Additional Exercises

1. Suppose that p and q are relatively prime positive integers. Show that if $\cos p\alpha$, $\cos q\alpha$, and $\cos(p+q)\alpha$ are all rational, then $\cos\alpha$ is rational.

*2. Suppose that p and q are relatively prime positive integers. Show that if $\cos p\alpha$ and $\cos q\alpha$ are rational, then $\cos \alpha$ is rational or α is a multiple of $\pi/6$.

3. Suppose we extend the definition of divisibility as follows: Let m be a non-zero integer, and let a/b be a rational number in lowest terms, i.e., $(a, b) = 1$. We say that m divides a/b , and write $m|a/b$, if $(m, b) = 1$ and $m|a$. Suppose also that for rational numbers r, s with denominators relatively prime to m, we say that $r \equiv s \pmod{m}$ if $m|(r-s)$.

(a) Let r, R, s, S be rational numbers whose denominators are relatively prime to m. Show that if $r \equiv R \pmod{m}$ and $s \equiv S \pmod{m}$, then $r + s \equiv R + S \pmod{m}$ and $rs \equiv RS$ $(mod m).$

(b) Suppose that $r = a/b$ is a rational number with $(b, m) = 1$. Choose an integer \overline{b} such that $bb \equiv 1 \pmod{m}$. Show that $r \equiv a\overline{b} \pmod{m}$. Show that if c is an integer such that $r \equiv c \pmod{m}$, then $c \equiv a\overline{b} \pmod{m}$.

(c) Suppose that a, A, b, B are integers such that $a \equiv A \pmod{m}$, $b \equiv B \pmod{m}$, and $(b, m) = 1$. Show that $a/b \equiv A/B \pmod{m}$.

4. Let $f(z) = \sum_{i=0}^{\infty} a_i z^i$ and $g(z) = \sum_{i=0}^{\infty} b_i z^i$ be two formal power series with integral coefficients. (By "formal" we mean that we don't care whether the radius of convergence is positive.) Define $f \equiv g \pmod{m}$ if $a_i \equiv b_i \pmod{m}$ for all $i = 0, 1, \ldots$.

(a) Suppose that f, F, g, G are power series with integral coefficients. Show that if $f \equiv F$ (mod m) and $g \equiv G \pmod{m}$, then $f + g \equiv F + G \pmod{m}$ and $fg \equiv FG \pmod{m}$.

(b) Suppose that f and F are power series with integral coefficients, both of which have constant term 0. Show that if $f \equiv F \pmod{m}$, then

$$
\frac{1}{1+f} \equiv \frac{1}{1+F} \pmod{m}.
$$

5. Let A be an $n \times n$ matrix with integral elements. Show that if $(\det(A), m) = 1$, then for any $(c_1, c_2, \ldots, c_n) \in \mathbf{Z}^n$ there is a unique *n*-tuple (x_1, x_2, \ldots, x_n) of residue classes $(mod m)$ such that

(*)
$$
\sum_{j=1}^{n} a_{ij} x_j \equiv c_j \pmod{m}
$$

for $i = 1, 2, \ldots, n$. Also, show conversely that if $(\det(A), m) > 1$, then the number of solutions of (*) is either 0 or > 1, depending on the choice of (c_1, c_2, \ldots, c_n) .

Additional exercises

6. We recall that the binomial coefficient $\binom{x}{k}$ $\binom{x}{k}$ is a polynomail in x, namely $\binom{x}{k}$ $\binom{x}{k} = x(x 1) \cdots (x - k + 1)/k!$. Thus $\binom{-1/3}{k}$ is a rational number, say

$$
\binom{-1/3}{k} = \frac{a_k}{q_k}
$$

where $(a_k, q_k) = 1$ and $q_k > 0$.

(a) Show that q_k is a power of 3.

(b) Show that a_k is odd if and only if k can be written as a sum of distinct powers of 4.

7. (Nicol–Selfridge) Show that if n is an odd integer > 3 , then there is a prime number p such that $p \nmid n$ and $p|(2^{\varphi(n)}-1)$.