| 
Notation | 
xi | 
| 1 | 
Divisibility | 
1 | 
 | 
  1.1     Introduction     
     1 | 
 | 
  1.2     Divisibility     
     4 | 
 | 
  1.3     Primes     
     20 | 
 | 
  1.4     The Binomial Theorem     
     35 | 
 | 
            
Notes on Chapter 1
     
     44 | 
| 2 | 
Congruences | 
47 | 
 |   2.1     Congruences     
     47 | 
 |   2.2     Solutions of Congruences     
     60 | 
 |   2.3     The Chinese Remainder Theorem     
     64 | 
 |   2.4     Techniques of Numerical Calculation
     
     74 | 
 |   2.5     Public-Key Cryptography     
     84 | 
 |   2.6     Prime Power Moduli     
     86 | 
 |   2.7     Prime Modulus     
     91 | 
 |   2.8     Primitive Roots and Power Residues     
     97 | 
 |   2.9     Congruences of Degree Two, Prime Modulus     
     110 | 
 |   2.10   Number Theory from an Algebraic Viewpoint     
     115 | 
 |   2.11   Groups, Rings, and Fields     
     121 | 
 |             Notes on Chapter 2     
     128 | 
| 3 | 
Quadratic Reciprocity and Quadratic Forms | 
131 | 
 |   3.1     Quadratic Residues     
     131 | 
 |   3.2     Quadratic Reciprocity     
     137 | 
 |   3.3     The Jacobi Symbol     
     142 | 
 |   3.4     Binary Quadratic Forms     
     150 | 
 |   3.5     Equivalence and Reduction
of Binary Quadratic Forms     
     155 | 
 |   3.6     
Sums of Two Squares     
     163 | 
 |   3.7     
Positive Definite Binary Quadratic Forms     
     170 | 
 |            
Notes on Chapter 3     
     176 | 
| 4 | 
Some Functions of Number Theory | 
180 | 
 |   4.1    Greatest Integer Function      
     180 | 
 |   4.2    Arithmetic Functions      
     188 | 
 |   4.3    
The Möbius Inversion Formula      
     193 | 
 |   4.4    
Recurrence Functions      
     197 | 
 |   4.5    
Combinatorial Number Theory      
     206 | 
 |            
Notes on Chapter 4     
     211 | 
| 5 | 
Some Diophantine Equations | 
212 | 
 |   5.1    
The Equation ax + by  =  c      
     212 | 
 |   5.2    
Simultaneous Linear Equations      
     219 | 
 |   5.3    
Pythagorean Triangles      
     231 | 
 |   5.4    
Assorted Examples      
     234 | 
 |   5.5    
Ternary Quadratic Forms      
     240 | 
 |   5.6    
Rational Points on Curves      
     249 | 
 |   5.7    
Elliptic Curves      
     261 | 
 |   5.8    
Factorization Using Elliptic Curves      
     281 | 
 |   5.9    
Curves of Genus Greater Than 1      
     288 | 
 |            
Notes on Chapter 5     
     289 | 
| 6 | 
Farey Fractions and Irrational Numbers | 
297 | 
 |   6.1    
Farey Sequences      
     297 | 
 |   6.2    
Rational Approximation      
     301 | 
 |   6.3    
Irrational Numbers      
     307 | 
 |   6.4    
The Geometry of Numbers      
     312 | 
 |            
Notes on Chapter 6     
     322 | 
| 7 | 
Simple Continued Fractions | 
325 | 
 |   7.1    
The Euclidean Algorithm     
     325 | 
 |   7.2    
Uniqueness     
     327 | 
 |   7.3    
Infinite Continued Fractions     
     329 | 
 |   7.4    
Irrational Numbers     
     334 | 
 |   7.5    
Approximation to Irrational Numbers     
     336 | 
 |   7.6    
Best Possible Approximations     
     341 | 
 |   7.7    
Periodic Continued Fractions     
     344 | 
 |   7.8    
Pell's Equation     
     351 | 
 |   7.9    
Numerical Computation     
     358 | 
 |            
Notes on Chapter 7     
     359 | 
| 8 | 
Primes and Multiplicative Number Theory | 
360 | 
 |   8.1    
Elementary Prime Number Estimates      
     360 | 
 |   8.2    
Dirichlet Series      
     374 | 
 |   8.3    
Estimates of Arithmetic Functions      
     389 | 
 |   8.4    
Primes in Arithmetic Progressions      
     401 | 
 |            
Notes on Chapter 8     
     406 | 
| 9 | 
Algebraic Numbers | 
409 | 
 |   9.1    
Polynomials      
     410 | 
 |   9.2    
Algebraic Numbers      
     414 | 
 |   9.3    
Algebraic Number Fields      
     419 | 
 |   9.4    
Algebraic Integers      
     424 | 
 |   9.5    
Quadratic Fields      
     425 | 
 |   9.6    
Units in Quadratic Fields      
     428 | 
 |   9.7    
Primes in Quadratic Fields      
     429 | 
 |   9.8    
Unique Factorization      
     431 | 
 |   9.9    
Primes in Quadratic Fields Having the Unique Factoriation Property
     
     433 | 
 |   9.10  
The Equation x3 + y3  =  z3      
     441 | 
 |            
Notes on Chapter 9     
     445 | 
| 10 | 
The Partition Function | 
446 | 
 |   10.1    
Partitions      
     446 | 
 |   10.2    
Ferrers Graphs      
     448 | 
 |   10.3    
Formal Power Series, Generating Functions, and Euler's Identity 
     
     452 | 
 |   10.4    
Euler's Formula; Bounds on p(n)      
     497 | 
 |   10.5    
Jacobi's Formula      
     463 | 
 |   10.6    
A Divisibility Property      
     467 | 
 |            
  Notes on Chapter 10     
     471 | 
| 11 | 
The Density of Sequences of Integers | 
472 | 
 |   11.1    
Asymptotic Density     
     473 | 
 |   11.2    
Schnirelmann Denstiy and the alpha-beta Theorem     
     476 | 
 |          
   
Notes on Chapter 11     
     481 | 
| 
 | Appendices | 
482 | 
 |   A.1    
The Fundamental Theorem of Algebra     
     482 | 
 |   A.2    
Symmetric Functions     
     484 | 
 |   A.3    
ASpecial Value of the Riemann Zeta Function     
     490 | 
 |   A.4    
Linear Recurrences     
     493 | 
| 
 | General References | 
500 | 
| 
 | Hints | 
503 | 
| 
 | Answers | 
512 | 
| 
 | Index | 
522 |