
Polynomials in many variables

Let Fp = Z/pZ denote the field of integers modulo p. We are interested in polynomials
f(x) ∈ Fp[x], and in the maps f : Fp → Fp that they define. In Corollary 2.27 we found
that distinct polynomials of degree < p define distinct maps, and also in Theorem 2.28
that any map from Fp to Fp can be obtained by constructing an appropriate polynomial.
Indeed, by Fermat’s congruence we see that

(1) 1 − ap−1 ≡

{

1 if a ≡ 0 (mod p)

0 otherwise.

Hence if c1, c2, . . . , cp are given residue classes, and we want f(i) ≡ ci (mod p) for 1 ≤ i ≤
p, then it suffices to take

f(x) =

p
∑

i=1

ci

(

1 − (x − i)p−1
)

.

Our first object is to generalize these observations to several variables. To facilitate our
discussion, we make the following

Definition. A polynomial f(x) ∈ Fp[x1, . . . , xn] is said to be reduced if degxi
f < p for

1 ≤ i ≤ n. Two polynomials f(x) and g(x) in Fp[x1, . . . , xn] are said to be equivalent,
and we write f ∼ g, if f(x) ≡ g(x) (mod p) for all x ∈ F

n
p .

Theorem 1. Every polynomial f ∈ Fp[x1, . . . , xn] is equivalent to exactly one reduced

polynomial.

Proof. Let f ∈ Fp[x1, . . . , xn] be given. We show that there is a reduced polynomial

equivalent to f . If f is not reduced, then in f there is a monomial term cxk1

1 xk2

2 · · ·xkn
n

and an i such that ki ≥ p. Replace xki

i by xki−p+1
i . Since xki ≡ xki−p+1 (mod p) for all

x, it follows that the new polynomial is equivalent to f . Repeat this operation until a
reduced polynomial is obtained.

If two reduced polynomials are equivalent, then their difference, call it f , is a reduced
polynomial with the property that f(x) ≡ 0 (mod p) for all x ∈ F

n
p . We show that in this

case every coefficient of f is 0 (mod p). To do this, we argue by induction on n. The basis
of the induction is the case n = 1 which has already been treated. Write

f(x) =

p−1
∑

i=0

fi(x1, . . . , xn−1)x
i
n .

If we think of x1, . . . , xn−1 as being fixed residue classes (mod p), then the above is a
polynomial in the single variable xn. Since the above is 0 (mod p) for every choice of
xn, it follows by the case of one variable that all the coefficients are 0 (mod p). That is,



fi(x1, . . . , xn−1) ≡ 0 (mod p). By the inductive hypothesis, it follows that each coefficient
of fi is 0 (mod p). Hence all coefficients of f are 0 (mod p).

To appreciate the above from an algebraic standpoint, in Fp[x1, . . . , xn] let I1 denote
the ideal consisting of those polynomials f such that f(x) ≡ 0 (mod p) for all x ∈ F

n
p , and

let I2 = (xp
1 − x1, x

p
2 − x2, . . . , xp

n − xn), which is to say that I2 is the ideal consisting of
all polynomials that can be expressed in the form

n
∑

i=1

fi(x)(xp
i − xi)

where fi ∈ Fp[x1, . . . , xn]. Clearly I2 ⊆ I1. What Theorem 1 expresses is that I1 = I2.

We note that there are exactly p(pn) maps from F
n
p to Fp, and also that there are

exactly p(pn) reduced polynomials in Fp[x1, . . . , xn]. Since distinct reduced polynomials
define distinct maps, it follows by the pigeonhole principle that each map is defined by a
unique reduced polynomial. More explicitly, if for each a ∈ F

n
p a residue class c(a) ∈ Fp is

given, then we put

(2) f(x) =
∑

a∈Fn
p

c(a)
n

∏

i=1

(

1 − (xi − ai)
p−1

)

.

Thus f is a reduced polynomial with the property that f(a) ≡ c(a) (mod p) for all a.

Theorem 2. (Chevalley) Suppose that P (x) is a polynomial of degree d in n variables,

with integral coefficients. If n > d, and if P (0) ≡ 0 (mod p), then there is an x, not all

of whose coordinates are divisible by p, such that P (x) ≡ 0 (mod p).

By applying the above to the polynomial P (x + a)− P (a) we see that any value (mod
p) taken by P (x) is taken at least twice, if n > d.

Proof. From (1) we see that if P (x) ≡ 0 (mod p) precisely when xi ≡ 0 (mod p) for all
i, then

1 − P (x)p−1 ≡

{

1 (xi ≡ 0 (mod p) for all i),

0 (otherwise.)

By taking c(0) = 1 and all other c(a) = 0 in (2), we deduce that

1 − P (x)p−1 ≡

n
∏

i=1

(

1 − xp−1
i

)

(mod p)

for all choices of the variables xi. The polynomial on the right hand side above is reduced,
but the left hand side is not necessarily reduced. Let Q(x) be a reduced polynomial
equivalent to the left hand side above. Hence

Q(x) ≡

n
∏

i=1

(

1 − xp−1
i

)

(mod p)
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for all choices of the variables xi. By Theorem 1, it follows that all coefficients of

n
∏

i=1

(

1 − xp−1
i

)

− Q(x)

are divisible by p. But the monomial xp−1
1 · · ·xp−1

n has coefficient (−1)n in the product,
and coefficient 0 in Q, since deg Q ≤ d(p − 1) < n(p − 1). This is a contradiction, so the
proof is complete.

We now lay the foundation for a stronger result.

Lemma 1. For non-negative integers k, let Sk(p) =
∑p

a=1 ak. Then

Sk(p) ≡

{

−1 (mod p) if k ≡ 0 (mod p − 1) and k > 0,

0 (mod p) otherwise.

Note: We take a0 = 1 for all a, including a = 0.

Proof. Clearly S0(p) = p ≡ 0 (mod p). S(0) = p ≡ 0 (mod p). Also, if k > 0 and
(p − 1)|k, then by Fermat’s congruence

Sk(p) ≡

p−1
∑

a=1

1 ≡ −1 (mod p).

Finally, suppose that k > 0 and that k 6≡ 0 (mod p− 1). Recall that if (c, p) = 1, then the
numbers ca form a complete residue system as a runs through a complete residue system
(Theorem 2.6). Hence ckSk(p) ≡ Sk(p) (mod p). That is, Sk(p)(ck − 1) ≡ 0 (mod p). But
since k 6≡ 0 (mod p − 1), there is a c such that ck 6≡ 1 (mod p). Indeed, a primitive root
will do. Hence Sk(p) ≡ 0 (mod p), and the proof is complete.

Theorem 3. (Warning) Suppose that P (x) is a polynomial of degree d in n variables, with

integral coefficients. If n > d, then the number of solutions of the congruence P (x) ≡ 0
(mod p) is divisible by p.

Proof. By (1) we see that the number of solutions of this congruence is congruent (mod
p) to

p
∑

x1=1

p
∑

x2=1

· · ·

p
∑

xn=1

1 − P (x)p−1.

Let cxk1

1 xk2

2 · · ·xkn
n be one of the monomial terms that make up the polynomial 1−P (x)p−1.

The contribution made to the above sum by this monomial term is

c

n
∏

i=1

( p
∑

xi=1

xki

i

)

.
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Since P has degree d, we know that
∑n

i=1 ki ≤ d(p − 1). But n > d, so the inequality
ki < p − 1 holds for at least one i. By Lemma 1, this value of i contributes a factor ≡ 0
(mod p) to the above product.

If P (x) is a form (i.e., a homogeneous polynomial) of degree d > 0, then P (0) = 0, so it
follows from either Theorem 2 or Theorem 3 that the congruence P (x) ≡ 0 (mod p) must
also have at least one non-trivial solution. For example, the congruence x2 + y2 + z2 ≡ 0
(mod p) always has a solution with not all variables divisible by p.

Exercises

1. Let f ∈ Fp[x1, . . . , xn] have degree d < n. Show that

∑

x∈F
n
p

f(x)≡0 (mod p)

xk
i ≡ 0 (mod p)

for 1 ≤ i ≤ n, 0 ≤ k < p − 1.

2. For 1 ≤ j ≤ m let fj ∈ Fp[x1, . . . , xn], and put dj = deg fj. Show that if
∑

dj < n,
then the system of simultaneous congruences

fj() ≡ 0 (mod p) (1 ≤ j ≤ m)

has at least two solutions, if it has one.

3. Show that in the situation of the preceding exercise, that the number of solutions is a
multiple of p.

4. (a) Let Sk(p) be defined as in Lemma 1. Use the binomial theorem to show that

n−1
∑

k=0

(n

k

)

Sk(p) ≡ 0 (mod p) .

(b) Deduce that
∑

0<k<n
(p−1)|k

(n

k

)

≡ 0 (mod p) .
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