Polynomials in many variables

Let $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ denote the field of integers modulo p. We are interested in polynomials $f(x) \in \mathbb{F}_p[x]$, and in the maps $f : \mathbb{F}_p \to \mathbb{F}_p$ that they define. In Corollary 2.27 we found that distinct polynomials of degree < p define distinct maps, and also in Theorem 2.28 that any map from \mathbb{F}_p to \mathbb{F}_p can be obtained by constructing an appropriate polynomial. Indeed, by Fermat's congruence we see that

(1)
$$1 - a^{p-1} \equiv \begin{cases} 1 & \text{if } a \equiv 0 \pmod{p} \\ 0 & \text{otherwise.} \end{cases}$$

Hence if c_1, c_2, \ldots, c_p are given residue classes, and we want $f(i) \equiv c_i \pmod{p}$ for $1 \leq i \leq p$, then it suffices to take

$$f(x) = \sum_{i=1}^{p} c_i \left(1 - (x-i)^{p-1} \right).$$

Our first object is to generalize these observations to several variables. To facilitate our discussion, we make the following

Definition. A polynomial $f(\mathbf{x}) \in \mathbb{F}_p[x_1, \ldots, x_n]$ is said to be reduced if $\deg_{x_i} f < p$ for $1 \leq i \leq n$. Two polynomials $f(\mathbf{x})$ and $g(\mathbf{x})$ in $\mathbb{F}_p[x_1, \ldots, x_n]$ are said to be equivalent, and we write $f \sim g$, if $f(\mathbf{x}) \equiv g(\mathbf{x}) \pmod{p}$ for all $\mathbf{x} \in \mathbb{F}_p^n$.

Theorem 1. Every polynomial $f \in \mathbb{F}_p[x_1, \ldots, x_n]$ is equivalent to exactly one reduced polynomial.

Proof. Let $f \in \mathbb{F}_p[x_1, \ldots, x_n]$ be given. We show that there is a reduced polynomial equivalent to f. If f is not reduced, then in f there is a monomial term $cx_1^{k_1}x_2^{k_2}\cdots x_n^{k_n}$ and an i such that $k_i \geq p$. Replace $x_i^{k_i}$ by $x_i^{k_i-p+1}$. Since $x^{k_i} \equiv x^{k_i-p+1} \pmod{p}$ for all x, it follows that the new polynomial is equivalent to f. Repeat this operation until a reduced polynomial is obtained.

If two reduced polynomials are equivalent, then their difference, call it f, is a reduced polynomial with the property that $f(\boldsymbol{x}) \equiv 0 \pmod{p}$ for all $\boldsymbol{x} \in \mathbb{F}_p^n$. We show that in this case every coefficient of f is $0 \pmod{p}$. To do this, we argue by induction on n. The basis of the induction is the case n = 1 which has already been treated. Write

$$f(\mathbf{x}) = \sum_{i=0}^{p-1} f_i(x_1, \dots, x_{n-1}) x_n^i.$$

If we think of x_1, \ldots, x_{n-1} as being fixed residue classes (mod p), then the above is a polynomial in the single variable x_n . Since the above is 0 (mod p) for every choice of x_n , it follows by the case of one variable that all the coefficients are 0 (mod p). That is,

 $f_i(x_1, \ldots, x_{n-1}) \equiv 0 \pmod{p}$. By the inductive hypothesis, it follows that each coefficient of f_i is 0 (mod p). Hence all coefficients of f are 0 (mod p).

To appreciate the above from an algebraic standpoint, in $\mathbb{F}_p[x_1, \ldots, x_n]$ let \mathfrak{I}_1 denote the ideal consisting of those polynomials f such that $f(\boldsymbol{x}) \equiv 0 \pmod{p}$ for all $\boldsymbol{x} \in \mathbb{F}_p^n$, and let $\mathfrak{I}_2 = (x_1^p - x_1, x_2^p - x_2, \ldots, x_n^p - x_n)$, which is to say that \mathfrak{I}_2 is the ideal consisting of all polynomials that can be expressed in the form

$$\sum_{i=1}^{n} f_i(\boldsymbol{x})(x_i^p - x_i)$$

where $f_i \in \mathbb{F}_p[x_1, \ldots, x_n]$. Clearly $\mathfrak{I}_2 \subseteq \mathfrak{I}_1$. What Theorem 1 expresses is that $\mathfrak{I}_1 = \mathfrak{I}_2$.

We note that there are exactly $p^{(p^n)}$ maps from \mathbb{F}_p^n to \mathbb{F}_p , and also that there are exactly $p^{(p^n)}$ reduced polynomials in $\mathbb{F}_p[x_1, \ldots, x_n]$. Since distinct reduced polynomials define distinct maps, it follows by the pigeonhole principle that each map is defined by a unique reduced polynomial. More explicitly, if for each $\boldsymbol{a} \in \mathbb{F}_p^n$ a residue class $c(\boldsymbol{a}) \in \mathbb{F}_p$ is given, then we put

(2)
$$f(\boldsymbol{x}) = \sum_{\boldsymbol{a} \in \mathbb{F}_p^n} c(\boldsymbol{a}) \prod_{i=1}^n \left(1 - (x_i - a_i)^{p-1} \right).$$

Thus f is a reduced polynomial with the property that $f(a) \equiv c(a) \pmod{p}$ for all a.

Theorem 2. (Chevalley) Suppose that $P(\mathbf{x})$ is a polynomial of degree d in n variables, with integral coefficients. If n > d, and if $P(\mathbf{0}) \equiv 0 \pmod{p}$, then there is an \mathbf{x} , not all of whose coordinates are divisible by p, such that $P(\mathbf{x}) \equiv 0 \pmod{p}$.

By applying the above to the polynomial $P(\mathbf{x} + \mathbf{a}) - P(\mathbf{a})$ we see that any value (mod p) taken by $P(\mathbf{x})$ is taken at least twice, if n > d.

Proof. From (1) we see that if $P(\mathbf{x}) \equiv 0 \pmod{p}$ precisely when $x_i \equiv 0 \pmod{p}$ for all i, then

$$1 - P(\boldsymbol{x})^{p-1} \equiv \begin{cases} 1 & (x_i \equiv 0 \pmod{p} \text{ for all } i), \\ 0 & (\text{otherwise.}) \end{cases}$$

By taking c(0) = 1 and all other c(a) = 0 in (2), we deduce that

$$1 - P(\boldsymbol{x})^{p-1} \equiv \prod_{i=1}^{n} (1 - x_i^{p-1}) \pmod{p}$$

for all choices of the variables x_i . The polynomial on the right hand side above is reduced, but the left hand side is not necessarily reduced. Let $Q(\mathbf{x})$ be a reduced polynomial equivalent to the left hand side above. Hence

$$Q(\boldsymbol{x}) \equiv \prod_{i=1}^{n} \left(1 - x_i^{p-1}\right) \pmod{p}$$

 $\mathbf{2}$

for all choices of the variables x_i . By Theorem 1, it follows that all coefficients of

$$\prod_{i=1}^{n} \left(1 - x_i^{p-1}\right) - Q(\boldsymbol{x})$$

are divisible by p. But the monomial $x_1^{p-1} \cdots x_n^{p-1}$ has coefficient $(-1)^n$ in the product, and coefficient 0 in Q, since deg $Q \leq d(p-1) < n(p-1)$. This is a contradiction, so the proof is complete.

We now lay the foundation for a stronger result.

Lemma 1. For non-negative integers k, let $S_k(p) = \sum_{a=1}^p a^k$. Then

$$S_k(p) \equiv \begin{cases} -1 \pmod{p} & \text{if } k \equiv 0 \pmod{p-1} \text{ and } k > 0, \\ 0 \pmod{p} & \text{otherwise.} \end{cases}$$

Note: We take $a^0 = 1$ for all a, including a = 0.

Proof. Clearly $S_0(p) = p \equiv 0 \pmod{p}$. $S(0) = p \equiv 0 \pmod{p}$. Also, if k > 0 and (p-1)|k, then by Fermat's congruence

$$S_k(p) \equiv \sum_{a=1}^{p-1} 1 \equiv -1 \pmod{p}.$$

Finally, suppose that k > 0 and that $k \not\equiv 0 \pmod{p-1}$. Recall that if (c, p) = 1, then the numbers ca form a complete residue system as a runs through a complete residue system (Theorem 2.6). Hence $c^k S_k(p) \equiv S_k(p) \pmod{p}$. That is, $S_k(p)(c^k-1) \equiv 0 \pmod{p}$. But since $k \not\equiv 0 \pmod{p-1}$, there is a c such that $c^k \not\equiv 1 \pmod{p}$. Indeed, a primitive root will do. Hence $S_k(p) \equiv 0 \pmod{p}$, and the proof is complete.

Theorem 3. (Warning) Suppose that $P(\mathbf{x})$ is a polynomial of degree d in n variables, with integral coefficients. If n > d, then the number of solutions of the congruence $P(\mathbf{x}) \equiv 0 \pmod{p}$ is divisible by p.

Proof. By (1) we see that the number of solutions of this congruence is congruent (mod p) to

$$\sum_{x_1=1}^{p} \sum_{x_2=1}^{p} \cdots \sum_{x_n=1}^{p} 1 - P(\boldsymbol{x})^{p-1}.$$

Let $cx_1^{k_1}x_2^{k_2}\cdots x_n^{k_n}$ be one of the monomial terms that make up the polynomial $1-P(\boldsymbol{x})^{p-1}$. The contribution made to the above sum by this monomial term is

$$c\prod_{i=1}^{n} \bigg(\sum_{x_i=1}^{p} x_i^{k_i}\bigg).$$

3

Since P has degree d, we know that $\sum_{i=1}^{n} k_i \leq d(p-1)$. But n > d, so the inequality $k_i < p-1$ holds for at least one i. By Lemma 1, this value of i contributes a factor $\equiv 0 \pmod{p}$ to the above product.

If $P(\mathbf{x})$ is a form (i.e., a homogeneous polynomial) of degree d > 0, then $P(\mathbf{0}) = 0$, so it follows from either Theorem 2 or Theorem 3 that the congruence $P(\mathbf{x}) \equiv 0 \pmod{p}$ must also have at least one non-trivial solution. For example, the congruence $x^2 + y^2 + z^2 \equiv 0$ (mod p) always has a solution with not all variables divisible by p.

Exercises

1. Let $f \in \mathbb{F}_p[x_1, \ldots, x_n]$ have degree d < n. Show that

f

$$\sum_{\substack{\boldsymbol{x} \in \mathbb{F}_p^n \\ (\boldsymbol{x}) \equiv 0 \pmod{p}}} x_i^k \equiv 0 \pmod{p}$$

for $1 \le i \le n, \ 0 \le k .$

2. For $1 \leq j \leq m$ let $f_j \in \mathbb{F}_p[x_1, \ldots, x_n]$, and put $d_j = \deg f_j$. Show that if $\sum d_j < n$, then the system of simultaneous congruences

$$f_j() \equiv 0 \pmod{p} \qquad (1 \le j \le m)$$

has at least two solutions, if it has one.

3. Show that in the situation of the preceding exercise, that the number of solutions is a multiple of p.

4. (a) Let $S_k(p)$ be defined as in Lemma 1. Use the binomial theorem to show that

$$\sum_{k=0}^{n-1} \binom{n}{k} S_k(p) \equiv 0 \pmod{p}.$$

(b) Deduce that

$$\sum_{\substack{0 < k < n \\ (p-1)|k}} \binom{n}{k} \equiv 0 \pmod{p}.$$