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Abstract. Plasma dynamics has been investigated intensively for toroidal magnetic confinement
in tokamaks with the aim to develop a controlled thermonuclear energy source. On the other hand,
it is known that more than 90% of visible matter in the universe consists of plasma, so that the
discipline of plasma-astrophysics has an enormous scope. Magnetohydrodynamics (MHD) provides
a common theoretical description of these two research areas where the hugely different scales do
not play a role. It describes the interaction of electrically conducting fluids with magnetic fields
that are, in turn, produced by the dynamics of the plasma itself. Since this theory is scale invariant
with respect to lengths, times, and magnetic field strengths, for the nonlinear dynamics it makes
no difference whether tokamaks, solar coronal magnetic loops, magnetospheres of neutron stars, or
galactic plasmas are described. Important is the magnetic geometry determined by the magnetic field
lines lying on magnetic surfaces where also the flows are concentrated.

Yet, transfer of methods and results obtained in tokamak research to solar coronal plasma dy-
namics immediately runs into severe problems with trans‘sonic’ (surpassing any one of the three
critical MHD speeds) stationary flows. For those flows, the standard paradigm for the analysis of
waves and instabilities, viz. a split of the dynamics in equilibrium and perturbations, appears to
break down. This problem is resolved by a detailed analysis of the singularities and discontinuities
that appear in the trans‘sonic’ transitions, resulting in a unique characterization of the permissible
flow regimes. It then becomes possible to initiate MHD spectroscopy of axi-symmetric transonic
astrophysical plasmas, like accretion disks or solar magnetic loops, by computing the complete wave
and instability spectra by means of the same methods (with unprecedented accuracy) exploited for
tokamak plasmas. These large-scale linear programs are executed in tandem with the non-linear
(shock-capturing, massively parallel) Versatile Advection Code to describe both the linear and the
nonlinear phases of the instabilities.
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1. Introduction and Outline

Magnetized plasmas are essentially extended structures because magnetic field
lines do not have a beginning or end (∇ · B = 0). This implies that regions of
space are connected that have very different physical properties. For example, solar
magnetism arises due to nuclear fusion powering in the extremely dense core of
the Sun, radiation transport establishing a convectively stable temperature profile
up to the convection zone (R ∼ 0.7 R�) where dynamo action by convective in-
stability and differential rotation produces concentrated magnetic field bundles that
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are expelled from the sun proper, giving rise to tremendously complex magnetic
field structuring and dynamics in the photosphere and corona (see any SOHO or
TRACE web site). Along the magnetic field lines that escape, the solar wind carries
a tenuous plasma that is accelerated to transonic speeds and exhibits discontinuous
flow (shocks) when the magnetospheres of the planets are encountered and when
the heliosphere is finally terminated beyond the solar system.

Obviously, such a complex system (with the huge variety of relevant spatial and
temporal scales) cannot be described by a single analytical or computational model.
Instead, we here present an approach to some of the plasma dynamical problems
encountered in astrophysical plasmas (encompassing solar and space plasmas as
well) that is motivated by an attempt to exploit methods that have proved their
power for laboratory plasmas. We start by confronting the basic facts of solar
magnetism with the main constituents of magnetohydrodynamics (MHD), viz. the
description by conservation laws (the most important one being magnetic flux con-
servation), the occurrence of specific waves and instabilities (in particular, Alfvén
wave dynamics), the distinct stationary flow patterns with trans‘sonic’ transitions
(apostrophes indicating three, rather than one, critical speeds for magnetized plas-
mas), and the different types of nonlinear dynamics (e.g. shocks).

Whereas subsonic MHD has been highly developed in the context of labor-
atory plasma fusion research (where plasmas are basically in static equilibrium
and perturbations are controlled to avoid the occurrence of sudden disruptions), in
transonic MHD models of astrophysical plasmas the basic equilibrium consists of
stationary flows admitting a much larger variety of waves and instabilities whereas
sudden transitions by shocks are a rule rather than exception. Evidently, since the
construction of the dynamical picture for the much simpler static laboratory plas-
mas took 40 years of intensive research, a similar description for transonic plasmas
is still far from completion. Hence, to appreciate the immense theoretical problems
associated with trans‘sonic’ plasma flows, we first recapitulate the results of the
simpler static laboratory plasmas (where spectral analysis yields detailed inform-
ation about the underlying equilibria: MHD spectroscopy), then generalize this
method to plasmas with background equilibrium flows (where rotations and out-
flows produce new types of waves and instabilities), and then try to generalize the
obtained picture to trans‘sonic’ background flows (i.e. construct two-dimensional
equilibrium flow patterns, their waves and instabilities, and find the associated
shock solutions).

The first part [2. MHD Modeling; 3. MHD Waves; 4. Spectral Theory; 5. Waves
in Tokamaks] recapitulates the basic facts of subsonic MHD based on material in
Principles of magnetohydrodynamics by J. P. Goedbloed and S. Poedts (Cambridge
University Press, to appear). The second part [6. Waves in Astrophysical Objects;
7. Transonic Flow: Singularities; 8. Large-Scale Nonlinear Computing; 9. Waves
in Astrophysical Objects Revisited] then formulates effective methods and results
for transonic flows that are relevant not only for solar plasmas but for astrophysical
plasmas in general.
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Figure 1. Parallel and perpendicular wavenumber dependence of the frequencies of the three MHD
waves.

2. MHD modeling

MHD modeling consists of prescribing: (1) The nonlinear partial differential equa-
tions for the motion of a (perfectly) conducting fluid interacting with a magnetic
field (a perfect transposition of the laws of gas dynamics and electrodynamics);
(2) A particular plasma confinement structure, i.e. a generic magnetic geometry,
fixing the boundary conditions to be imposed. Examples of the latter are the tor-
oidal magnetic confinement geometry of a tokamak (closed in itself), coronal mag-
netic loops ‘closed’ onto the photosphere, and magnetic flux bundles emanating
from the Sun with ‘open’ ends associated with the solar wind and the heliosphere.

The strength of the MHD model is that it is scale invariant: The MHD equa-
tions are unchanged by changing the scales of length L0 , magnetic field B0 , and
density ρ0 , or Alfvén speed vA ≡ B0/

√
µ0ρ0 , i.e. time scale τA ≡ L0/vA . Thus,

MHD is an excellent tool for global analysis of magnetized plasmas on all scales,
which justifies the transfer of methods and results from laboratory to astrophysical
plasmas.

3. MHD Waves

The three MHD waves (Alfvén, slow, and fast magnetosonic) permit a complete de-
scription of the response to arbitrary excitations of a magnetized plasma. However,
in the analysis of confined plasmas, the Alfvén waves are the most prominent ones
since (1) they may propagate as point disturbances along the magnetic field lines,
so that Alfvén waves ‘sample’ the magnetic geometry, (2) their frequency vanishes
for k‖ → 0 which marks the condition for marginal stability of tokamaks as well
as coronal magnetic flux tubes (Figure 1(a)). On the other hand, the unique (an-
isotropic) properties of the three MHD waves are best appreciated by considering
the asymptotic dependence of their frequency on the wave number perpendicular
to the magnetic field (Figure 1(b)):
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


∂ω/∂k⊥ > 0 , ω2
f → ∞ (fast),

∂ω/∂k⊥ = 0 , ω2
A → k2‖b2 (Alfven),

∂ω/∂k⊥ < 0 , ω2
s → k2‖

b2c2

b2 + c2 (slow),

(1)

where b is the Alfvén speed and c is the sound speed. Hence, the asymptotic spectra
behave distinctly different for the three waves. In inhomogeneous plasmas, they
give rise to three continuous spectra: ω2

F ≡ ∞, {ω2
A}, and {ω2

S}.

4. Spectral Theory

Analogous to quantum mechanics, spectral theory of MHD waves and instabilities
revolves about the two equivalent view points of force and energy, respectively
leading to a spectral differential equation in terms of the plasma displacement
vector field ξ (Bernstein et al., 1958):

F(ξ) = ρ
∂2ξ

∂t2
= −ρω2ξ , (2)

and a variational principle for the eigenfrequencies ω2 of the modes:

δ(W/I) = 0 , W ≡ − 1
2

∫
ξ ∗ · F(ξ) dV , I ≡ 1

2

∫
|ξ |2 dV , (3)

which involves the quadratic forms W [ξ ] for the potential energy and I [ξ ] related
to the kinetic energy of the perturbations. Whereas quantum mechanical spectral
theory has led to a deep understanding of atomic and subatomic structures (occupy-
ing much of 20th century physics), the analogous theory for fluids and plasmas
is still in its infancy. Yet, the observation of a classical spectrum of oscillations
and comparison with computed eigenvalues may lead to a firm knowledge of the
internal characteristics of fluids and plasmas, which we have called MHD spectro-
scopy (Goedbloed et al., 1993). Relevant examples are helioseismology, sunspot
seismology, MHD spectroscopy of tokamaks, and magnetoseismology of accretion
disks (Keppens et al., 2002).

In Figure 2, we recall the principle of helioseismology: Comparison of com-
puted frequencies for the p and g modes of a solar model with the observed ones
led to the validation of the standard solar model, and may lead to improvements
with respect to 2D extensions such as the influence of differential rotation and
magnetic fields. The three boxed activities together show what is involved in MHD
spectroscopy. For the present purpose, we concentrate on two of them, viz. analysis
to reveal the structure of spectra and numerical tools to compute them. Once these
issues are resolved, we will have obtained a very powerful instrument to analyze
magnetically confined plasmas.
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Figure 2. Systematics of helioseismology.

5. Waves in Tokamaks

Let us see how this program is carried out in toroidal fusion experiments of the
tokamak type. First, consider the standard case of a static axi-symmetric equi-
librium. The basic approach here is to split the problem in a study of the static
equilibrium, basically described by the force balance equations ∇p = j × B ,
j = ∇ × B , ∇ · B = 0 , and the linear waves and instabilities described by
Equations (2) or (3). The most important property of these equilibria is that they
consist of nested magnetic surfaces of the magnetic field B and the current density
j , producing confinement of the pressure gradient ∇p through the Lorentz force.
We recall from the introduction that the systematic analysis of the spectra (with
top priority on the practical issue of improving overall stability for higher values
of β ≡ 2µ0p/B2) has taken about 40 years of intensive research. This has led to
steady increase of confinement, and concomitant understanding of the processes
involved, from µseconds in the early days to minutes at present. For our present
purpose (a similar effort for astrophysical plasmas with sizeable background flow),
this implies: a lot of work ahead and great promise for understanding in the end!

One of the intriguing aspects of wave dynamics in toroidal plasmas is the occur-
rence of singular perturbations and continuous spectra which manifest the prefer-
ence of the waves and instabilities to localize inside the magnetic surfaces. In Fig-
ure 3 we show the schematic structure of the MHD spectrum which clearly demon-
strates this (Goedblood, 1975). Most important: through this singular asymptotics,
the three MHD wave spectra maintain the essential features of Equation (1) shown
by Figure 1(b) and, thus, make them suitable to be used in MHD spectroscopy.
Techniques to accurately compute the static equilibria of tokamaks (Huysmans
et al., 1991) and a large-scale spectral code to compute the spectra of these 2D equi-
libria (Kerner et al., 1998) were developed. Recently, the necessary accurate MHD
spectra of ideal and resistive waves in static tokamak equilibria could be com-
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Figure 3. Schematic structure of the spectrum of MHD waves for a static equilibrium. Three
sub-spectra of fast, Alfvén, and slow modes concentrate about continua ω2

F ≡ ∞, {ω2
A}, and {ω2

S},
separated by regions with non-monotonic discrete modes. The inhomogeneity is chosen to be small
so that sub-spectra are well separated.

Figure 4. Schematic structure of the spectrum of MHD waves for an equilibrium with flow: The
three sub-spectra split into six sub-spectra of forward and backward propagating fast, Alfvén, and
slow modes, concentrated about the continua �±

F ≡ ±∞, {�±
A}, {�±

S }, where �±
� ≡ �0 ± ωl

(� = F, A, S) with Doppler shift �0 ≡ k · v. The picture should be asymmetric with respect to
ω = 0 (not indicated).

puted in full detail (Van der Holst et al., 1999) with the powerful Jacobi–Davidson
method (Sleijpen and Van der Vorst, 1996).

An exciting new development in tokamak research is the realization that static
equilibria are actually not quite adequate since heating by neutral beams causes
sizeable toroidal flows and divertor operation for exhaust removal causes (super-
sonic!) poloidal flows in the outer layers. Hence, the paradigm of static equilibrium
breaks down. However, since astrophysical plasmas are all dominated by flow, the
good side about this development is that the subject of plasmas with background
flow now becomes a common research theme for laboratory and astrophysical
plasmas.

In order to enter this common field, all spectral calculations have to be redone
with proper incorporation of the background flow of the equilibrium. Again ex-
ploiting the standard approach, with a split in equilibrium and perturbations, this
first involves construction of a stationary state (where v �= 0 so that all MHD
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equations contribute now) and, next, computation of the waves and instabilities by
means of a quadratic eigenvalue equation (Frieman and Rotenberg, 1960):

F(ξ) + ∇ · [ρ(v · ∇v)ξ − ρvv · ∇ξ
] + 2iρωv · ∇ξ + ρω2ξ = 0 . (4)

We note in passing that, in contrast to the widely used spectral Equation (2) for
static equilibria, the Frieman and Rotenberg spectral Equation (4) has rarely been
applied to realistic stationary states. The obvious reason is that the equilibria are
much more complicated and that the eigenvalues are complex (admitting overstable
modes). Another, even more fundamental, problem will be faced in Section 6.

The schematic spectral structure of stationary equilibria (Figure 4) is again con-
centrated about the continuous spectra, which now split into six due to the Doppler
shift. [An additional, somewhat esoteric, Eulerian entropy continuum {�E} is not
found from the Lagrangian Equation (4), but only when the primitive, Eulerian,
variables are exploited.] On the road to a systematic MHD spectroscopy of moving
plasmas, with precise input of tokamak equilibria, these continua turn out to con-
tain large gaps where new global Alfvén waves driven by the toroidal flow (called
TFAEs) were discovered (Van der Holst, 2000). This appears to open up a new
chapter in MHD spectroscopy which, obviously, calls for a generalization admit-
ting poloidal flows as well. To do this, we constructed the necessary numerical
tools FINESSE (Beliën et al., 2002) to compute the stationary axi-symmetric equi-
libria and PHOENIX Van der Holst et al., 2003) for the perturbations, and started
to apply them to tokamaks. This worked well as long as the poloidal velocities
were restricted to sub‘sonic’ flows. In this manner, we have contributed to MHD
spectroscopy as a highly developed tool to investigate the dynamics of plasmas in
future fusion machines.

6. Waves in Astrophysical Objects: A Hair in the Soup

So far, so good. But why did we have to restrict the poloidal velocities to sub‘sonic’
speeds? [Recall our use of apostrophes to indicate the occurrence of three (slow/
Alfvén/ fast), rather than one, critical MHD speeds.] Obviously, such a restriction is
prohibitive if we wish to exploit the same tools for astrophysically relevant flows,
which are usually trans‘sonic’. What happens precisely when the critical MHD
speeds are surpassed?

Consider the stationary equilibrium equations for rotating and gravitating mag-
netized plasmas:

∇ · (ρv) = 0 ,

ρv · ∇v + ∇p = j × B − ρg , j = ∇ × B ,

v · ∇p + γp∇ · v = 0 ,

∇ × (v × B) = 0 , ∇ · B = 0 .

(5)
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Figure 5. Space-time characteristics of the three MHD waves (s±, A±, f ±), travelling in forward
and backward directions, and the entropy disturbances (e), which are just carried with the plasma
flow.

Figure 6. Sound in (a) subsonic and (b) supersonic gas flow about a point source.

For axi-symmetric geometries, like tokamaks and magnetic flux loops in the solar
convection zone, or even complete accretion disks, these equations have solutions
that basically correspond to nested surfaces of the magnetic field B (not of the
current density j anymore) and of the plasma velocity v. Hence, the stronghold of
magnetic confinement (related to the existence of magnetic surfaces) remains intact
in the presence of arbitrary toroidal and poloidal plasma flows: magnetic and flow
surfaces coincide! Before we start to indicate some blemishes on this beautiful
edifice, let us first spell out the portent of this statement: Together with scale-
invariance of the MHD equations, this implies that we can transfer the techniques
and results on MHD spectroscopy, developed in laboratory tokamak research, dir-
ectly to astrophysical problems like axi-symmetric winds, accretion flows, jets,
etc.

Yet, we get stuck immediately if we try to do this. Invariably, when the plasma
velocities are increased, the equilibrium solvers stop converging before relevant
velocities are obtained. The hair in the soup comes from the velocity component
in the symmetry-breaking direction, i.e. the poloidal direction. This is so because
the equilibrium Equations (5) have a property, entering with the poloidal flow, that
is completely lacking in their static counterparts (obtained from them in the limit
v → 0). To appreciate it, we need to make a small detour in the topic of transonic
flow.
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A tacit assumption in the construction of the equilibria, including the ones
with toroidal flows, has been that the governing Grad-Shafranov (nonlinear par-
tial differential) equation is elliptic. The numerical techniques exploited need this
property. In fact, all of the standard methods in use in MHD spectral analysis are
based on the assumption that the equilibria are described by elliptic equations and
the perturbations by hyperbolic ones. However, when the poloidal flow velocity
increases beyond certain critical values, to be computed yet, the stationary equi-
librium Equations (5) become hyperbolic (Zehrfeld and Green, 1972; Hameiri,
1983) and both the classical paradigm of a split in equilibrium and perturbations
and the numerical techniques based on it break down. As a result, the standard
equilibrium solvers, as used in tokamak computations, diverge and we need to
rethink the problem completely.

Clearly, we have to go back to basics, in particular to the meaning of hyper-
bolicity. This concept is associated with the characteristics of the flow, which are
the space-time manifolds along which perturbations propagate. For MHD, there
are seven of such characteristics, as shown in Figure 5 for the case of one spa-
tial dimension. Permitting two spatial dimensions, the temporal snapshots of the
three MHD perturbations become the well-known figures of the Friedrichs group
diagram. In two dimensions, these figures may exhibit an interesting new feature,
depending on the magnitude of the background flow. This is illustrated in Figure 6
for the case of sound waves in ordinary fluids: When the flow velocity becomes su-
personic, the spatial part of the characteristics forms envelopes where information
accumulates and discontinuous solutions (shocks) are formed. Whereas in elliptic
flows the solutions propagate everywhere in space, in hyperbolic flows these dis-
continuities separate space in regions where the solutions propagate and regions
where they do not propagate. Unfortunately, although magnetic/flow surfaces exist
in axi-symmetric MHD flows, the transitions from ellipticity to hyperbolicity occur
somewhere, at a-priori unknown locations, on these surfaces and the elliptic solvers
become useless.

The fundamental reason of the bankruptcy of the classical paradigm of equilib-
rium and perturbations is associated with the Lagrangian time derivative D/Dt ≡
∂/∂t + v · ∇ in the MHD equations. Whereas, the Eulerian time derivative ∂/∂t

produces the eigenfrequencies ω of the waves, the spatial derivative v · ∇ not
only produces the Doppler shifts of the perturbations but also the possibility of
spatial discontinuities of the equilibria. [Note that this occurs through the poloidal,
symmetry-breaking, part only since the toroidal derivative operator vanishes by
assumption of axi-symmetry.] However, the two pieces of the Lagrangian time
derivative really belong together so that the waves and the stationary equilibria,
with transitions from ellipticity to hyperbolicity, are no longer separate issues
(Goedbloed, 2002).
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Figure 7. Four main flow regimes due to Alfvén gap (A) and fast (F) and slow (S) magnetoacoustic
limiting lines.

7. Transonic Flow: Singularities

Since the transonic transitions present the basic problem, let us analyze some spe-
cific stationary equilibria in detail to see what is going on. For the present purpose,
it is sufficient to consider 2D equilibria that are translation symmetric (Goedbloed
and Lifschitz, 1997) so that the physical quantities are functions of the Cartesian
x,y coordinates of the poloidal cross-section of the plasma. The stationary equi-
librium states are then characterized by the poloidal magnetic flux ψ(x, y) and
by the square of the poloidal Alfvén Mach number, M2 ≡ ρv2

p/B2
p = µ(x, y).

The flux ψ is determined by a partial differential equation (a generalization of the
Grad–Shafranov equation) that is elliptic or hyperbolic depending on the value of
µ, which is in turn determined by an algebraic equation (the Bernoulli equation).
This pair of highly non-linear equations for ψ and µ admits solutions only for
certain values of the parameters involved: The distinguishing feature of transonic
flows is that there are distinct flow regimes that cannot be connected by continuous
flows when the speed is increased or decreased.

A specific example is shown in Figure 7, obtained by imposing the following
self-similarity in terms of the polar coordinates r, θ in the polidal plane:

M2 ≡ µ = [X(θ)]−1 , ψ = rλY (θ) . (6)

This reduces the problem to its bare essentials, viz. the solution of a pair of autonom-
ous differential equations for X and Y :

dX

dθ
= ±H

J

√
2F ,

dY

dθ
= ±√

2F , (7)



COMPUTER SIMULATIONS OF SOLAR PLASMAS 73

Figure 8. Connecting the four flow regimes: Fast, Alfvén, slow shocks.

where H , J , and F are explicit functions of X and Y . In this case, the different
flow regimes show up as regions in the X-Y phase diagram that may be constructed
without actually solving Equations (7). First of all, the condition F(X, Y ) = 0 (the
Bernoulli boundary) delineates two permissible flow regimes, viz. a slow (X > 1)
and a fast (X < 1) one, where the poloidal field is real (F > 0). These two
islands in phase space imply that there is no continuous path from static equilibria
(X = ∞) to slow stationary equilibria, and also not from the slow to the fast
equilibria since a gap at X = 1 (the Alfvén gap) interferes. Next, another algeb-
raic condition, 
(X) = 0 , separates the regions of ellipticity (
 < 0 : no real
characteristics) and hyperbolicity (
 > 0 : two real characteristics). Finally, the
most dramatic separation of flow regimes is due to the singularity J (X, Y ) = 0,
where the characteristics of the hyperbolic solutions exhibit limiting line behavior,
i.e. both characteristics are ‘reflected’ there so that solutions can not propagate bey-
ond the limiting line. Consequently, four smooth types of stationary 2D equilibrium
solutions are obtained, viz. superfast (1+), fast (1−, 2), slow (3, 4−), and subslow
(4+, 5) ones.

Of course, the explicit solutions of Equation (7) and the corresponding flow pat-
terns have been investigated in detail (Goedbloed and Lifschitz, 1997). However,
for our present discussion on the possibility of constructing spectral codes for tran-
sonic MHD flows, we just focus on one particular aspect of those solutions: their
trajectories dY/dX = J/H in phase space either cross or do not cross the limiting
lines. In the latter case, smooth stationary flow solutions are obtained that have the
requisite property of globally nested magnetic/flow surfaces. On the other hand,
when trajectories cross the limiting lines, multiple solutions are obtained within a
sector cutting through the magnetic/flow surfaces. More precisely, magnetic/flow
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surfaces are exclusively obtained within that sector. Could one reflect the solutions
obtained at the sector boundaries (the limiting lines) so as to get periodic discon-
tinuous stationary flows involving both super- and sub-critical regimes? Extensive
study of the MHD jump conditions, including the requirement that entropy should
increase across the discontinuity, has shown that this possibility must be excluded:
Discontinuous solutions, satisfying the appropriate jump conditions, can only be
found for solutions that stay away from the limiting lines.

We then finally come to the following state of affairs: Four types of smooth
periodic stationary MHD equilibria with nested magnetic surfaces are obtained that
strictly remain within the main flow regimes. For these equilibria, MHD spectral
codes can be constructed with the existing tools. However, stationary trans‘sonic’
MHD flows, connecting two flow regimes, necessarily involve shock-type discon-
tinuities, as illustrated in Figure 8. This picture shows that limiting lines and Alfvén
gap are quite genuine obstacles in transonic stationary flows, but it also highlights
the fascinating connection between linear waves and stationary states: In analogy
to the three types of linear MHD waves, with their local singular asymptotics, in
transonic flows also three types of MHD discontinuities appear that locally exhibit
slow, Alfvén, and fast character at the singularity.

To sum up: For static or toroidally rotating tokamaks, the equilibria are com-
plicated but essentially computable. When trans‘sonic’ poloidal flows are admitted,
the determination of the stationary states becomes a fundamentally different and
difficult problem because discontinuities and singularities appear manifesting that
the waves and stationary states are entangled in a deep sense. An obvious way out is
to drop the idea of a split in equilibrium and perturbations altogether and to employ
a nonlinear time stepping code, e.g. the Versatile Advection Code (VAC), which we
will discuss in Section 8. This should be considered as an aside though since we do
not really wish to abandon the equilibrium–wave dichotomy because it has proved
too useful. Therefore, in Section 9, we will return to it and show how to exploit the
Frieman–Rotenberg formalism with the knowledge of the present section.

8. Large-Scale Nonlinear Computing

The development of a general set of state-of-the-art spectral codes for the analysis
of MHD waves and instabilities for realistic laboratory experiments and astrophys-
ical objects has been stimulated by our studies of resonant absorption in solar
coronal flux tubes with inclusion of the geometric influence of line-tying (Halber-
stadt and Goedbloed, 1993–1995) and loop expansion (Beliën et al., 1996–97).
Visualization of coronal heating mechanisms proved to be instrumental for our
transition to nonlinear MHD simulations of wave dissipation in flux tubes (Poedts
et al., 1996–97; Keppens et al., 1997–98) and, finally, to simulations of SOHO
observations (Beliën et al., 1999). In the latter phase, operation of the VAC code
was already in full swing.
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Figure 9. Structure of the Versatile Advection Code (VAC): A modular approach ensures the com-
patibility between the different code segments. As a result, several spatial and temporal (explicit,
semi-implicit, and fully implicit) discretizations are applicable to all physics modules.

The Versatile Advection Code (Tóth, 1996) was developed as part of a Massively
Parallel Computing project of NWO (Poedts, Keppens and Goedbloed,
1996–2000). It is a massively parallel MHD solver which is shock-capturing
(through the use of conservative variables) and can bridge the huge time-scale
disparities (from Alfvénic to dissipative) encountered in realistic astrophysical sim-
ulations by means of implicit time integration. Designed to permit inclusion of
almost all present discretization methods, with a modular structure (Figure 9),
it became an extremely versatile research instrument used by a rapidly increas-
ing number of scientists. The code was steadily developed (Keppens and Tóth,
1999–2000), and applied to basic plasma dynamics like the Kelvin–Helmholtz in-
stability and jets (Keppens et al., 1999). Application to solar and stellar winds from
axi-symmetric, rotating and gravitating, stars (Keppens and Goedbloed,
1999–2000) produced continuous acceleration from sub-slow flow at the surface
to super-fast flow at large distances. Adding a ‘dead’ zone at the equator, an-
isotropy as observed by the Ulysses spacecraft was obtained (Figure 10). The
recent extension with adaptive mesh refinement (AMR-VAC; Keppens et al., 2002)
is yet another step towards simulating realistic astrophysical plasma flows with
small-scale structures.

In conclusion: With the new powerful tool VAC to compute the non-linear
MHD evolution, we have a completely independent entry into the exciting field
of transonic plasma dynamics.
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Figure 10. Axisymmetric magnetized wind with a ‘wind’ and ‘dead’ zone. Shown are the poloidal
magnetic field lines and the poloidal flow field as vectors (parallel to the magnetic field, as they
should). Also indicated are the slow (dotted), Alfvén (solid), and fast (dashed) critical surfaces.
Shading indicates the toroidal field strength.

9. Waves in Astrophysical Objects Revisited

Returning now to our subject of spectral analysis of trans‘sonic’ astrophysical
plasmas, where the intrinsic difficulty of lack of precise stationary equilibria in
the hyperbolic regions appears to be near insurmountable, one might be inclined to
settle for a cheap solution: Why not abandon the spectral approach altogether and
exclusively exploit nonlinear MHD solvers like VAC? That would be an inferior
solution indeed since it would amount to giving up the incredible precise and
detailed information that spectral theory delivers on all 3D waves and instabilit-
ies and their dependence on the relevant physical parameters characterizing the
stationary states. Clearly, the royal road is to keep both approaches operational,
each in their respective domain of validity, and to try to approach the physical
phenomena from the linear as well as from the nonlinear angle. For example,
the prediction by a spectral code of exponential instability for a well-described
equilibrium is already invaluable for the prescription of initial data for a nonlinear
evolution code. However, there is more . . ..



COMPUTER SIMULATIONS OF SOLAR PLASMAS 77

Figure 11. (a) Schematic spectrum of the three MHD waves for a static background equilibrium. For
large wave numbers, the discrete eigenvalues accumulate at the continua {ω2

S
}, {ω2

A
}, and ω2

F
≡ ∞ ;

(b) Flow regimes characterized by the value of the poloidal Alfvén Mach Number M ≡ vp/vA,p

of a stationary equilibrium flow. The flow turns from elliptic to hyperbolic at the boundaries of the
hatched regions Hs and Hf , whereas the Alfvén region ‘HA’ has collapsed into the point M ≡ 1.

Consider again the phase space of our model trans‘sonic’ stationary states de-
picted in Figure 7: Clearly, to study the consequences of transition through the
hyperbolic regions on the waves and instabilities one does not have to restrict the
analysis to the sub-slow elliptic regime 5 (Ess), since there are two more elliptic
regimes, viz. the slow regime 3 (Es), and the fast regime 2 (Ef ). Hence, one may
study the qualitative change of the spectra due to transition through the critical po-
loidal Alfvén Mach numbers by comparing the spectra after the transition through
the slow or through the Alfvén critical value has been made. This may be done
on the basis of the standard paradigm of a split in elliptic equilibrium and hyper-
bolic perturbations, and exploiting the numerical tools based on it. One essential
complication must then be faced: The transition speeds Mc, Ms , and Mf depend
on the local values of the physical variables, i.e. they are not known beforehand
but are to be determined together with the solutions. Hence, staying in the elliptic
flow regimes is a delicate numerical problem. This problem has been addressed and
satisfactorily solved in the numerical equilibrium solver FINESSE (Beliën et al.,
2002). Hence, we can proceed now with the computation of waves and instabilit-
ies of trans‘sonic’ astrophysical plasmas with precise prescriptions of background
flows.

Finally, we have argued in Section (5) that linear waves and nonlinear stationary
states are not independent issues in trans‘sonic’ MHD flows. One may turn the
coin and notice that this also implies that there is an incredibly beautiful con-
nection between the two. As illustrated in Figure 11, somehow the asymptotic
‘concentration’ points of the wave spectra correspond to the hyperbolic regions
of the equilibrium states, and their embedded singularities. Hence, studying the
spectra by approaching the hyperbolic regimes while staying in the elliptic regimes,
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Figure 12. Instabilities in the 2nd elliptic flow regime ES (slow and sub-Alfvénic: MS < M < 1):
Continuous spectrum of waves (real ω) and overstable modes (with an additional imaginary part of
ω) of a thick accretion disk; the continuous distribution of the eigenvalue parameter ω is shown in
the complex ω-plane with the radial location s ≡ √

ψ as a parameter.

undoubtedly will reveal important clues on the physical mechanisms of transonic
flows. We will now give just one example to demonstrate this point.

The first spectral results for localized modes of a gravitating torus (a thick
accretion disk or any closed flux loop) with both poloidal and toroidal magnetic
fields and flows (Beliën et al., 2001) are shown in Figure 12. [This is a corrected
version of Figure 4 of Beliën et al., 2001) and of Figure 9 of Goedbloed, 2002)).]
The eigenvalues of the stable waves are located along the Re ω-axis, the curves in
the complex ω-plane correspond to forward and backward propagating instabilities
driven by the poloidal flow and gravity. The spectrum is quite characteristic for
flows in the second elliptic flow regime and instability will generally occur when
the value of the poloidal Alfvén Mach number for the flow has surpassed the critical
value Mc. The instabilities are localized on magnetic/flow surfaces and occupy
a large fraction of the outer part of the torus so that they may be considered as
suitable candidates for anomalous dissipation by MHD turbulence, e.g. in accretion
disks.

In conclusion: We have analyzed the waves and instabilities of tokamaks and
toroidal astrophysical plasmas (like thick accretion disks or parts of solar magnetic
loops) in the second elliptic flow regime (Es , i.e. region 3 of Figure 7) and found
that significant instabilities operate there that are absent in the first elliptic flow
regime (Ess , i.e. region 5). These instabilities should be ascribed to the transonic
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transition at M = Mc. Hence, there appears to be a strong correlation between the
singularities and discontinuities that occur in the background nonlinear stationary
states when the critical values of the poloidal Alfvén Mach number (lying in the
hyperbolic flow regimes, which are as yet inaccessible for spectral studies) are
surpassed and the instabilities that are found in the next elliptic flow regime.

The persistent development of the stationary equilibrium program FINESSE
and the spectral code PHOENIX, and the accompanying in-depth analysis, have
produced a new angle on the study of waves and instabilities in trans‘sonic’ plasma
flows. Presently, the linear codes are operated in tandem with the nonlinear time-
stepping code VAC to investigate both the linear and the nonlinear phases of the
dynamics in the different flow regimes. They exhibit an abundance of new instabil-
ities of interest for the different kinds of MHD turbulence operating in solar and
astrophysical plasmas. Will be continued!
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