
The Modular Group

1. The Modular Group

The modular group Γ is the set of all 2×2 matrices with integral elements and determinant
1. That is, Γ is the special linear group of 2 × 2 matrices over the integers, Γ = SL(2, Z).
It forms a group under matrix multiplication. If

M =

[

a b
c d

]

∈ Γ

Then M defines a map

fM (z) =
az + b

cz + d

of the extended complex plane to itself. Here fM (−d/c) = ∞, and fM (∞) = a/c. Suppose

that N =

[

α β
γ δ

]

. Then by direct calculation we find that

fN (fM (z)) =
(αa + βc)z + (αb + βd)

(γa + δc)z + (γb + δd)
= fNM (z).

While it might seem surprising that the composition of one such rational function with
another would be connected with matrix multiplication, the mystery can be dispelled by
considering how M and N transform the 2-dimensional vectors C2. Suppose that

M

[

z1

z2

]

=

[

w1

w2

]

, N

[

w1

w2

]

=

[

t1
t2

]

.

Then

NM

[

z1

z2

]

=

[

t1
t2

]

.

Now suppose we consider these vectors in terms of projective geometry. Two vectors are
then considered to be the same if their coordinates are proportional (i.e., the vectors are
colinear). In other words, if c is a non-zero complex number, then

[

z1

z2

]

and
[

cz1

cz2

]

are
considered to be the same. Thus a projective point z1 : z2 is determined by the ratio
z = z1/z2 if its coordinates, and the image w1 : w2 is determined by the ratio w = w1/w2

of its coordinates. But then

w =
w1

w2

=
az1 + bz2

cz1 + dz2

=
az1/z2 + b

cz1/z2 + d
=

az + b

cz + d
,

so the map from z to w reflects a linear transformation in projective coordinates.
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Let H denote the upper half-plane of the complex plane, H = {z ∈ C : =z > 0}. Write
z = x + iy. Then

w =
az + b

cz + d
=

az + b

cz + d

cz + d

cz + d
=

ac(x2 + y2) + (bc + ad)x + bd

(cx + d)2 + (cy)2
+ i

(ad − bc)y

(cx + d)2 + (cy)2
.

Since ad − bc = 1, we deduce that w ∈ H if and only if z ∈ H. We call two points z ∈ H

and w ∈ H equivalent if there is an M ∈ Γ such that w = fM (z). Since the identity matrix
I takes z to itself, it follows that z ∼ z. If M takes z to w, then M−1 takes w to z. That
is, z ∼ w implies that w ∼ z. Finally, if z ∼ w and w ∼ t, then NM takes z to t, so that
z ∼ t. Hence this is an equivalence relation, and the upper half-plane H is partitioned into
equivalence classes. In analogy with complete systems of residues (mod m), we say that a
set S ⊆ H is a fundamental region of Γ if for every z ∈ H there is exactly one w ∈ S such
that z ∼ w.

Theorem 1. Let R be the set of those z = x + iy ∈ H such that either −1/2 ≤ x < 1/2
and |z| > 1 or else −1/2 ≤ x ≤ 0 and |z| = 1. Then R is a fundamental region for Γ.

Proof. We show first that if z ∈ H, then there is a w ∈ R that is equivalent to z. Let

S =

[

0 −1
1 0

]

and T =

[

1 1
0 1

]

, and note that

SR = {z ∈ H : |z + 1| > 1, |z − 1| ≥ 1, |z| < 1} ∪ {z ∈ H : |z| = 1, 0 ≤ x ≤ 1/2},
ST−1

R = {z ∈ H : |z − 1| < 1, |z − 1/3| ≥ 1/3, x < 1/2}
∪ {z ∈ H : x = 1/2,

√
3/6 ≤ y ≤ 1/2},

STR = {z ∈ H : |z + 1| ≤ 1, |z + 1/3| > 1/3, x > −1/2}
∪ {z ∈ H : x = −1/2, 1/2 ≤ y ≤

√
3/2}.

Suppose that z ∈ H. Choose an integer m so that w = z + m satisfies −1/2 ≤ <w < 1/2.
If w ∈ R, then we are done. If w ∈ ST−1R, then TSw ∈ R, and we are done. If w ∈ STR,
then T−1Sw ∈ R, and we are done. Otherwise, |w| ≤ 1/

√
3, so that |Sw| ≥ 3|w|. In this

case we begin again with Sw. Since the imaginary part increases by a factor of at least 3
upon each repetition, the process eventually terminates with an equivalent member of R.

To complete the proof we show that no member of R is equivalent to a different member
of R. Suppose that z ∈ R, and that M takes z to w ∈ R. If c = 0, then the condition
det(M) = 1 implies that ad = 1, so that without loss of generality a = c = 1. Then
w = z + b, and so the condition −1/2 ≤ <w < 1/2 implies that b = 0. That is, M = I,
z = w. Now suppose that c 6= 0. By direct calculation we find that

cw − a =
−1

cz + d
.

Thus if |cz + d| > 1, then |cw − a| < 1. Suppose that |c| > 1. Then z ∈ R implies that
|cz + d| > 1, which implies that |cw − a| < 1, which implies that w /∈ R. Suppose that
2



The modular group

|c| = 1. By replacing M by −M we may suppose that c = 1. The disc |z + d| < 1 does not
intersect R, and the closed disc |z + d| ≤ 1 has non-empty intersection with R only when
d = 0 or d = 1. Similarly, the disc |w − a| < 1 does not intersect R, and the closed disc
|w− a| ≤ 1 has non-empty intersection with R only when a = 0 or a = −1. Hence if z ∈ R

and w ∈ R, then |z + d| = 1 and |w − a| = 1, and we have four cases:
1. a = d = 0. In order that det(M) = 1, we must have b = −1, which is to say that M = S
and f(z) = −1/z. But <z < 0 implies <w > 0, and then w /∈ R, since |w| = 1. If z = i,
then w = i, so z = w, even though M 6= ±I.
2. a = 0, d = 1. Since det(M) = 1, we have b = −1. The only point z ∈ R such that

|z + 1| = 1 is z = ρ = −1/2 + i
√

3/2. But f(ρ) = −1/(ρ + 1) = ρ, so again we have w = z.
3. a = −1, d = 0. Since det(M) = 1, we must have b = −1. This determines M , and we
note that M−1 is the matrix treated in the preceding case, so again z ∈ R and w ∈ R only
when z = w = ρ.
4. a = −1, d = 1. In order that det(M) = 1 we must have b = −2. Now |z +1| = 1 implies

that z = ρ. But f(ρ) = (−ρ − 2)/(ρ + 1) = −3/2 + i
√

3/2 /∈ R.
In all cases, if z ∈ R, w ∈ R, and z ∼ w, then z = w, so the proof is complete.
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Figure 1. The Fundamental Domain and some of its images.
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By examining the above proof, we may observe that z ∈ R and f(z) = z only when
M = ±I, with the exceptions that f(i) = i when M is one of the four matrices ±I, ±S,

and f(ρ) = ρ when M is one of the six matrices ±I, ±
[

0 −1
1 1

]

, ±
[

−1 −1
1 0

]

.

2. Positive definite binary quadratic forms

Write

f(x, y) = ax2 + bxy + cy2 = a(x − ry)(x − ry),

g(x, y) = Ax2 + Bxy + Cy2 = A(x − Ry)(x− Ry)

where r and R are in the upper half-plane H. Since b = −2a<r, to say that −a < b ≤ a
is equivalent to −1/2 ≤ <r < 1/2. Since c = a|r|2, the inequality c > a is equivalent
to |r| > 1. Similarly, the inequalities 0 ≤ b ≤ a = c are equivalent to −1/2 ≤ <r ≤ 0,
|r| = 1. Thus we see that f is reduced if and only if r ∈ R. Moreover, if g(x, y) =
f(m11x + m12y, m21x + m22y), then

g(x, y) = a(m11x + m12y − r(m21x + m22y))(m11x + m12y − r(m21x + m22y))

= a((−m21r + m11)x − (m22r − m12)y)((−m21r + m11)x − (m22r − m12)y)

= a(m11 − rm21)(m11 − rm21)
(

x − m22r − m12

−m21r + m11

y
)(

x − (m22r − m12

−m21r + m11

y
)

.

Here we see that A = a(m11− rm21)(m11− rm21) = f(m11, m21), which we already knew.
More importantly, we see that

R =
m22r − m12

−m21r + m11

,

which is to say that

r =
m11R + m12

m21R + m22

.

That is, M takes R to r, so that r ∼ R. Since each r ∈ H is equivalent to a unique R ∈ R,
every positive definite binary quadratic form is equivalent to a unique reduced quadratic
form.

The coefficients a, b, c of f determine a unique r ∈ H, provided that d = b2 − 4ac < 0.
Conversely, once d < 0 is fixed, the coefficients a, b, c can be recovered from r by the
relations

a2(r − r)2 = d, a > 0, b = −a(r + r), c = arr .

Thus if r ∼ R, then we have associated f and g with f ∼ g.
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