| Carmichael function car(m) | 
car [m] | 
| Chinese Remainder Theorem  | 
crt [a1 m1 a2 m2]  | 
| convert decimal to rational  | d2r [x]  | 
| convert rational to decimal  | r2d [a q]  | 
| determinant modulo m  | detmodm  | 
| discrete logarithm base g of a modulo p  | 
ind [g a p]  | 
| factor n  |   | 
|       by trial division  | 
factor [n]  | 
|       by p - 1 method  | 
p-1 [n [a]]  | 
      
|       by rho method  | 
rho [n [c]]  | 
| find next prime  | getnextp [x]  | 
| greatest common divisor  | gcd [b c]  | 
| index base g of a modulo p  | 
ind [g a p]  | 
| Jacobi symbol (P/Q)  | 
jacobi [P Q]  | 
| Lucas functions Un, Vn modulo m  | 
lucas [n [a b] m]  | 
| multiply residue classes modulo m  | 
mult [a b m]  | 
| order of a modulo m  | 
order [a m [c]]  | 
| phi function   | phi [n]  | 
| pi(x)  | pi [x]  | 
| power ak modulo m  | 
power [a k m]  | 
| primitive root of prime p  | 
primroot [p [a]]  | 
| prove primality of p  | 
provep [p]  | 
| reduce ax2 + bxy + cy2  | 
reduce a b c  | 
| represent n as a sum of s k-th powers   | 
sumspwrs [n s k]  | 
| roots of  |   | 
|       ax = b (mod m)  | 
lincon [a b m]  | 
|       f(x) = 0 (mod pj)  | 
hensel  | 
|       P(x) = 0 (mod m) | 
polysolv  | 
|       x2 = a (mod p)  | 
sqrtmodp [a p]  | 
|       Ax = b in integers  | 
simlinde  | 
| square root modulo p  | sqrtmodp [a p]  | 
| strong pseudoprime test of m base a  | 
spsp [[a] m]  | 
| Chinese Remainder Theorem | 
crtdem | 
| determinants modulo m  | detdem  | 
| discrete logarithm base g of a modulo p  | 
inddem [g a p]  | 
| Euclidean algorithm  | eualgdelm [b c]  | 
| factorization  |   | 
|       by p - 1 method  | 
p-1dem  | 
|       by rho method  | 
rhodem [n] | 
| greatest common divisors  | fastgcd, slowgcd  | 
|       (see also Euclidean algorithm)  |   | 
| heapsort algorithm  | hsortdem  | 
| index base g of a modulo p  | 
inddem [g a p]  | 
| Jacobi symbol (P/Q)  | jacobdem [P Q]  | 
| linear congruence ax = b (mod m)  | 
lncndem [a b m]  | 
| Lucas functions  | lucasdem [n [a b] m]  | 
| multiplication of residue classes  | 
multdem1, multdem2, multdem3  | 
| order of a modulo m  | 
orderdem [a m [c]]  | 
| powering algorithm  | pwrdem1a [a k m]  | 
|   | pwrdem1b [a k m]  | 
|   | pwrdem2 [a k m]  | 
| RSA encryption  | rsa, rsapars  | 
| square root modulo p  | sqrtdem [a p]  | 
| strong pseudoprime test of m base a  | 
spspdem[[a] m]  |