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Chapter 1

Introduction to
Computational
Magnetohydrodynamics

1.1 Motivation

There can be several reasons to do hydrodynamic (HD) and magnetohydrody-
namic (MHD) computer simulations.

In astronomy, in contrast with physics, the observer usually cannot influ-
ence the object of the investigation, in other words, one cannot do experiments,
only observations. Analytical calculations and numerical simulations provide
the only substitute for experiments. Due to the complexity of the physical
phenomena analytical calculations are limited to the simplest cases and many
approximations have to be made. Numerical simulations have their own lim-
itations too, but they can be used together with observations and analytical
calculations in a complementary way which can lead to a deeper understanding
of the examined phenomena.

Even in cases when experiments are possible to do, computer simulations
may turn out to be more efficient and less expensive. This is the situation in
aerospace engineering, where wind tunnel experiments are replaced by simu-
lations for economical reasons. In fact, most of the modern numerical hydro-
dynamic schemes were invented and developed by researchers working in the
aerospace industry. Magnetohydrodynamics has fewer engineering applications
than hydrodynamics, although the thermonuclear fusion research also requires
computer simulations of magnetized plasma.

Finally, computer scientists and the computer industry are always searching
for applications that can prove the usefulness of their software and hardware.
The memory and CPU required by three-dimensional MHD calculations are
still a great challenge even for the latest parallel super computers. Massively
parallel computers, on the other hand, require new numerical algorithms to be
developed.
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1.2 Equations

The equations of magnetohydrodynamics can be derived from the hydrodynamic
equations, the Lorentz force and Ohm’s law, and the Maxwell equations. The
most important assumption is that the macroscopic velocity v of the plasma
is much less than the speed of light ¢. The displacement current OE/0t can
be ignored and the current can be expressed from the magnetic field B. The
electric field E can be expressed from the Lorentz force and the conductivity
o. This way electro-magnetic waves are eliminated, which greatly eases the
numerical solution. Both the total pressure p;,; and total energy density e will
have contributions from the magnetic field. The following equations hold:

J = —-VxB (1.1)
W
E = Jjo—vxB (1.2)
B2
Dtot = p+ﬂ (1.3)
2 2
e = L B (1.4)

where p, v, and p are the mass density, velocity and thermal pressure, respec-
tively. Furthermore, v is the adiabatic index for an ideal gas and o is the electric
conductivity. Below, the resistivity n = 1/0 will be used, and we will choose
units of the magnetic field such that u = 1.

After eliminating the electric field and the current, the magnetized plasma
can be fully described by the primitive variables p, v, p, and B, which are all
functions of time ¢ and three (if no simplifying symmetry assumption is made)
spatial coordinates x. For ideal MHD n = 0, while in resistive MHD 5 > 0 is
not negligible at least in some parts of the flow.

The MHD equations can be expressed in various mathematical forms, how-
ever, for numerical models the conservative form is often preferred: the equa-
tions (1.5-1.8) explicitly represent the conservation of mass, momentum, total
energy, and induction of magnetic field. This is especially important if weak
solutions containing discontinuities are of interest. The conservative variables
are p, pv, e, and B. In terms of these variables the partial differential equations
(PDE) of resistive MHD are

ap _

5t +V-(pv) = 0 (1.5)

0
g FV-(vpv —BB) + Vproy = 0 (1.6)
%+V-(ve+vptot—BB-v—anJ) =0 (1.7

OB
W*‘V'(VB—BV)-FVX(UJ) =0 (1.8)

The initial condition should satisfy

V-B=0 (1.9

The exact solution of the MHD equations (1.5)-(1.8) keeps V - B = 0 indefi-
nitely. In multidimensional numerical calculations, however, the discretization
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errors may produce a finite divergence of the magnetic field unless the scheme
is specifically designed to keep the discretized form of V - B zero (see chapter
5).

There are several physical terms that can be added to the right hand side
of the momentum and energy equations (1.6, 1.7), such as the effects of gravity,
viscosity, thermal conduction, radiative cooling or heating, etc. As long as these
are small terms, the numerical methods valid for pure conservation laws can be
generalized easily to the full equations. Stiff source terms, however, may require
special numerical techniques.

1.3 Basic Properties

The resistive MHD equations are parabolic due to terms like V x (nJ) = nV?B
(for uniform 7) in (1.8), which describe diffusion of the magnetic field. When
no resistivity is present (n = 0), the ideal MHD equations are hyperbolic, which
means that the equations have wave-like solutions that propagate without dissi-
pation. As long as the diffusion time scale related to resistivity is not too short,
the numerical techniques applicable to the ideal MHD equations work for the
resistive equations as well. For this reason we will concentrate on the properties
of the ideal MHD equations in this section.

The ideal MHD equations are not strictly hyperbolic, since some of the wave
speeds can be equal. Due to the non-linear terms like V - vpv in (1.6), discon-
tinuities can also form spontaneously. Another interesting property of the ideal
MHD equations is nonconverity, which allows the existence of compound waves
consisting of shocks and rarefaction waves. In a real physical system, however,
these compound waves split due to deviations of the magnetic field from the
rather special necessary conditions.

Three different waves exist in ideal MHD: slow, Alfvén, and fast waves. The
Alfvén waves propagate perturbations in the transverse components of velocity
and the magnetic field at a speed

B
calfven — | $| (110)

T
relative to the fluid velocity v. The Alfvén wave is linearly degenerate like
the contact discontinuity, thus non-linear circularly polarized Alfvén waves and
rotational discontinuities (of the transverse field) can propagate at this speed
without dispersion. The Alfvén wave propagates fastest along the field lines at
a speed Caifven = |B|//p-

In contrast with Alfvén waves, fast and slow waves involve compression of
the plasma, therefore they are related to ordinary sound waves, which propagate
with the sound speed csounda = 1/¥P/p in the absence of magnetic fields. The
fast and slow magnetosonic wave speeds relative to the plasma are

1/2

fast,slow _ 1 2 2 2 2 2 alfven)?2
Cy - Csound T Calfven \/(csound + calfven) - (QCsoundCz )

V2
(1.11)

where the plus sign corresponds to the fast magnetosonic wave speed. The fast
and slow waves can steepen into fast and slow MHD shock waves respectively.
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In general the following relationship holds
c;ast > c;lfven > cszlow (1'12)

but depending on the orientation and magnitude of the magnetic field, the
speeds can be equal. For example, when the direction x is parallel to the mag-
netic field, all three wave speeds coincide, which is called the triple umbilic
point.
The largest wave speed by which information can propagate parallel to the
T axis is
X = |y, | + st (1.13)

1.4 Generalizations of the MHD Description

The isothermal MHD equations can be regarded as a generalization (or rather
simplification) of the full MHD equations. The physical idea is that some fast
cooling and/or heating mechanism keeps the temperature T' of the gas constant,
thus the thermal pressure is simply

p= kﬁB pT (1.14)
where kg and M are the Boltzmann constant and the average mass of the
particles (including free electrons!), respectively. One needs to solve equations
(1.5, 1.6, 1.8) only, since the energy equation (1.7) is replaced by the isothermal
equation of state (1.14).

In certain astrophysical problems the plasma may contain more than one
weakly coupled ion species beside electrons (strongly coupled ions can be approx-
imated as a single fluid with averaged mass, momentum, and energy densities).
There are several levels of approximations to describe such a multicomponent
plasma. The most general description requires the solution of the full set of hy-
drodynamic equations including magnetic, electric, and frictional terms for each
species together with the full set of Maxwell equations. When one of the species
is much lighter than the others, typically the electrons, the electric field can
be expressed from the momentum equation of these particles. Quasi-neutrality
can also be assumed, which defines the density of the light particles as a simple
algebraic equation. The velocity of the light particles can be derived from the
current. This procedure leads to the multi-ion MHD equations.

A weakly coupled mixture of neutral and ionized plasma can be described
by the two-fluid equations [7, 8], which contain the hydrodynamic equations for
neutrals and the MHD equations for the plasma. The two sets of equations
are coupled by frictional and heating source terms which may require a semi-
implicit treatment [37]. For small fractional ionization further simplifications
can be made. The simplest form of partially ionized plasma describe ambipolar
diffusion, which assumes a slow drift of neutrals relative to the ions.



Chapter 2

Spatial Discretization

In general a system of conservation laws with some extra source terms can be
written as

o, U + 8,F;(U) = S(U) (2.1)

where U , F‘i, and S contain the conservative variables, the fluxes, and the source
terms respectively, and 0; represents the spatial derivative in direction i, and a
summation is implied over ¢ = 1,2, 3.

In this section a very concise overview of the different approaches towards
spatial discretization is given. The interested reader may look at standard text
books (e.g. [11, 14]) describing the standard discretization techniques and read
some more recent articles [20, 45, 21] on the relatively new compact schemes,
and a very recent paper on the discontinuous Galerkin method [4].

2.1 Finite Differences

The simplest discrete representation of spatial derivatives is by the finite dif-
ference method (FDM). The flow variables are given as point-wise values U; at
locations x; as

Uj(t) = U(xj, 1) (2.2)

Difference formulae of a given order of accuracy can be derived from Taylor
expansion around the grid points. On a 1D uniform grid with grid spacing Ax,
for example, a first order spatial derivative can be approximated by the centered
finite difference formula

Upr =Ujn _ 1 [ (Az)?
5Az = 5As [U]+Ax8$U+ 51 02U + ...
1 (Az)?
= 8,U+ 0 ((Az)?) (2.3)

where U(z;j11) = U(x; £ Ax) was expanded around z;. Using the centered
difference formula above, and a one-sided difference formula for the temporal
discretization, the finite difference form of the mass conservation equation (1.5)
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Figure 2.1: Finite difference representation of 1D data. The curves show poly-
nomial fits that can be used for calculating spatial derivatives. There is no
unique representation of U between grid points.

in 1D can be written as

(pv)? 1= (PU)?—1
+2 A (2.4)

p;""l =p; — At

where the n superscript indicates the discrete time level at ¢ = nA¢. The
main advantage of finite differences lies in its simplicity; it can be implemented
easily and efficiently. The main disadvantage is that there is no unique way of
defining FDM on unstructured grids, and there is no guarantee for conservation
of quantities on non-uniform grids. On structured curvilinear grids one can
use generalized coordinates to generalize the finite difference formulae valid on
Cartesian grids.

2.2 Finite Volume

In the finite volume discretization space is divided into grid cells, and the cell-
averages

U (t) = Vi] /V Ulx, ) (2.5)

are known for each cell. The differential equations are discretized in their inte-
gral form, i.e. the fluxes through the cell interfaces are added to and subtracted
from the cell-averages (see section 3.3 for details). This method automatically
leads to a conservative discretization on arbitrary structured or unstructured
grids, and it is simpler than the finite element method or the finite difference
method with generalized coordinates. The disadvantage of finite volumes is in
the difficulty to go higher than second order spatial accuracy and the relatively
complicated representation of second derivatives in space.
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Figure 2.2: Finite volume representation of 1D data. The grid cells are bounded
by cell interfaces (dashed lines). The dots represent the cell averages of U. The
solid lines show possible extrapolations of U to the cell interfaces. Slope limiters
(section 4.5) are necessary to maintain a monotonic profile.

2.3 Finite Elements

In the finite elements method (FEM) the nodal values U; are given at the z;
points (nodes), while at other locations U is approximated by a linear combi-
nation of localized interpolating polynomials f; as

Uz, t) = Z U;(t) f5(x) (2.6)

i.e. the approximate solution consists of finite elements. For the Galerkin FEM,
the discretization of the partial differential equations happens by requiring that
the integral of the residual of the approximate solution multiplied by the same
f; polynomials

/ (0.0 + 8.7(©) - $©)] fydx =0 2.7)

must vanish for every j. The advantage of the finite element discretization lies
in its systematic approach to high-order accuracy on arbitrary grids by use of
high order interpolation polynomials. This explains the popularity of the FEM
in engineering. On the other hand, the FEM is rather complicated, and even
with explicit time integration schemes it requires the inversion of huge linear
systems. Discontinuities are also a problem for standard finite element methods.
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Figure 2.3: Finite element representation of 1D data with linear elements.

2.4 Pseudo-Spectral Methods

A further step from the local description towards a global description is approx-
imating U by a linear combination of some orthogonal functions f;

T=3a;(0)f;) (2.8)

e.g. by Fourier components, Bessel functions, Chebyshev polynomials, etc.
Again the method of weighted residuals (2.7) can be applied to obtain the
discretized equations for the a;(t) amplitudes. In case of the finite elements
method, it was the locality of the interpolating functions that simplified the
discretization, here the orthogonality of the f; functions reduces the number of
terms.

In practice, however, non-linear terms in the equations have to be evaluated
in physical space since the corresponding convolutions in Fourier space would
be very expensive. This combination of spectral and physical space is called the
pseudo-spectral method. The transformation between these two discrete sets
of variables can be efficiently done by fast Fourier transforms (FFT). Pseudo-
spectral methods can be extremely accurate with only a few modes representing
U, this is referred to as exponential convergence, since the discretization error
decreases exponentially with the increasing number of modes. This high accu-
racy makes the pseudo-spectral method ideal for studying turbulence, for exam-
ple. Disadvantages of this method include the problems with using non-regular
grids, satisfying arbitrary boundary conditions, and accurate representation of
discontinuous solutions. The pseudo-spectral method may be used in combina-
tion with other methods, e.g. in cylindrical coordinates the periodic ¢ direction
may be discretized by Fourier components, while the radial direction can be
discretized by finite differences [16].
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Figure 2.4: Spectral representation of 1D data (dashed line) with four modes
(solid lines). The figure is schematic only.

2.5 Compact Schemes

In the computational fluid dynamics research there is a new trend of developing
compact schemes with high order accuracy, but localized description of data.
There are several approaches to obtain such a scheme: Padé discretization of
derivatives (implicit finite differences); using the multi-dimensional information
around a grid point rather than extending the stencil in one spatial direction
(multi-D finite difference); combining the ideas of finite elements with finite vol-
ume method by using high order approximation of U localized for the grid cells
(discontinuous Galerkin method). Although these schemes are very promising
they are still in an experimental stage at the moment.



Chapter 3

Finding Weak Solutions

This chapter introduces the basic theorems of computational modeling and dis-
cusses algorithms suitable for numerically obtaining weak, i.e. discontinuous,
solutions. The finite volume discretization uses the same integral form of the
equations as the analytical definition of weak solutions, therefore it is especially
suited for obtaining such solutions.

3.1 Consistency, Stability, and Convergence

A discretization of the analytical partial differential equations is consistent if
the local error vanishes as the spatial and temporal resolution goes to infinity,
i.e. Ax,At — 0. The local error can be calculated by expanding the numerical
solution around a point in the discrete space-time both in x and ¢ as

U(X,t):U(Xj,tn)+(X—Xj)g—[i+(t—tn)66—(i+... (31)
and by substituting U into the discretized algebraic equations. The resulting
partial differential equation should contain all terms of the original equation
(2.1) plus the local error consisting of terms proportional to Ax*, Atk (k > 1).
The order of the scheme is defined as the order & of the lowest order local error
term. For example, inserting (3.1) into the finite difference representation (2.4)
of the continuity equation leads to

— 2
Comparing this equation with the analytic equation (1.5), we can conclude that
the finite difference equation (2.4) is first order accurate in time and second
order accurate in space.

The numerical scheme is stable if errors introduced by the discretization do
not grow unbounded. There are conditionally stable schemes, where there is
some restriction on Ax and At, unconditionally stable schemes, and uncondi-
tionally unstable schemes. The latter ones are obviously useless for the particu-
lar equation. Proving stability of a scheme is a non-trivial task, one can usually
prove stability in the linear sense by applying a von Neumann analysis. The
idea is that the solution of the linearized equations can be written as a Fourier

12
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series. The linearized equations are stable if the amplitude of any Fourier com-
ponent grows slower than constant times At in a single time step. For linear
equations one can simply take the ansatz

U(x;j,tn) = G"Up exp(ikx;) (3.3)

and substitute it into the discretized equations. The resulting eigenvalue prob-
lem can be solved for the eigenvector U, and the eigenvalue G, which gives the
amplification factor G"*!/G™. Numerical stability requires that the magnitude
of all eigenvalues |G| < 1 for physically stable problems and |G| < 1 + O(At)
for physically unstable equations for any wave number k. For example, the
von Neumann analysis of the finite difference formula (2.4) for the continuity
equation with a constant velocity v results in

|G| — At ( ikAz __ e—z’kAz)

1—v——A (e

2Ax Az

= ‘1 - vﬂi sin(kAz)| > 1 (3.4)

which means that this simple centered finite difference representation is uncon-
ditionally unstable, and consequently useless. Note that the coefficient At/Ax
does not decrease with increasing resolution At o« Az — 0, and in any case, the
continuity equation is physically stable. In chapters 4 and 6 we shall discuss
methods that are consistent and (conditionally) stable for the full set of MHD
equations. For hyperbolic equations, the condition is usually in terms of the
dimensionless Courant number

max At

C=""5

(3.5)
which gives the distance traveled at the fastest wave speed ¢™2* in time At as
a fraction of the cell size Az.

The most important requirement for a scheme is convergence, which sim-
ply means that the global error of the numerical solution should converge to
zero as Ax, At — 0. It is usually very difficult to prove directly that a scheme
is convergent, however the Lax equivalence theorem states that a consis-
tent and stable finite difference discretization is convergent for properly
posed linear initial value problems. The theorem also holds for finite element
and finite volume methods. The MHD equations are not linear and astrophysi-
cal problems are usually posed with boundary conditions. Still, consistency and
stability are always necessary and often sufficient conditions for convergence.

We shall discuss a practical way of establishing numerical convergence in
section 7.6.

3.2 Weak Solutions and
Conservative Discretization

A weak solution of hyperbolic partial differential equations contains some dis-
continuities, such as contact or rotational discontinuity or shock waves. The
solution satisfies the PDE at the smooth parts, and it satisfies the jump con-
ditions across discontinuities. These jump conditions can be derived from the
integral form of the PDE.
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The above discussion of consistency, stability, and convergence was only valid
for smooth solutions. Therefore we cannot expect an arbitrary numerical scheme
to correctly approximate weak solutions even if it converges to all smooth so-
lutions correctly. It is easy to construct examples when a (non-conservative)
numerical scheme converges to incorrect shock speed or jump condition. Lax
and Wendroff [19] showed that the limit solution of a finite difference scheme in
a conservation form satisfies the jump conditions across a discontinuity. Conser-
vation form means that the discretized quantities are conserved in a numerical
sense, for example on a uniform grid

A
ZU;H:ZU;»JFA_;Z S F (3.6)
J

J bound.

or on a general grid

DV Urt =N "VUr+At Y n-F (3.7)
J J bound.

where U is any of the conservative variables of the conservation law (2.1) with
S = 0, and the summations for “bound.” represent the contribution of fluxes
crossing the boundaries. For the general grid, V; and n are the cell volume and
the normal vector to the cell interface, respectively. In case of finite volume
schemes condition (3.7) is automatically satisfied, since fluxes are added and
subtracted at the cell interfaces. For other type of discretizations one must
check carefully whether the conservation property is satisfied by adding up the
discretized equations.

It is important to note that weak solutions are not uniquely determined by
the initial conditions, and in general, an entropy condition is needed to pick
the right solution. It is not always trivial to show that a numerical scheme
is consistent with the physical entropy condition (i.e. entropy cannot decrease
with time), and some numerical schemes can converge to non-physical weak
solutions (containing “expansion shocks” for example).

3.3 Finite Volume Discretization

Now we revisit the finite volume discretization already introduced in section 2.2
in more detail. If the conservation law (2.1) with S = 0 is volume averaged over
the cell j, we get
- 1 .
6tUj + = 0;Fidx =0 (38)
Vi lv,

where ljj is defined in the finite volume sense (2.5). There can be physically
different terms in F: gradients, divergences, curls, or Laplace operators. The
formulae transforming the volume integral of gradient, divergence, and curl of
scalar and vector quantities to surface integrals are

Vpdx = anﬁl (3.9
]

V-vdx = an-\‘rl (3.10)
1
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nl

Figure 3.1: Finite volume discretization in 2D. The n! normal vectors and the
fluxes calculated from the interface averaged U are shown.

/Vdex = ) n'xB! (3.11)
Vi 1

where ! runs over all interfaces of cell j and n' is the normal vector for the
I-th interface. Up to second order spatial accuracy one can approximate the
interface averaged U by some interpolation of the cell averaged values U ; and
Uy sharing the interface I. Higher order accuracy would require a Gaussian
quadrature along the interface.

The Laplace operator is a bit more difficult to approximate, since it requires
the first order derivatives to be calculated for the cell interfaces. This can be
done by doing a surface integral on a control volume defined around the midpoint
of the cell interface by introducing a dual grid. A much simpler approach is,
however, to calculate the volume averaged gradient according to the prescription
(3.9) first, then to apply an averaging for the cell interface, and to use (3.10)
successively for taking the divergence of the gradient. This simple two-step
method has a somewhat larger stencil than the more elaborate “dual grid”
approach, but that is usually acceptable, since terms with first order derivatives
also require comparable stencils due to the need for slope limiters (see section
4.5).

3.4 Axial Symmetry

When the physical system has a cylindrical symmetry, e.g. a jet or an accretion
disk, it is quite common to do 2D simulations in the r—z plane assuming axial
symmetry in the ¢ direction. The usual approach is writing the equations into
cylindrical coordinates and discretizing them in 2D. An alternative approach
is to imagine that the full 3D simulation is done, but neighbouring cells in
the ¢ direction contain the same values as cell j except for the rotation of
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Figure 3.2: Axial symmetry in an imaginary 2D finite volume grid. The cell
interface areas in the r direction are proportional to r;11/2, while in the ¢
direction the normal vectors n are misaligned by Ay which results in the term

—V;pj/r in (3.14).

vector variables by +A¢p. The 3 dimensional cell interfaces and the cell volume
is rAyp times the 2 dimensional edge length and cell area, respectively. The
azimuthal resolution Ay cancels from all expressions, of course, thus one can
simply redefine the normal vectors and the cell volume to

n' = rin?P (3.12)
V; = TjV]?D (3.13)

and modify the formulae for the r component of the gradient and the ¢ compo-
nent of the curl

Vepdx = Z ntp! — V]& (3.14)
Vi 7 Tj
_ B,
/V (VxB)ydx = » (n'xB'), - Vi (3.15)
. l J

and all other components and the divergence formula remain identical with
(3.9-3.11). It is interesting to note that in axial symmetry, even for a uniform
Cartesian grid in the r—z plane, the finite volume discretization (3.14) differs
from the usual finite difference discretization by a higher than second order
term.

Axial symmetry introduces new terms to the equations, e.g. p/r to the radial
component of the momentum equation, which is obviously not in a conservation
form. The reason is quite trivial: the volume integral of radial momentum is
not conserved by the MHD equations, only the Cartesian components. Still, the
axial symmetric description is identical with the full 3D description, where the
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source terms are replaced by the contributions from the neighbouring cells in
the ¢ direction, thus we may expect the weak solutions to be correct.

On the other hand, there are new conserved quantities in axial symmetry,
like the angular momentum rpv,. To have an exact conservation of angular
momentum one may rewrite the equation into conservation form by using angu-
lar momentum rpv,, as the conservative variable instead of the momentum pv,
which is not conserved.



Chapter 4

Total Variation Diminishing
Type Schemes

Some of the most popular methods for solving a hyperbolic system of PDE-s
are the total variation diminishing (TVD) type numerical schemes. Although
these schemes were developed and used for compressible hydrodynamics starting
the 1980-s [13, 25, 42, 43], their application to MHD is relatively recent (e.g.
[27, 39]). There are several variations and generalizations of TVD schemes, like
total variation bounded (T'VB), essentially non-oscillatory (ENO) etc. methods,
but these are not discussed here. Even within the TVD family there are dozens
of variants, therefore we concentrate on the simplest versions.

4.1 The Concept of Total Variation Diminishing

For a linear system of hyperbolic equations or for a single non-linear hyperbolic
PDE (both in one spatial dimension) one can show that the total variation of
the analytical solution

N-1

TV(U) =sup Y _ [U(zj41) — Ula;)| (4.1)

=1

does not increase in time. The supremum is taken over all possible subdivisions
of the x coordinate 1 < 2 < ... < xN.

The total variation diminishing (TVD) schemes ensure that the discrete
equivalent of (4.1) does not increase from one time level to the next one, i.e.

Dol — v < 3 (U - U (42)
j J

Although the system of MHD equations are non-linear and we are usually in-
terested in multi-dimensional simulations, schemes based on the TVD property
are found to behave well near discontinuities; no or little spurious oscillations
are produced. The price of the TVD property is the spatially first order rep-
resentation of smooth local maxima and minima. TVB and ENO schemes can
maintain uniformly second order accuracy for smooth solutions but they allow
some oscillations near discontinuities.

18
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4.2 TVD Lax-Friedrichs scheme

The simplest TVD type scheme is based on the first order Lax-Friedrichs scheme,
which discretizes a conservation law according to

. At 1
Uit =Uf = o (Figp = Fioap) + 5 (®jr12 = @5o172) (43)
where
Fj + F,
Fiti0 = JTHI (4.4)
Pjp12 = Ui —Uj (4.5)

Clearly, the last two terms in (4.3) add numerical diffusion which corresponds
to a term of the form vV2U with the diffusion coefficient v o< (Az)?/At, thus
the Lax-Friedrichs scheme is only first order accurate. One can also show that
the scheme is conditionally stable for Courant number C' < 1. The numerical
diffusion can be reduced by using a diffusive flux

At o
‘I’j+1/2 = A_wcjfl/Q(UjH - Uj) (4.6)

where the local Courant number (3.5) is used as a coefficient for the artificial
diffusion. The scheme described by (4.3, 4.4, 4.6) is the first order TVD Lax-
Friedrichs (TVDLF1) scheme. Another way to look at the numerical flux terms
® is to realize that they modify the centered flux difference formula to a one-
sided upwinded difference formula, at least for a single linear equation like the
continuity equation (1.5). Indeed, for a fixed velocity, the maximum wave speed
is ¢™®* = |v|, and

it = A= gaglevin = ()il + 5 Wl(pian — 26j 4 pie)
= At ()= (pv)j forv20 wn
I Az | (pv)jp1 — (pv); forv <0 -

The upwinded difference formula is very appropriate for the advection equation,
and in general for hyperbolic equations, since physically information should
propagate from the upstream direction. For a system of equations the upwinding
is only approximate in the TVDLF scheme, of course, but in section 4.3 we will
see how this can be improved by using characteristic variables.

Second order spatial accuracy can be achieved by a linear approximation of
U and the corresponding fluxes at the boundary interfaces. The value of U at
the interface at ;1 can be linearly extrapolated from the left and right cell
center values as

1
L _ n
Uip = U +5805
1
Uﬁu/z = Ui - AUJ+1 (4.8)

where the limited slopes AU will be defined in section 4.5. The fluxes at the
cell interface are calculated as

FU + F(U
12 = ST RICHIT) (4.9)

F.
2

J

At
q)j+1/2 = Az +af/2(Uﬁ|-1/2 _U]'L+1/2) (4-10)
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The diffusive ® flux has been greatly reduced, since the difference between the
left and right extrapolation is proportional to (Az)? for a smoothly varying U,
still, it provides proper upwinding for the ﬂux difference formula. The maxi-
mum propagation speed can be defined as I/, = = max[c™¥*(UER), cmax(UL)]
or ¢y, = ¢ (UMR), where UH is some symmetric average of U and U*.
Equations (4.3,4.8-4.10) define a spatially second order TVDLF scheme.

For explicit time stepping, temporally second order accuracy can be achieved
by some two step Runge-Kutta discretization, or a predictor-corrector scheme.

Hancock’s predictor step is probably the best choice. First a time centered

n 1 At
Uj+1/2:U}’—§A$ FU! + AU)— F(U; ——AU) (4.11)

is calculated and then it is used for calculating the linear extrapolations

N 1
Ufrip = U 2 5AT;

Uk, = Ujfll/z——AU (4.12)

Definitions (4.3,4.9-4.12) define a spatially and temporally second order TVDLF
scheme which is stable for Courant number C' < 1. Contributions of source
terms can be added easily to the right hand sides of (4.11) and (4.3), namely
(At/2)S(U}') in the predictor step and AtS(U; nt1/ ?) in the full step. In multidi-
mensional simulations the U” and U® extrapolations should be determined for
each interface, and the flux contributions can be added at the same time, how-
ever this usually requires the Courant number to be reduced to about C' < 0.5.
An alternative to this fully multidimensional unsplit approach is the use of op-
erator splitting (see section 6.2).

4.3 TVD-MUSCL scheme

The TVD-MUSCL scheme (MUSCL stands for Monotonic Upstream Scheme for
Conservation Laws) differs from the TVDLF scheme in that the upwinding is
applied for characteristic variables rather than the conservative variables. The
characteristic variables 7% are certain linear combinations of the conservative
variables that form the right eigenvectors of the matrix oOF / ou , i.e.

‘Qﬁ
e

7k = chik (4.13)
ou

where c* is the eigenvalue corresponding to the k-th eigenvector. For a linear
system of hyperbolic PDE-s, the characteristic waves consist of components

k that travel at a speed c*. Hyperbolicity ensures that the eigenvectors and
eigenvalues are real and a complete orthogonal basis can be formed from them.
The normalized left eigenvectors I'* are related to the right eigenvectors by the
orthogonality relation [* - #™ = &y, ,.

Now we may modify the numerical diffusive flux vector ® to be

3= Z*’wkuk Uk - 0% (4.14)



G. Té6th: Computational Magnetohydrodynamics 21

where 7%, ¢k I'* are calculated for the averaged U fﬁ /

of the k-th left eigenvector with UR—UL determines the jump in the k-th charac-
teristic variable, while the multiplication by 7* transforms the result back to the
conservative variables. The gain relative to the much simpler TVDLF flux (4.10)
is the use of the eigenvalue c* instead of the largest eigenvalue ¢™2*. Therefore
the upwinding is accurate for each characteristic variable, which means less nu-
merical diffusion. On the other hand, the left and right eigenvectors need to
be calculated for each cell interface, which is rather expensive for the MHD
equations.

The temporally second order explicit TVD MUSCL scheme can use the
same Hancock predictor step (4.11) as the TVDLF scheme. Contributions of
source terms and/or fluxes in multidimensional problems should be added in
the predictor and the full step (4.3) similarly to the TVDLF method, and the
same conditions apply for stability.

5 state. The scalar product

4.4 One Step TVD scheme

The one step TVD method [13] is based on a properly limited Lax-Wendroff
scheme applied to each characteristic variable separately. Second order tem-
poral accuracy is achieved by adding terms proportional to (Atc*)? which rep-
resent the second order term in the Taylor expansion U™t = U™ + Ato,U +
(At?2/2)0,U + . ... Several versions of the one step TVD schemes are described
in detail in [39].

This scheme is usually even less diffusive than the TVD-MUSCL discretiza-
tion and it requires slightly less CPU time per time step. On the other hand,
temporally second order accurate source terms cannot be directly included, op-
erator splitting has to be used. In case of source terms related to axial symmetry
the situation becomes even more complicated [28]. In multi-dimensional calcu-
lations the flux components cannot be added at the same time for stability
reasons, and dimensional splitting has to be applied (see section 6.2).

4.5 Slope Limiters

In the second order TVDLF and TVD-MUSCL schemes the AU slopes of the
conservative variables are limited by slope limiters denoted by AU. The slope
limiter is required to ensure the TVD property for the schemes. There are many
versions of slope limiters that satisfy both the conditions for TVD property and
second order accuracy for smooth solutions. Here we define only three: the
minmod limiter

AU; = minmod (AU;_1/2, AUj41/2) (4.15)

the Woodward or monotonized central difference limiter (MC-limiter) originally
by van Leer

— 1 1
AU] = minmod (ZAUj_l/g, 2AUj+1/2, §AUj—1/2 + iAUj+1/2> (416)

and the superbee limiter by Roe

AUJ = Smax [O,min (2|AUJ'+1/2|,SAUJ‘_1/2) ,min (lAUj+1/2|,2SAUj_1/2)]
(417)
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minmod MC limiter superbee

Figure 4.1: Three different slope limiters applied to the same configuration.
Each limiter considers a few different approximate slopes (thin lines) and selects
one of them (thick line).

where AUj;/9 = Ujy1 — Uj and s = sgn(AUj;1/2). The generalized minmod
function for n > 1 arguments is defined as

minmod(wy, wa, . . ., w,) =sgn(wi ) max[0, min(|w, |, sgn(wq ))wa, . . . sgn(wq )wy,)]
(4.18)
In words, the minmod function takes the argument with the smallest modulus
when all argumnets have the same signs and otherwise it is zero. The minmod
limiter is rather diffusive, while the superbee limiter can sharpen smooth waves
into discontinuities. In fact, the minmod and the superbee limiters are the
most and least diffusive of all acceptable symmetric two-variable slope limiters,
respectively. The Woodward/MC limiter lies in between, and it is often found
to be a good compromise.
Using slope limiters requires information from the two neighbouring cells
in all directions (a 5 point stencil in 1D). This may lead to complications on
unstructured or strongly deformed structured grids.

4.6 Riemann Solvers

The Riemann problem is the following: given the spatially constant left and right
states UL and U® separated by a discontinuity, determine the solution after
some time At. For hydrodynamics this problem can be solved analytically. The
general solution consists of two shock and/or rarefaction waves, a contact dis-
continuity, and shear waves for the transverse velocity components. In case of a
finite volume discretization we are interested in the total flux AtF; q/»(U*,UR)
of the conserved quantities that enter and exit the cells j and j + 1 through the
cell interface at x;11/o from time ¢ to ¢ + At.

Solving the full Riemann problem is fairly difficult and expensive even for the
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equations of hydrodynamics, and it is even more so for the more complicated
MHD equations. It is quite questionable whether it is worthwhile to make
such an effort, since the accuracy of the overall scheme is second order at best.
There are several approximations to the Riemann problem, but here we will
only discuss the simplest and most popular one, which is Roe’s approximate
Riemann solver [25]. The idea is to linearize the the governing equations and
to find a proper average state UL® for which the linearized equation

‘Q_‘:
RSt

U +==U=0 (4.19)

oUu
can be solved. As we have indicated above, in terms of the characteristic vari-
ables the linearized Riemann problem becomes simply the advection equation,
which can be solved by upwinded derivatives.

The only question that remains is the proper averaging procedure between
the left and right states. Roe’s original prescription for the Roe average requires
that the linearized problem is exact for a single shock wave. It is quite difficult
to fulfill this requirement for the MHD Riemann problem, and in practice one
can use the simple arithmetic average for the primitive variables V= (p,v,p,B)
to get the averaged state

FLr _ VE4 VL
2
The advantage of averaging primitive variables instead of conservative variables
is twofold: negative pressure cannot occur due to the averaging and the eigen-
values and eigenvectors are simpler expressions in terms of V than in U.
The eigenvalues are rather simple: c!,c?...c"

(4.20)

..C are

vy — B <y — VR <y, — SOV <y, <y + SOV <y 4 VO <y, 4t

(4.21)
where the wave speeds relative to the fluid have been defined by (1.10-1.11).
The 4th wave speed ¢! = v, corresponds to the entropy wave or a contact
discontinuity.

The properly normalized (non-singular) left and right eigenvectors I* and
7* has been first given for the ideal MHD equations by Brio and Wu [3]. The
expressions for the eigenvectors have been greatly simplified by Roe and Bal-
sara [26]. Still, they are too complicated to be repeated here, the interested
reader is referred to their article. For multidimensional MHD, Powell [23, 12]
has introduced the 8-wave Riemann solver, which adds a divergence wave that
propagates with the fluid velocity v. The addition of this wave removes a sin-
gularity of the approximate Roe solver that occurs if no care is taken for the
numerically generated divergence of the magnetic field (see chapter 5).

Riemann solver formulations always assume that the discontinuity is in the
z direction and the vector variables are given with their z,¥, 2 components. On
a finite volume grid the cell interface is not aligned with any of the axes in
general. The solution is to rotate the vector variables into a frame aligned with
the interface. In 2D the rotation matrix is unique, in 3D it is not. Once the
Riemann problem is solved, the resulting vector components should be rotated
back to the z,y, z coordinate system with the inverse matrix.
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4.7 Entropy Fixes

Roe’s approximate Riemann solver (used by the TVD-MUSCL scheme and the
one step TVD scheme) can produce non-physical expansion shocks that violate
the entropy condition. The physically correct solution is a rarefaction wave.
The TVDLF scheme, on the other hand, is not prone to such errors.

For the TVD-MUSCL scheme the magnitude of the eigenvalue |cF(UL®)| in
the diffusive flux definition (4.14) is replaced by

(*) = K 2|Ck|k 2 i 1] > e (4.22)
P(c®) = % otherwise '

Essentially, the sharp |.| function is smoothed by a parabola near 0. The pa-
rameter cf, can be determined in several ways. The original entropy fix by
Harten and Hyman uses the wave speeds ¢®* and c®® corresponding to the left
and right states UL and UF, respectively:

k

k. =max(0,c* — BT, ME — k) (4.23)

They prove that this fix avoids the violation of the entropy condition near tran-

sonic points. Powell suggests a somewhat more diffusive (larger c¥. ) entropy
fix
k. =max|0,2(cH B — &) (4.24)

while Yee simply takes a constant value for c¥ . for each k. See [17] for a detailed
discussion of the entropy condition and fixes.

In principle an entropy fix is only required for the non-linear waves like the
left and right moving slow and fast magnetosonic waves. In practice, however,
numerical difficulties can often be overcome by adding a small amount of diffu-
sion. Therefore entropy fixes are sometimes applied to all characteristic waves

with good results [24].

4.8 Positivity Fixes

Beside the conservation of the conservative variables U , there are other physical
restrictions on the numerical solution. In hydrodynamics already, it is difficult
to maintain the positivity of thermal pressure in supersonic flows. The reason
is that the total energy e is dominated by the kinetic energy, and a small error
in either may lead to a numerically negative thermal energy. The situation
is even worse for MHD, where the magnetic energy can also dominate over
thermal energy. The simplest fix is that negative pressure values calculated
from equation (1.4) are replaced by a small positive value. This may work in
some cases, but not always. The next step can be adding some diffusion in form
of an entropy fix, or by applying more diffusive slope limiters (like minmod),
or sometimes reducing the time step may help. A more drastic solution is to
increase the total energy where the pressure is negative to a value which makes
it positive again. Such a change violates the conservation of energy, but in some
cases, e.g. when a stationary solution is sought for, this can be acceptable.
The best solution is to locally recalculate U by a positive scheme like the
HLLE scheme [9], which guarantees positivity. The reason of not using a positive
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scheme everywhere is that such schemes are only first order accurate. Tests by
Quirk [24] show that such a composite scheme can be quite robust against many
failings of the approximate Riemann solvers in computational hydrodynamics.
It is not clear how the HLLE scheme works for MHD.



Chapter 5

Keeping Divergence of the
Magnetic Field Zero

The MHD equations have a special property which does not occur in the com-
pressible hydrodynamic equations, namely the requirement that the magnetic
field should remain divergence free (1.9). This is automatically satisfied in 1D
simulations where B, =const, and dy = 0, = 0, but the standard discretization
methods do not guarantee V - B = 0 in multi-dimensional simulations. There
are several ways to deal with this problem. Many of these approaches have close
analogues applied to the equations of incompressible hydrodynamics, where the
velocity field v should remain divergence free [18]. This analogy, however, is
not realized by many practitioners of computational MHD.

The simplest approach is to increase the spatial resolution until the diver-
gence of B become small and the solution starts to converge. This may not
work if the scheme is unstable due to the errors in V-B, which is the case for
some Riemann type solvers.

Another way to keep V-B exactly zero is to rewrite the MHD equations by
using the wvector potential A instead of B = V x A. The disadvantage of this
approach is that the order of spatial derivatives increases by one, which reduces
the order of accuracy by one; the equations are not in a conservation form any
longer; the equations become complicated in 3D; and the boundary conditions
on the vector potential may not be physically intuitive.

The methods presented in the following sections are used in many modern
MHD codes.

5.1 Non-conservative Formulation

One can modify the equations (1.6-1.8) to

9

Sr+V-(vov-BB)+Vpw = —(V-B)B (5.1)
%+V'(V6+thot_BB'v_anJ) = —(V-B)B-v (5.2)

B

68—t+V-(vB—Bv)+Vx(nJ) = —(V-B)v (5.3)

26
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Figure 5.1: The staggered grid version of Constrained Transport. Combined
with a finite volume approach, some interpolation is required (dashed arrows).

by adding source terms to the right hand sides. All of these terms are propor-
tional to V-B thus they should always remain zero analytically.

It was found by Powell [23, 12] that writing the MHD equations in the above
form together with the 8-wave Riemann solver is stable unlike the usual form in
which these “corrective source terms” are omitted. Téth and Odstréil [39] found
that Powell’s source terms are beneficial for the flux-corrected transport (FCT)
and TVDLF schemes as well. Note, that these terms are not in a conservation
form, but they are usually small.

The non-conservative source terms eliminate the instability, but not the nu-
merical error in divergence B. For some problems the use of Powell’s source
terms seems to be sufficient, the errors in V-B remain small, and the conser-
vation of quantities is satisfactory. In other problems, especially for long time
integrations, the error may grow to unacceptable values.

5.2 Constrained Transport

For finite difference schemes the constrained transport method by Evans and
Hawley [10] offers a simple and efficient solution by using staggered grids. The
magnetic field components are represented on the cell interfaces, while density,
momentum and energy in the cell centers. In 2D the B* component is located
at Tji1/2,yr while the BY component is at zj,yg41/2- The v x B term is
calculated at the cell corners ;.1 /2,¥k+1/2 and the induction equation (1.8) is
applied using simple finite differences along the cell edges, e.g.

(v x B)j+1/2,k+1/2 —(vx B)j+1/2,k—1/2

z,n+1 _ pz,n
B - Bj+1/2,k + At Ay

172,k

(5.4)
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Figure 5.2: The centered difference version of Constrained Transport. Combined
with a finite volume approach, no spatial interpolation is needed.

It is easy to show that the numerical divergence of B

B? - B? BY - BY
(V-B)jr = J+1/2,k J—1/2,k+ 3, k+1/2 J,k—1/2 (5.5)

ow Az Ay

does not change due to perfect cancellation of terms, i.e. if V - B™ = 0 then
V -B"! = 0 to round off errors. The constrained transport method works in
3D in a similar fashion.

Recently this idea was applied to Godunov type schemes by Dai and Wood-
ward [5]. After a full step by a scheme like TVDLF or TVD-MUSCL, inter-
polation in space and time is used to obtain v x B at the cell corners at time
level n +1/2. Afterwards the B* field centered at the cell interfaces is updated
according to (5.4). The components of the cell centered B are obtained by av-
eraging B*, and they are used in the next step. Although Dai and Woodward
regard B* as the primary variable, in fact it is only used to obtain B, thus one
can equally regard B as the primary variable which eliminates the need for a
staggered grid and corresponding boundary conditions. Of course, the numeri-
cal divergence of the cell centered B is not zero, but it should remain close to
zero to second order accuracy.

A further step in the direction of simplifying the idea of constrained trans-
port is to use simple central differencing (like eq.2.3) for the induction equation
on the original grid using cell centered and time centered (v x B)?’Zl/ 2. Prelim-
inary experiments by the author show that the results are just as good as with
the staggered approach, and the formulation is simpler. Furthermore, the cell
centered magnetic field is divergence free in the

z — B? BY — BY
1,k —1,k k1 k1
(V-B)jr =+ 2A;uj + - +2AyJ (5.6)

numerical sense, which is more natural than having a staggered B* with zero
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divergence.

The main advantage of the constrained transport method is its simplicity
and efficiency. There are a few draw backs as well: the method only works for
orthogonal finite volume grids; the stability of the scheme requires the Courant
number to be C < 0.6; the interpolations introduce diffusion and increase the
stencil.

5.3 Projection Scheme

The most general fix to the problem is the projection scheme originally proposed
by Brackbill and Barnes [2], which is a correction to the magnetic field after the
time step is completed by some arbitrary numerical scheme. The name comes
from the idea that the B field is projected to a divergence free B’ field which is
as close as possible to B. To achieve this, one needs to solve a Poisson equation
for the potential ¢

Vi =V-B (5.7)

and then to correct the magnetic field to
B'=B-V¢ (5.8)

It is easy to show that the correction does not affect the vector potential, the
current density or the integrated magnetic flux. In fact one can prove that

/ dz(B' - B)? (5.9)

is minimal with the constraint V-B' = 0 and ¢ is the Lagrange multiplier for
this constrained minimalization problem. In other words, the projection scheme
makes the smallest possible correction that removes the unphysical part of the
numerical solution without affecting the physically meaningful quantities. The
price to pay for these nice properties is the Poisson problem (5.7), but that can
be solved efficiently with either direct or iterative solvers. The numerical diver-
gence (like eq.5.6) will be exactly zero only if the Laplace operator is evaluated
in two steps as a divergence of the gradient (see section 3.3) with the same
difference operators as used for calculating V-B in (5.7). One should realize,
however, that the numerical scheme does not actually use this numerical rep-
resentation of the divergence B directly, so its exact cancellation may not be
crucial.

Direct Poisson solvers work for relatively special cases, e.g. uniform Carte-
sian grid with periodic boundary conditions, only, and they require about 30%
of the total CPU time [27]. For this particular Poisson problem (5.7), iterative
solvers are not just flexible, but also surprisingly efficient. The numerical er-
rors in V - B usually arise as local errors of opposite signs (short wavelength)
which are removed by the Conjugate gradient type solvers (section 6.6 rather
efficiently. The very small long wavelength errors do not have to be removed at
all, since an approximate solution of the Poisson problem is quite acceptable.
By applying a few iterations of the linear solver, we can reduce the numerically
generated divergence of the magnetic field sufficiently. In my experience, the
projection scheme with an iterative solver requires about 15% of the total ex-
ecution time on Cartesian grids (more efficient than direct solvers), and about
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30% on general structured grids. One draw back of solving the Poisson equation
approximately is the resulting numerical noise that can spoil the convergence
to a steady state.

It is also important to choose good boundary conditions for ¢ in the Pois-
son equation 5.7 so that the corrected magnetic field B’ satisfies the boundary
conditions for the physical problem.



Chapter 6

Temporal Discretization

6.1 Explicit Time Stepping

In explicit schemes the fluxes and the sources are calculated at the n-th time
level and their contribution is added to the current value of U™. The general
conservation law (2.1) can be discretized in time as

Urtt = U™ + At[-6;F,(U™) + S(U™))] (6.1)

This forward Euler scheme is temporally first order accurate only, but it is easy
to form higher order Runge-Kutta or predictor-corrector type schemes, e.g. a
two step Runge-Kutta scheme is

gz = gy Sa 0 + S0m) (6.2)
fn+i/2 _ (7"+At[—6,~ﬁ,~((7”+1/2) +§(U~n+1/2)] (6.3)

Explicit time integration is simple and fast, and it is easily parallelized for
parallel computers. The main disadvantage is that the time step At is limited
by numerical stability requirements. For the ideal MHD equations, the stability
condition requires that the time step is shorter than the crossing time of the

grid cells by the fastest wave
A.’L‘i

max
G

At < (6.4)
for all grid cells and all directions ¢ = 1,2,3. This is the famous Courant-
Friedrich-Levy (CFL) condition valid for explicit time integration of ar-
bitrary hyperbolic PDE-s. In terms of the Courant number (3.5), the CFL
condition simply states that C' < 1 is required everywhere for stability. In a
numerical code one needs to calculate the smallest value of Az;/c®* in every
time step and modify At such that the CFL condition (6.4) is fulfilled.

In cases when fast waves are really present and the time evolution should
be accurately simulated, the stability limitation coincides with the accuracy
limitation, since one cannot calculate the interaction of fast waves without rep-
resenting them at the discrete time levels in each cell they are passing through.
In some time accurate calculations, however, the fast waves that set the limit
on the time step are not actually present at all, thus the accuracy would not

31
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require short time steps, and the explicit scheme may be very inefficient. This
is also the case in steady state calculations, where the transients leading to the
final state are of no interest.

For the parabolic resistive MHD equations an additional constraint comes
from the diffusion time scale, which implies that

(A.’L’z)z
At < T (6.5)

should hold for all grid cells and all directions i = 1,2, 3. It depends on the resis-
tivity n and the grid resolution Ax whether the CFL condition or the diffusion
time limit is more restrictive.

6.2 Operator Splitting

The easiest way to generalize a 1D scheme to multidimensional problems is via
an operator splitting, originally by Strang [32]. Below a simpler but equally
accurate version is described, which is usually used in practice.

Suppose that L., L, and L, are some temporally and spatially second order
operators that evolve the one dimensional equations

8,0 +9,F, =5/3 (6.6)

from time t to t + At, respectively. Then applying these 1D operators one by
one in an alternating order gives

U™? =rL,L, L,L,U" (6.7)

in 2D and .
v"**=rL,L,L, L,L,L,U" (6.8)

in 3 spatial dimensions. Using Taylor expansions in time, one can show that
U™t2 is a spatially and temporally second order accurate solution of the sum of
the split equations (6.6) which is the same as the full PDE (2.1). Without the
alternations the scheme would only be first order accurate in time. The splitting
of the source term into equal parts in 6.6 minimizes the splitting error. When
calculation of the source term S is expensive, one can put all of it into one of the
1D equations. Source terms arising due to axial symmetry (3.14-3.15) should
be added at the same time as the radial fluxes F‘;.

In a similar fashion the PDE can be split into a homogeneous multi dimen-
sional part and the equation for the source terms

5)5[7 + 3iﬁi =0
U =8 (6.9)

.1l

Although the formal accuracy of the split formulation is the same as the
accuracy of the unsplit discretization, the two approaches are not always inter-
changeable. For steady state calculations, for example, the alternating order of
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the operators will introduce some oscillations between even and odd time steps.
This can be fixed by keeping the order of the operators fixed. A more serious
problem is that the splitting error introduces a non-linear term in At even if
the individual operators are linear in At¢. Linearity in the time step is recom-
mended for steady state problems, since it ensures that the solution satisfies the
discretized form of 8;F; + S = 0 exactly independent of At. Nonlinearity in At
can lead to spurious steady states, oscillations, or even chaotic behavior [44].

6.3 Fully Implicit and Semi-Implicit Time Step-
ping

Stability of the time integration can be improved by fully implicit time integra-
tion. For example the backwards Euler scheme

G = 07 + ABF(T) + ST (6.10)

is unconditionally stable (at least according to the linear stability analysis).
Note that the fluxes and the sources are evaluated at time level n + 1 thus
one needs to solve an implicit equation for U™+!. This simple scheme is only
first order accurate in time, but that can be improved easily for time accurate
calculations (6.12).

While the stability of the implicit time discretization is a great improvement
over explicit schemes, one has to solve the implicit equations for the unknown
U™ which requires linearization and the inversion of the [I — Atd(8;F;)/0U]
matrix. In 1D there are efficient direct solvers, while in multidimensional cases
iterative and multigrid methods need to be used. This can be costly both in
terms of CPU and storage requirements. It is also important to realize that the
linear stability does not guarantee stability for non-linear equations. The time
step is usually limited by non-linear stability condition which can only be found
by experimentation.

Semi-implicit methods try to combine the stability of implicit methods with
the efficiency of explicit methods. The idea is to treat only that part of the equa-
tions implicitly, which causes the stability problems. For example, in resistive
MHD when the diffusion time (Az)2/n becomes the limiting time for At, one
can treat the resistive terms implicitly, i.e. calculating them at the next time
level, while all the other terms explicitly. There is a lot gained relative to the
fully implicit method: the size of the matrix to be inverted decreased since only
B and e are implicit, the matrix elements are much simpler, and the structure
of the matrix is symmetric and diagonally dominated, which is much easier to
solve with iterative methods than the advection dominated fully implicit prob-
lem. The main problem with semi-implicit time integration is that the scheme
is equation and problem dependent, and the non-linear stability condition is
usually more restrictive than that of fully implicit time stepping.

6.4 Some Implicit and Semi-implicit Schemes

The rest of the sections in this chapter are taken directly from [15, 38] with
minor modifications.
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For sake of simple notation, we rewrite the PDE system (2.1) into an even
more compact form

8,0 = R(U) (6.11)

where the residual B = — > o F; + 8.

There are three popular schemes for the (semi-)implicit time integration of
(6.11): the temporally first order backward Fuler scheme (6.10) which can be
recommended for steady state calculations, the second order trapezoidal method
for implicitly treated parabolic source terms, and the second order Backward
Differentiation Formula (BDF2) for advection dominated time accurate inte-
gration. All of these methods can be regarded as a special case of the following
general two parameter time discretization

Ugrtt = U™+ At R(O")
ﬁ'n _ (—jnfl B
+BAt, [Eﬁmpl(ﬁn+1) — ﬁimp1(ﬁn)] , (6.12)

Here R is a conservative high-order discretization (TVD, TVD-MUSCL, or
TVDLF), ﬁimpl contains all the implicitly treated terms, and the a and £
parameters may vary between 0 and 1. The scheme is three-level whenever
the parameter a # 0, while for a = 0, it only uses time levels n and n + 1.
The backward Euler scheme corresponds to a = 0,8 = 1, and the trapezoidal
scheme to a = 0,8 = 1/2. The BDF2 method with a fixed time step requires
a=1/3,8 =2/3, (for varying time step a = At,/(At, + 2At,_1),8=1—a).
In the first time step, when Un=1is not available, one has to use the backward
Euler or the trapezoidal method. It can be showed [15] that second order spatial
accuracy can be maintained even if a first order discretization is used for ﬁimpl
in (6.12). Different semi-implicit options, i.e. when only some of the variables,
or some of the terms are treated implicitly are also discussed in detail in [15].
To solve Eq. (6.12) for U'"‘H, we linearize it by

—

Rimpl(Un+1) = Rimpl(Ug:glla i?npl)
aéimpl

o (UrE = U + O(AE?) (6.13)
impl

impl —

+

where [jimpl contains the implicitly treated variables. The explicitly treated
variables ﬁexpl, if any, are advanced by an explicit time stepping scheme before
Eq. (6.13) is applied.

The linearized fully implicit backward Euler scheme, for example, results in
the linear system

(ﬁ”“ - (7") = RO, (6.14)

i _ 6ﬁimp1
At 10

which can be solved by one of the linear system solvers discussed in section 6.6.
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6.5 FEvaluation of the Jacobian matrix

The Jacobian matriz, 6ﬁimpl / 6ﬁimp1 in (6.13), can be evaluated in several ways.
One may attempt to calculate the partial derivatives analytically, however, this
only works if the partial differential equations and their discretization to Rimpl
are relatively simple. In case of the MHD equations even a trivial discretiza-
tion (like centered differences) will result in rather complicated elements of the
Jacobian matrix. Usually a simple shock capturing scheme (like the first order
TVDLF1 or TVD-MUSCL1) are used, and the analytical approach becomes
very involved even for hydrodynamics [42, 43].

Another approach is to calculate the Jacobian matrix elements numerically.
We discuss here three options following [15, 38] and describe their basic prop-
erties and their applicability. For sake of brevity we use R instead of ﬁimpl.

The matriz-free evaluation does not calculate the elements of the Jacobian
matrix, only the action of the Jacobian on a vector AU , when this is needed
by the iterative schemes. We simply take the directional derivative of R with
respect to U by taking a difference

D R DTN A_' _ D(TIn
Ok \ iy _ FU" + €AU) — R(U™) (6.15)
a0 €

where € is an appropriately chosen small parameter. The matrix-free method
is independent of the spatial discretization and requires very little storage. Un-
fortunately, the matrix vector multiplication 6.15 can be computationally ex-
pensive, and direct linear solvers and preconditioners cannot be used, since the
matrix elements are not available. Even the iterative solvers may fail to converge
due to the fact that the matrix is effectively perturbed at each iteration by the
error in the numerical evaluation of the matrix vector product. The matrix-free
approach can be applied for treating parabolic source terms (e.g. resistivity in
MHD) implicitly and in combination with the approximately implicit strategy
(see section 6.7).

5 2l s x= | 1| 2| 3| 4| 5| 6| 7
1] 2

1l 2| 3 3 2 y= | 1| 3| 5| 7| 2| 4| 6
2 4| 5| 1

1D 2l sl 1l 2| 3 z= | 1| 4| 7| 3| 6| 2| 5

2D 3D

Figure 6.1: Grid masks used for the calculation of the Jacobian matrix. Cells
with the same number have non-overlapping stencils.

The grid masking algorithm calculates the individual matrix elements nu-
merically in a fairly general way. The idea is to perturb each implicitly treated
variable w of U in certain spatial patterns, and then to read off the matrix
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elements from the numerical evaluation of R

OR} _ RY(U + edy) — R;-L(U). (6.16)
ouy €
In this expression, the superscript u denotes the component of R considered,
and the grid cell j belongs to the stencil of the perturbed cell k. If we restrict
ourselves to spatial discretizations that involve the neighbouring grid cells only,
all matrix elements can be determined in 1 + (2D + 1)Njy evaluations of
R, where D is the number of spatial dimensions and Njpyp is the number of
implicitly treated variables.
A more efficient, but less general algorithm calculates the Jacobian matrix
elements directly from the partial derivatives OF / dU and 85 / AU obtained nu-
merically in every cell according to the general rule

of  f(U +e®) — f(0)
oo = - . (6.17)

The partial derivatives of F, and § are combined according to the spatial dis-
cretization scheme, for example TVDLF1. Here some of the work is done an-
alytically, i.e. the influence of boundary conditions, non-local source terms,
numerical fluxes etc. on the matrix elements have to be taken into account ex-
plicitly, however, the efficient method can calculate the Jacobian matrix about
2D+1 times faster than the general grid masking algorithm. If even 8F; / aU and
a8 / AU were calculated analytically, we would arrive back to the fully analytical
approach.

Once the Jacobian matrix elements are calculated, which is a computation-
ally expensive step, direct solvers, preconditioners, and iterative schemes can be
applied efficiently.

6.6 Linear System Solvers

In one dimensional calculations the Jacobian matrix will be block tridiagonal,
assuming that the scheme used for ﬁimpl in (6.12) has a three point stencil. Such
a linear system can be efficiently solved by a direct block tridiagonal solver. This
requires that the Jacobian matrix elements are calculated directly with the grid
masking or the efficient algorithm described in section 6.5.

In more than one dimensions, or in combination with the matrix-free evalu-
ation of the Jacobian, the linear system has to be solved by iterative methods.
For symmetric positive definite matrices, e.g. resistive source terms on a Carte-
sian grid, the Conjugate Gradient (CG) scheme is the most efficient, both in
terms of memory and CPU cost. For all other types of matrices, the Stabilized
Bi-Conjugate Gradient (Bi-CGSTAB) algorithm (van der Vorst [41]) is found to
be robust and efficient with a relatively small amount of storage requirement.

In multi-dimensional advection dominated problems preconditioning is vi-
tal to accelerate the convergence of the iterative schemes. The Modified Block
Incomplete LU (MBILU) preconditioner [40] can efficiently precondition penta-
diagonal and hepta-diagonal matrices resulting from the nearest neighbour dis-
cretization in 2 and 3 dimensions, respectively.
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6.7 Approximately Implicit Method

When direct computation of the Jacobian elements is not desirable (e.g. due to
high computational cost), we can use the matrix-free approach (see section 6.5)
in combination with Minimum Residual Approximated Implicit (MRAI) time
integration strategy introduced by Botchev et. al. [1].

In essence, to solve the equation in Unt! for a given implicit scheme, the
MRAT method uses a restricted and fixed number of iterations with a minimum
residual method, such as the Generalized Minimal RESidual (GMRES) algo-
rithm [29]. This allows the time step to be much greater than for an explicit
scheme. For time accurate calculations, the initial vector for the GMRES pro-
cess is a solution obtained with a second order explicit scheme, and the implicit
scheme to be approximated is also of the second order, e.g. BDF2. For steady
state calculations, the initial vector is taken simply as U " and the implicit
scheme is Backward Euler. The order of the MRAT scheme is the minimum of
those of the initial vector and the basic implicit scheme, and it does not depend
on how accurately the linear system is solved.

Since the MRAT scheme can be seen as a stabilized explicit scheme, it is not
unconditionally stable, and it is important to adjust the time step correctly.
This is achieved by extracting the spectral information delivered by minimal
residual iterations, and requires a negligible amount of extra work. For details
see [1].



Chapter 7

Principles of Code Design
and Numerical Simulations

In the previous sections a great number of options are listed for both space and
time discretization. It is not practical to implement all these schemes and just
see which one works best for the problem we want to solve. Instead, one needs
to go through a number of steps to make a choice. There are three options:
using existing general codes, modifying existing research codes, or writing a
new software from scratch. In the latter case the code should be well designed
and structured. Doing numerical simulations is not a trivial task, it requires
careful planning and testing.

7.1 General Considerations for the Numerical
Scheme

First, the class of problems to be solved should be considered. Even if at the
beginning it seems that we are interested in doing a single simulation only,
unavoidably we will want to solve other related problems later, especially with
all the efforts put into the software development. The selected class of problems
should be written in a general mathematical form, e.g. like equation (2.1).
Using general notation in the software is preferred, since the different variables
can be handled in a uniform manner, and changes to the equation can be done
easily.

In the selection of the discretization technique several things should be taken
into account. The geometry of the computational domain determines if a Carte-
sian grid is sufficient, or the more general structured, or even unstructured grids
are necessary. If we expect discontinuities in the solution, only shock captur-
ing methods should be used, while smooth solutions can be best approximated
with high order methods. The time scales determine if explicit time integration
schemes are efficient or not. The hardware to be used depends on the size of
the problem and of course on the availability of super computers. If parallel
machines are needed, the numerical techniques need to parallelise well.

38
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7.2 Using Existing Codes

Before one starts to develop a new code from scratch it is worthwhile to check
whether an existing code can be used. It is possible that there already is a
working software which needs only minor modifications to solve our problems.
Of course, codes written for special problems by other researchers are usually
difficult to get, to understand, and to modify. Another option is to use a general
software that covers the problems we want to solve. There are a few such general
HD and MHD codes publicly available:

e the ZEUS code is a traditional finite difference code with a staggered mesh
by Stone and Norman [30] at
http://zeus.ncsa.uiuc.edu:8080/lca_home_page.html,

e the CLAWPACK and AMRCLAW software pakages by R. J. LeVeque con-
tain TVD-type shock capturing schemes (AMRCLAW has adaptive mesh
refinement) mainly for hydrodynamics at
http://www.amath.washington.edu/ "rjl,

o the Versatile Advection Code (VAC) by Téth [33, 35], described in some
detail in chapter 8, at
http://www.phys.uw.nl/ toth

7.3 Structuring a New Code

Numerical codes become huge with time. It is important to properly structure
a code from the beginning, since it will ease the modification and extension at
later stages. The two main principles of structuring: no program parts should
be repeated and any overly complex part should be split into smaller pieces even
if there is no repetition.

Structuring should be done on all scales starting from the use of parameters,
functions, and subroutines, to the use of modules and separate programs for
separate tasks. The files containing different type of informations should also
be well organized.

At the highest level one may have a code INIT for setting up the initial
conditions and another code EVOL for evolving the solution in time. Such a
separation is desirable for many reasons: the initial condition is stored as a file
in the same format as the output data, thus the code can be restarted from an
intermediate stage; different evolutions can be done for the same initial data
without redoing the calculations involved in the initialization; initial data can
be produced by other codes as long as the data format is compatible. Both
INIT and EVOL should read parameters from easily editable parameter files.
Changing parameters in the source files is not practical, because it requires
recompilation, and the earlier parameter settings are lost. On the other hand,
the small parameter files can be stored for all past runs and they can be modified
without wasting expensive CPU time.

At the level of modules, a good example is the input-output (I/O) module
that can be shared by the codes EVOL and INIT, therefore the data formats
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initial evol.
params. params
INIT H —| EVOL

Figure 7.1: Information flow diagram of a well structured code. See discussion
in the text.

can be kept consistent easily. Another module may contain all the subroutines
that are directly linked to the equations. This allows to use the same numeri-
cal techniques on different equations by simply replacing the equation module.
Temporal and spatial discretization, grid related subroutines and boundary con-
ditions should also be separated in modules for sake of clarity.

A typical subroutine for the MHD equation can be GETP(U,P) that calcu-
lates thermal pressure from the conservative variables U. The thermal pressure
is required in several places in the numerical algorithms for different U values,
thus it would be foolish to repeat the complicated formulae every time. Having
such a subroutine makes it easier to change the equations from full MHD to
isothermal MHD, for example. Notice that the subroutine GETP should return
an array for the full grid rather than a scalar value for a single grid cell, since the
overhead in the subroutine or function call would become large. Also, calling
functions from a loop is usually difficult to vectorize and parallelize on super
computers, while a call to a subroutine with a huge loop inside vectorizes and
parallelizes easily. Using similar subroutines to calculate fluxes, source terms,
eigenvalues and eigenvectors, the physics can be separated from the numerical
scheme.

On the level of parameters the grid size NX, NY, or the number of variables
NU should be named constants that can be changed in a single declaration
line. This avoids unnecessary frustration when some of these basic parameters
should be changed. There is no computational cost involved, since constant
parameters are replaced by their values at compilation time. Ideally one should
avoid using any numbers in the source code except for very trivial constants like
2 in an averaging. Constant parameters can also be used to make the general
notation for the variables easier to read. For example defining the constants
IRHO, IRHOVX, IRHOVY, IE, IBX, IBY to be the integers 1,...,NU, one can
refer to the density as U(IRHO) in the equation module, while a loop can be
done for all variables U(I) in the other modules, where their physical meaning
does not matter.
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Example_mhd22

0 0.0E+00 2 2 6

10 10

1.4E+00 0.0E+00

y rho rhovx rhovy e bx by gamma eta

.5E+00 0.5E+00 2.0E+00 0.0E+00 0.0E+00 3.0E+00 1.0E+00 0.0E+00
.5E+00 0.5E+00 2.0E+00 0.0E+00 0.0E+00 3.0E+00 1.0E+00 0.0E+00

= O M

.5E+00 0.5E+00 2.0E+00 0.0E+00 0.0E+00 3.0E+00 1.0E+00 0.0E+00
.5E+00 1.5E+00 2.0E+00 0.0E+00 0.0E+00 3.0E+00 1.0E+00 0.2E+00

O O -

Figure 7.2: A formatted 2D MHD initial data file for the Versatile Advection
Code. The 5 header lines contain the header string; the parameters IT, T,
NDIM, NPAR, NU; the grid size NX, NY; the equation parameters GAMMA
ETA; and the variable name string. The header is followed by the coordinates
X and variables U for the NXxNY cells. In the real file 10 decimals are saved.

7.4 Data Format

As it has already been mentioned, the initial data and the output data should
be in the same format for sake of easy restart. The data file should contain
as a minimum the grid size NX, NY, the coordinates X, Y, the number of
conservative variables NU and their value U, the physical time T and the time
step counter IT. If there are adjustable equation parameters, like v and 7 in the
MHD equations, there number NPAR and values PAR should also be given. It
is very useful to include strings describing the problem, and the names of the
variables and equation parameters. Having the sizes of the arrays in the data file
makes it easy to read the arrays in one block. If the output file contains several
snapshots at different times, the size of the snapshots can be calculated from
the array sizes and one can jump directly to the position of a given snapshot.
The best format of the data files depends on the purpose. For an accurate
restart one should save the current state in the binary format of the machine.
The advantage of binary format is accuracy, economic disk space usage, fast
reading and writing. The disadvantage is that the file cannot be ported be-
tween different machines unless they have compatible binary representation; it
is difficult to read the file directly; and the visualization software may not be
able to read arbitrary binary data formats. The other extreme is storing the
data in ASCII files. The obvious advantage is portability between machines
and softwares, the disadvantage is some loss in accuracy and slow input and
output. On parallel super computers reading and writing formatted data files
can become a bottleneck of performance. ASCII data files tend to be huge,
although their size can be reduced by standard compression programs. There
are compromises between the two extremes, such as the XDR format, which
is portable between machines having the XDR libraries, and still economical.
Ideally one should have a choice in the code for the format of the data files.
Due to limitations in available disk space and the CPU time spent on I/0,
one can usually save at most a few dozen or hundred snapshots from a simulation
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data/example.ini
Example_mhd22
x y rho rhovx rhovy e bx by

domain
10 10 -nx ny
0. 0. -xmin ymin
10. 10. -Xmax ymax
uniform
2. 0. 0. 3.1.0. -rho rhovx rhovy e bx by
egpar
1.4 0. -gamma eta
save

Figure 7.3: An example parameter file for the initial data shown in figure 7.2.
The domain, eqpar, uniform, save strings are interpreted as actions by the
initialization code, and the appropriate subroutine reads the consequtive param-
eters. The Fortran READ command ignores the comments following numerical
values, which can be used for documentation.

that may consist of ten or hundred thousands of time steps. The progress of the
computation may be best followed by writing out some overall information, like
the physical time, the time step, some interesting global quantities (e.g. total
kinetic energy for an instability or the residual for steady state calculations)
much more frequently into a logfile. Usually the logfile should be viewed directly,
so it should be in ASCII format. The logfile should also have a header that
identifies the problem and describes the quantities saved into it. One may also
save partial information for visualization purposes more frequently than the full
data is saved but less frequently than the logfile is written.

Parameter files should always be in easily editable ASCII format. Fortran
provides the rather flexible namelists that allow setting parameters in arbitrary
order by using their names. Unfortunately, the exact format of namelists has
not been standardized in Fortran 77, and even some of the existing Fortran 90
compilers fail to be consistent with the standard. One can, of course, mimic the
behavior of namelists, but that can result in a rather lengthy program if there
are many parameters to set. The alternative is to use a fixed order of reading
parameters.

The parameter file for the initial condition code INIT should define the file
name for the initial data, the string describing the problem, the grid resolution
and the coordinate values, the parameters for setting the initial condition for
U, and possibly the intended equation parameters. The parameter file for the
EVOL code should contain the input, output and log filenames, the frequency
of saving information, and parameters for stopping condition, for the numerical
methods, and for the boundary conditions. It is important to use expressive
parameter strings to select among several options. The use of numbers should
be restricted to parameters of truly numerical nature, such as the maximum
number of time steps.

Data files and parameter files belonging to the same problem should have
similar names, or should be in a separate directory.
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&filelist
filenameini=’data/example.ini’,
filename=  ’data/example.log’,

’data/example.out’

/

&savelist

ditsave=1,10
/
&stoplist

itmax=100

/

&methodlist
typefull= 6%’ tvdlf’
typelimiter= 6*’minmod’
eqpar (2)= 0.01
dimsplit= .false.
constrainB= .true.

/

&boundlist
typeB= 24x*’periodic’

/

4paramlist

courantpar=0.4
/

Figure 7.4: An example parameter file for the Versatile Advectom Code that
can evolve the initial data shown in figure 7.2. Namelists are used to set the
filenames, file saving frequency, stopping condition, solution method, boundary
conditions, and time step size. Note the flexibility of namelists in setting full
arrays and array elements.
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7.5 Doing Simulations

New or modified codes should be thoroughly tested on simple problems with
known solutions before an attempt is made to do the simulations we are inter-
ested in. If possible, the first simulations should be done at a lower dimension
using some symmetry of the simplified problem. Doing a simulation in 1 or 2
spatial dimensions does not mean that the vector variables pv and B should
have only 1 or 2 components respectively. When all 3 components of the vec-
tor variables are represented, but only two spatial coordinates are used, it is
commonly called a 2.5D simulation.

The initial condition should be carefully checked, it is very easy to make a
mistake in setting it up. It is also worthwhile to do a few time steps at a low
grid resolution and check whether the results make sense, and in particular, to
check the boundary conditions. The number of time steps, the grid resolution,
and the dimensionality of the problem can be increased once we are confident
about the early results. If possible, check the code in higher dimension against
the lower dimension results by doing physically equivalent simulations.

After all these steps, we may proceed to solve the real problem for which the
solution is not known. The results of the simulations should be handled with
extreme care. They should be checked against physics (e.g. conservation of
quantities not built explicitly into the numerical scheme), against other numer-
ical methods (if available), and most importantly, against grid refinement, i.e.
the solution should converge as the spatial and temporal resolution is increased.

7.6 Numerical Convergence

To verify numerical convergence, the same physical problem should be solved
with at least three different resolution for the the same physical time. The
global difference between the high, middle, and coarse resolution solutions U¥,
UM U¢ can be calculated as

Eyy = Y (U -UMY (7.1)

J

S wM-uk)y? (7:2)

J

2
ECM

The differences should be taken at the grid points j corresponding to the coars-
est resolution. Let us assume that the solutions are related to the unknown
analytical solution U as

UiMC = U; + (Azg o) E; (7.3)

where E; is the local numerical error for Az =1 and £ is the convergence rate.
Substituting (7.3) into (7.1) two equations are obtained for two unknowns: the
convergence rate k and the global error ) EJ2

The procedure outlined above has been taken from Stone et. al. [31].



Chapter 8

Versatile Advection Code

The Versatile Advection Code (VAC) [33, 35] is a general tool for solving hy-
drodynamic and magnetohydrodynamic problems arising in astrophysics. The
software package has been developed by the author since 1994 as part of the
project on ‘Parallel Computational Magneto-Fluid Dynamics’, funded by the
Dutch Scientific Research Foundation (NWO) Priority Program on Massively
Parallel Computing. Starting from 1996 other researchers of the project joined
the development: R. Keppens joined the general software development and
maintainance efforts and A. van der Ploeg and M. Botchev contributed signifi-
cantly to the linear system solvers and the implicit time integration schemes.

VAC is available via registration at the http://www.phys.uu.nl/ toth home
page. The latest version VAC 3.0 has been distributed to 30 users.

8.1 Equation Modules

VAC aims to solve a set of conservation laws with source terms of the form
equation (2.1). The actual equations are separated in modules.

At the moment five equation modules are implemented: the simple transport
equation (1.5) for test purposes, the Euler equations of compressible hydrody-
namics with adiabatic or full energy equation (eqgs.1.5-1.7 with B = 0), and
the resistive MHD equations with isothermal or full energy equation (1.5-1.8).
Source terms for external gravity, heat conduction, and viscosity can be in-
cluded and modified as library subroutines. Other source terms can be defined
in a user written subroutine in the VACUSR module. The equation modules
can be combined with the various source terms, e.g. the Euler equations with
the viscosity source terms are the compressible Navier-Stokes equations.

All equation-modules are written in the dimension independent notation (see
section 8.5), thus the number of spatial dimensions 1 < D < 3 and the number
of components D < C < 3 for the vector variables (e.g. the momentum and the
magnetic field) may have 6 different combinations.

8.2 Grid and Boundary Conditions

The equations can be solved on a 1, 2 or 3D structured grid with conservative
finite volume discretization. A structured grid can be thought of as a continuous
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mapping from a Cartesian mesh. Structured grids include Cartesian, polar and
spherical grids as trivial examples, but they can be used in more complicated
geometries as well. In 1D and 2D both slab and cylindrical symmetry may be
assumed for the ignored dimension(s).

Boundary conditions are implemented by two layers of ghost cells around
the mesh. The values in the ghost cells are updated in every time step, thus
the discretized equations can be applied to the cells inside the physical mesh
without making special cases for the edges. This way the boundary conditions
are fully specified in the subroutines updating the ghost cells, and the boundary
conditions become independent of the choice of the numerical schemes. For
each boundary and each variable the type of the boundary can be defined.
At present there are seven predefined boundary types: periodic, symmetric,
antisymmetric, fized, fired-gradient and continuous. The continuous boundary
condition is an approximate representation of an open boundary by putting
the gradients normal to the boundary to zero in the ghost cells. The fixed-
gradient type is similar, except that the gradient can be different from zero.
Time dependent or more complicated boundary conditions can be realized via
the special boundary type which results in a call of a user defined subroutine.

8.3 Spatial Discretization

At present four algorithms are available for solving the differential equations.
The Flux Corrected Transport scheme (FCT), two Total Variation Diminishing
schemes with a Roe-type Riemann solver (TVD and TVD-MUSCL), and a Lax-
Friedrichs type TVD scheme (TVDLF) with no Riemann solver. See [39] for a
description of these schemes and the references provided there.

All these schemes are second order in space and they are able to simulate
shocks and other discontinuities as well as smooth flows. Multidimensional
equations are solved either by Strang type dimensional splitting, or by adding
the fluxes from all directions at the same time. Source terms may be included
in a time split fashion or added at the same time as the fluxes.

The well-known FCT schemes solve each equation separately. Artificial dif-
fusion is added only where it is needed for numerical stability. The FCT schemes
are good in resolving contact discontinuities, they can handle shocks well, but
close to the discontinuities some numerical noise might be generated. The TVD
schemes on the other hand are very efficient in maintaining monotone profiles
by appropriately limiting the slopes of the variables. The TVD schemes with
the approximate Riemann solver can resolve discontinuities as well as or better
than FCT without the spurious oscillations, but the Riemann solver is specific
to the equation, and the TVD and TVD-MUSCL schemes are not as robust as
the TVD Lax-Friedrichs scheme, which does not need a Riemann solver at all.
The TVDLF scheme is somewhat more diffusive than the other two.

Both the projection scheme and the constrained transport methods are im-
plemented to eliminate the numerically generated divergence B when the MHD
equations are solved. The numerical instability related to V-B can also be
controlled by Powell’s MHD Riemann solver and the corrective source terms.
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8.4 Temporal Discretization

Second order time discretization is achieved by a 2-step Runge-Kutta scheme
for FCT, and a predictor-corrector method, using a Hancock predictor step, for
the TVDLF and TVD-MUSCL methods. The single-step TVD scheme is second
order in time by making use of the eigenvalues, however for this method source
terms are difficult to include with second order accuracy. Higher order Runge-
Kutta time integration schemes are also implemented, for certain problems they
can be numerically more stable than the two-step schemes.

Fully implicit and semi-implicit time integration schemes [15, 38] are also
available, both for time accurate and steady state problems. The Jacobian
matrix is evaluated numerically. The resulting linear system is solved by a block
tridiagonal solver in 1D, while in multidimensional simulations preconditioned
[40] iterative schemes are used.

8.5 Software Design

The philosophy behind VAC is using a single versatile software with options and
switches for various problems, rather than developing a different method or ver-
sion for each problem separately. The advantage of such a general approach is
a reduction of overall time for software development, easier maintenance, com-
patibility of different parts, automatic extension of new features to all existing
applications. The price of the general approach is some added complexity in
the source code.

PreProcessor

Select dimensions

VACINI

Grid and boundaries (Cartesian/structured, slab/axial)

Initial Parl?.g]eters Spatial discretization (Tvp, TvDMU, TVDLF, FCT)

Time discretization (pred-corr, Runge-Kutta, implicit)
Equations

Preconditioner

boundary 1/0

adiabatic HD) |Newton-Raphson

initial source

isethermal MHD hydrodynamics Linear solvers

VACPROC VACITER
B projection CG, BiCGstab, GMRES

Figure 8.1: The structure of the Versatile Advection Code

VACUSRLIB
viscosity, thermal cond.
gravity

VAC is written in a dimension independent notation using the Loop Annota-
tion SYntax (LASY) [34] which is translated by a special-purpose preprocessor
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to Fortran 90, and it can be further translated to Fortran 77 or High Perfor-
mance Fortran (HPF). The preprocessor and the translator scripts are written
in the Perl language. The Perl interpreter is freely available from the net, and
it is already installed on most UNIX systems. The source code expresses data
parallelism clearly, which is important for vector and parallel computers as well,
it can be compiled on any parallel machine with an HPF compiler. VAC has
been installed and is being used on Pentium PC-s under LINUX, on a number
of workstations (DEC, SGI, IBM, SUN, HP), on the vector super computers
Cray C90 and Cray J90, and on the parallel machines Cray T3D, Cray T3E,
IBM SP, and Connection Machine CM5. Good performance [36] has been found
on all platforms.

The source code is divided into smaller units, called modules. Some modules
have several versions, for example the VACPHYS module which contains the
equation specific information: fluxes, sources, the eigenvalues and eigenvectors
for the approximate Riemann solver, etc. Each system of equations is specified
by its respective VACPHYS.EQUATION module. The boundary conditions
and the initial conditions are often problem specific, these special subroutines
are collected in the VACUSR.PROBLEM modules. This is the only part of the
source code which the user is expected to modify, and it can be written in the
dimension independent notation as well as in Fortran 90 or Fortran 77.

8.6 Software Environment

[VAC User Interface}
e

FORM array HyPerl|Text
BROWSER HTML forms
4>
Netscape WEBLINK server }
MOS&iC HTML docs —
\
|
\ VAC SOURCE
EDITOR TEXT FIL, .
e (EXECUTABLES vacini, vac
r . .
browser scf)_llj L vacini vaciter, vacimpl
emacs pa mete.r res “ VRS vacio, vacgrid
Vi Makefile
‘ vacphys
\
VISUALIZER ‘
VISUALIZATION DATA FILES
IDL, SM MACROS
Matlab getpict, animate, LUCCIECC
AVS, DX plotfunc (ASCII / binary)

Figure 8.2: Information flow in the VAC software package

The documentation, about 120 pages, is written in hypertext markup lan-
guage (HTML), which can be viewed and/or printed from the standard web
browsers, e.g. Netscape or Mosaic. There is a user interface written in Perl,
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which lets the user to configure, edit, compile, and run VAC, and visualize re-
sults through the same web browser. Of course, one can do all these steps from
the UNIX shell as well. The manual pages and a demo version of the interface
can be looked at the VAC home page.

The software package contains visualization macros that can read, process,
and visualize the ASCII/binary data files for the visualization softwares IDL,
Matlab and SM (SuperMongo). Conversion for Gnuplot, and to AVS and DX
file formats is also supported.



Chapter 9

Some Astrophysical
Applications

In this chapter, a few astrophysical applications of computational magnetohy-
drodynamics, which the author has been involved with recently, are described.
Each section starts with the authors and the abstract of the paper or manuscript.
The abstract is followed by comments on the numerical techniques used.

9.1 Nonlinear MHD Simulations of
Wave Dissipation in Flux Tubes

Stefaan Poedts, Sander Belién € Gdbor Téth,
paper appeared in Solar Physics [22]

The phase-mixing and resonant dissipation of Alfvén waves is studied in
both the ’closed” magnetic loops and the ’open’ coronal holes observed in the
hot solar corona. The resulting energy transfer from large to small length scales
contributes to the heating of these magnetic structures. The non-linear simula-
tions show that the periodically varying shear flows that occur in the resonant
layers are unstable. In coronal holes, the phase-mizing of running Alfven waves
is speeded-up by the 'flaring-out’ of the magnetic field lines in the lower chromo-
sphere.

The closed loop equations are studied by the HEating by Resonant Absorp-
tion (HERA) [16] code solving the 3D MHD equations in cylindrical coordi-
nates. The numerical scheme uses finite differences in the radial direction and
a pseudo-spectral discretization along the ¢ and z coordinates. Semi-implicit
time stepping is used.

The open loop problem is studied by VAC solving the MHD equations on a
2.5D generalized grid assuming axial-symmetry in the 3rd dimension. The initial
condition and the grid for a flaring loop was produced by a finite element code,
PARIS. Alfvén waves were induced by shaking the field lines at the chromosphere
and their propagation into the corona is calculated by VAC.
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9.2 Numerical Simulations of Prominence Oscil-
lations

N. A. J. Schutgens and G. Tdth,
manuscript submitted to Astronomy € Astrophysics

We present numerical simulations, obtained with the Versatile Advection
Code, of the oscillations of an inverse polarity prominence. The internal promi-
nence equilibrium, the surrounding corona and the inert photosphere are well
represented. Gravity and thermodynamics are not taken into account, but it is
argued that these are not crucial. The oscillations can be understood in terms
of a solid body moving through a plasma. The mass of this solid body is deter-
mined by the magnetic field topology, not by the prominence mass proper. The
model also allows us to study the effect of of the ambient coronal plasma on
the motion of the prominence body. Horizontal oscillations are damped through
the emission of sound waves while vertical oscillations are damped through the
emission of Alfvén waves.

The isothermal MHD equations are solved on a 2.5D non-uniform Cartesian
grid with the FCT algorithm. The initial conditions for the arcade and the
prominence are obtained by a sophisticated relaxation procedure. Then the
stationary prominence is kicked, and the the resulting damped oscillations are
calculated by the code. The non-reflecting coronal boundary conditions are
achieved by the strongly stretched grid, which places the boundaries far away.
It is more difficult to represent the photosphere, which behaves like a solid wall
with frozen in field lines that make an angle.

9.3 Simulations of Small-Scale Explosive Events
on the Sun

D. E. Innes and G. Tdth,
manuscript accepted by Solar Physics

Small-scale explosive events or microflares occur throughout the chromo-
spheric network of the Sun. They are seen as sudden bursts of highly Doppler
shifted spectral lines of ions formed at temperatures in the range 2 x 10* —
5 x 105 K. They tend to occur near regions of canceling photospheric mag-
netic fields and are thought to be directly associated with magnetic field re-
connection. Recent observations have revealed that they have a bi-directional
jet structure reminiscent of Petschek reconnection. In this paper compressible
MHD simulations of the evolution of a current sheet to a steady Petschek, jet-
like configuration are computed using the Versatile Advection Code. We obtain
velocity profiles that can be compared with recent ultraviolet line profile obser-
vations. By choosing initial conditions representative of magnetic loops in the
solar corona and chromosphere, it is possible to explain the fact that at Sun
center the jet flowing outward into the corona is more extended and seen before
the jet flowing towards the chromosphere. Although this model can reproduce
the high Doppler shifted components of the line profiles, the brightenings at low



G. Té6th: Computational Magnetohydrodynamics 52

velocities, near the center of the bi-directional jet, cannot be explained by this
simple MHD model.

The resistive MHD equations are solved on a 2D non-uniform Cartesian grid
with the TVDLF method. Radiative cooling source terms are used in the en-
ergy equation. The initial conditions are relatively simple. Reconnection of
antiparallel field lines is induced by a localized anomalous resistivity. The time
evolution of the jet formation can be best followed by explicit time integration,
while the final steady state can be more efficiently calculated with a fully im-
plicit scheme. Line profiles of the emission coming from the explosive event are
calculated from the simulation data saved by VAC.

9.4 Growth and Saturation of the
Kelvin-Helmholtz Instability with
Parallel and Anti-Parallel Magnetic Fields

R. Keppens, G. Téth, R. H. J. Westermann, J. P. Goedbloed,
manuscript accepted by the Journal of Plasma Physics

We investigate the Kelvin-Helmholtz instability occurring at the interface of
a shear flow configuration in 2D compressible magnetohydrodynamics (MHD).
The linear growth and the subsequent non-linear saturation of the instability
are studied numerically. We consider an initial magnetic field aligned with the
shear flow, and analyze the differences between cases where the initial field is
unidirectional everywhere (uniform case), and where the field changes sign at
the interface (reversed case). We recover and extend known results for pure
hydrodynamic and MHD cases with a discussion of the dependence of the non-
linear saturation on the wavenumber, the sound Mach number, and the Alfvénic
Mach number for the MHD case.

A reversed field acts to destabilize the linear phase of the Kelvin-Helmholtz
instability compared to the pure hydrodynamic case, while a uniform field sup-
presses its growth. In resistive MHD, reconnection events almost instantly ac-
celerate the buildup of a global plasma circulation. They play an important
role throughout the further non-linear evolution as well, since the initial current
sheet gets amplified by the vortex flow and can become unstable to tearing in-
stabilities forming magnetic islands. As a result, the saturation behaviour and
the overall evolution of the density and the magnetic field is markedly different
for the uniform versus the reversed field case.

The 2D MHD (both ideal and resistive) equations are solved on a uniform
Cartesian grid with the one step TVD scheme using dimensional splitting. The
results are compared with the purely hydrodynamic case as well.

9.5 On the Azimuthal Stability of Shock Waves
around Black Holes

D. Molteni, G. Téth, O. A. Kuznetsov,
manuscript submitted to the Astrophysical Journal
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Earlier analytical studies and numerical simulations of time dependent axi-
ally symmetric flows onto black holes have shown that it is possible to produce
stationary shock waves with a stable position both for ideal inviscid and for
moderately viscous accretion disks.

We perform several two dimensional numerical simulations of accretion flows
in the equatorial plane to study shock stability against non-axisymmetric az-
imuthal perturbations. We find that a very small perturbation can produce an
instability as it crosses the shock. After some small oscillations, the shock wave
suddenly transforms into a partially spiral, but closed pattern, and it stabilizes
with a finite radial extent.

The main characteristics of the final flow are: 1) The deformed shock rotates
steadily without any damping. It is a permanent feature and the thermal energy
content and the emitted energy vary periodically with time. 2) This behavior is
also stable against further perturbations. 3) The shock is still very strong and
well defined. The average radial distance of the deformed shock is somewhat
greater than that of the axially symmetric circular shock. 4) The instability
occurs in a wide range of parameters, thus it may have relevant observational
consequences, like (quasi) periodic oscillations, for the accretion of matter onto
black holes. Typical time scales for the periods are 0.01 and 1000 seconds for
black holes with 10 and 108 solar mass, respectively.

Here we solve the HD equations with pseudo-relativistic gravitational source
terms that approximate the relativistic effects. The axially symmetric initial
conditions can be best obtained by a fully implicit 1.5D integration. The 1D re-
sult is rotated around the symmetry axis and perturbed by a non-axisymmetric
perturbation. The instability is evolved in time on a 2D polar grid with an ex-
plicit time integration using the one step TVD scheme with operator splitting.



Chapter 10

Closure

Numerical simulation of MHD flows is not a simple problem. There is no one
“perfect” numerical scheme that could solve, or which would be optimal for,
all possible problems. It is important to know the available methods, their
strengths and weaknesses, before one starts to write a program. Due to the
complexity of the numerical algorithms it may be worthwhile to use or modify
existing software. This allows the researcher to concentrate on the simulations
and not on the software development. Numerical codes and the results of the
simulations should always be thoroughly tested and verified. On the other hand,
well designed numerical simulations can provide a wealth of information on the
physical processes which we could otherwise only observe.
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