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a b s t r a c t

We study the covariance in the angular power spectrum estimates of CMB fluctuations when the pri-
mordial fluctuations are non-Gaussian. The non-Gaussian covariance comes from a nonzero connected
four-point correlation function – or the trispectrum in Fourier space – and can be large when long-
wavelength (super-CMB) modes are strongly coupled to short-wavelength modes. The effect of such
non-Gaussian covariance can be modeled through additional freedom in the theoretical CMB angular
power spectrum and can lead to different inferred values of the standard cosmological parameters
relative to those in ΛCDM. Taking the collapsed limit of the primordial trispectrum in the quasi-single
field inflation model as an example, we study how the six standard ΛCDM parameters shift when two
additional parameters describing the trispectrum are allowed. The reduced statistical significance of
the Hubble tension in the extended model allows us to combine the Planck temperature data and the
type Ia supernovae data from Panstarrs with the distance-ladder measurement of the Hubble constant.
This combination of data shows strong evidence for a primordial trispectrum-induced non-Gaussian
covariance, with a likelihood improvement of ∆χ2

≈ −15 (with two additional parameters) relative
to ΛCDM.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The statistical distribution of primordial fluctuations is a key
ingredient that underpins all cosmological results obtained from
analyzing the distribution of hot and cold spots of the cosmic
microwave background (CMB) anisotropies, the galaxy distribu-
tion, and lensing signal in the large-scale structure. The standard
assumption predicted by simplest single-field, slow roll models
of inflation, employed as a default in these analyses and affirmed
by data thus far [1], is that cosmic fluctuations are Gaussian
random on large scales. Nevertheless, it is entirely possible that
Gaussianity is violated even at large scales, and this is the subject
of much interest [2].

Searches for non-Gaussianity in the CMB have mainly focused
on constraining the amplitudes of higher-order n-point correla-
tion functions (generally bispectrum and trispectrum, n = 3 and
4) [1,3]. However, the presence of non-Gaussianity can also affect
the two-point correlation function analyses. In particular, it is
well known that the presence of a trispectrum generates addi-
tional, non-Gaussian covariance of the angular power spectrum
estimators [4–6]. It is therefore interesting to explore if primor-
dial trispectra that can generate significant level of non-Gaussian
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angular power spectrum covariance affect our cosmology infer-
ences from current and future data. It would be particularly
interesting if such non-Gaussian covariance, when accounted-for,
helped explain the currently much-discussed discrepancy in the
derived value of the Hubble constant H0 between local distance-
ladder type measurements (H0 = 74.03 ± 1.42 km/s/Mpc; [7])
and those from Planck (H0 = 67.4 ± 0.5 km/s/Mpc; [8]), at
approximately 4.4σ . These H0 measurements and CMB likeli-
hood were released after our analysis, for which we use Planck
2015 temperature likelihood [9] and a previous distance ladder
H0 measurement (H0 = 73.52 ± 1.62 km/s/Mpc; [10]), which
disagree at 3.6σ .

In what follows, we adopt the quasi-single field inflationary
model [11] which features two weakly coupled scalar fields,
a massless inflaton and a massive isocurvaton. In this model,
primordial fluctuations have a four-point function that is large
in the collapsed limit, meaning that there is coupling between
small- and large-scale modes. The collapsed-limit trispectrum of
the quasi-single field inflationary models has the form [12]:⟨
Φk1Φk2Φk3Φk4

⟩
c = (2π )3δ(k1 + k2 + k3 + k4)T (k1, k2, k3, k4)

T (k1, k2, k3, k4) = 4τNL(ϵ)
(

K
√
k1k3

)−2ϵ

PΦ (k1)PΦ (k3)PΦ (K ) (1)

where ki are the four wavenumbers that define the trispectrum
rectangle in momentum space, K = |k1 − k2| = |k3 − k4|,
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PΦ (k) = (2π2AΦ/k3)(k/k0)ns−1 is the power spectrum of potential
fluctuations, and AΦ is its amplitude. Here ϵ ≡ ν − 3/2 < 0 is a
free parameter that depends on the mass of an additional scalar
field since ν ≡ (9/4−m2

σ /H2)1/2 where mσ is mass of the isocur-
vaton field and H is the Hubble rate during inflation, while τNL
is the amplitude of the collapsed four-point function. The three-
point function amplitude fNL(ϵ) in the quasi-single field model has
been constrained by Planck [3] (see their Fig. 26), but the corre-
sponding constraint for the four-point amplitude τNL(ϵ) does not
currently exist. The existing bounds on τNL [3,13] correspond to
the ϵ = 0 limit in Eq. (1). In the quasi-single field model, the four-
point amplitude is boosted with respect to fNL: τNL ∼ f 2NL/(ρ/H)2
for a small coupling constant ρ (ρ ≪ H) [12,14,15], and therefore
can be much larger than f 2NL. A detection of a boosted collapsed
four-point function [16] would indicate the role of more than one
source in generating the curvature perturbations. The effect of
such four-point functions on the large-scale structure clustering
has been extensively studied [17–22].

2. Effect on CMB covariance

The higher multipoles (ℓ ≳ 30) of the CMB angular power
spectrum can be estimated from the maps using the pseudo-Cℓ

estimator, Ĉℓ =
∑

m a∗

ℓmaℓm/(2ℓ + 1), where aℓm are the har-
monic decomposition coefficients of the CMB map. The full-sky
covariance of this angular power spectrum is

Cov(Ĉℓ, Ĉℓ′ ) =
2C2

ℓ

2ℓ + 1
δℓℓ′ +

∑
m,m′

⟨
a∗

ℓmaℓma∗

ℓ′m′aℓ′m′

⟩
c

(2ℓ + 1)(2ℓ′ + 1)
, (2)

where the second term on the right-hand side, which we refer
to as CovNG(Ĉℓ, Ĉℓ′ ), is due to the connected part of the CMB
trispectrum and is zero for Gaussian aℓms. Here we will focus
on the non-Gaussian covariance contribution from a primordial
trispectrum of the form Eq. (1). The methods to compute CMB
four-point functions can be found in [4,23,24]. If we rewrite the
expression in Eq. (1) with shifted spectral index for the power
spectra (ns + ϵ for terms with ki, and ns − 2ϵ for terms with
K ), the expression and therefore the calculation of the CMB
temperature angular trispectrum match those of the exact local
model. The full-sky expression for the non-Gaussian covariance
from the collapsed-limit of the quasi-single field trispectrum then
simplifies to give:

CovNG(Ĉℓ, Ĉℓ′ ) =
9
π

τNL(ϵ)CSW
L=0(ns − 2ϵ)Cℓ(ns + ϵ)Cℓ′ (ns + ϵ) (3)

where the Cℓ(ns + ϵ)s are the angular power spectra evaluated
at shifted values of the spectral index with all other cosmo-
logical parameters fixed. The Cℓ in the expression above are
the lensed harmonics [25]. The expression for the Sachs–Wolfe
angular power CSW

L is

CSW
L (ns − 2ϵ) =

4πAΦ

9

∫
dK
K

j2L (Kr∗)
(

K
k0

)ns−2ϵ−1

=
4πAs

25(k0r∗)a

√
πΓ (1 −

a
2 )Γ (L +

a
2 )

4Γ ( 32 −
a
2 )Γ (2 + L −

a
2 )

, (4)

where a = ns − 2ϵ − 1, 0 < a < 2, r∗ is the comoving distance
to the last scattering surface, and where in the second line above
we have used AΦ = (9/25)As.

Instead of implementing the non-Gaussian covariance in data
analysis, one can equivalently consider how the estimated power
spectrum in a realization appears biased when the non-Gaussian
covariance is not included; this can be modeled by using an
additional random variable A0 as follows:

Ĉ sky
ℓ = Ĉℓ − A0Cℓ(ns + ϵ) (5)

Fig. 1. The trispectrum amplitude τNL as a function of a = ns − 2ϵ − 1 resulting
in the given variance of A0 , plotted for ⟨A2

0⟩ = 0.04 and 0.01. The expression for
the variance Eq. (6) diverges for a ≤ 0 or ns − 2ϵ ≤ 1. The existing constraint
on τNL (≲ O(104) [3,13]) implicitly assumes ϵ = 0 such that a ≤ 0 for ns ≤ 1.
As shown in the plot, for small values of a, τNL ≲ 104 can produce a variance
⟨A2

0⟩ ≃ 0.04 large enough to be consistent with the preferred value of A0 ≃ −0.2
in our data analysis.

where Ĉℓ is the angular power spectrum estimate for a realiza-
tion with A0 = 0, and the term A0Cℓ(ns + ϵ) quantifies the
bias in realizations with non-zero A0. This is the ‘‘super-sample
signal’’ approach [26], previously utilized for the non-Gaussian
covariance due to CMB lensing [27–29]. One can explicitly check
that the covariance of the Ĉ sky

ℓ – the right-hand side of Eq. (5) –
leads precisely to the desired non-Gaussian covariance in Eq. (3)
provided the variable A0 has a global distribution with mean zero
and variance:⟨
A2
0

⟩
=

9
π

τNL(ϵ)CSW
L=0(ns − 2ϵ). (6)

The variance ⟨A2
0⟩ depends strongly on both τNL and ns−2ϵ; see

Fig. 1. When ϵ = 0, the trispectrum Eq. (1) reduces to the well-
studied (local) τNL−trispectrum from multifield inflation models
such as the curvaton model [30,31]. These ϵ = 0 models were
constrained by older Planck data [3,13], giving τNL ≲ 104. From
Fig. 1, we see that τNL ≲ 104 can produce a variance ⟨A2

0⟩ ≃ 0.04
large enough to be consistent with the preferred values of A0 in
our analysis. However, a direct translation of this τNL constraint
to a limit on ⟨A2

0⟩ cannot be performed because of the infrared
divergent term CSW

L=0 in Eq. (6) which is due to the nature of mode
coupling in the local τNL trispectrum, in which arbitrarily long
wavelength modes are coupled to modes that contribute to the
CMB Cℓs. For ϵ ̸= 0, no direct constraint on the trispectrum
amplitude τNL exists. When such constraints are obtained through
direct trispectrum measurements in the future, we can use them
to further tighten the viable parameter space of A0, ϵ.

Because the CMB likelihood features the difference between
data and theory, (Cℓ−Ĉ sky

ℓ ), we can implement the effect in Eq. (5)
by correcting the theoretical angular power spectrum as

Cℓ → Cℓ + A0Cℓ(ns + ϵ). (7)

Note that the expression for the variance in Eq. (6) is altered
in the presence of a cut sky, but this does not affect our data
analysis for which we use Eq. (7) with A0 as a free parameter.
From Eq. (7) one expects a large degeneracy between the pri-
mordial amplitude As and A0, and similarly between ns and ϵ.
For example, if the Cℓs were linear in As, then A0 and As would
be exactly degenerate. Fortunately, power spectrum amplitude
As also controls the amount of lensing, smoothing the acoustic
peaks, and thus making it possible to break the degeneracy with
A0 and constrain the latter parameter using CMB power spectrum.
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Table 1
Best-fit values of the parameters and the marginalized 1D 95% limits. We
also list the improvement in χ2 with respect to the ΛCDM model: ∆χ2

=

χ2
bestfit(Super−ΛCDM)−χ2

bestfit(ΛCDM), and an approximation to the Bayes factor,
ln B01 , calculated using the Savage–Dickey density ratio.
Parameter TT + τ−prior TT + τ−prior + H0 + SNIa

Best fit 95% limits Best fit 95% limits

Ωbh2 0.02269 0.02256+0.00062
−0.00059 0.02295 0.02286+0.00050

−0.00050

Ωch2 0.1169 0.1179+0.0050
−0.0051 0.11430 0.1148+0.0035

−0.0035

100θMC 1.04136 1.0412+0.0011
−0.0010 1.04177 1.04166+0.00093

−0.00091

τ 0.0534 0.053+0.018
−0.018 0.0527 0.054+0.018

−0.018

A0 −0.190 −0.15+0.14
−0.13 −0.238 −0.21+0.12

−0.10

ϵ −0.095 > −0.320 −0.058 > −0.200
ln(1010As) 3.246 3.20+0.15

−0.14 3.301 3.27+0.12
−0.13

ns 0.9515 0.950+0.025
−0.028 0.9639 0.954+0.028

−0.030

H0 68.89 68.4+2.5
−2.3 70.18 69.9+1.7

−1.7

∆χ2
−7.8 −15.0

ln B01 −0.6 −3.8

3. Data analysis

Our goal is to constrain the two parameters A0 and ϵ de-
fined in Eq. (7). We sample those parameters with priors A0 ∈

[−0.5, 0.5] and ϵ ∈ [−0.5, 0]. We impose a hard prior cut-off
at ϵ = 0 because it corresponds to the limit in the quasi-single
field model when the isocurvaton is massless. We consider six
additional, standard ΛCDM parameters with the following priors:
physical cold dark matter density Ωch2

∈ [0.001, 0.99]; physical
baryon density Ωbh2

∈ [0.005, 0.1]; power spectrum amplitude
ln(1010As) ∈ [2, 4]; spectral index ns ∈ [0.7, 1.3]; optical depth
τ ∈ [0.01, 0.8]; baryon peak location 100θMC ∈ [0.5, 10]. We
compare results for two cosmological model spaces:

• ΛCDM : {Ωch2, Ωbh2, ln(1010As), ns, τ , 100θMC}

• Super−ΛCDM : ΛCDM + {A0, ϵ}

We adopt the Planck 2015 likelihoods: high-ℓ plikHM1 and low-
ℓ commander2 likelihoods. We also use a Gaussian prior on
the reionization optical depth τ from 2018 Planck polarization
measurements (EE+lowE), τ = 0.0527 ± 0.009 [8]. Since this τ

constraint is dominated by the low-ℓ EE multipoles, we assume
that the τ constraint is not significantly affected by the presence
of modulation from a trispectrum. We use CosmoMC [32,33] for
posterior sampling and for obtaining the best-fit parameters, and
the angular power spectra Cℓ are computed using camb [34,35].

For model comparison, we estimate the Bayes factor using
the Savage–Dickey density ratio (SDDR) [36]. The SDDR is an
approximation to the Bayes factor for nested models. Here, the
Super−ΛCDM model (M1) reduces to ΛCDM model (M0) when
A0 = 0. The Bayes factor (SDDR), then, is the ratio of the posterior
probability density, p, to the prior probability density, π , at A0 =

0 in the Super−ΛCDM model:

B01 =
p(A0|d,M1)
π (A0|M1)

⏐⏐⏐⏐
A0=0

(SDDR). (8)

We will evaluate the logarithm of the Bayes factor, ln B01, on
the modified Jeffreys’ scale for the strength of evidence [37]:
|ln B01| = 1, 2.5, 5 as weak, moderate and strong evidence in
favor of M1 respectively.

1 plik_dx11dr2_HM_v18_TT.clik.
2 commander_rc2_v1.1_l2_29_B.clik.

4. Results

While a primordial trispectrum affects the observations which
depend on density fluctuations (CMB power spectrum, galaxy
two-point functions, cluster counts etc.), observations which di-
rectly probe cosmic expansion are unaffected. Therefore, we can
add the Type Ia supernovae (SNIa) data from the Pantheon sam-
ple [38] and the distance-ladder measurement of the Hubble
constant [10], without making any changes to the theoretical
predictions or the likelihoods. Our primary data set, therefore,
is: TT + τ−prior + H0 + SNIa. The 1D and 2D marginalized
posterior distributions of cosmological parameters for ΛCDM and
Super−ΛCDMmodels are shown in Figs. 2 and 3; the correspond-
ing best-fit parameter values and the 1D marginalized 95% limits
are given in Table 1. Next, we discuss the results for different data
combinations.

4.1. Planck-only (TT+τ−prior) data

The Super−ΛCDM fit to the Planck-TT + τ−prior data (thin-
line contours in Fig. 2) prefers about 20% larger amplitude of
fluctuations at large scales relative to ΛCDM (red contours), that
is, A0 ≃ −0.2 and the As correspondingly higher by about 20%.
The improvement in fit relative to ΛCDM is ∆χ2

= −7.8. The
Bayes factor, |ln B01| = 0.6 < 1, provides ‘‘inconclusive’’ evidence
in favor of Super−ΛCDM for this data combination according to
the modified Jeffreys’ scale [37]. The preference for more power
at large scales is accompanied by increased lensing of the CMB
power spectrum, which has been observed in Planck TT data
via the preference for Alens > 1, where Alens is a phenomeno-
logical lensing amplitude parameter. The Super−ΛCDM model,
therefore, provides a physical explanation for the preference for
increased lensing in Planck TT data. The corresponding H0 con-
straint is both broader and shifts towards larger values thereby
reducing the tension with local measurements of H0. The discrep-
ancy in H0 (1D marginalized) reduces to 2.5σ in Super−ΛCDM
compared to the 3.6σ discrepancy in ΛCDM. We can, therefore,
combine Planck and the local H0 data to further constrain the
(A0, ϵ) parameters of the Super−ΛCDM model.

4.2. TT+τ -prior + H0 + SNIa data

This is the fiducial data combination employed in this paper.
As we can see in the posterior distributions plotted in Fig. 2,
combining the distance-ladder H0 and SNIa Pantheon data with
Planck (blue contours) helps improve the constraints on A0 and
ϵ, and leads to the improvement in the fit of ∆χ2

= −15 relative
to the equivalent ΛCDM case, thus favoring the extended model
with two additional parameters by about 3.5σ . The Bayes factor
|ln B01| = 3.8 suggests a ‘‘moderate-to-strong’’ preference for
Super−ΛCDM. The 1Dmarginalized constraint on the modulation
amplitude is A0 = −0.21+0.12

−0.11 (95% limits) and the corresponding
constraint on the Hubble constant is H0 = 69.9 ± 1.7.

Super−ΛCDM model allows additional freedom in the overall
amplitude of the CMB power spectrum. As shown in Fig. 2, this
results in a large upward shift in the amplitude of primordial
fluctuations As (and thus in σ8). The consequent positive corre-
lation between As and H0 in the Super−ΛCDM model can be
understood in terms of well-known CMB degeneracies as follows.
First, Ωmh2 is anti-correlated with As as large values of Ωmh2

lower the overall amplitude of the CMB power spectrum. Second,
tight constraints on the peak locations and relative heights pin
down the parameter combination Ωmh3 [39], resulting in an anti-
correlation between Ωmh2 and H0. It then follows that data prefer
a larger H0 when a higher amplitude of primordial fluctuations As
than in ΛCDM is favored, which in turn happens when A0 < 0.
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Fig. 2. Marginalized 1D and 2D posterior distributions for the parameters describing the primordial fluctuations
{
ln(1010As), ns, A0, ϵ

}
, along with H0 , for different

choices of data and models. The red contours show the results for the base ΛCDM model using Planck data. Allowing for the non-Gaussian covariance significantly
broadens and shifts the constraints on the primordial amplitude and spectral index (thin-line contours). Adding H0 and SNIa data helps in constraining the parameters
in the Super−ΛCDM model (blue contours). The gray line and bands in the lower panels show the measurement and uncertainty (1 and 2 σ ) of the distance-ladder
Hubble constant measurement from [10]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The near-20% increase in As and σ8 does not exacerbate the
tension between the amplitude of matter fluctuations are mea-
sured by the CMB and weak lensing surveys. Weak lensing sur-
veys are sensitive to a specific combination of matter density
Ωm and amplitude of mass fluctuations σ8, S8 ≡ σ8(Ωm/0.3)0.5
(e.g. [40]). As we see in Fig. 3, the increase in σ8 does not
appreciably change the constraint on the parameter combination
S8 in Super−ΛCDM. It is important to note, however, that the
weak lensing data might be sensitive to the changes in covariance
matrix in Super−ΛCDM. Therefore careful further analysis is
required to compare S8 measured by weak lensing and CMB in
the Super−ΛCDM model.

4.3. TT+τ−prior+H0+SNIa+BAO data

A primordial trispectrum with signal in the collapsed limit
has two major effects on the galaxy clustering data: (i) scale-
dependent bias at large scales in the galaxy–galaxy power spec-
trum [19,41], and (ii) super-sample effect similar to the CMB
case which can bias the power spectrum estimate of a given

survey. The scale-dependent bias mostly affects the broadband
shape of the power spectrum, and should be largely – though
not necessarily completely – removed in BAO analyses which
remove systematics by subtracting smooth polynomials from the
P(k) wiggles [42]. The super-sample effect will also change the
amplitude and scale dependence of the template used to fit the
BAO feature.

Because accurate modeling of the shift of BAO peaks in the
presence of primordial non-Gaussianity is a complex task, simply
adopting the reported BAO distance measurements cannot be
considered as wholly reliable. Nevertheless we carried out two
preliminary tests. First, we found that the BAO peak-shifts in
the presence of τNL values favored by the data are generally
much smaller than the corresponding BAO peak-location statisti-
cal errors. Second, we also ran an exploratory analysis where we
simply combined the reported BAO distance measurements [43–
45] with the full dataset from our main analysis; in that case the
Super−ΛCDM model is favored over the ΛCDM by ∆χ2

≃ −13.
These two findings lead us to believe that the complete BAO
analysis, when fully calibrated for non-Gaussian models, will not
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Fig. 3. Posterior distributions for other parameters of interest, Ωm , Ωmh2 , σ8 and σ8Ω
0.5
m ; see also discussion in the text.

appreciably change the results from TT + τ−prior + H0 + SNIa
presented above.

5. Summary and conclusion

In this work, we use the angular power spectrum measure-
ments of CMB temperature fluctuations from the Planck satel-
lite in combination with the reionization optical depth estimate
from CMB polarization, the distance-ladder measurement of the
Hubble constant, and the Pantheon supernova sample to con-
strain the cosmological parameters in the presence of ‘‘super-
sample’’ fluctuations predicted by some classes of inflationary
models, which we call the Super−ΛCDM model. These models
require a nonzero primordial trispectrum, which generates a non-
Gaussian covariance of the angular power spectrum. We employ
the super-sample signal technique to consider the effect of the
non-Gaussian covariance on the measured CMB power spectrum.
We find that the lensing of the CMB is instrumental in breaking
parameter degeneracies to constrain the amplitude and spectral
slope of the super-sample effect. The 3.6σ tension in the Hubble
constant decreases to 2.5σ when the inflationary super-sample
effect is included so that we can combine the CMB data with
the distance-ladder measurement of the Hubble constant in the
Super−ΛCDM model. In this case, the improvement in likelihood
over ΛCDM is substantial at the robust statistical level of ∆χ2

=

−15 (with two additional free parameters). The improved fit is
driven by an upward shift of the Planck-inferred Hubble constant
in this class of models. This super-sample explanation is, in our
view, at least as appealing as extant new-physics explanations for
the Hubble tension [46–51], and is equally or more statistically
favored than them.

The primordial trispectrum responsible for the super-sample
effect can be probed directly in the four-point function of Planck
data [52]. Current searches for non-Gaussianity through higher-
order n-point functions in the Planck data have generally fixed
the Cℓ to that of the best-fit ΛCDM model. Given the possibility
of large deviations from the best-fit ΛCDM in the presence of
a primordial trispectrum, it is important to perform analyses of
the CMB three- and four-point functions in combination with
the power-spectrum analysis using techniques applied to this
work. Encouraging results obtained here also motivate further
studies of large-scale structure observables, such as the BAO and
the weak lensing power spectrum, in the presence of primordial
non-Gaussianity.

Note added: The data analyses presented in this work were
performed when the most recent Planck 2018 CMB likelihood
(including robust likelihood for polarization) and the Riess et al.
(2019) Hubble constant measurements, which have increased the
parameter tension in H0 compared to the data we have used, were
not released. Updated analyses using newer data are underway
and will be presented in a future publication.
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