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ABSTRACT

The ideal MagnetoHydroDynamic (MHD) equa-
tions accurately describe the macroscopic dynamics of
a perfectly conducting plasma. Adopting a continuum,
single fluid description in terms of the plasma density
ρ, velocity v, thermal pressure p and magnetic field
B, the ideal MHD system expresses conservation of
mass, momentum, energy, and magnetic flux. This
nonlinear, conservative system of 8 partial differential
equations enriches the Euler equations governing the
dynamics of a compressible gas with the dynamical in-
fluence – through the Lorentz force – and evolution
– through the additional induction equation – of the
magnetic field B. In multi-dimensional problems, the
topological constraint expressed by the Maxwell equa-
tion ∇ · B = 0, represents an additional complication
for numerical MHD. Basic concepts of shock-capturing
high-resolution schemes for computational MHD are
presented, with an emphasis on how they cope with
the thight physical demands resulting from nonlinea-
rity, compressibility, conservation, and solenoidality.

I. LINEAR ADVECTION PROBLEM

As a preliminary to the full Euler and MHD sys-
tem addressed below, it is instructive to focus on a
seemingly trivial problem at first, namely the numeri-
cal solution to the advection equation in 1 spatial (x)
dimension given by

∂tρ + v∂xρ = 0. (1)

Under a constant given velocity v, an initial density
pulse ρ(x, t = 0) = ρ0(x) will merely be advected at
the constant speed, such that ρ(x, t) = ρ0(x− vt). An-
alytically, we are done.

Numerically, we need to discretize the problem both
spatially and temporally, and come up with a recipe
to advance the discrete solution ρn

i on grid cells in-
dexed by i from time level tn to tn+1. A forward Euler
temporal discretization, combined with a centered dif-
ference spatial gradient approximation, suggests as a

time-stepping recipe:

ρn+1
i − ρn

i

∆t
+ v

ρn
i+1 − ρn

i−1

2∆x
= 0. (2)

Unfortunately, this method leads unavoidably to a nu-
merical instability, under all combinations of time step
∆t and grid size ∆x. This can be predicted by a
Von Neumann stability analysis of the discrete for-
mula (2), which inserts ρ(x, tn) = Gnρoe

ikx and com-
putes the amplification factor | G | defined from ρn+1 =
Gn+1

Gn ρn ≡ Gρn. The unconditional instability of the
method is found from | G |> 1 for all wavenumbers k.

Luckily, there are several ways to ‘cure’ the insta-
bility (at least conditionally) by slightly modifying the
formula (2). One way is to replace the centered differ-
ence spatial gradient by a one-sided gradient operator,
taken in the ‘upwinded’ direction. That is, if the flow
goes from left to right (v > 0), simply use the upwind
scheme

ρn+1
i − ρn

i

∆t
+ v

ρn
i − ρn

i−1

∆x
= 0. (3)

A method which mixes spatially forward and backward
differences as follows

ρ∗i = ρn
i − ∆t

∆x
v

(
ρn

i+1 − ρn
i

)

ρ∗∗i = ρn
i − ∆t

∆x
v

(
ρ∗i − ρ∗i−1

)

ρn+1
i =

ρ∗i + ρ∗∗i

2
(4)

is known as the MacCormack method, and this can be
rewritten as

ρn+1
i = ρn

i − ∆t

∆x
v

(
ρn

i+1 − ρn
i−1

2

)

+
(∆t)2

(∆x)2
v2

(
ρn

i+1 − 2ρn
i + ρn

i−1

2

)

. (5)

Hence, while the upwind method (3) stabilizes the
scheme (2) by replacing the centered spatial gradient
with a one-sided one, the MacCormack scheme in effect
adds a ‘diffusive’ type term. Note that for the constant
coefficient linear advection problem (1) considered here,



Figure 1: Initial data for periodic advection problems:
Gaussian bell and square pulse

Figure 2: Error versus number of grid points for peri-
odic advection of a smooth bell profile. Upwind method
(solid) versus MacCormack method (dashed). Repre-
sentative solutions are at right.

the method (5) is also referred to as a Lax-Wendroff
scheme. A third option to stabilize the scheme (2) is to
replace the ρn

i in the temporal gradient approximation
by a centered average, namely

ρn+1
i =

1

2
(ρn

i+1 + ρn
i−1) −

∆t

2∆x
v(ρn

i+1 − ρn
i−1). (6)

This scheme is known as the Lax-Friedrichs discretiza-
tion. Performing a Von Neumann stability analysis on
any of the three modifications (3,5,6), one obtains the
following condition for stability ∆t ≤ ∆x/v. For a cho-
sen grid size ∆x, this condition on the time step will
apply generally to any explicit time stepping scheme
where future ρn+1

i values are directly computable from
presumed known values ρn

i at time level tn.
As a numerical example, we simulate the periodic

advection of a smooth Gaussian bell profile as well as
an initial square pulse (with 2 discontinuities). The
initial data is shown in Fig. 1 and the side boundaries
x = 0 and x = 1 are treated periodically. Since the
analytical solution is known, we can easily compute the
true error as a function of resolution. This is done af-
ter one full advection cycle of the Gaussian profile for
both the upwind and the MacCormack scheme for reso-
lutions [50, 100, 200, 400], as shown in Fig. 2. Represen-
tative solutions are depicted as well. For this smooth

Figure 3: Two solutions (50 grid points, dotted; 400
points, solid) of the periodic advection of the square
pulse from Fig. 1. Results for the MacCormack scheme
after one full advection cycle.

initial data, the MacCormack scheme renders second
order accuracy, while the upwind scheme is only first or-
der accurate, as evident in the slope of the error versus
grid number curve. Obviously, the first order upwind
scheme suffers from rather large numerical diffusion as
the bell profile widens. The Lax-Friedrichs scheme (6)
is also only first order accurate. However, with the
square pulse as initial data, a similar exercise will show
that the MacCormack scheme falls back to first order
accuracy as well. We show in Fig. 3 two numerical solu-
tions after 1 advection cycle for the pulse: the MacCor-
mack scheme is clearly dispersive and therefore suffers
from the oscillatory Gibbs phenomenon at the disconti-
nuities. These linear advection experiments are indica-
tive for numerical simulations of more physical systems:
a wish for high order accuracy on smooth data, as well
as a desire to avoid the introduction of spurious os-
cillations in discontinuous profiles will in fact call for
nonlinearity in the discretization methods employed.

II. EULER SYSTEM AND RANKINE-HUGONIOT

The governing conservation laws for the 1D dyna-
mics of a compressible gas are the Euler equations, writ-
ten as 





ρt + (ρ v)x = 0
mt + (m v + p)x = 0
et + (e v + p v)x = 0

(7)

The vector of conserved quantities U = (ρ m e) contains
the density ρ, momentum m = ρv, and total energy
density computed from

e =
ρv2

2
︸︷︷︸

kinetic

+
p

γ − 1
︸ ︷︷ ︸

thermal energy

,

with the ratio of specific heats γ entering as a param-
eter. This system can be written as Ut + (F (U))x = 0



when we introduce the flux vector

F (U) =






m
m2

ρ
3−γ

2
+ (γ − 1)e

em
ρ γ − γ−1

2
m3

ρ2






The Euler system allows for discontinuous solutions
where a constant left state Ul = (ρl ml el) is separated
from a constant right state Ur = (ρr mr er) by jumps in
the conserved quantities at a location which travels at
a ‘shock speed’ s. Such a traveling discontinuity must
still obey the discrete equivalent of the conservation
laws, expressed by the Rankine-Hugoniot relation

F (Ul) − F (Ur) = s (Ul − Ur) . (8)

Note that for a given right state, this constitutes a sys-
tem of 3 equations for 4 unknowns, namely s and Ul.
In particular, a contact discontinuity which travels at
the fluid velocity s = v and only carries an arbitrary
jump in density ρl 6= ρr, while having constant veloc-
ity vl = vr = v and constant pressure pl = pr = p, is
a viable solution to the Euler system. Hence, the nu-
merical treatment of these contact discontinuities in gas
dynamic simulations already calls for a scheme which
appropriately deals with advection problems of discon-
tinuous profiles.

Apart from the contact discontinuities, genuine
shock solutions are obtained from the relations (8).
Writing the system of conservation laws as a quasilinear
system with the flux Jacobian ∂F/∂U ≡ FU , we get

Ut + FUUx = 0.

The 3 × 3 flux Jacobian matrix has 3 distinct (right)
eigenvector/eigenvalue pairs, where the eigenvalues are
given by

λ1 = v − c

λ2 = v

λ3 = v + c, (9)

where the sound speed c =
√

γp/ρ enters. The eigen-
values of the flux Jacobian are closely connected with
the Rankine-Hugoniot system (8). In particular, when
the initial condition for an Euler simulation consists of
two constant states Ul and Ur separated by a disconti-
nuity – known as the Riemann problem, these will gen-
erally not allow for a single shock speed s obeying the
Rankine-Hugoniot relations. Instead, out of the con-
tact point of the initial two constant states, 3 ‘wave’
signals will emerge separating 4 constant states. The
two emergent intermediate states Uml and Umr will be
connected by a contact discontinuity traveling at the
speed v∗ which is identical for these two states (as is

r
l UU

x

1-rarefaction
CD

3-shock
2-shockt

mrUmlU

Figure 4: Schematic solution to the Riemann problem
for the Euler system.

the intermediate pressure p∗). The remaining Rankine-
Hugoniot relations connecting the left state Ul with
Uml via a ‘1-wave’ and Ur with Umr via a ‘3-wave’
then mathematically constitute a system with 6 equa-
tions for the six unknowns, namely (s1, ρml, v∗, p∗) and
(s3, ρml, v∗, p∗) with the shock speeds s1 and s3. In re-
ality, not all shock solutions are physically realizable,
and a rarefaction wave through which density and ve-
locity varies smoothly occurs instead. Schematically,
the Riemann problem leads to a solution as sketched in
Fig. 4 consisting of a rarefaction wave, a contact dis-
continuity and a genuine shock. As a final note on the
Euler system, a distinguishing quantity is the ‘entropy’
s ≡ pρ−γ , which can be shown to obey the equation

st + vsx = 0,

which is not in conservation form. This equation
shows that the entropy is constant along rays dx

dt = v.
Through a rarefaction, the entropy will remain con-
stant. An arbitrary entropy jump is carried by a contact
discontinuity. An admissable shock will have the fluid
increase its entropy as the shock passes.

III. FINITE VOLUME DISCRETIZATION

The Euler system, as well as the ideal MHD system,
forms a set of nonlinear conservation laws. Written in
the differential form of equations (7), the discontinu-
ous solutions discussed above (containing shocks and
contact discontinuities) seem to conflict mathematically
with the implicit assumption of differentiable functions.
Physically though, they correctly describe the gas dyna-
mics in the limit of vanishing viscosity. In fact, the dis-
continuous solutions are perfectly allowed by the more
general integral form of the conservation laws. Consid-
ering a cell [x1, x2] and a conserved quantity ρ within
this cell, the total mass in this cell changes from times
t1 to t2 only through a flux over the cell edge f(ρ)
(provided that no mass sink or source exists within this



cell). This leads to the integral form
∫ x2

x1

ρ(x, t2) dx =

∫ x2

x1

ρ(x, t1) dx

+

∫ t2

t1

f(x1, t) dt −
∫ t2

t1

f(x2, t) dt.

Under the assumption of smoothly differentiable func-
tions, and since this holds for any cell [x1, x2] and time
interval [t1, t2], we arrive at the differential form

ρt + (f(ρ))x = 0.

The Finite Volume discretization method, see [1], di-
rectly incorporates the more general integral form as
follows. Given conservation laws Ut + ∇ · F(U) = S

for the vector of conserved quantities U where possible
sources or sinks are collected in S, the Finite Volume
method will solve for the time evolution of cell-averaged
quantities U (any U component)

Ui(t) =
1

Vi

∫

Vi

U(x, t)dx,

where Vi indicates the volume (length, area or true vol-
ume depending on dimensionality) of grid cell i. It
therefore solves the volume averaged conservation law

∂Ui

∂t
+

1

Vi

∑

l

Fl · nl =
1

Vi

∫

Vi

Sdx,

where the cell normals are nl. Since this is consistent
with the integral form of the conservation laws, this
approach is ok for dealing with discontinuous solutions
as well. Note that for a 1D problem without source
term, this is simply written as

∂Ui

∂t
+

1

∆xi

(
Fi+1/2 − Fi−1/2

)
= 0, (10)

where Fi+1/2 are fluxes defined at the cell edges.
Clearly, any cell average changes only through the cell
edge fluxes, and the total ‘mass’ in the entire discretized
volume can only change through boundary losses or
gains. It turns out to be extremely important to use
a conservative discretization of the form (10) in or-
der to accurately treat discontinuous (weak) solutions:
schemes that can not be recasted in this form can eas-
ily produce completely erroneous shock speeds. In fact,
all of the schemes (3,5,6) are conservative. E.g., the
upwind flux for the advection equation is given by

F up

i+1/2
=

1

2
{vρi+1 + vρi− | v | [ρi+1 − ρi]} ,

while the Lax-Friedrichs flux is

F lf
i+1/2 =

1

2

{

vρi+1 + vρi −
∆x

∆t
[ρi+1 − ρi]

}

.

However, as mentioned before, both schemes render
first order spatial accuracy. In the Finite Volume dis-
cretization, the evaluation of fluxes at the cell edges im-
plies that some extrapolation within the cell i is needed
from the volume averaged value Ui. Simply using a con-
stant extrapolation where U(x ∈ [xi−1/2, xi+1/2]) = Ui

is of course consistent with Ui as the cell average, but
leads to first order accuracy where averaged edge fluxes
Fi+1/2 = (F (Ui) + F (Ui+1)) /2 are used. Better, and
still consistent with Ui as a volume average, is to use a
linear extrapolation within the cell with slope σi, hence

U(x ∈ [xi−1/2, xi+1/2]) = Ui + σi
x − xi

∆xi
.

The slope is then the difference

∆Ui ≡ Ui+1/2 − Ui−1/2 = σi.

This linear reconstruction can be exploited to get a Left

and Right edge centered state

UL
i+1/2 = Ui + ∆Ui/2 and UR

i+1/2 = Ui+1 − ∆Ui+1/2.

The flux at the cell edge then takes the average from

Fi+1/2 =
(

F (UL
i+1/2) + F (UR

i+1/2)
)

/2.

This process of linear reconstruction raises the spatial
order of accuracy to second order.

In practice, one must limit the slopes used in the
linear reconstruction in order to avoid the introduction
of spurious oscillations. On comparing the slopes as ob-
tained from using neighbouring left or right cell values,
one typically needs to take the least steep slope of the
two, and to fall back on constant extrapolation within
a cell when these slopes conflict in sign. Schematically,
this is shown in Fig. 5. Different flavours of slope lim-
iters exist, which ensure the Total Variation Diminish-
ing (TVD) concept. The numerical total variation is
defined as the summed differences

TV ≡
∑

i
| Ui+1 − Ui |,

and a scheme is called TVD when it ensures that this
total variation diminishes with time

TVn+1 ≤ TVn.

Hence, the initial data sets a bound for the total vari-
ation at all times, and it is easily appreciated that this
TVD property ensures that monotone initial data re-
mains monotone, called ‘monotonicity preserving’. In
particular, since the Riemann problem is monotone, a
TVD scheme automatically prevents creation of spuri-
ous oscillations.



Figure 5: Slope limited linear reconstruction process.

The forward Euler one-step time marching em-
ployed in (3,5,6) would make the scheme O(∆t). Since
for any explicit time marching scheme, the allowed time
step ∆t will be restricted by the chosen grid size ∆x for
numerical stability, raising the spatial order of accu-
racy for time-dependent simulations calls for a consis-
tent higher order temporal accuracy. Second order can
be achieved by a two-step Predictor-Corrector method

U
n+1/2 = U

n +
∆t

2
[−∇ · F(Un) + S(Un)]

U
n+1 = U

n + ∆t
[

−∇ · F(Un+1/2) + S(Un+1/2)
]

.

As an explicit example, the second order Total
Variation Diminishing Lax-Friedrichs scheme (TVDLF,
see [2]) uses a predictor-corrector approach where the
corrector step uses time centered numerical fluxes from

f
n+1/2

i+ 1
2

=
1

2

{

F (UL
i+ 1

2

) + F (UR
i+ 1

2

)

− | cmax(
UL

i+ 1
2

+ UR
i+ 1

2

2
) |

[

UR
i+ 1

2

− UL
i+ 1

2

]
}

,

where the left and right states are

UL
i+ 1

2

= U
n+1/2
i + ∆̄U

n+1/2

i /2,

UR
i+ 1

2

= U
n+1/2
i+1 − ∆̄U

n+1/2

i+1 /2.

The overbar denotes the slope limiter, with e.g. the
‘minmod’ limiter given by

∆̄U i = sgn(Ui − Ui−1) max [0,

min {| Ui − Ui−1 |, (Ui+1 − Ui)sgn(Ui − Ui−1)}] .

The stencil of this TVDLF scheme is 5 cells wide,
through the slope limited linear reconstruction. This
scheme is generally applicable to any system of non-
linear conservation laws, by inserting the appropriate
maximal physical propagation speed cmax. For the lin-
ear advection equation cmax = v, while for the Eu-
ler system, one would use cmax =| v | +c consis-
tent with (9). The first order variant of TVDLF re-
duces to the upwind scheme (3) for the linear advection

Figure 6: After one advection cycle, square pulse (ini-
tial data as dotted line) for TVDLF with minmod (left)
versus Woodward (right) slope limiter.

equation, while the connection with the Lax-Friedrichs
scheme is through the replacement | cmax |↔ ∆x/∆t.
In Fig. 6, the periodic advection of the square pulse
using the TVDLF scheme with two flavors of the slope
limiters is plotted (using 200 grid points) for compari-
son with the MacCormack results in Fig. 3. The mono-
tonicity preserving nature of TVDLF is evident. The
nonlinearity introduced by the limiting process prevents
spurious oscillations at discontinuities (essentially ren-
dering local first order accuracy), while yielding second
order accuracy on smoothly varying data.

IV. 1D MHD SIMULATIONS

Turning to ideal MHD simulations, we start in a
configuration where all variables are function of the
first (x) coordinate only, but vector quantities can
have components perpendicular to this direction. Since
we assume no variation in these other directions, the
∇ · B = 0 constraint is trivially enforced by keeping
a constant x-component of the magnetic field B̄1. To-
gether with the ratio of specific heats γ, there are then
two parameters and in a 1.5D approach where only 1 or-
thogonal component is considered, the system to solve
becomes a nonlinear, 5-component PDE system for the
conserved quantities (ρ, ρv1 ≡ m1, ρv2 ≡ m2, e, B2). Its
flux vector has the entries

m1

m2
1

ρ − B̄2
1 + (γ − 1)(e − m2

2ρ ) + (2 − γ)B2

2
m1m2

ρ − B̄1B2

m1

ρ

(

γe − (γ − 1)m2

2ρ + (2 − γ)B2

2

)

− B̄1(B̄1
m1

ρ + B2
m2

ρ )

B2
m1

ρ − B̄1
m2

ρ

The total energy now reads

e =
p

γ − 1
+

ρv2

2
+

B2

2
.

Note that we have adopted magnetic units where vac-
uum permeability is unity.



Figure 7: Density and entropy at time t = 0.1 for the
1.5D MHD Riemann problem.

The eigenvalues of the flux Jacobian are now v1,
v1 ± cs, and v1 ± cf , where the (squared) slow cs and
fast cf magnetosonic speeds are

c2
f,s =

1

2




γp + B2

ρ
±

√
(

γp + B2

ρ

)2

− 4
γp

ρ

B̄2
1

ρ



 .

In the limit of zero B2, one of them becomes the Alfvén
speed ca = B̄1/

√
ρ, while the other turns into the

sound speed c. In general, the following ordering ap-
plies cs ≤ ca ≤ cf . Including third vector components
and the corresponding two additional equations for m3

and B3, this 1.75D system has the full 7 characteristic
speeds v1, v1 ± cs, v1 ± ca, and v1 ± cf . This makes the
solution of the simple Riemann problem in 1D MHD
quite involved. Indeed, up to 5 signals separating 6
constant states can emerge out of two constant states
in contact for 1.5D MHD, while up to 8 states form
spontaneously in 1.75D Riemann problems. Two exam-
ples of a numerical solution to such 1D MHD Riemann
problems are shown in Fig. 7 and 8. Fig. 7 shows the
solution at t = 0.1 of a shock tube test from [3] where
γ = 2 and B̄1 = 0.75. The two states are initially at
rest, with left state (ρ, p, B2) = (1, 1, 1) and right state
(0.125, 0.1,−1). We used 800 grid points and the dis-
continuity was initially midway the domain [0, 1]. A
leftward moving fast rarefaction wave (with no entropy
variation), a slow compound wave, a contact disconti-
nuity, a rightward moving slow shock, and a rightward
fast rarefaction can be identified in the solution. The
slow compound wave is a slow shock with a rarefaction
wave attached to it, and is a possibility novel to 1D

Figure 8: Density and v3 velocity component at t = 80
for a 1.75D MHD Riemann problem.

compressible MHD flow: in hydrodynamics only shocks
or rarefaction waves can emerge. Fig. 8 is from a 1.75D
MHD simulation with parameter values γ = 5/3 and
B̄1 = 1. The initial data separates

(ρ, v1, v2, v3, p, B2, B3)L = (0.5, 0, 1, 0.1, 1, 2.5, 0),

(ρ, v1, v2, v3, p, B2, B3)R = (0.1, 0, 0, 0, 0.1, 2, 0),

with the transition at x = 350. We use 1000 grid cells
of unit size. Shown is the density and the velocity com-
ponent v3 at time t = 80, and from left to right one en-
counters the following features: fast rarefaction wave,
Alfvén signal, slow rarefaction, contact discontinuity,
slow shock, Alfvén signal, fast shock.

V. MULTI-D MHD AND ∇ ·B = 0

Conceptually, multi-D simulations can be reduced
to a succession of 1D problems in the various coordinate
directions. Strang type dimensional splitting for a 2D
case writes

U
n+1 = Lx

∆t/2L
y
∆tL

x
∆t/2U

n,

where the operator Lx
∆t/2

indicates an update with a

timestep ∆t/2 taking account of only the fluxes in the
x-direction. Alternatively, we can alternate coordinate
directions as

U
n+2 = Lx

∆tL
y
∆tL

y
∆tL

x
∆tU

n.

For multi-D MHD simulations, we also need to han-
dle the non-trivial ∇·B = 0 constraint. This is because
even if it is satisfied exactly at t = 0, one can numeri-
cally generate ∇·B 6= 0 due to the non-linearities of the



various shock-capturing methods. Besides the fact that
this is clearly undesirable physically, it can even cause
fatal numerical instabilities. However, exact solenoidal
fields may not be needed in numerical simulations, as
one always faces discretization and machine precision
errors. In practice, it turns out to be very difficult (al-
though possible [4]), to insist on (1) a conservative form
– which is needed for correctly handling shocks, (2) en-
sure solenoidal B in some discrete sense, and (3) have
the discretized Lorentz force orthogonal to the mag-
netic field in the cell centers. The conservative form of
the MHD equations uses the divergence of the Maxwell
stress tensor, which is equal to the Lorentz force pro-
vided ∇ ·B = 0 since

∇ ·
(

IB2

2
−BB

)

= −(∇×B) ×B−B (∇ · B) .

Many strategies to cope with the solenoidal con-
straint have been developed. A thorough comparison
of 7 different strategies on a series of 9 2D MHD tests
can be found in [5]. Here, we only mention the pro-
jection scheme strategy, which controls the numerical
value of ∇ · B in a particular discretization to a given
accuracy. The basic idea [6] is to correct the B

∗ com-
puted by a scheme with ∇ ·B∗ 6= 0, by projecting it on
the subspace of zero divergence solutions. Hence, we
modify B

∗ by subtracting the gradient of a scalar field
φ, to be computed from

∇2φ = ∇ ·B∗. (11)

By construction, this yields a solenoidal B = B
∗ −∇φ

which is then used in the next timestep. This process
can be repeated after each time step. It is important to
note that the accuracy up to which the Poisson prob-
lem (11) is solved need not be machine precision, and
that this approach keeps the order of accuracy of the
base scheme, while not violating its conservation prop-
erties.

With a strategy for handling the divergence of B

in place, we can now turn to multi-D simulations of the
conservative ideal MHD equations:

ρt + ∇ · (vρ) = 0

(ρv)t + ∇ · (vρv −BB) + ∇ptot = 0

et + ∇ · (ve + vptot −BB · v) = 0

Bt + ∇ · (vB−Bv) = 0,

where we used the total pressure ptot ≡ p + B2/2. As
an instructive example from [7], we perform a 2D MHD
simulation on (x, y) ∈ [−0.5, 0.5]2, where we locally per-
turb a homogeneous magnetized plasma at rest. Ta-
king γ = 5/3, ρ = 1, p = 0.6 and a uniform horizontal
B = 0.9êx (making the sound speed c = 1, Alfvén speed

Figure 9: The total pressure in a locally perturbed ho-
mogeneous plasma shows the fast and slow wavefronts.

ca = 0.9), we perturb 4 cells at the origin with a 10 %
pressure and density increase. We used a non-uniform
3002 grid, and show in Fig. 9 the resulting total pressure
field. Overplotted is the theoretical Friedrichs group di-
agram which should emerge out of a δ-function pertur-
bation. The fast magnetosonic waves propagate non-
spherically outwards in all directions, traveling faster
in the direction perpendicular to B. The slow magne-
tosonic signals are the extremely anisotropic cusp-like
features. On top of what is seen in Fig. 9, the entropy
signal of the initial perturbation remains stationary at
the origin.

A representative 2D MHD simulation where a
shock-dominated transition to MHD turbulence oc-
curs can be taken from [8]. A doubly periodic do-
main [0, 2π]2 is initialized with a uniform ρ = 25/9,
p = 5/3 while γ = 5/3. A velocity vortex given by
v = (− sin y, sinx) then corresponds to a Mach 1 ro-
tation cell, and magnetic islands of half the horizon-
tal wavelength of the velocity roll are superimposed as
B = (− sin y, sin 2x). Shown in Fig. 10 is the tempera-
ture T = p/ρ at time t = 3.14 which clearly shows how
the ensueing dynamics is an intricate interplay of shock
formations and collisions.

VI. KELVIN-HELMHOLTZ INSTABILITY AND IN-
DUCED RECONNECTION

We conclude with a recent result from grid-
adaptive [9], high-resolution, resistive MHD simula-
tions [10]. Resistive MHD augments the ideal system
with Ohmic heating in the energy equation and relaxes
the frozen-in condition of the induction equation, al-
lowing topological reconfigurations of B. The study



Figure 10: Temperature at t = 3.14 in a shock-
dominated transition to compressible MHD turbulence.

considers the nonlinear evolution of a uniformly mag-
netized, 2D shear flow configuration where vx(y) =
1
2
V tanh 20y, for a transonic V/c = 1 flow. The ini-

tial plasma beta, measuring the ratio of thermal to
magnetic pressure, is equal to β = 1080, so that the
initial evolution is essentially hydrodynamic in nature.
For several sound crossing times, the magnetic field is
merely passively advected by the developing vortical
flows. The latter set in due to the Kelvin-Helmholtz in-
stability of the shear flow configuration. Note how the
density evolution depicted in Fig. 11 shows the coales-
cence of vortices: the most unstable mode has a wave-
length which is consistent with 8 vortices being formed
at early times. At about t = 10 we see the local effect of
sufficiently amplified magnetic fields, which have been
dragged about by consecutive mergers. Locally anti-
parallel field regions are forced together in the process,
leading to induced reconnection through tearing-type
resistive instability events, forming small magnetic and
density islands. This was previously found to occur
in cospatial current-vortex sheets [11]. This eventually
causes a rapid transition to MHD small-scale turbu-
lence, while the trend to large-scale coalescing continues
simultaneously.

Summarizing, numerical MHD simulations can sig-
nificantly advance our understanding of non-linear fun-
damental plasma physical magneto-fluid dynamics.
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Figure 11: Density evolution in a 2D MHD shear flow
layer. Note the large-scale coalescence by vortex pair-
ing, and the small island formation through induced
reconnection. This leads to MHD turbulence.
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