Polynomials in many variables

Let $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ denote the field of integers modulo p. We are interested in polynomials $f(x) \in \mathbb{F}_p[x]$, and in the maps $f : \mathbb{F}_p \to \mathbb{F}_p$ that they define. In Corollary 2.27 we found that distinct polynomials of degree $\langle p \rangle$ define distinct maps, and also in Theorem 2.28 that any map from \mathbb{F}_p to \mathbb{F}_p can be obtained by constructing an appropriate polynomial. Indeed, by Fermat's congruence we see that

(1)
$$
1 - a^{p-1} \equiv \begin{cases} 1 & \text{if } a \equiv 0 \pmod{p} \\ 0 & \text{otherwise.} \end{cases}
$$

Hence if c_1, c_2, \ldots, c_p are given residue classes, and we want $f(i) \equiv c_i \pmod{p}$ for $1 \leq i \leq j$ p, then it suffices to take

$$
f(x) = \sum_{i=1}^{p} c_i (1 - (x - i)^{p-1}).
$$

Our first object is to generalize these observations to several variables. To facilitate our discussion, we make the following

Definition. A polynomial $f(x) \in \mathbb{F}_p[x_1,\ldots,x_n]$ is said to be reduced if $\deg_{x_i} f < p$ for $1 \leq i \leq n$. Two polynomials $f(x)$ and $g(x)$ in $\mathbb{F}_p[x_1,\ldots,x_n]$ are said to be equivalent, and we write $f \sim g$, if $f(x) \equiv g(x) \pmod{p}$ for all $x \in \mathbb{F}_p^n$.

Theorem 1. Every polynomial $f \in \mathbb{F}_p[x_1,\ldots,x_n]$ is equivalent to exactly one reduced polynomial.

Proof. Let $f \in \mathbb{F}_p[x_1,\ldots,x_n]$ be given. We show that there is a reduced polynomial equivalent to f. If f is not reduced, then in f there is a monomial term $cx_1^{k_1}x_2^{k_2}$ $\frac{k_2}{2} \cdots x_n^{k_n}$ and an *i* such that $k_i \geq p$. Replace $x_i^{k_i}$ by $x_i^{k_i-p+1}$ i^{k_i-p+1} . Since $x^{k_i} \equiv x^{k_i-p+1} \pmod{p}$ for all x, it follows that the new polynomial is equivalent to f . Repeat this operation until a reduced polynomial is obtained.

If two reduced polynomials are equivalent, then their difference, call it f , is a reduced polynomial with the property that $f(x) \equiv 0 \pmod{p}$ for all $x \in \mathbb{F}_p^n$. We show that in this case every coefficient of f is 0 (mod p). To do this, we argue by induction on n. The basis of the induction is the case $n = 1$ which has already been treated. Write

$$
f(\boldsymbol{x}) = \sum_{i=0}^{p-1} f_i(x_1,\ldots,x_{n-1})x_n^i.
$$

If we think of x_1, \ldots, x_{n-1} as being fixed residue classes (mod p), then the above is a polynomial in the single variable x_n . Since the above is 0 (mod p) for every choice of x_n , it follows by the case of one variable that all the coefficients are 0 (mod p). That is, $f_i(x_1, \ldots, x_{n-1}) \equiv 0 \pmod{p}$. By the inductive hypothesis, it follows that each coefficient of f_i is 0 (mod p). Hence all coefficients of f are 0 (mod p).

To appreciate the above from an algebraic standpoint, in $\mathbb{F}_p[x_1, \ldots, x_n]$ let \mathcal{I}_1 denote the ideal consisting of those polynomials f such that $f(x) \equiv 0 \pmod{p}$ for all $x \in \mathbb{F}_p^n$, and let $\mathcal{I}_2 = (x_1^p - x_1, x_2^p - x_2, \dots, x_n^p - x_n)$, which is to say that \mathcal{I}_2 is the ideal consisting of all polynomials that can be expressed in the form

$$
\sum_{i=1}^n f_i(\boldsymbol{x}) (x_i^p - x_i)
$$

where $f_i \in \mathbb{F}_p[x_1,\ldots,x_n]$. Clearly $\mathcal{I}_2 \subseteq \mathcal{I}_1$. What Theorem 1 expresses is that $\mathcal{I}_1 = \mathcal{I}_2$.

We note that there are exactly $p^{(p^n)}$ maps from \mathbb{F}_p^n to \mathbb{F}_p , and also that there are exactly $p^{(p^n)}$ reduced polynomials in $\mathbb{F}_p[x_1,\ldots,x_n]$. Since distinct reduced polynomials define distinct maps, it follows by the pigeonhole principle that each map is defined by a unique reduced polynomial. More explicitly, if for each $a \in \mathbb{F}_p^n$ a residue class $c(a) \in \mathbb{F}_p$ is given, then we put

(2)
$$
f(\mathbf{x}) = \sum_{\mathbf{a} \in \mathbb{F}_p^n} c(\mathbf{a}) \prod_{i=1}^n (1 - (x_i - a_i)^{p-1}).
$$

Thus f is a reduced polynomial with the property that $f(\mathbf{a}) \equiv c(\mathbf{a}) \pmod{p}$ for all \mathbf{a} .

Theorem 2. (Chevalley) Suppose that $P(x)$ is a polynomial of degree d in n variables, with integral coefficients. If $n > d$, and if $P(0) \equiv 0 \pmod{p}$, then there is an x , not all of whose coordinates are divisible by p, such that $P(x) \equiv 0 \pmod{p}$.

By applying the above to the polynomial $P(x + a) - P(a)$ we see that any value (mod p) taken by $P(x)$ is taken at least twice, if $n > d$.

Proof. From (1) we see that if $P(x) \equiv 0 \pmod{p}$ precisely when $x_i \equiv 0 \pmod{p}$ for all i, then

$$
1 - P(\mathbf{x})^{p-1} \equiv \begin{cases} 1 & (x_i \equiv 0 \pmod{p} \text{ for all } i), \\ 0 & (\text{otherwise.}) \end{cases}
$$

By taking $c(0) = 1$ and all other $c(a) = 0$ in (2), we deduce that

$$
1 - P(\mathbf{x})^{p-1} \equiv \prod_{i=1}^{n} (1 - x_i^{p-1}) \pmod{p}
$$

for all choices of the variables x_i . The polynomial on the right hand side above is reduced, but the left hand side is not necessarily reduced. Let $Q(x)$ be a reduced polynomial equivalent to the left hand side above. Hence

$$
Q(\boldsymbol{x}) \equiv \prod_{i=1}^{n} \left(1 - x_i^{p-1}\right) \pmod{p}
$$

2

for all choices of the variables x_i . By Theorem 1, it follows that all coefficients of

$$
\prod_{i=1}^{n} \left(1 - x_i^{p-1}\right) - Q(\boldsymbol{x})
$$

are divisible by p. But the monomial x_1^{p-1} $x_1^{p-1} \cdots x_n^{p-1}$ has coefficient $(-1)^n$ in the product, and coefficient 0 in Q, since deg $Q \leq d(p-1) < n(p-1)$. This is a contradiction, so the proof is complete.

We now lay the foundation for a stronger result.

Lemma 1. For non-negative integers k, let $S_k(p) = \sum_{a=1}^p a^k$. Then

$$
S_k(p) \equiv \begin{cases} -1 \pmod{p} & \text{if } k \equiv 0 \pmod{p-1} \text{ and } k > 0, \\ 0 \pmod{p} & \text{otherwise.} \end{cases}
$$

Note: We take $a^0 = 1$ for all a, including $a = 0$.

Proof. Clearly $S_0(p) = p \equiv 0 \pmod{p}$. $S(0) = p \equiv 0 \pmod{p}$. Also, if $k > 0$ and $(p-1)|k$, then by Fermat's congruence

$$
S_k(p) \equiv \sum_{a=1}^{p-1} 1 \equiv -1 \pmod{p}.
$$

Finally, suppose that $k > 0$ and that $k \neq 0 \pmod{p-1}$. Recall that if $(c, p) = 1$, then the numbers ca form a complete residue system as a runs through a complete residue system (Theorem 2.6). Hence $c^k S_k(p) \equiv S_k(p) \pmod{p}$. That is, $S_k(p)(c^k-1) \equiv 0 \pmod{p}$. But since $k \not\equiv 0 \pmod{p-1}$, there is a c such that $c^k \not\equiv 1 \pmod{p}$. Indeed, a primitive root will do. Hence $S_k(p) \equiv 0 \pmod{p}$, and the proof is complete.

Theorem 3. (Warning) Suppose that $P(x)$ is a polynomial of degree d in n variables, with integral coefficients. If $n > d$, then the number of solutions of the congruence $P(x) \equiv 0$ \pmod{p} is divisible by p.

Proof. By (1) we see that the number of solutions of this congruence is congruent (mod p) to

$$
\sum_{x_1=1}^p \sum_{x_2=1}^p \cdots \sum_{x_n=1}^p 1 - P(x)^{p-1}.
$$

Let $cx_1^{k_1}x_2^{k_2}$ $x_2^{k_2} \cdots x_n^{k_n}$ be one of the monomial terms that make up the polynomial $1-P(\boldsymbol{x})^{p-1}$. The contribution made to the above sum by this monomial term is

$$
c \prod_{i=1}^{n} \left(\sum_{x_i=1}^{p} x_i^{k_i} \right).
$$

Since P has degree d, we know that $\sum_{i=1}^{n} k_i \leq d(p-1)$. But $n > d$, so the inequality $k_i < p-1$ holds for at least one i. By Lemma 1, this value of i contributes a factor $\equiv 0$ \pmod{p} to the above product.

If $P(x)$ is a form (i.e., a homogeneous polynomial) of degree $d > 0$, then $P(0) = 0$, so it follows from either Theorem 2 or Theorem 3 that the congruence $P(x) \equiv 0 \pmod{p}$ must also have at least one non-trivial solution. For example, the congruence $x^2 + y^2 + z^2 \equiv 0$ (mod p) always has a solution with not all variables divisible by p .

Exercises

1. Let $f \in \mathbb{F}_p[x_1,\ldots,x_n]$ have degree $d < n$. Show that

$$
\sum_{\substack{\boldsymbol{x} \in \mathbb{F}_p^n \\ f(\boldsymbol{x}) \equiv 0 \pmod{p}}} x_i^k \equiv 0 \pmod{p}
$$

for $1 \le i \le n, 0 \le k < p-1$.

2. For $1 \leq j \leq m$ let $f_j \in \mathbb{F}_p[x_1,\ldots,x_n]$, and put $d_j = \deg f_j$. Show that if $\sum d_j < n$, then the system of simultaneous congruences

$$
f_j() \equiv 0 \pmod{p} \qquad (1 \le j \le m)
$$

has at least two solutions, if it has one.

3. Show that in the situation of the preceding exercise, that the number of solutions is a multiple of p.

4. (a) Let $S_k(p)$ be defined as in Lemma 1. Use the binomial theorem to show that

$$
\sum_{k=0}^{n-1} {n \choose k} S_k(p) \equiv 0 \pmod{p}.
$$

(b) Deduce that

$$
\sum_{\substack{0 < k < n \\ (p-1)|k}} \binom{n}{k} \equiv 0 \pmod{p} \, .
$$