
The Arithmetic of Polynomials Modulo p

In §§1,2, proofs are to be supplied by the reader, results under discussion are analogous to
those in the NZM text, and the numbering is intended to emphasize the correspondence.
One may view this unit as an introduction to finite fields, but in a very old-fashioned way,
from the viewpoint of classical elementary number theory.

Throughout, p is a fixed prime. Suppose that f(x) =
∑

aix
i and g(x) =

∑

bix
i are two

polynomials. We must distinguish between the following two assertions:

(I) ai ≡ bi (mod p) for all i;

(II) f(x) ≡ g(x) (mod p) for all integers x.

Of course (I) implies (II) but the converse is false (since for example we might have f(x) =
xp − x and g(x) = 0). To facilitate this distinction we adopt a notation that is consistent
with modern algebra. We let Fp denote the field of residue classes modulo p, and Fp[x] the
ring of polynomials whose coefficients are residue classes (mod p). We write f(x) = g(x),
or more briefly f = g if (I) holds.

1. Divisibility and Factorization

The theory here is entirely analogous to the theory we have developed for the integers. The
numbering below coincides with that in NZM, and the proofs are parallel. Hence, we hold
these truths to be self-evident:

Definition 1.1. If f ∈ Fp[x] and g ∈ Fp[x] then we say that f divides g, and write f |g, if

there is a polynomial m ∈ Fp[x] such that mf = g. We say that f and g are associates if

there is a non-zero residue class c ∈ F×
p such that cf = g.

Theorem 1.1. Suppose that a, b, c are polynomials in Fp[x]. Then

(1) a|b implies that a|bc for any c ∈ Fp[x];
(2) a|b and b|c imply that a|c;
(3) a|b and a|c imply that a|(bu + cv) for any u, v ∈ Fp[x];
(4) If a|b then deg a ≤ deg b.
(5) a|b and b|a imply that a and b are associates.

(6) Suppose that m is a non-zero polynomial in Fp[x]. Then a|b if and only if ma|mb.

Theorem 1.2. (The division algorithm) Let a and b be polynomials in Fp[x] with a 6= 0.
Then there exist polynomials q and r in Fp[x] such that b = qa + r and deg r < deg a.

The remainder r may be 0 (the zero polynomial, all of whose coefficients are 0); we put
deg 0 = −∞. Thus the identity deg ab = deg a + deg b holds even when one of the factors
is 0.
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Definition 1.2. Let a and b be polynomials in Fp[x]. We say that a polynomial d ∈ Fp[x]
is a common divisor of a and b if d|a and d|b. If a 6= 0 or b 6= 0 then we say that g ∈ Fp[x]
is a greatest common divisor of a and b if g is a common divisor of a and b and deg g is

maximal among all common divisors of a and b. In this case we write g = (a, b).

Theorem 1.3. If g ∈ Fp[x] is a greatest common divisor of b and c then there exist

polynomials u and v in Fp[x] such that g = bu + cv. Any two greatest common divisors of

b and c are associates.

Theorem 1.4. The greatest common divisor g of two polynomials b and c in Fp[x] can

be characterized in the following two ways: (1) Among non-zero polynomials of the form

bu + cv where u and v are polynomials in Fp[x], g has minimal degree; (2) g is a common

divisor of b and c that is divisible by every other common divisor.

Theorem 1.5. Given any polynomials b1, b2, . . . , bn in Fp[x], not all zero, with greatest

common divisor g, there exist polynomials u1, u2, . . . , un such that

g = (b1, b2, . . . , bn) =
n

∑

j=1

bjuj .

Among all non-zero polynomials of the form
∑n

j=1 bjvj, where the vj are polynomials in

Fp[x], g is one whose degree is minimal. All common divisors of b1, b2, . . . , bn divide g, and

any two greatest common divisors are associates.

Theorem 1.6. If a and b are polynomials in Fp[x], not both zero, and if m is a non-zero

polynomial in Fp[x], then (ma, mb) = m(a, b).

Theorem 1.7. Suppose that a and b are polynomials in Fp[x], not both zero. If d is a

non-zero polynomial in Fp[x] such that d|a and d|b, then

(a

d
,
b

d

)

=
1

d
(a, b).

In particular, if g = (a, b) then
(a

g
,
b

g

)

= 1.

Theorem 1.8. Let a, b, and m be polynomials in Fp[x], at least two of them non-zero. If

(a, m) = 1 and (b, m) = 1, then (ab, m) = 1.

Definition 1.3. Let a and b be polynomials in Fp[x]. We say that a and b are relatively
prime if (a, b) = 1. We say that a1, a2, . . . , an are relatively prime if (a1, a2, . . . , an) = 1.
We say that a1, a2, . . . , an are relatively prime in pairs if (ai, aj) = 1 for all i = 1, 2, . . . , n
and all j = 1, 2, . . . , n with j 6= i.
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Theorem 1.9. Let a and b be polynomials in Fp[x], not both zero, and let x be any polyno-

mial in Fp[x]. Let c be any non-zero residue class (mod p). Then (a, b) = (b, a) = (a, cb) =
(a, b + ax).

Theorem 1.10. Suppose that a, b, and c are polynomials in Fp[x]. If c|ab and (b, c) = 1,
then c|a.

Theorem 1.11. (The Euclidean Algorithm) Given polynomials b and c 6= 0 in Fp[x], we

make a repeated application of the division algorithm, Theorem 1.2, to obtain a series of

equations

b = cq1 + r1, 0 < deg r1 < deg c,

c = r1q2 + r2 0 < deg r2 < deg r1,

r1 = r2q3 + r3, 0 < deg r3 < deg r2,

...
...

rj−2 = rj−1qj + rj 0 < deg rj < deg rj−1,

rj−1 = rjqj+1.

The greatest common divisor (b, c) of b and c is rj, the last non-zero remainder in the

division process. Values of u0 and v0 in (b, c) = bu0 + cv0 can be obtained by writing each

ri as a linear combination of b and c.

Definition 1.4. The polynomials a1, a2, . . . , an in Fp[x], all different from zero, have a

common multiple b if ai|b for all i = 1, 2, . . . , n. (Note that common multiples do exist; for

example the product a1a2 · · ·an is one.) The least common multiple of the ai is non-zero

common multiple of minimal degree, and is denoted by [a1, a2, . . . , an].

Theorem 1.12. If b is a common multiple of the polynomials a1, a2, . . . , an in Fp[x] then

[a1, a2, . . . , an]|b. This is the same thing as saying that if h = [a1, a2, . . . , an] then the

common multiples of the ai are precisely the polynomials of the form mh where m ranges

over all polynomials in Fp[x].

Theorem 1.13. If m, a, and b are non-zero polynomials in Fp[x] then [ma, mb] = m[a, b].
Also, [a, b](a, b) = ab.

Definition 1.5. A polynomial f ∈ Fp[x] is called reducible if it can be written in the

form f = ab where a and b are non-constant polynomials. If f has no divisor d satisfying

0 < deg d < deg f then f is irreducible.

Theorem 1.14. Every non-constant polynomial a ∈ Fp[x] can be written as a product of

irreducible polynomials.

Theorem 1.15. Suppose that f , a, and b are non-zero polynomials in Fp[x]. If f is

irreducible and f |ab then f |a or f |b. More generally, if f |a1a2 · · ·an then f |ai for at least

one i = 1, 2, . . . , n.
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Theorem 1.16. (The Fundamental Theorem of Arithmetic) The factoring of a polynomial

a ∈ Fp[x] into irreducible polynomials is unique apart from the ordering of the factors, and

the choice of associates.

Suppose that a, b, c are polynomials in Fp[x] with factorizations

a =
∏

f

fα(f) b =
∏

f

fβ(f) c =
∏

f

fγ(f)

where the polynomials f are irreducible. If ab = c then by Theorem 1.16 we deduce that
α(f) + β(f) = γ(f) for all f . Hence a|c if and only if α(f) ≤ γ(f) for all irreducible
polynomials f ∈ Fp[x]. Consequently, the greatest common divisor and least common
multiple of a and b have factorizations

(a, b) =
∏

f

fmin(α(f),β(f)), [a, b] =
∏

f

fmax(α(f),β(f)).

Thus the identity of Theorem 1.6 is equivalent to the identity min(µ + α, µ + β) = µ +
min(α, β), and the second identity in Theorem 1.13 is equivalent to the identity min(α, β)+
max(α, β) = α + β.

The results here do not depend on the fact that the ground field is the field Fp of residues modulo p. Thus in

abstract algebra, one proves that if F is an arbitrary field then the polynomials F [x] with coefficients in F have a

division algorithm, which yields a Euclidean algorithm, and hence unique factorization. Moreover, if I is an ideal

in the ring F [x], then by Theorem 1.5 we know that I is principal; that is, there is a polynomial f∈F [x] such that

I=(f). This gives rise to a quotient ring F [x]/(f), whose structure is also subject to investigation. In the case of

Fp[x]/(f) we develop this in the next section, using the more number-theoretic language of congruences.

2. Congruences

Definition 2.1. Let m be a non-zero polynomial in Fp[x]. If a and b are polynomials in

Fp[x] such that m|(a − b) then we say that a is congruent to b modulo m, and we write

a ≡ b (mod m). If m - (a − b) then we write a 6≡ b (mod m).

Theorem 2.1. Let a, b, c, and d denote polynomials in Fp[x], and let f be a non-zero

polynomial in Fp[x]. Then:

(1) a ≡ b (mod f), b ≡ a (mod f), and a − b ≡ 0 (mod f) are equivalent statements;

(2) If a ≡ b (mod f) and b ≡ c (mod f) then a ≡ c (mod f);
(3) If a ≡ b (mod f) and c ≡ d (mod f) then a + c ≡ b + d (mod f);
(4) If a ≡ b (mod f) and c ≡ d (mod f) then ac ≡ bd (mod f);
(5) If a ≡ b (mod f) and d|f then a ≡ b (mod d);
(6) If a ≡ b (mod f) then ac ≡ bc (mod fc).

Theorem 2.2. Suppose that a, b, and f are polynomials in Fp[x]. If P is a polynomial in

Fp[x] and a ≡ b (mod f) then P (a) ≡ P (b) (mod f).
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Theorem 2.3. Suppose that a, u, v, and f are polynomials in Fp[x]. Then

(1) au ≡ av (mod f) if and only if u ≡ v (mod f
(a,f)

).

(2) If au ≡ av (mod f) and (a, f) = 1 then u ≡ v (mod f).
(3) u ≡ v (mod fi) for i = 1, 2, . . . , r if and only if u ≡ v (mod [f1, f2, . . . , fr]).

Definition 2.2. Suppose that u, v, and f are polynomials in Fp[x]. If u ≡ v (mod f) then

we say that v is a residue of u modulo f . A set u1, u2, . . . , uk is called a complete residue
system modulo f if for every polynomial v in Fp[x] there is one and only one ui such that

v ≡ ui (mod f).

The set of polynomials of degree less than the degree of f form a complete system of
residues modulo f . Hence the number of residues in a complete system is k = pdeg f .

Theorem 2.4. Suppose that b, c, and f are polynomials in Fp[x]. If b ≡ c (mod f) then

(b, f) = (c, f).

Definition 2.3. Let f be a polynomial in Fp[x]. A reduced residue system modulo f is

a set of polynomials r1, r2, . . . , rk such that (ri, f) = 1 and ri 6≡ rj (mod f) if i 6= j, and

such that if u is a polynomial such that (u, f) = 1, then u ≡ ri (mod f) for exactly one

value of i.

If f is irreducible in Fp[x], then all polynomials of degree less than that of f are relatively
prime to f , except for the zero polynomial. Hence in this case the number of polynomials
in a system of reduced residues is pdeg f − 1.

Theorem 2.6. Suppose that a and f are polynomials in Fp[x], and that (a, f) = 1. Let

r1, r2, . . . , rk be a complete, or reduced, system of residues modulo f . Then ar1, ar2, . . . , ark

is a complete, or reduced system of residues, respectively, modulo f .

Theorem 2.7. Let f be an irreducible polynomial in Fp[x] of degree n. If f - a then

apn−1 ≡ 1 (mod f).

Theorem 2.8. Let f be a polynomial in Fp[x], and let φ(f) be the number of polynomials

in a reduced system of residues modulo f . If (a, f) = 1 then aφ(f) ≡ 1 (mod f).

Theorem 2.9. Let a and f be polynomials in Fp[x]. If (a, f) = 1 then there is a polynomial

u such that au ≡ 1 (mod f). Any two such u are congruent (mod f). If (a, f) is a

polynomial of degree > 0 then there is no such u.

Theorem 2.10. Let u and f be polynomials in Fp[x], and suppose that f is irreducible.

Then u2 ≡ 1 (mod f) if and only if u ≡ ±1 (mod f).

Theorem 2.11. Let f be an irreducible polynomial in Fp[x], and let r1, r2, . . . , rk be a

system of reduced residues modulo f . Then
∏k

i=1 ri ≡ −1 (mod f).

Definition 2.4. Let f be a polynomial in Fp[x], and let r1, r2, . . . , rk be a complete system

of residues modulo f . Let P (z) be a polynomial whose coefficients are in Fp[x]. The number
of solutions of the congruence P (u) ≡ 0 (mod f) is the number of i for which P (ri) ≡ 0
(mod f).
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Theorem 2.18. (The Chinese Remainder Theorem) Let f1, f2, . . . , fr be non-zero poly-

nomials in Fp[x], and suppose that the fi are relatively prime in pairs. Let a2, a2, . . . , ar

be any polynomials in Fp[x]. Then there is a polynomial u such that u ≡ ai (mod fi) for

i = 1, 2, . . . r. If f = f1f2 · · · rr then any two such u are congruent modulo f .

Theorem 2.19. If a is a polynomial in Fp[x] let φ(a) be the number of polynomials in a

reduced system of residues modulo a. If (a, b) = 1 then φ(ab) = φ(a)φ(b). If a =
∏

f fα is

the factorization of a into irreducible polynomials, then φ(a) =
∏

f pn(α−1)(pn − 1) where

n = nf = deg f .

Theorem 2.20. Let a and b denote polynomials in Fp[x], and let P (z) be a polynomial

whose coefficients are in Fp[x]. Let NP (a) denote the number of solutions of the congruence

P (u) ≡ 0 (mod a). If (a, b) = 1 then NP (ab) = NP (a)NP (b).

Theorem 2.26. Let f be an irreducible polynomial in Fp[x], and let P (z) be a polynomial

of degree k whose coefficients are in Fp[x]. Then the congruence P (u) ≡ 0 (mod f) has at

most k solutions.

Theorem 2.29. Let f be an irreducible polynomial in Fp[x], and let n = deg f . Suppose

that P (z) be a polynomial of degree k whose coefficients coefficients are in Fp[x]. Then

the congruence P (u) ≡ 0 (mod f) has exactly k solutions if and only if there is a polyno-

mial Q(z) whose coefficients are in Fp[x] such that upn

− u ≡ P (u)Q(u) (mod f) for all

polynomials u ∈ Fp[x].

Corollary 2.30. Let f be an irreducible polynomial of degree n in Fp[x]. If d|(pn−1) then

the congruence ud ≡ 1 (mod f) has exactly d solutions.

Definition 2.6. Let f and a be any two polynomials in Fp[x], and suppose that (a, f) = 1.
Let h be the least positive integer such that ah ≡ 1 (mod f). We say that the order of a
modulo f is h, or that a belongs to the exponent h modulo f .

Lemma 2.31. Let a and f be polynomials in Fp[x]. If a has order h modulo f then ak ≡ 1
(mod f) if and only if h|k.

Corollary 2.32. Let a and f be polynomials in Fp[x]. If (a, f) = 1 then the order of a
modulo f divides pn − 1, where n = deg f .

Lemma 2.33. Let a and f be polynomials in Fp[x]. If a has order h modulo f then ak

has order h/(h, k) modulo f .

Lemma 2.34. Let a, b and f be polynomials in Fp[x]. If a has order h modulo f and b
has order k modulo f , and (h, k) = 1, then ab has order hk modulo f .

Definition 2.7. Let f be a polynomial in Fp[x]. If g belongs to the exponent φ(f) then g
is a primitive root modulo f .

Lemma 2.35. Let f be an irreducible polynomial of degree n in Fp[x]. If q is prime and

qα|(pn − 1) where α ≥ 1, then there are precisely qα − qα−1 residue classes modulo f of

order qα.
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Theorem 2.36. If f is an irreducible polynomial of degree n in Fp[x] then there exist

exactly φ(pn − 1) primitive roots modulo f .

Theorem 2.37. Let f be an irreducible polynomial of degree n in Fp[x]. If (a, f) = 1 then

the congruence uk ≡ a (mod f) has (k, pn − 1) solutions or no solution, according as

a(pn−1)/(k,pn−1) ≡ 1 (mod f),

or not.

The correspondence with numbering in NZM ends at this point.

Example 1. Let p = 2. Then we have the polynomials 0, 1, x, x + 1, x2, x2 + 1, x2 +
x, x2 + x + 1, . . . . If a quadratic polynomial is reducible then it is the product of two linear
polynomials. We note that x2 = x2, x(x + 1) = x2 + x, and that (x + 1)2 = x2 + 1. Thus
three of the four quadratic polynomials available is reducible, but f(x) = x2 + x + 1 is
irreducible. A complete system of residues modulo f is given by r0 = 0, r1 = 1, r2 = x,
r3 = x + 1. By direct calculation we find that

+ r0 r1 r2 r3

r0 r0 r1 r2 r3

r1 r1 r0 r3 r2

r2 r2 r3 r0 r1

r3 r3 r2 r1 r0

× r0 r1 r2 r3

r0 r0 r0 r0 r0

r1 r0 r1 r2 r3

r2 r0 r2 r3 r1

r3 r0 r3 r1 r2

Here we see that r2 and r3 have order 3 (mod f), so they are the primitive roots in this
case.

Suppose that f is an irreducible polynomial of degree n in Fp[x]. We have shown that polynomials modulo

f form a field, and that the multiplicative group of non-zero elements is cyclic. It is also easy to see that the

additive group is isomorphic to (Cp)n. More generally, if F is a finite field then by the pigeon-hole principle there

is a positive integer n such that n=0. The least such positive integer is called the characteristic of the field. It

is easy to see that if the characteristic of a field is finite, then it must be a prime number. The fields constructed

above have pn elements and characteristic p. It can also be shown that the number of elements in a finite field

of characteristic p must be pn for some n. The proof we have given that the multiplicative group of non-zero

elements is cyclic generalizes to arbitrary finite fields. In §4 below we show that for every prime number p and

every positive integer n there is at least one irreducible polynomial of degree n in Fp[x]. Hence there is a field of

pn elements. Finally, it can be shown that any two finite fields of the same size are isomorphic. Hence there is

essentially only one field of size pn. Note, however, that when n>1 the field of pn elements is not the same as the

ring of integers modulo pn, which is not a field.
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3. Derivatives

Definition 3.1. If f(x) =
∑n

i=0 aix
i is a polynomial, then the derivative of f(x) is the

polynomial f ′(x) =
∑n

i=1 iaix
i−1.

It is easy to verify that (f(x) + g(x))′ = f ′(x) + g′(x), that (cf(x))′ = cf ′(x), that
(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x), and hence that (f(x)k)′ = kf(x)k−1f ′(x). Suppose
now that a and f are polynomials in Fp[x], that f is irreducible, and that f divides a
exactly to the power α > 0, say a = fαg. Then a′ = αfα−1f ′ + fαg′, so that f divides a′

to at least the power α − 1. (If p - α then the power is exactly α − 1, but if p|α then the
power is at least α.) Hence (a, a′) = 1 if and only if a is square-free.

4. Further factorizations

Theorem 4.1. If d and n are positive integers and d|n then there is a polynomial u(x)
with integral coefficients such that (xd − 1)u(x) = xn − 1.

Proof. Put u(x) = xn−d + xn−2d + · · ·+ xd + 1.

Corollary 4.2. If a is an integer and d and n are positive integers such that d|n, then

(ad − 1)|(an − 1).

Theorem 4.3. Let m and n be positive integers, and suppose that (m, n) = g. Then there

exist polynomials u(x) and v(x) with integral coefficients such that

(xm − 1)u(x) + (xn − 1)v(x) = xg − 1.

Proof. Suppose that m ≥ n, and write m = q1n + r1 where 0 ≤ r1 < n. Then

xr1 − 1 = (xm − 1) − (xq1n − 1)xr1 = (xm − 1)u1(x) + (xn − 1)v1(x),

say. Next write n = q2r1 + r2 where 0 ≤ r2 < r1, so that

xr2 − 1 = (xn − 1) − (xq2r1 − 1)xr2 = (xm − 1)u2(x) + (xn − 1)v2(x).

By continuing with the Euclidean algorithm, we eventually reach the last non-zero remain-
der rj , and

xrj − 1 = (xm − 1)uj(x) + (xn − 1)vj(x).

Since rj = g, this gives the result.

The calculation just completed is unusual in that each remainder polynomial is monic, so that when it is used

as a divisor, the resulting quotient still has integral coefficients. Normally, if p(x) and q(x) are relatively prime

polynomials with integral coefficients and one writes p(x)u(x)+q(x)v(x)=1, the coefficients of u(x) and v(x) are

rational numbers. One can multiply by the least common denominator of these coefficients to obtain an identity

of the form p(x)u(x)+q(x)v(x)=c; the least integer c that can be so expressed is of considerable significance and

is called the resultant of the polynomials. Hence from the above we see that if (m,n)=1 then the resultant of

xm−1 and xn−1 is 1.
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Corollary 4.4. Let m and n be positive integers, and put g = (m, n). Then for any integer

a, (am − 1, an − 1) = ag − 1.

Proof. Let G = (am−1, an −1). Since u(a) and v(a) are integers it follows from Theorem
4.3 that G|(ag − 1). On the other hand, by Corollary 4.2 we see that ag − 1 divides both
am − 1 and an − 1. Hence (ag − 1)|G, so that G = ag − 1.

Theorem 4.5. Let f be a polynomial in Fp[x]. Then f(x)p = f(xp).

Proof. Let u and v be any two polynomials in Fp[x]. Then (u + v)p = up + vp since p|
(

p
k

)

for 0 < k < p. Hence by induction, (u1 + u2 + · · · + un)p = up
1 + up

2 + · · · + up
n. Thus if

f(x) =
∑

i aix
i then f(x)p =

∑

i(aix
i)p. But ap

i ≡ ai (mod p), so this is
∑

aix
ip = f(xp).

Theorem 4.6. (Gauss) Let Fn denote the set of all monic irreducible polynomials of degree

n in Fp[x]. Then for any positive integer n,

(1) xpn

− x =
∏

d|n

∏

f∈Fd

f(x).

The case n = 1 of this is already in §2.7 of NZM.

Proof. Let h(x) = xpn

− x ∈ Fp[x]. Then h′(x) = −1. Hence (h, h′) = 1, and so h
is square-free. Thus to determine the factorization of g it is enough to determine which
irreducible polynomials divide it.

Suppose that d|n, and that f ∈ Fd. Then (f, x) = 1 unless d = 1 and f(x) = x, in

which case f |h. Otherwise it follows by Theorem 2.8 that xpd−1 ≡ 1 (mod f). That is,

f |(xpd−1 − 1). But (pd − 1)|(pn − 1) by Corollary 4.2, and hence (xpd−1 − 1)|(xpn−1 − 1)
by Theorem 4.1. Hence the right hand side displayed above divides the left hand side.

To complete the proof it suffices to show that if f is an irreducible monic polynomial
of degree m that divides xpn

− x then m|n. If f(x) = x then m = 1, and we are done,
since 1|n. Otherwise, (f, x) = 1, so from f |(xpn

− x) it follows by Theorem 1.10 that
f |(xpn−1 − 1). We also know, by Theorem 2.7, that f |(xpm−1 − 1). Then by Theorem 4.3

it follows that f |(xpd−1 − 1), where d = (m, n). That is, xpd−1 ≡ 1 (mod f), which implies

that xpd

≡ x (mod f). Let g(x) be an arbitrary polynomial in Fp[x]. By d applications

of Theorem 4.5 we see that g(x)pd

= g(xpd

). But this is ≡ g(x) (mod f) by Theorem 2.2.

Thus g(x)pd

≡ g(x) (mod f). If (g, f) = 1 then we may cancel g from both sides, to see

that g(x)pd−1 ≡ 1 (mod f). Now suppose that g is a primitive root of f . Then the order
of g modulo f is pm −1, and so we deduce that d ≥ m. But d is a divisor of m, so it follows
that d = m. As d is also a divisor of n we conclude that m|n, and the proof is complete.

Corollary 4.7. For each n ≥ 1, there is at least on irreducible polynomial in Fp[x] of

degree n.

Proof. By applying the identity deg ab = deg a + deg b in (1), we deduce that

(2) pn =
∑

d|n

d card Fd.

9
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By discarding the (non-negative) contribution of the terms for d < n, we deduce that

(3) card Fn ≤
pn

n

for all n. By (2) we see that

n card Fn = pn −
∑

d|n
d<n

d card Fd

which by (3) is

≥ pn −
∑

d|n
d<n

pd

≥ pn −
∑

1≤d≤[n/2]

pd

≥ pn −
p[n/2]+1 − 1

p − 1
.

Since p ≥ 2, this is

≥ pn − p[n/2]+1 + 1.

But [n/2] + 1 ≤ n for n = 1, 2, 3, . . . , so the above is ≥ 1.

Corollary 4.8. The number of monic irreducible polynomials of degree n in Fp[x] is exactly

1

n

∑

d|n

µ(d)pn/d.

Proof. Apply the Möbius inversion formula to the identity (1).

It is somewhat curious that the sum above should always be divisible by n. Since p
might lie in any reduced residue class modulo n, this suggests the first exercise below. In
the second exercise we recover (2) without needing so much of the theory.

EXERCISES

1. Show (by an argument independent of the present context) that if (a, n) = 1, then

∑

d|n

µ(d)an/d ≡ 0 (mod n).

10
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2. (a) Let nk denote the total number of monic polynomials of degree k in Fp[x]. Show
that nk = pk.
(b) Let P1, P2, . . . be the irreducible monic polynomials in Fp[x], listed in some (arbitrary)
order. Show that

∞
∏

r=1

(

1 + zdeg Pr + z2 deg Pr + z3 deg Pr + · · ·
)

= 1 + pz + p2z2 + p3z3 + · · ·

for |z| < 1/p.
(c) Let gk denote the number of irreducible monic polynomials of degree k in Fp[x]. Show
that

∞
∏

k=1

(

1 − zk
)−gk = (1 − pz)−1 (|z| < 1/p).

(d) Take logarithmic derivatives to show that

∞
∑

k=1

kgk
zk−1

1 − zk
=

p

1 − pz
(|z| < 1/p).

(e) Show that
∞
∑

k=1

kgk

∞
∑

m=1

zmk =
∞
∑

n=1

pnzn (|z| < 1/p).

(f) Deduce that
∑

k|n

kgk = pn

for all positive integers n.
(g) (Gauss) Use the Möbius inversion formula to show that

gn =
1

n

∑

k|n

µ(k)pn/k

for all positive integers n.
(h) Use (f) (not (g)) to show that

pn

n
−

2pn/2

n
≤ gn ≤

pn

n
.

(i) If a monic polynomial of degree n is chosen at random from Fp[x], about how likely is
it that it is irreducible? (Assume that p and/or n is large.)
(j) Show that gn > 0 for all p and all n ≥ 1. (If P ∈ Fp[x] is irreducible and has degree n,
then the quotient ring Fp[x]/(P ) is a field of pn elements. Thus we have proved that there

11
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is such a field, for each prime p and integer n ≥ 1. It may be further shown that the order
of a finite field is necessarily a primepower, and that any two finite fields of the same order
are isomorphic. Hence the field of order pn, whose existence we have proved, is essentially
unique.)

3. (E. Berlekamp) Let p be a prime number. We recall that polynomials in a single variable
(mod p) factor uniquely into irreducible polynomials. Thus a monic polynomial f(x) can
be expressed uniquely (mod p) in the form g(x)h(x)2 where g(x) is squarefree (mod p) and
both g and h are monic. Let sn denote the number of monic squarefree polynomials (mod
p) of degree n. Show that

( ∞
∑

k=0

skzk

)( ∞
∑

m=0

pmz2m

)

=

∞
∑

n=0

pnzn

for |z| < 1/p. Deduce that
∞
∑

k=0

skzk =
1 − pz2

1 − pz
,

and hence that s0 = 1, s1 = p, and that sk = pk(1 − 1/p) for all k ≥ 2.
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