Its compres-
sion ratio is r = 4 (measured by density contrast) and constant
along the shock front. We have chosen a particular snapshot of
the structure displayed in Fig. 3. By rescaling the vertical ve-
locity in order to be in the shock frame (where the down and
up-stream velocities are linked by udown = uup/r), we first con-
sider this shock with infinite vertical boundaries and reflective
radial boundaries. Namely, we set that if the particle is escap-
ing the domain at Z < Zmin = 0 or Z > Zmax = 8, we take
the velocity to be up(Z > Zmax) = up(R, Zmax) (same thing for
Z < Zmin). The condition allows for particles far from the shock
to eventually return and participate to the shaping of F(p). The
reflective radial boundaries are located at the jet axis R = 0
(to avoid the particle to reach R = 0 where SDEs are not valid)
and R = 1. Such boundaries ensure that no particle can radi-
ally escape from the jet during the computation. The constant
value of the diffusion coefficients DZZ and DRR must fulfill re-
lations (17) and (19). Actually, in the particular case of a plane
shock propagating along the vertical axis, only DZZ must ful-
fill previous relations, namely DZZ > Dmin = Xsh|uZ |/2. The

Fig. 3. Zoom in a jet snapshot where Kelvin-Helmholtz instabilities
are active. The parameters of the MHD simulations are the same as in
Fig. 2. The grey levels represent the density levels while the white
lines are magnetic surfaces. A shock arises in the core of the jet
(R ≤ 1) with a plane shape perpendicular to the jet axis. Using a
large number of particles like the one which trajectory is displayed
with a thick white line, we measure, in the shock frame, the stationary
energetic spectrum of particles at the shock front.

shocks width Xsh is defined as the location of the most nega-
tive velocity divergence of the flow. Typically, this width corre-
sponds to the size of a mesh cell in the case of strong shock. We
can then safely set DZZ = 0.4 as we will have DZZ = 10Dmin.
The radial diffusion coefficient is tuned as DRR = 0.01 and will
enable particle to explore the shock front structure. In Fig. 4
we display the results of the use of SDEs on a particle popula-
tion injected at momentum p = po and propagating in snapshot
represented by Fig. 3. We easily see that the resulting spec-
trum is a power-law of index −4 completely in agreement with
DSA theory (see Sect. 2). The existence of a few particle with
p < po arises from the fact that outside the shock, the velocity
divergence is not equal to zero, as it would be with a prescribed
velocity profile (Krülls & Achterberg 1994; Marcowith & Kirk
1999). Note that in the absence of other energetic mechanism
(as second-order Fermi acceleration or synchrotron losses), the
simulation is independent of the physical value of po as the
diffusion coefficient is independent of p.

4.3.2. Single shock with synchrotron losses

For electrons, the acceleration occurring within shock may be
balanced at the cut-off by radiative losses due to the presence of
the jet magnetic field. Webb et al. (1984) has presented a com-
plete analytical resolution of Fokker-Planck transport equation
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Fig. 4. Energetic spectrum of particle population injected at momen-
tum po in the MHD jet of Fig. 3. The spectrum is measured at the
shock front and is in a very good agreement with DSA theory predict-
ing a power-law of index −4 for a single plane shock of compression
ratio r = 4. Note that in this computation the diffusion coefficients
have constant values fulfilling relation (17).

including both first-order Fermi acceleration and synchrotron
emission. In particular, they show that the energetic spectrum
exhibits a cut-off at a momentum p∗ depending on spatial dif-
fusion coefficient and velocity of the flow. The choice of the
injection energy poc of electrons is determined by the lower
boundary of the inertial range of magnetic turbulence. Indeed,
to interact with turbulence and to spatially diffuse, electrons
must have momentum larger than pi = miVA, where mi is typ-
ically the proton mass and VA is the Alfvén speed (Lacombe
1977). The energy threshold corresponds to

εi = pic ' 900 MeV
(VA

c

)

· (37)

In our simulations, we assume an Alfvèn speed Va ∼ 2.2 ×
108 cm s−1 ∼ c/100 (see the discussion in Sect. 2.2) leading to
poc = 100 MeV ≥ pic. As previously noted, the Alfvèn speed
in extragalactic jets can reach an appreciable fraction of the
light speed. An increase of Va leads to an increase of the par-
ticle injection threshold and a decrease of the dynamical mo-
mentum range explored. In that case, the Fermi second order
effect must be included in our SDE system (via the diffusive
term in momentum in Eq. (15)). Time dependent simulations
(in progress) will include the associated discussion.

The result of the simulation including synchrotron losses is
displayed in Fig. 5. When assuming a constant magnetic field
and diffusion coefficients, the cut-off energy ε∗ = p∗c reads as
(Webb et al. 1984)

ε∗ =
m2

ec3

DZZ

2π
σTB2

u2
up

r − 1
r(r + 1)

= 0.48 GeV

(

Uup

300 km s−1

) (

Rjet

100 pc

)−1 (

B
100 µG

)−2

· (38)

Figure 5 displays the spectrum at the shock in case of a the
magnetic field obtained from the MHD code. The cut-off is
in good agreement with the resulting spectrum despite the nu-
merical simulation is considering a spatially varying magnetic
field. Figure 5 also shows the case of a constant magnetic field
taken as the average of the previous one.

Fig. 5. Energetic spectrum of energetic population injected at momen-
tum poc = 100 MeV in the MHD jet of Fig. 3 and subject to syn-
chrotron emission. The spectrum is measured at the shock front. It
matches the solution of Webb et al. (1984), in particular for the cut-off
momentum p∗ where synchrotron losses balance shock energy gains.
For this computation, we have considered magnetic field given by the
MHD code. The upstream velocity Uup = 300 km s−1, and the mean
magnetic fieldBo = 100 µG.

4.3.3. Multiple shocks acceleration

The presence of multiple shocks increases the efficiency of par-
ticle acceleration. In multiple shocks, the particles accelerated
at one shock are advected downstream towards the next shock.
The interaction area is enhanced, so as the escaping time. The
general expression of the distribution function at shocks front,
log f ∝ −(3 + tacc/tesc) log p will then tend to log f ∝ −3 log p.
This multiple shocks acceleration may occur in jets where nu-
merous internal shocks are present (Ferrari & Melrose 1997).
We intend to modelize this effect using the same snapshot as
in previous calculations but changing the nature of the verti-
cal boundaries. Indeed, since we are modelizing only a small
part of the jet (typical length of 800 pc), we can assume that if
a particle is escaping by one of the vertical boundaries, it can
be re-injected at the opposite boundary with identical energy.
The re-injection mimics particle encounters with several parts
of the jet where shocks are occurring. Physical quantities are
set to same values than in paragraph dealing with single plane
shock. The result of the simulation is displayed in Figs. 6 and 7
when synchrotron losses are considered. In Fig. 6, the spec-
trum reaches again a power-law shape but with a larger index
of −3, consistent with previous statements. When synchrotron
losses are included in SDEs (Fig. 7), we find a similar spectrum
than for single shock but with some differences. Namely, the
curve exhibits a bump before the cut-off. This bump can eas-
ily be understood since the hardening of the spectrum enables
particles to reach higher energies where synchrotron losses be-
come dominant. Thus an accumulation of particles near the cut-
off momentum p∗ will occur. The bump energy corresponds
to the equality between radiative loss timescale and multiple
shock acceleration timescale. The last timescale is larger than
the timescale required to accelerate a particle at one isolated
shock because of the advection of particles from shock to next
one (Marcowith & Kirk 1999).
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Fig. 6. Energetic spectrum resulting from acceleration by multiple
shocks in an extragalactic jet. The power-law arising from this sim-
ulation matches exactly the result given by DSA theory in the case of
no particle escape from the shock region (tesc � tacc). To achieve this
simulation, we have considered the snapshot in Fig. 3 but with vertical
re-injection of escaping particles. These boundaries mimic the effect
of multiple shocks interaction with particle during their propagation
along the jet.

Fig. 7. Momentum spectrum of electrons injected at poc = 100 MeV
in a jet prone to multiple shocks acceleration. Note the bump occurring
because of the synchrotron cut-off that tends to accumulate particles
at the cut-off momentum p∗.

5. Acceleration at complex shock fronts

The shock structures are subject to an important evolution dur-
ing the development of the KH instability. We now investigate
the particle distribution function produced at these shocks us-
ing the SDE formalism. All the shock acceleration process here
is investigated using snapshots of the MHD flow.

5.1. Plane shocks with varying compression ratio

In astrophysical and particularly jet environments, (weak)
shocks occurring within magnetized flows in the early phase
of KH instability (see Fig. 2) are non-planar and/or with non-
constant compression ratio along the shock surface. We first
consider analytical calculations of the particle distribution pro-
duced in such shocks that extend previous works and we com-
plete our estimates using the MHD-SDE system.

5.1.1. Analytical approach

The theory of DSA explains the energetic spectrum of diffu-
sive particles crossing plane shock with constant compression
ratio r. Even when the plane structure is relaxed (Drury 1983)
the compression ratio is usually assumed as constant along the
shock front. In astrophysical jets, complex flows arise from the
jet physics so that even the plane shock assumption is no longer
valid implying a non-analytical derivation of the particle dis-
tribution function. Nevertheless, it seems obvious that if the
shock front is not strongly bent, the particle acceleration pro-
cess should not be strongly modified.

Let us first quantify this assertion. We calculate the mean
momentum gained by a particle during one cycle (down-
stream→ upstream→ downstream)

〈∆p〉
p
=

4
3

(r(R) − 1)
ud

v
(39)

we assume that, during this cycle, the particle sees the local
structure of the shock as a plane (v is the speed of the particle),
e.g. the spatial scale where the shock bends is large compared
to the particle diffusive length.

Here, contrary to the standard DSA theory, the energy gain
depends on the location of the shock crossing of the particle.
The probability for a particle to escape from the shock during
one acceleration cycle is however still given by the usual DSA
theory, namely ηk = 4ud/vk (vk is the speed of the particle dur-
ing the kth cycle). The probability that a particle stays within
the shock region after n cycle Prn can be linked to the mean
momentum gain after n cycle as

ln Prn

ln pn/po
=

∑n
k=1 ln(1 − ηk)

∑n
k=1 ln(1 + ηk(rk − 1)/3)

· (40)

The compression ratio r depends on the number of the cycle
since in reality, the particle is exploring the front shock because
of the diffusion occuring along the shock front. This expression
can be simplified if we assume the flow background velocity
very small compared to particle velocity (ηk � 1 for a non-
relativistic shock) and that particles are ultra-relativistic (ηk =

η = 4ud/c). The expression then becomes

ln Prn

ln pn/po
' −3

n
∑n

k=1 rk − n
· (41)

The sum of the different compression ratios experienced by
particle population can be approximated using the average
compression ratio measured along the shock front rm. Indeed,
each particle interacting with the shock is prone to numerous
cycles of acceleration and then the sum remaining in Eq. (41)
can be expressed as

∑n
k=1 rk ' nrm. Hence, the energetic spec-

trum is a power-law but with an index controlled by the mean
value of the compression ratio all over the shock front, namely

p2 f ∝ ∂ ln Prn

∂pn
∝ p−3(rm+2)/(rm−1). (42)

In this demonstration, the compression ratio profile itself is
not involved in the spectrum shape but only its average value
rm, as long as one can consider the shock to be locally plane.
Equation (42) generalizes the results provided by Drury (1983)
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Fig. 8. Spectrum produced by plane shocks with spatially varying compression ratio r. The left panel represents compression ratio profiles
along the shock front while the right panel displays the resulting spectra. The calculations 1, 2 and 3 have different r-profiles but the same
rm = 4. The resulting spectra are corresponding to curve 1, 2 and 3 on the right figure. We can see that this curves are almost the same and are
very close to a power-law with index −(rm + 2)/(rm − 1). Curves 4 and 5 correspond to compression ratio profile with mean valuesrm equal to
3.5 and 3. The corresponding spectra on the right figure are again consistent with power-law with indices controlled by theirrm. All particles
are injected at poc = 100 MeV along the shock.

concerning curved shocks with constant compression ratio. If
the plane shock assumption is relaxed, numerical simulations
are necessary.

In order to complete this result, we have performed several
numerical calculations where a mono-energetic population of
relativistic particles are injected with momentum po behind an
analytical prescription describing a plane shock with varying
compression ratio (the shocks are test examples). The result of
this numerical test is displayed in Fig. 8.

In this test, we have done three calculations with three dif-
ferent compression ratio profiles (curves 1, 2 and 3) but with
identical average value rm = 4. Setting both vertical and radial
diffusion, we have obtained the spectra 1, 2 and 3 displayed on
right panel of Fig. 8. These three curves are almost the same.
On two other calculations, we have chosen linear profiles with
different values of rm (curves 4 and 5): again a power-law spec-
trum is found with indices consistent with previous analytical
statements. This conclusion is correct only if during the cycle
the particle mean free path along the shock front is small com-
pared to its curvature and if during many cycles the particle is
able to explore the whole shock structure.

5.1.2. Locally-plane shock

The previous considerations can be applied to a non-planar
shock produced in the early stage of the axisymmetric Kelvin-
Helmholtz instability. The inner shocks tend to evolve from
curved fronts in the early phases of the instability toward plane
shocks, perpendicular to the jet axis (see Sect. 4.2.3 and Fig. 2).
In Fig. 9 the curvature radius of the shock is typically of the
order of the jet radius while the obliquity angle (between the
shock front and the jet axis) ranges from zero to 27o. For
such a low obliquity the shocks are subluminal. A more sub-
tle consequence of the non-constancy of the compression ratio
is that the electric fields generated along the shock front can-
not be canceled by any Doppler boost. In other words, com-
plex shocks do not have a unique de Hoffman-Teller frame.
This problem strongly complexifies the particle acceleration
and transport in jets and is postponed to future works especially

Fig. 9. Same plot as Fig. 3. The MHD simulation parameters are the
same as in Fig. 3 except for δM = 0.5. This snapshot is selected dur-
ing the developing phase of the shock where the structure is evolving
toward a plane shock. The inclined (with respect to the jet axis) part
of the shock front are affected by a strong magnetic bending due to
magnetic conservation through the shock.

treating strongly oblique (or even perpendicular) shocks. In the
present paper, the MHD shocks are only weakly oblique and
non-relativistic (the effects of electric fields on particle accel-
eration are neglected). In principle, once the electro-magnetic
field is known throughout the jet, the systematic electric effects
on particle trajectories can be implemented in the SDE system.
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Fig. 10. Compression ratio profile (left) and energetic spectrum (right) of accelerated particles by the shock displayed in Fig. 9. This shock
is not a plane shock and does not have constant compression ratio along its shock front. The curvature radius of this shock is much larger
than the mean free path of a particle so, locally, the shock can be considered as a plane shock. The resulting spectra (with only acceleration
or with synchrotron losses included) are consistent with a plane shock with compression ratio 2.7 which is close to the average value of the
compression ratio of this shock, namely rm = 2.68.

Keeping the same prescription for diffusion coefficients
than in previous section (constant diffusion coefficients and
radial reflective boundaries) we first have to verify the quasi-
planar condition of the shock. To this aim, we form the ratio
of the typical diffusion length occurring during one cycle along
the shock front (L⊥) and the curvature radius. The duration of
one acceleration cycle is controlled by the residence time at
the shock tres = 2DZZ/u2

d (assuming that it is composed of n
identical cycle). The number of cycle needed for the particle
to escape the shock is obtained when the escaping probabil-
ity after n cycles is equal to unity, namely

∑n
k=1 ηk = 4nud/c

when particles are relativistic. The duration of one cycle is thus
τ = 8DZZ/udc. The criterion for considering a shock as locally
plane will be

L⊥
Lcurv

≤
√

2D⊥,S τ

Rjet
(43)

where D⊥,S is the maximal value of the diffusion coefficient
in the direction parallel to the shock front. With the previously
prescribed diffusion coefficients the ratio has a maximum value
equal to 3.4 × 10−2. This value is small compared to unity
which means that during one cycle, the particle will interact
with a zone of the shock where the compression ratio is almost
constant. On the other hand, this ratio is not so small and within
a few cycles of acceleration particles will explore a significant
part of the shock front.

Figure 10 shows the energetic spectrum produced in such
curved shock. The result is close to a power-law of index
f ∝ p−4.7 and when synchrotron losses are taken into account,
the cut-off energy corresponds to the case of a uniform shock
with constant compression ratio equal to 2.76. The cut-off,
given by Eq. (38) is close to the value obtained on the plot. We
postpone to Sect. 5.2.2 the comparison between particle accel-
eration timescale and shock survival timescale in the different
phases of the jet evolution. We can however anticipate here that
for typical jet parameters the former is smaller than the latter.
This validates our results obtained using MHD snapshots.

5.2. Strong shock acceleration and spatial transport

We now consider the shock acceleration and spatial transport
in chaotic magnetic field in strong shocks occurring in thelate
phase of the KH instability where the most efficient particle ac-
celeration is expected (Micono et al. 1999). The validity of the
snapshot approach is tested against the survival of the shocks.
We investigate the effect of radial escape on the particle distri-
bution in the single and the multiple shock configuration.

5.2.1. Maximum energies expected and electron
transport

The maximum electron energy is limited by radiative or escape
losses. In case of synchrotron radiation, the loss timescale is
τloss ∼ 1.2× 104(BmG)−2 E−1

GeV yr which compared to the accel-
eration timescales presented above leads to electron with ener-
gies γmax ∼ 108 (Ujet/c)3/2, around 1 TeV for Ujet/c = 0.1 (the
magnetic field and the particle energy are expressed in mGauss
and in GeV units respectively).

In a quite general way, the radial and vertical diffusion co-
efficients can be written as

DRR = D‖
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where B is the total magnetic field amplitude. The confinement
time is driven by the radial diffusion coefficient DRR which may
be expressed in term of ηT as

DRR '
Do

ηT
(α + (1 − α2)1/2η2.3

T ), (45)

where D‖ = Do/ηT and α stands for the average value of |BR/B|
all over the simulation box. The coefficient Do may eventually
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depends on the particle momentum. It can easily be seen that
Eq. (45) has a minimum value for

ηmin
T =

(

α

1.3 (1 − α2)1/2

)1/2.3

· (46)

At ηmin, particle confinement reaches its maximum (see
Eq. (22)). Typically, radio jets do not display opening angle
larger than a few degrees leading to ηmin

T of the order of 0.2.
Paradoxically, low turbulence levels do not provide efficient
confinement since largest diffusion motion occurs along the
magnetic field which have locally radial components. Within
a timescale τloss electrons are able to explore distances

∆R =
√

4 DRR τloss. (47)

In the chaotic magnetic regime, Eq. (3) leads to

∆R ∼ 15
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We consider a mean turbulence level ηT = η
min
T , and assumed

a magnetic field B = 100 µG, and a maximum turbulence
scale λmax ∼ Rjet. For α ∼ 2o, we get ∆R(1 TeV) ∼ 9 pc
and ∆R(1 GeV) ∼ 90 pc. The high energy electrons are only
able to explore about one tenth of the jet radius and can be
considered as confined to the region where they have been in-
jected. The GeV electrons can explore larger fraction of the
jet and escapes are expected to steepen the particle distribu-
tion. These are averaged results, ∆R is sensitive to the mag-
netic field, for example if B decreases (increases) by one or-
der of magnitude ∆R increases (decreases) by a factor ∼14.
Along the jet, particles are advected from one shock to the next
on timescales ∆Zshock/Vflow , where a mean inter-shock distance
∆Zshock ∼ 1 kpc and Vflow ∼ 10−2/−1c lead to τadv‖ ∼ 3×104/5 yr.
The high energy part of the electron distribution is then pro-
duced by one shock and can hardly be re-accelerated in a sec-
ond one downstream. The spectrum at these energies strongly
depends on the shock compression ratio. At lower energies
GeV electrons distribution can be subject to either transver-
sal escapes or multiple shock effects. For both populations, the
electrons accelerated at the inner shocks remain within 1 kpc
of their injection points, this clearly separates the inner jet from
the Mach disc and justifies a fortiori our approach in simulat-
ing only the kiloparsec scale jet. It also clearly appears that the
spatial transport issue addresses to the multi-wavelength mor-
phologies of jets. We know make these statements more precise
using the coupled MHD-SDE system.

5.2.2. Single shock

So far, we have presented numerical calculations using reflec-
tive radial boundaries (no particle losses) and constant diffu-
sion coefficients. In this section, we choose to remove step by
step these two constraints. Starting from the snapshot of Fig. 3,
we first remove the outer reflective boundary and consider any
particle having R > Rjet as lost. Then we adopt diffusion coeffi-
cients given by Eq. (3) since they arise from a transport theory

Fig. 11. Spectra produced at the shock front displayed in Fig. 3 with-
out outer reflective boundary, namely with radial particle losses. The
upper plot represents a spectrum done with constant diffusion coef-
ficients (DZZ = 1 and DRR = 0.02). The radial losses modify the
spectrum by increasing the index of the power-law from −4 to −4.25.
The last three curves are spectra produced by using realistic diffusion
coefficients given by Eq. (3). The momentum dependence of these
coefficients modifies the shapes that are no longer power-laws (see
Sect. 5.2.2). The upper plot has an arbitrary normalization unrelated
to the three last curves.

consistent with high turbulence levels ηT and are confirmed nu-
merically. Quasi-linear theory does likely apply at very low tur-
bulence levels implying high parallel diffusion coefficient and
acceleration timescales. Expected spectra must then be softer
than the same spectrum obtained in the chaotic regime.

First, as an illustration of escape effects, we consider the
case of constant diffusion coefficients, namely DZZ = 1 and
DRR = 2 × 10−2. The resulting spectrum can be seen in
Fig. 11 and is consistent with a harder power-law. In previ-
ous simulations, the escaping time was defined as the time
needed by the flow to advect a majority of RPs away from
the shock. Here the effect of the confinement inside the jet
if lower than the escaping time from the shock will be the
main source of particle losses. The distribution function reads
as log f ∝ −(3 + tacc/tloss) log p where tloss = min(tconf , tesc)
and will stay as a power-law as long as the escaping time
is not momentum dependent. In our example tloss = tconf =

(Rjet − Rinj)2/4DRR = 10.125, where Rinj is the average ra-
dius of injected particles. The resulting spectrum index in
Fig. 11 is in good agreement with this estimate since the ratio
tacc/tconf = 6D/(tconfu2

d(r − 1)) = 1.26 and the plot representing
the spectrum done with these constant diffusion coefficients has
a power-law index as f ∝ p−4.25.

Secondly, we discuss the case of Kolmogorov turbulence
and keep ηT free in order to check its influence on the transport
of particles. The three last plots in Fig. 11 represent simula-
tions performed without outer reflective boundaries and di ffu-
sion coefficients as described by Eq. (44). The simulations ac-
count for energy as well as spatially (Br and Bz are both func-
tion of r and z) dependent transports. Each curve corresponds
to a value of the turbulence level ηT = 0.05, 0.2 and 0.9. In a
Kolmogorov turbulence D‖ ∝ D⊥ ∝ p1/3, tconf ∝ D−1

RR ∝ p−1/3

which leads to a confinement time decreasing while increas-
ing momentum and a convex spectrum. At a low turbulence
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Fig. 12. Same plot as in Fig. 11 but with periodic vertical boundaries.
This setting mimics the effect of multiple shocks acceleration. As pre-
viously, inclusion of radial particle losses affects spectra: a softening
of the spectral index, cut-off energies dependent on ηT.

level, the ratio tacc/tconf is large, increases with the particle mo-
mentum and leads to softer spectra with low energy cut-off (at
few GeV/c). In order to get significant particle acceleration and
large energy cut-off (beyond 1 TeV) turbulence levels ηT ≥ 0.1
seem mandatory. The maximum confinement is obtained for
turbulence level ηT compatible with Eq. (46).

One important issue to discuss about is the validity of our
results while considering snapshots produced from the MHD
code. It appears from Fig. 2 that both weak curved and strong
plane shocks survive a timescale of the order of 5 τo. The
shock acceleration timescale of a particle of energy EGeV may
be expressed as τacc ∼ 20 DZZ/U2

sh for a compression ratio
of 4 (Drury 1983), where Ush ∼ 10 cs is the shock velocity.
Using the Eqs. (3) and (44) we end up with a typical ratio
τacc/τ0 ∼ 10−2 η−1

T E1/3
GeV B−1/3

mG . Our snapshot then describes
well the shock acceleration (e.g. τacc/τ0 ≤ 1) up to TeV ener-
gies unless the turbulence level is very low and the magnetic
field much lower than 100µG. The conclusion is the same for
curved shocks as the acceleration timescale is smaller in that
case. However, time dependent simulations are required to a
more exhaustive exploration of the jet parameter space and to
test the different turbulence regimes.

5.2.3. Multiple shock-in-jet effects

The radial losses should also affect the transport of particles
encountering several shocks during their propagation. This de-
scription is pending to the possibility of multiple strong shocks
to survive few dynamical times. This issue again requires
the time coupling between SDE and MHD simulations to be
treated.

However, the general statement about the distribution func-
tion is still valid but at the opposite of previous multiple shocks
acceleration calculations (see Sect. 4.3.3) the lack of confine-
ment is the only loss term. In Fig. 12, we have performed the
same calculations as in the previous paragraph except that we
impose periodic vertical boundaries where particles escaping
the computational domain by one of the vertical boundary is
re-injected it at the opposite side keeping the same energy.

Fig. 13. Multiple inner-jet shocks spectrum including synchrotron
losses for ηT = 0.2, Bo = 10 µG and Ujet = c/5. The synchrotron
cut-off energy lies at a few TeV. The most energetic electrons at the
bump of this distribution would have a peaked synchrotron emis-
sion at ν ∼ 1.9 × 1016 Hz which corresponds to UV/X-ray emission
(hν ∼ 20 eV).

We again start with our fiducial case displaying the spec-
trum obtained from calculations done with constant diffusion
coefficients, i.e. DZZ = 1 and DRR = 2 × 10−2 (the upper plot).
The power-law index is modified and equals to−3.13 instead
of −3 as obtained in calculations without radial losses. This
result is close to the analytic estimate since tacc/tconf ' 0.11
in that case. In the chaotic diffusion regime the same behavior
is observed in the spectra, e.g. convex shape, low energy cut-
off at low turbulence levels. In this diffusion context, multiple
shock acceleration is again most efficient for ηT ∼ 0.2−0.3 and
tends to produce hard spectra up to 10–100 GeV for electrons
without radiative losses. The spectrum cut-off beyond 10 TeV.

In Fig. 13, we have included synchrotron losses effects in
one of the most favorable case (ηT = 0.25) in the chaotic
regime. The resulting spectrum shows a characteristic bump
below the synchrotron cut-off lying around a few ten GeV. This
hard spectrum may be intermittent in jets as already noticed by
Micono et al. (1999). The spectrum and bump may also not
exist because of non-linear back-reaction of relativistic parti-
cles on the shock structure (this problem require the inclusion
of heavier particles in the simulation). Beyond the electrons
loss their energy before reaching a new shock as discussed in
Sect. 5.2.1. The magnetic field used is 10µG and suggests that
higher values are apparently not suitable to obtain TeV elec-
trons. The synchrotron peaked emission of the most energetic
electrons of this distributions gives an idea of the upper limit
of radiative emission achievable by this inner-jet shock. In a
10 µG magnetic field, these electrons radiate UV/X-ray pho-
tons as (Rybicki & Lightman 1979)

hνsyn = 0.29
3hε2eB

µom3
ec5
∼ 20 eV

(

ε

10 TeV

)2
(

B
10 µG

)

· (49)

The electron population computed here does not go beyond
50 TeV, which then suggests an energy emission upper limit
around ∼0.5 keV. The maximum energy scales as Ujet (see
Eq. (38)) and can be significantly increased in case of fast jets
(with speeds up to c/2 the limit of the validity of the diffusion
approximation).
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In case of inefficient confinement, e.g. ηT different
from 0.2–0.3, this result also suggests that the synchrotron
model may in principle not account for the X-ray emission
of extragalactic jets probably dominated by another radiative
mechanism (for instance the Inverse Compton effect). However
again, we cannot draw any firm conclusions about this impor-
tant issue and postpone it to the next work treating full time
dependent simulations.

6. Concluding remarks and outlook

In the present work, we performed 2.5D MHD simulations
of periodic parts of extragalactic jets prone to KH instabili-
ties coupled to a kinetic scheme including shock acceleration,
adiabatic and synchrotron losses as well as appropriate spatial
transport effects. The particle distribution function dynamics is
described using stochastic differential equations that allow to
account for various diffusion regimes.

We demonstrate the ability of the SDEs to treat multi-
dimensional astrophysical problems. We pointed out the limits
(Dmin defined in Eq. (19)) imposed by the spatial resolution of
the shock on the diffusion coefficient. The SDEs are applica-
ble to particular astrophysical problem provided D ≥ Dmin.
We perform different tests in 2D showing consistent results
between numerical simulations and analytical solutions of the
diffusion-convection equation. Finally we demonstrate the abil-
ity of the MHD-SDE system to correctly describe the shock
acceleration process during the evolution of the KH instability.
Complex curved shock fronts with non constant diffusion co-
efficients that occur at early stage of the instability behave like
plane shock provided the diffusion length is smaller than the
shock curvature. The equivalent plane shock has a compression
ratio equals to the mean compression of the curved shock. In
the case of strong plane shocks which develop at later stages of
the KH instability, we found that the inclusion of realistic tur-
bulent effects, e.g. chaotic magnetic diffusion lead to complex
spectra. The resulting particle distributions are no more power-
laws but rather exhibit convex shapes linked to the nature of the
turbulence. In this turbulent regime, the most efficient acceler-
ation occurs at relatively high turbulence levels of the order of
∼0.2−0.3. The electron maximum energies with synchrotron
losses may go beyond 10 TeV for fiducial magnetic field val-
ues in radio jets of ∼10 µG and the spectrum may be hard at
GeV energies due to multiple shock effects.

However, in this work, SDEs were used on snapshots of
MHD simulations neglecting dynamical coupling effects, pre-
venting from any complete description of particle acceleration
in radio jets. Such dynamical effects encompass temporal evo-
lution of shock, magnetic field properties and particle distribu-
tion. The time dependent simulations will permit us to explore
the parameter space of the turbulence and to critically test its
different regimes.

The simulations have also been performed in test-particle
approximation and do not account for the pressure in RPs that
may modify the shock structure and the acceleration efficiency.
This problem will be addressed in a particular investigation of
shock-in-jet acceleration including heavier (protons and ions)
particles. Nevertheless the present work brings strong hints

about the ability of first order Fermi process to provide ener-
getic particles along the jet. Our first results tend to show that
synchrotron losses may prevent any electron to be accelerated
at high energies requiring either supplementary acceleration
mechanisms or other radiative emission processes to explain
X-ray emission as it has been recently claimed. Future work
(in progress) will account for these different possibilities.
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