
Quadratic Reciprocity

The law of quadratic reciprocity can be proved in many ways. We give here a somewhat
unusual proof, due to Conway, after Scholz.

The Legendre symbol
(

a
p

)

is a special case of the Jacobi symbol
(

a
n

)

. We consider also

the Zolotarev symbol
(

a
n

)

. Eventually we shall find that the Jacobi symbol and Zolotarev
symbol are the same, but in the short term we add subscripts L, J , or Z, to make clear in
which sense the symbol is meant.

If (a, n) = 1 and n is odd, then the Zolotarev symbol is defined to be the sign of the
permutation x 7→ ax on a complete system of residues modulo n. For example, the permu-
tation x 7→ 7x (mod 15) has the cycle structure (0)(1 7 4 13)(2 14 8 11)(3 6 12 9)(5)(10);
hence

(

7
15

)

Z
= −1.

Lemma 1. If (a, p) = 1 and p is prime, then
(

a
p

)

Z
=

(

a
p

)

L
.

Proof. Let h be the order of a modulo p. The cycle decomposition of the permutation
x 7→ ax (mod p) consists of one 1-cycle (0) together with (p−1)/h cycles each of length h.
Such a cycle has sign (−1)h−1, so the permutation has sign (−1)(h−1)(p−1)/h = (−1)(p−1)/h.
But 2 | (p−1)/h if and only if h | (p−1)/2, which is equivalent to saying that a(p−1)/2 ≡ 1
(mod p). By Euler’s criterion this is equivalent to a being a quadratic residue modulo p.

Lemma 2. If a ≡ b (mod n), n > 0, (a, n) = 1, then
(

a
n

)

Z
=

(

b
n

)

Z
.

Proof. The permutation x 7→ ax (mod n) is indistinguishable from the permutation x 7→
bx (mod n).

Lemma 3. If n is odd and n > 0, then
(−1

n

)

Z
=

{

1 if n ≡ 1 (mod 4),

−1 if n ≡ 3 (mod 4).

The right hand side above can be expressed more concisely as (−1)(n−1)/2.

Proof. Since n is assumed to be odd, the map x 7→ −x has one 1-cycle (0) and (n− 1)/2
2-cycles of the form (x −x).

Lemma 4. If (ab, n) = 1 and n > 0, then
(ab

n

)

Z
=

(a

n

)

Z

( b

n

)

Z
.

If g is a primitive root modulo p, then the permutation x 7→ gx (mod p) consists of
one 1-cyle and one p − 1 cycle. If p > 2 then p − 1 is even, so the permutation is odd,
which is to say that its sign is −1. In symbols,

(

g
p

)

Z
= −1. By the above it follows that

(

gk

p

)

Z
= (−1)k. This provides a second proof of Lemma 1.

Proof. The permutation x 7→ abx (mod n) is the composition of the permutation x 7→ ax
(mod n) with the permutation x 7→ bx (mod n).
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Lemma 5. Suppose that (a, n) = 1 and that n is odd and positive. Let

P = {1, 2, . . . , (n− 1)/2}, N = {−1, −2, . . . , −(n − 1)/2}.

Let K be the number of k ∈ P such that ak ∈ N (mod n). Then

(a

n

)

Z
= (−1)K .

Proof. We call members of P ‘positive’, and members of N ‘negative’. Let ǫk = 1 if k and
ak are both positive or both negative, and let ǫk = −1 if one of k and ak is positive and the
other negative. We note that ǫk = ǫ−k. Let π+ be the permutation that leaves members
of N fixed, and that maps P to itself by the formula k 7→ ǫkak. Let π

− be the permutation
that leaves members of P fixed, and maps N to itself by the formula k 7→ ǫkak. Finally,
let π∗ be the product of those transpositions (ak,−ak) for which k ∈ P and ak ∈ N.
Then our permutation is π∗π+π−. The permutations π+ and π− are the same, except
that they act on different sets. More precisely, if σ denotes the ‘sign change permutation’
k 7→ −k (mod n) then π− = σπ+σ. Thus π+ and π− are conjugate permutations. They
have the same cycle structure, and hence the same parity. Consequently π+π− is an even
permutation. Since π∗ is the product of K transpositions, we have the stated result.

For example, in the case of the permutation x 7→ 7x (mod 15), we have

π+ =
( 1 2 3 4 5 6 7

7 1 6 2 5 3 4

)

= ( 1 7 4 2)( 3 6)( 5),

π− =
(−1 −2 −3 −4 −5 −6 −7

−7 −1 −6 −2 −5 −3 −4

)

= (−1 −7 −4 −2)(−3 −6)(−5),

π∗ = (1 −1)(2 −2)(3 −3).

Lemma 6. Suppose that n is odd, that n > 0, that (a, n) = 1, and that a > 0. Then

(a

n

)

Z
= (−1)K

where K is the number of integers lying in the intervals ((r− 1
2 )

n
a ,

rn
a ), r = 1, 2, . . . , [a/2].

Proof. Suppose that 1 ≤ k ≤ (n− 1)/2. If k lies in an interval of the form ( rna , (r+ 1
2)

n
a )

then rn < ak < (r + 1
2
)n, which is to say that ak ∈ P (mod n). On the other hand, if

1 ≤ k ≤ (n−1)/2 and k lies in an interval of the form ((r− 1
2)

n
a ,

rn
a ) then (r− 1

2 )n < ak < rn,
which is to say that ak ∈ N (mod n). Thus the result follows from the preceding lemma.

2
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Lemma 7. If a > 0, (m, 2a) = 1, m > 0, n > 0, and m ≡ ±n (mod 4a), then

( a

m

)

Z
=

(a

n

)

Z
.

Proof. We consider two cases.
Case 1. m ≡ n (mod 4a). Let (ar, br) = ((r − 1

2
)m
a
, rm

a
), and correspondingly put

(αr, βr) = ((r− 1
2 )

n
a ,

rn
a ). Let t be the integer defined by the relation n = m+4at, and put

ξr = br + (4r − 2)t. Thus αr < ξr < βr. The interval (αr, ξr) is just the interval (ar, br),
translated by the integral amount (4r − 2)t. Hence these two intervals contain the same
number of integers. On the other hand, βr − ξr = 2t, an integer, so the interval (ξr, βr)
contains exactly 2t integers. Hence the number of integers in (αr, βr) is the number of
integers in (ar, br) plus 2t. Thus the two numbers have the same parity, and the result
follows by Lemma 6.
Case 2. m ≡ −n (mod 4a). Let (ar, br) and (αr, βr) be defined as in the preceding case.
Let t be an integer defined by the relation m+n = 4at, and set γr = 4rt− (r− 1

2
)m
a
. Thus

αr < βr < γr. Since αr = (4r − 2)t − (r − 1
2 )

m
a = γr − 2t, the interval (αr, γr) contains

exactly 2t integers. The number of integers in (αr, βr) is therefore 2t minus the number
of integers in the interval (βr, γr). But the number of integers in this latter interval is the
same as the number of integers in the interval

(−γr,−βr) = ((r − 1
2 )

m

a
− 4rt,

rm

a
− 4rt) = (ar − 4rt, br − 4rt).

But this is just the interval (ar, br), translated by the integral amount −4rt. Hence the
number of integers in (ar, br) plus the number of integers in (αr, βr) is 2t. Hence the two
counts have the same parity, so the result follows by Lemma 6.

Lemma 8. If n is odd and positive, then

( 2

n

)

Z
=

{

1 if n ≡ ±1 (mod 8),

−1 if n ≡ ±3 (mod 8).

It is sometimes convenient to write the right hand side above in the more compact form

(−1)(n
2
−1)/8.

Proof. Clearly
(

2
1

)

Z
= 1. Also, the map x 7→ 2x (mod 3) has cycle decomposition

(0)(1 2), so
(

2
3

)

Z
= −1. By Lemma 7 it follows that

(

2
5

)

Z
=

(

2
3

)

Z
= −1 and that

(

2
7

)

Z
=

(

2
1

)

Z
= 1. Since n is odd, n is congruent modulo 8 to one of 1, 3, 5, or 7. Hence

the result follows from Lemma 7.

Theorem 1. If m and n are odd positive relatively prime integers, then

(m

n

)

Z

( n

m

)

Z
=

{

−1 if m ≡ n ≡ 3 (mod 4),

1 otherwise.
3
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It is sometimes convenient to write the right hand side above in the form (−1)
m−1

2

n−1

2 .

Proof. We consider two cases.
Case 1. m ≡ −n (mod 4). Then m+n is a positive multiple of 4, say m+n = 4a. Hence

(m

n

)

Z
=

(4a

n

)

Z
(by Lemma 2, since m ≡ 4a (mod n)),

=
(a

n

)

Z
(by Lemma 4, since

(

4
n

)

Z
=

(

2
n

)2

Z
= 1),

=
( a

m

)

Z
(by Lemma 7, since m ≡ −n (mod 4a)),

=
(4a

m

)

Z
(by Lemma 4, since

(

4
m

)

Z
=

(

2
m

)2

Z
= 1),

=
( n

m

)

Z
(by Lemma 2, since n ≡ 4a (mod m)).

Case 2. m ≡ n (mod 4). By exchanging m and n, if necessary, we may assume that
m ≥ n. If m = n then by the hypothesis that m and n are relatively prime we deduce that
m = n = 1. The identity is obviously true in this case. Otherwise m > n, and m− n is a
positive multiple of 4, say m− n = 4a. Then

(m

n

)

Z
=

(4a

n

)

Z
(by Lemma 2, since m ≡ 4a (mod n)),

=
(a

n

)

Z
(by Lemma 4, since

(

4
n

)

Z
=

(

2
n

)2

Z
= 1),

=
( a

m

)

Z
(by Lemma 7, since m ≡ n (mod 4a)),

=
(4a

m

)

Z
(by Lemma 4, since

(

4
m

)

Z
=

(

2
m

)2

Z
= 1),

=
(−n

m

)

Z
(by Lemma 2, since 4a ≡ −n (mod m)),

=
( n

m

)

Z
(−1)(m−1)/2 (by Lemmas 3 and 4).

Theorem 2. If m > 0, n > 0, and (2a,mn) = 1, then
( a

mn

)

Z
=

(a

n

)

Z

(a

n

)

Z
.

Suppose that n is odd, and write n = p1p2 · · · pr. The Jacobi symbol is defined to be
(a

n

)

J
=

( a

p1

)

L

( a

p2

)

L
· · ·

( a

pr

)

L
.

Thus by Lemma 1 and Theorem 2 it follows that
(a

n

)

Z
=

(a

n

)

J
4
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whenever (2a, n) = 1 and n > 0.

Proof. We consider four cases.
Case 1. a is odd and positive. Then

( a

mn

)

Z
=

(mn

a

)

Z
(−1)

a−1

2

mn−1

2 (by Theorem 1),

=
(m

a

)

Z

(n

a

)

Z
(−1)

a−1

2

mn−1

2 (by Lemma 4),

=
( a

m

)

Z

(a

n

)

Z
(−1)

a−1

2

m−1

2 (−1)
a−1

2

n−1

2 (−1)
a−1

2

mn−1

2 (by Theorem 1),

and the result follows on noting that

a− 1

2

m− 1

2
+

a− 1

2

n− 1

2
+

a− 1

2

mn − 1

2
=

a− 1

2

(m+ 1

2

n+ 1

2
− 1

)

2

is an even integer.
Case 2. a is even and positive. Then mn+ a is odd, so we observe that

( a

mn

)

Z
=

(mn + a

mn

)

Z
(by Lemma 2),

=
(mn + a

m

)

Z

(mn+ a

n

)

Z
(by Case 1),

=
( a

m

)

Z

(a

n

)

Z
(by Lemma 2).

Case 3. a = −1.

(−1

mn

)

Z
= (−1)

mn−1

2 (by Lemma 3),

=
(−1

m

)

Z

(−1

n

)

Z
(−1)

mn−1

2
+m−1

2
+n−1

2 (by Lemma 3).

But
mn− 1

2
+

m− 1

2
+

n− 1

2
= 2

(m+ 1

2

n+ 1

2
− 1

)

is an even integer, so we are done.
Case 4. a < 0. Then −a > 0, so by Cases 1 and 2,

(−a

mn

)

Z
=

(−a

m

)

Z

(−a

n

)

Z
.

We combine this with the result of Case 3 to obtain the desired identity, by three applica-
tions of Lemma 4.
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EXERCISES

1. Show that if m > 0, n > 0, a < 0, (2a,m) = 1, and m ≡ n (mod 4a), then
(

a
m

)

=
(

a
n

)

.

2. Show that if m > 0, n > 0, a < 0, (2a,m) = 1, and m ≡ −n (mod 4a), then
(

a
m

)

= −
(

a
n

)

.

3. Show that if m > 0, n > 0, a ≡ 1 (mod 4), (2a,mn) = 1, and m ≡ n (mod a), then
(

a
m

)

=
(

a
n

)

.

4. Suppose that (a,m) = 1 and that m > 0 is odd and bas at least two distinct prime
factors. Show that the permutation x 7→ ax (mod m) of the reduced residue classes modulo
m is always even.

*5. Describe
(

a
n

)

Z
when (a, n) = 1, n > 0, and n is even.
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