Dark Energy and the Accelerating Universe

Dragan Huterer Kavli Institute for Cosmological Physics University of Chicago

The universe today presents us with a grand puzzle:

what is 95% of it made of!?

Shockingly, we still don't know.

But we are getting closer to the answer.

Makeup of universe today

4%

Visible Matter (stars 0.4%, gas 3.6%)

Dark Matter (suspected since 1930s known since 1970s)

26%

Dark Energy (suspected since 1980s known since 1998)

70%

Also: radiation (0.01%)

The universe is homogeneous and isotropic

- Homogeneous: appears the same everywhere in space
- Isotropic: appears the same in every direction

The universe is expanding!

Edwin Hubble

- Expansions dilutes the matter particles
- Expansion stretches wavelength of radiation (what is another name for this stretching?)

Redshift

1+redshift = (size of universe now) / (size of universe when light was emitted)

History of the universe from t=0 to t=13.7 Gyr

An Overview...

Big Bang (t=0)

- Expansion starts
- Happened "everywhere"
- Details not well known
- © Currently beyond reach of any cosmological probe

Very early Universe -(t=tiny moments after BB)

- High energies
- Exotic physics
- Grand Unified Theory? (all forces united)
- Inflation a period of rapid expansion
- Density fluctuations laid out!

Quark Soup (t<1 sec)

Quarks are free, floating around

Later, they are bound

Nucleosynthesis (t=3 minutes)

- Atoms form!
- out of neutrons, protons, electrons...
- Hydrogen, Helium, small quantities of others
- O Universe is still dominated by radiation (photons)
- Universe is still opaque photons do not propagate far

Universe becomes transparent (t=300,000 yrs)

- Radiation finally free to propagate - universe has rarified enough
- The Cosmic Microwave

 Background radiation we observe has been released at this time (S. Meyer talk)
- Uniform to one part in 100,000

T=2.726 Kelvin

Fluctuations I part in 100,000 (of 2.726 Kelvin)

The dark ages (t< 1 billion yrs)

- Universe is dark, slowly becomes matter dominated
- First stars ionize the hydrogen atoms (N. Gnedin talk)
- First stars and first galaxies eventually form

Modern Universet (t< 13.7 billion yrs)

- Stars, Galaxies, Clusters of galaxies everywhere
- Even more Dark Matter than we cannot directly see
- Subject of this talk
- O Universe is matter dominated or so we thought!
- A big surprise is in store!!

Aside: a quick overview of Dark Matter

Historically the first evidence for DM:
"flat rotation curves"

"flat rotation curves' (1970s)

Dark Matter is in "halos" around galaxies

Einstein's theory of gravity

"Matter tells space how to curve Space tells matter how to move"

One implication of gravity:

Curvature of the universe is determined by the amount of "stuff" in it.

If inflation is correct, universe is expected to be flat!

Imagine a colony of ants living on surface of a balloon

If the Lamberse has been "blown up" early on (by inflation) then our observable universe appears flat to us

By measuring distances in the universe, you can determine its curvature

Problem:
distances in astronomy
are notoriously
hard to measure

(or redshift)

Type Ia Supernovae

A white dwarf accretes matter from a companion.

Type Ia Supernovae

If the star's mass is greater than a certain amount, it explodes

As bright as the whole galaxy!

Show movie...

Key property of SNe Ia: Their intrinsic luminosity is (nearly) constant => They are standard candles

flux -> 1/distance^2

By measuring the flux, you can determine the distance

But how do you find SNe?

Rate: 1 SNa per galaxy per 5,000 yrs!

Type la Supernovae

Dark Energy

- Universe is dominated by something other than dark matter
- This new component makes the universe expand faster and faster (i.e. slower as we look in the past)
- This new component is smooth
- Other than that, we don't know much!

Actual photo of dark energy

Consequences

- Excellent fit to SNa and other data
- Makes the universe older (without DE, it's apparently younger than some objects in it!)
- Pushes things apart at large distances
- Its discovery is revolutionary.

A Candidate: Vacuum Energy

Quantum Physics says: "empty space" is filled with particles and antiparticles getting created and annihilated

The cosmological constant problem

"Why Now!?"

Steven Weinberg:

"Right now, not only for cosmology but for elementary particle theory, this is the bone in our throat"

Frank Wilczek:

``... maybe the most fundamentally mysterious thing in all of basic science"

Ed Witten:

``... would be the number I on my list of things to figure out"

Michael Turner:

"... the biggest embarrassment in theoretical physics"

What is dark energy?

- Is it vacuum energy?
- Is it modification of Einstein's theory of gravity?
- Is it a (funny) fluid that fills up universe?
- Or is it something else completely, utterly unexpected?

Test

Is Dark Energy very similar to Dark Matter?

- A) Yes
- B) No
- C) In the distant past only

Test

Is Dark Energy very similar to Dark Matter?

- A) Yes
- B) No
- C) In the distant past only

- Dark matter is attractive, DE is repulsive
- Dark Matter is clumped, DE is smooth

Skeptic:

"This is too weird to be true. There are errors in astronomical measurements.

Dark energy is simply a collection of a few simple blunders."

Skeptic:

"This is too weird to be true.

There are errors in astronomical measurements.

Dark energy is simply a collection of a few simple blunders."

Cosmologist:

"This is not the case because

- There are now multiple,

independent lines of evidence for DE

- All cosmological measurements now require DE, and disagree with matter only universe"

How do we find out about Dark Energy?

- A comprehensive program of cosmological observations
- All of them indirectly sensitive to DE (e.g. measuring distances to SNe)
- Right now, we don't know how to look for it in the lab
- Near-term goal: find out its global properties (how much of it there is, if it clusters at all)
- Ultimate goal: understand its nature and origin

SuperNova/Acceleration Probe (SNAP)

Large Synoptic Survey Telescope (LSST)

South Pole Telescope (SPT)

Galaxy cluster

Conclusions

- Dark Energy was directly discovered around 1998
- Its origin and nature are very mysterious
- It makes up about 70% of energy density; its energy is (roughly) unchanging with time
- It makes the universe's expansion speed up
- "Why now? Why so small?"
- One of the biggest mysteries in science today!

Talk available at http://kicp.uchicago.edu/~dhuterer/EPO/adler.pdf