The law of quadratic reciprocity can be proved in many ways. We give here a somewhat unusual proof, due to Conway, after Scholz.

The Legendre symbol $\left(\frac{a}{n}\right)$ $\left(\frac{a}{p}\right)$ is a special case of the Jacobi symbol $\left(\frac{a}{n}\right)$ $\frac{a}{n}$). We consider also the *Zolotarev symbol* $\left(\frac{a}{n}\right)$ $\frac{a}{n}$). Eventually we shall find that the Jacobi symbol and Zolotarev symbol are the same, but in the short term we add subscripts L, J , or Z , to make clear in which sense the symbol is meant.

If $(a, n) = 1$ and n is odd, then the *Zolotarev symbol* is defined to be the sign of the permutation $x \mapsto ax$ on a complete system of residues modulo n. For example, the permutation $x \mapsto 7x \pmod{15}$ has the cycle structure $(0)(1\ 7\ 4\ 13)(2\ 14\ 8\ 11)(3\ 6\ 12\ 9)(5)(10);$ hence $(\frac{7}{15})_Z = -1$.

Lemma 1. If $(a, p) = 1$ and p is prime, then $\left(\frac{a}{p}\right)$ $\left(\frac{a}{p}\right)_Z = \left(\frac{a}{p}\right)$ $\frac{a}{p}\big)_L$.

Proof. Let h be the order of a modulo p. The cycle decomposition of the permutation $x \mapsto ax \pmod{p}$ consists of one 1-cycle (0) together with $(p-1)/h$ cycles each of length h. Such a cycle has sign $(-1)^{h-1}$, so the permutation has sign $(-1)^{(h-1)(p-1)/h} = (-1)^{(p-1)/h}$. But $2 \mid (p-1)/h$ if and only if $h \mid (p-1)/2$, which is equivalent to saying that $a^{(p-1)/2} \equiv 1$ (mod p). By Euler's criterion this is equivalent to a being a quadratic residue modulo p .

Lemma 2. If $a \equiv b \pmod{n}$, $n > 0$, $(a, n) = 1$, then $\left(\frac{a}{n}\right)$ $\left(\frac{a}{n}\right)_Z = \left(\frac{b}{n}\right)$ $\frac{b}{n}$ _z.

Proof. The permutation $x \mapsto ax \pmod{n}$ is indistinguishable from the permutation $x \mapsto$ $bx \pmod{n}$.

Lemma 3. If n is odd and $n > 0$, then

$$
\left(\frac{-1}{n}\right)_Z = \begin{cases} 1 & \text{if } n \equiv 1 \pmod{4}, \\ -1 & \text{if } n \equiv 3 \pmod{4}. \end{cases}
$$

The right hand side above can be expressed more concisely as $(-1)^{(n-1)/2}$.

Proof. Since *n* is assumed to be odd, the map $x \mapsto -x$ has one 1-cycle (0) and $(n-1)/2$ 2-cycles of the form $(x-x)$.

Lemma 4. If $(ab, n) = 1$ and $n > 0$, then

$$
\left(\frac{ab}{n}\right)_Z = \left(\frac{a}{n}\right)_Z \left(\frac{b}{n}\right)_Z.
$$

If g is a primitive root modulo p, then the permutation $x \mapsto gx \pmod{p}$ consists of one 1-cyle and one $p-1$ cycle. If $p > 2$ then $p-1$ is even, so the permutation is odd, which is to say that its sign is -1 . In symbols, $\left(\frac{g}{n}\right)$ $\left(\frac{g}{p}\right)_Z = -1.$ By the above it follows that $\left(\frac{g^k}{g}\right)^k$ $\binom{p^k}{p}_Z = (-1)^k$. This provides a second proof of Lemma 1.

Proof. The permutation $x \mapsto abx \pmod{n}$ is the composition of the permutation $x \mapsto ax$ $p \mod{n}$ with the permutation $x \mapsto bx \pmod{n}$.

Lemma 5. Suppose that $(a, n) = 1$ and that n is odd and positive. Let

$$
\mathcal{P} = \{1, 2, \ldots, (n-1)/2\}, \qquad \mathcal{N} = \{-1, -2, \ldots, -(n-1)/2\}.
$$

Let K be the number of $k \in \mathcal{P}$ such that $ak \in \mathcal{N}$ (mod n). Then

$$
\left(\frac{a}{n}\right)_Z = (-1)^K.
$$

Proof. We call members of \mathcal{P} 'positive', and members of \mathcal{N} 'negative'. Let $\epsilon_k = 1$ if k and ak are both positive or both negative, and let $\epsilon_k = -1$ if one of k and ak is positive and the other negative. We note that $\epsilon_k = \epsilon_{-k}$. Let π^+ be the permutation that leaves members of N fixed, and that maps P to itself by the formula $k \mapsto \epsilon_k a k$. Let π^- be the permutation that leaves members of P fixed, and maps N to itself by the formula $k \mapsto \epsilon_k a k$. Finally, let π^* be the product of those transpositions $(ak, -ak)$ for which $k \in \mathcal{P}$ and $ak \in \mathcal{N}$. Then our permutation is $\pi^* \pi^+ \pi^-$. The permutations π^+ and π^- are the same, except that they act on different sets. More precisely, if σ denotes the 'sign change permutation' $k \mapsto -k \pmod{n}$ then $\pi^- = \sigma \pi^+ \sigma$. Thus π^+ and π^- are conjugate permutations. They have the same cycle structure, and hence the same parity. Consequently $\pi^+\pi^-$ is an even permutation. Since π^* is the product of K transpositions, we have the stated result.

For example, in the case of the permutation $x \mapsto 7x \pmod{15}$, we have

$$
\pi^+ = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 1 & 6 & 2 & 5 & 3 & 4 \end{pmatrix} = (1 \ 7 \ 4 \ 2)(3 \ 6)(5),
$$

\n
$$
\pi^- = \begin{pmatrix} -1 & -2 & -3 & -4 & -5 & -6 & -7 \\ -7 & -1 & -6 & -2 & -5 & -3 & -4 \end{pmatrix} = (-1 \ -7 \ -4 \ -2)(-3 \ -6)(-5),
$$

\n
$$
\pi^* = (1 \ -1)(2 \ -2)(3 \ -3).
$$

Lemma 6. Suppose that n is odd, that $n > 0$, that $(a, n) = 1$, and that $a > 0$. Then

$$
\left(\frac{a}{n}\right)_Z=(-1)^K
$$

where K is the number of integers lying in the intervals $((r - \frac{1}{2}))$ $\frac{1}{2}$) $\frac{n}{a}$ $\frac{n}{a}$, $\frac{rn}{a}$ $\frac{r}{a}$, $r = 1, 2, \ldots, [a/2].$

Proof. Suppose that $1 \leq k \leq (n-1)/2$. If k lies in an interval of the form $(\frac{rn}{a}, (r + \frac{1}{2}))$ $\frac{1}{2}$) $\frac{n}{a}$ $\frac{n}{a}$ then $rn < ak < (r + \frac{1}{2})$ $\frac{1}{2}$)n, which is to say that $ak \in \mathcal{P}$ (mod n). On the other hand, if $1 \leq k \leq (n-1)/2$ and k lies in an interval of the form $((r-\frac{1}{2})^2)(n-1)$ $\frac{1}{2}$) $\frac{n}{a}$ $\frac{n}{a}$, $\frac{rn}{a}$ $\frac{r}{a}$) then $(r-\frac{1}{2})$ $\frac{1}{2})n < ak < rn$, which is to say that $ak \in \mathcal{N}$ (mod *n*). Thus the result follows from the preceding lemma.

Lemma 7. If $a > 0$, $(m, 2a) = 1$, $m > 0$, $n > 0$, and $m \equiv \pm n \pmod{4a}$, then

$$
\left(\frac{a}{m}\right)_Z = \left(\frac{a}{n}\right)_Z.
$$

Proof. We consider two cases.

Case 1. $m \equiv n \pmod{4a}$. Let $(a_r, b_r) = ((r - \frac{1}{2})^2)(r - \frac{1}{2})^2$ $\frac{1}{2}$) $\frac{m}{a}$ $\frac{m}{a}$, $\frac{rm}{a}$ $\frac{m}{a}$), and correspondingly put $(\alpha_r, \beta_r) = ((r - \frac{1}{2})^r)$ $\frac{1}{2}$ $\frac{n}{a}$ $\frac{n}{a}$, $\frac{rn}{a}$ $\frac{m}{a}$). Let t be the integer defined by the relation $n = m + 4at$, and put $\xi_r = b_r + (4r - 2)t$. Thus $\alpha_r < \xi_r < \beta_r$. The interval (α_r, ξ_r) is just the interval (a_r, b_r) , translated by the integral amount $(4r-2)t$. Hence these two intervals contain the same number of integers. On the other hand, $\beta_r - \xi_r = 2t$, an integer, so the interval (ξ_r, β_r) contains exactly 2t integers. Hence the number of integers in (α_r, β_r) is the number of integers in (a_r, b_r) plus 2t. Thus the two numbers have the same parity, and the result follows by Lemma 6.

Case 2. $m \equiv -n \pmod{4a}$. Let (a_r, b_r) and (α_r, β_r) be defined as in the preceding case. Let t be an integer defined by the relation $m+n = 4at$, and set $\gamma_r = 4rt - (r - \frac{1}{2})$ $\frac{1}{2}$) $\frac{m}{a}$ $\frac{m}{a}$. Thus $\alpha_r < \beta_r < \gamma_r$. Since $\alpha_r = (4r-2)t - (r-\frac{1}{2})$ $\frac{1}{2} \frac{m}{a} = \gamma_r - 2t$, the interval (α_r, γ_r) contains exactly 2t integers. The number of integers in (α_r, β_r) is therefore 2t minus the number of integers in the interval (β_r, γ_r) . But the number of integers in this latter interval is the same as the number of integers in the interval

$$
(-\gamma_r, -\beta_r) = ((r - \frac{1}{2})\frac{m}{a} - 4rt, \frac{rm}{a} - 4rt) = (a_r - 4rt, b_r - 4rt).
$$

But this is just the interval (a_r, b_r) , translated by the integral amount $-4rt$. Hence the number of integers in (a_r, b_r) plus the number of integers in (α_r, β_r) is 2t. Hence the two counts have the same parity, so the result follows by Lemma 6.

Lemma 8. If n is odd and positive, then

$$
\left(\frac{2}{n}\right)_Z = \begin{cases} 1 & \text{if } n \equiv \pm 1 \pmod{8}, \\ -1 & \text{if } n \equiv \pm 3 \pmod{8}. \end{cases}
$$

It is sometimes convenient to write the right hand side above in the more compact form $(-1)^{(n^2-1)/8}.$

Proof. Clearly $\left(\frac{2}{1}\right)$ $\left(\frac{2}{1}\right)_Z = 1$. Also, the map $x \mapsto 2x \pmod{3}$ has cycle decomposition $(0)(1\; 2), \; \text{so} \; \left(\frac{2}{3}\right)$ $\left(\frac{2}{3}\right)_Z$ = -1. By Lemma 7 it follows that $\left(\frac{2}{5}\right)_Z$ $\left(\frac{2}{3}\right)_Z$ = $\left(\frac{2}{3}\right)$ $\left(\frac{2}{3}\right)_Z = -1$ and that $\left(\frac{2}{7}\right)$ $(\frac{2}{7})_Z^2 = (\frac{2}{1})$ $\frac{2}{1}$ _Z = 1. Since *n* is odd, *n* is congruent modulo 8 to one of 1, 3, 5, or 7. Hence the result follows from Lemma 7.

Theorem 1. If m and n are odd positive relatively prime integers, then

$$
\left(\frac{m}{n}\right)_{Z}\left(\frac{n}{m}\right)_{Z} = \begin{cases} -1 & \text{if } m \equiv n \equiv 3 \pmod{4}, \\ 1 & \text{otherwise.} \end{cases}
$$

3

It is sometimes convenient to write the right hand side above in the form $(-1)^{\frac{m-1}{2}} \frac{n-1}{2}$. Proof. We consider two cases.

Case 1. $m \equiv -n \pmod{4}$. Then $m+n$ is a positive multiple of 4, say $m+n=4a$. Hence

$$
\left(\frac{m}{n}\right)_Z = \left(\frac{4a}{n}\right)_Z \qquad \text{(by Lemma 2, since } m \equiv 4a \pmod{n}),
$$

$$
= \left(\frac{a}{n}\right)_Z \qquad \text{(by Lemma 4, since } \left(\frac{4}{n}\right)_Z = \left(\frac{2}{n}\right)_Z^2 = 1),
$$

$$
= \left(\frac{4a}{m}\right)_Z \qquad \text{(by Lemma 7, since } m \equiv -n \pmod{4a}),
$$

$$
= \left(\frac{4a}{m}\right)_Z \qquad \text{(by Lemma 4, since } \left(\frac{4}{m}\right)_Z = \left(\frac{2}{m}\right)_Z^2 = 1),
$$

$$
= \left(\frac{n}{m}\right)_Z \qquad \text{(by Lemma 2, since } n \equiv 4a \pmod{m}).
$$

Case 2. $m \equiv n \pmod{4}$. By exchanging m and n, if necessary, we may assume that $m \geq n$. If $m = n$ then by the hypothesis that m and n are relatively prime we deduce that $m = n = 1$. The identity is obviously true in this case. Otherwise $m > n$, and $m - n$ is a positive multiple of 4, say $m - n = 4a$. Then

$$
\left(\frac{m}{n}\right)_Z = \left(\frac{4a}{n}\right)_Z \qquad \text{(by Lemma 2, since } m \equiv 4a \pmod{n}),
$$

\n
$$
= \left(\frac{a}{n}\right)_Z \qquad \text{(by Lemma 4, since } \left(\frac{4}{n}\right)_Z = \left(\frac{2}{n}\right)_Z^2 = 1),
$$

\n
$$
= \left(\frac{4a}{m}\right)_Z \qquad \text{(by Lemma 7, since } m \equiv n \pmod{4a}),
$$

\n
$$
= \left(\frac{4a}{m}\right)_Z \qquad \text{(by Lemma 4, since } \left(\frac{4}{m}\right)_Z = \left(\frac{2}{m}\right)_Z^2 = 1),
$$

\n
$$
= \left(\frac{-n}{m}\right)_Z \qquad \text{(by Lemma 2, since } 4a \equiv -n \pmod{m}),
$$

\n
$$
= \left(\frac{n}{m}\right)_Z (-1)^{(m-1)/2} \qquad \text{(by Lemmas 3 and 4)}.
$$

Theorem 2. If $m > 0$, $n > 0$, and $(2a, mn) = 1$, then

$$
\left(\frac{a}{mn}\right)_Z = \left(\frac{a}{n}\right)_Z \left(\frac{a}{n}\right)_Z.
$$

Suppose that *n* is odd, and write $n = p_1 p_2 \cdots p_r$. The Jacobi symbol is defined to be

$$
\left(\frac{a}{n}\right)_J = \left(\frac{a}{p_1}\right)_L \left(\frac{a}{p_2}\right)_L \cdots \left(\frac{a}{p_r}\right)_L.
$$

Thus by Lemma 1 and Theorem 2 it follows that

$$
\left(\frac{a}{n}\right)_Z = \left(\frac{a}{n}\right)_J
$$

4

whenever $(2a, n) = 1$ and $n > 0$.

Proof. We consider four cases. Case 1. a is odd and positive. Then

$$
\left(\frac{a}{mn}\right)_Z = \left(\frac{mn}{a}\right)_Z (-1)^{\frac{a-1}{2} \frac{mn-1}{2}}
$$
 (by Theorem 1),
\n
$$
= \left(\frac{m}{a}\right)_Z \left(\frac{n}{a}\right)_Z (-1)^{\frac{a-1}{2} \frac{mn-1}{2}}
$$
 (by Lemma 4),
\n
$$
= \left(\frac{a}{m}\right)_Z \left(\frac{a}{n}\right)_Z (-1)^{\frac{a-1}{2} \frac{m-1}{2}} (-1)^{\frac{a-1}{2} \frac{n-1}{2}} (-1)^{\frac{a-1}{2} \frac{mn-1}{2}}
$$
 (by Theorem 1),

and the result follows on noting that

$$
\frac{a-1}{2}\frac{m-1}{2} + \frac{a-1}{2}\frac{n-1}{2} + \frac{a-1}{2}\frac{mn-1}{2} = \frac{a-1}{2}\left(\frac{m+1}{2}\frac{n+1}{2} - 1\right)2
$$

is an even integer.

Case 2. *a* is even and positive. Then $mn + a$ is odd, so we observe that

$$
\left(\frac{a}{mn}\right)_Z = \left(\frac{mn+a}{mn}\right)_Z
$$
 (by Lemma 2),
\n
$$
= \left(\frac{mn+a}{m}\right)_Z \left(\frac{mn+a}{n}\right)_Z
$$
 (by Case 1),
\n
$$
= \left(\frac{a}{m}\right)_Z \left(\frac{a}{n}\right)_Z
$$
 (by Lemma 2).

Case 3. $a = -1$.

$$
\left(\frac{-1}{mn}\right)_Z = (-1)^{\frac{mn-1}{2}} \qquad \text{(by Lemma 3)},
$$

$$
= \left(\frac{-1}{m}\right)_Z \left(\frac{-1}{n}\right)_Z (-1)^{\frac{mn-1}{2} + \frac{m-1}{2} + \frac{n-1}{2}} \qquad \text{(by Lemma 3)}.
$$

But

$$
\frac{mn-1}{2} + \frac{m-1}{2} + \frac{n-1}{2} = 2\left(\frac{m+1}{2}\frac{n+1}{2} - 1\right)
$$

is an even integer, so we are done.

Case 4. $a < 0$. Then $-a > 0$, so by Cases 1 and 2,

$$
\Big(\dfrac{-a}{mn}\Big)_Z=\Big(\dfrac{-a}{m}\Big)_Z\Big(\dfrac{-a}{n}\Big)_Z\,.
$$

We combine this with the result of Case 3 to obtain the desired identity, by three applications of Lemma 4.

EXERCISES

1. Show that if $m > 0$, $n > 0$, $a < 0$, $(2a, m) = 1$, and $m \equiv n \pmod{4a}$, then $\left(\frac{a}{m}\right)$ $\frac{a}{m}$) = $\left(\frac{a}{n}\right)$ $\frac{a}{n}$.

2. Show that if $m > 0$, $n > 0$, $a < 0$, $(2a, m) = 1$, and $m \equiv -n \pmod{4a}$, then $\left(\frac{a}{m}\right)$ $\left(\frac{a}{m}\right) = -\left(\frac{a}{n}\right)$ $\frac{a}{n}$.

3. Show that if $m > 0$, $n > 0$, $a \equiv 1 \pmod{4}$, $(2a, mn) = 1$, and $m \equiv n \pmod{a}$, then $\left(\frac{a}{m}\right)$ $\frac{a}{m}$) = $\left(\frac{a}{n}\right)$ $\frac{a}{n}$.

4. Suppose that $(a, m) = 1$ and that $m > 0$ is odd and bas at least two distinct prime factors. Show that the permutation $x \mapsto ax \pmod{m}$ of the reduced residue classes modulo m is always even.

*5. Describe $\left(\frac{a}{n}\right)$ $\left(\frac{a}{n}\right)_Z$ when $(a, n) = 1, n > 0$, and n is even.