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Abstract. Tensions between cosmological measurements by different surveys or probes have
always been important — and are presently much discussed — as they may lead to evidence
of new physics. Several tests have been devised to probe the consistency of datasets given a
cosmological model, but they often have undesired features such as dependence on the prior
volume, or burdensome requirements such as that of near-Gaussian posterior distributions.
We propose a new quantity, defined in a similar way as the Bayesian evidence ratio, in
which these undesired properties are absent. We test the quantity on simple models with
Gaussian and non-Gaussian likelihoods. We then apply it to data from the Planck satellite:
we investigate the consistency of ACDM model parameters obtained from TT and EE angular
power spectrum measurements, as well as the mutual consistency of cosmological parameters
obtained from large scale (multipoles, ¢ < 1000) and small scale (¢ > 1000) portions of each
measurement and find no significant discrepancy in the six-dimensional ACDM parameter
space.
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1 Introduction

The use of Bayesian statistics in cosmology is now commonplace: most of the results on
cosmological parameters from cosmic microwave background (CMB) experiments [1] and
large-scale structure (LSS) surveys [2] are reported as posterior distributions. In addition,
various Bayesian methods are used for model comparison [3].

Along with the increase in the number of cosmological surveys and the improvement in
their precision, a number of tensions between parameters derived from different experiments
have been observed. For example, the Hubble constant Hy measured using the distance
ladder in the local universe disagrees with that derived from Planck CMB observations; in
the standard six parameter ACDM model, the disagreement is about 3.4c [4, 5]. There is also
some tension between the measurements of the amplitude of fluctuations og and the matter
density €2, from weak lensing to that of the measurement from Planck CMB data [6-8].
As a result, a number of statistics have been developed to compare datasets in cosmology.
The primary goal of these statistics is to determine if two datasets are consistent realizations
of the same model, that is, with a single set of cosmological parameters (see [9-11] for
discussions and comparisons of some of the popular methods). For an alternative approach
using hyperparameters, see [12, 13].

The Bayesian evidence-based metric of [14] has been widely used [15-19], but is known
to strongly depend on the priors given to parameters. This has led to the use of other
measures [20-23] that do not have the prior-volume dependence, but at the expense of losing
the simplicity of an evidence ratio. In this work, we define an evidence-based quantity which
fixes the problem of prior volume dependence and which can be evaluated on a easy-to-
interpret scale.

Consider two datasets d; and do, and let 8 be the parameters of a model. Let us assume
that both the datasets and the combination of them can be modeled by a particular ACDM
realization, and the priors are wide enough to include the parameter posteriors preferred by
both the datasets individually. Most commonly, a Bayesian analysis is used to determine
posterior probability distributions for the model parameters 8. Suppose the two datasets
separately give two (normalized) posterior distributions

L£(d:[0)7(6)
E(d)

L(d2|0)7(6)
E(dy)

p1(0|dy) =

p2(0|d2) =



where £(d|@) denotes the likelihood of the data d given the model defined by a set of
parameters 6, m(0) is the prior probability of the model parameters, and E is called the
marginal likelihood or the evidence,

B(d) = / 40.(d|6)x(8). (1.2)

We will always use normalized probability density functions for the likelihood ([ £(d|6)
-dd = 1) and the prior ([7(8)d0 = 1). The posterior for the combination of datasets
dl, d2 is:

ﬁ(dl, d2, 0)71'(0)
E(d;,ds)
_ L(dy1,0)L(d2,0)7(0)
E(dy,d2) ’
where the second equality assumes that the combined likelihood is approximated well by the
product of the two likelihoods.

The ratio of the evidences obtained using two different models, called the Bayes Factor,
is a widely used measure for model comparison. In this work, we will define a similar ratio
to compare two sets of parameter constraints of a model obtained using different datasets or
experiments.

p12(0]d;,dg) =

2 Evidence for model parameters

We first define the marginal likelihood (or the evidence) for the maximum likelihood model
parameters, @M%, instead of the usual definition of the evidence for the data, d. We do so as
our primary goal is to quantify the level of consistency between model parameters obtained
from different datasets or experiments. Analogous to eq. (1.2), we define the evidence for the
maximum likelihood model parameters

E(9(6"")) = [ d6L(9(6"")/0)(0). (2.1)

where, instead of the measured data, we have used the maximum likelihood values of the
data realization given the model, g(@™M%); see figure 1 for an illustration. Here g(0) is
the function that computes the model prediction for the data given the parameters 8; for
example, in the case of the CMB temperature fluctuation data, the model prediction is
represented by the theory angular power spectra g1l (8) = {CFT}. If the likelihood in
the above equation is a combination of two experiments, then we can define evidences for
the maximum likelihood parameters obtained through the combination of the two datasets
(denoted by i,7), E (g(@%m)) Alternatively, we can define an evidence so that each part of
the data vector in the evidence integral uses its own maximum likelihood parameter values,
obtained by analyzing each experiment separately, E({g:(0™"), g; (Og/m)}) As we will show,
the ratio of the two evidences can quantify the tension between the parameter constraints
obtained from two different datasets.

3 Evidence-based dataset comparison

For simplicity, consider two datasets that have independent likelihoods, £;(d|0),L;(d|@),
and let the measured data vector for each experiment be denoted by d;,d;. Let us further
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Figure 1. Ilustration of how we make use of the maximum-likelihood data-realizations (crosses) as
opposed to the actual measurements (dots) in our evidence integrals. Doing this gets rid of the data
scatter and therefore makes our statistic only sensitive to the model parameters and not the spread
in the data realizations.

assume that the maximum likelihood parameters of the model, ACDM for example, are known
for three different cases: two datasets analyzed separately, H%\AL,O?/IL, and their combined
analysis, B%-H“.

Our null hypothesis Hg is that both the datasets are realizations of a single set of
parameters, O%IL, from the combined fit. The alternative, more complicated, hypothesis H;
is that each of the datasets are realizations of their own set of parameters, Bg/lL, Bé\/ﬂﬂ Then,
using the Bayes theorem similarly to the derivation of the Bayes factor, we get

p(Hy) _ [ dOm(0)Li(g:(6;™)|0)L;(g;(65™)|6)
p(Ho) [ dOm(6)Li(9:(875")0)L;(9;(675)|0)
ESep

_ Y _p..
_E'com_‘Rl]7
]

(3.1)

where the superscripts sep and com in the formula above stand for separate and combined
maximum likelihood parameters, respectively. We will first consider a case where the above
expression can be evaluated analytically.

Consider two likelihoods given by two Nparams-dimensional multivariate Gaussian dis-
tributions with arbitrary covariance matrices ¥ and Yo,

I S [ YR S PR
L£1(0) = o) p [ 2(d1 0) X (dy 9)]
r@) — —— o g ey g, —

2(0) det(27‘(22) P |: 2((212 0) 2 (dg 9):| .



In this simple example, we have taken ¢;(8) = ¢;(@) = 6 so that the expressions are
easy to evaluate analytically. If we further assume that the prior on each of the parameters
is uniform and wide (compared to the constraint on the parameter), we get [24],

B / L1 (@]0)L2(cel6) = [%(121 =
X exp [_;(dl —dp)" (31 + %) N (dy - dz)} (3:2)
13" ox / 40L1(d1216)L2(d1216) = \/det [27r(121 +39)]
so that
Ris = exp [—;(dl —dy) (21 4 %) Hdy — d2)i| , (3.3)

the negative logarithm of which (—In R;2) is the two-experiment index of inconsistency (I0I)
defined in [11]. Under these conditions assuming that the null hypothesis is true, (—21n R;;) is
x? distributed with Nparams degrees of freedom (dof) [25] (see their definition and discussion of
@pwMm). More generally, the ratio of probabilities of two hypotheses (evidence ratio) is similar
to a likelihood-ratio test [26], and the distribution of (—21In R;;) asymptotically approaches
X?Vparams by Wilks theorem [27]. Here, Nparams = dof(Ho) — dof(#1), when comparing two
datasets. We will, therefore, evaluate the probability-to-exceed (PTE) value of observed
In R;; values by taking (—2In R;;) to be X?Vparams distributed.

We can also obtain analytic expression for In R;; for a linear Gaussian model, where
9i(0) = F; + M;0, rather than the simple g;(6) = € model used above. A linear Gaussian
model is often employed to analytically calculate the results of various tension measures [9].
Under the assumption of the linear model, we can calculate the separate and combined
evidences for model parameters. When the likelihood is Gaussian in data and the parameters
have uniform priors, the posterior distribution of parameters in the Gaussian linear model is
also Gaussian, with mean @} and covariance X7 = (M!S, M;)~! [20]. Then, the individual
likelihoods used in the computations of the evidence integrals for model parameters can be
written in terms of the mean and covariance of the parameter posteriors:

Li(9(6™")[6) = (0" —6)(=)) 7 () — 0) (3-4)

1 1
\/ det(27r2i) 2

from which, assuming that the two datasets are uncorrelated, it follows that

In Ry; = —5(6;"" — 0Y)T (2 + =071 (0} — 6)™) (3.5)

1
3
which only depends on the parameter posterior distributions and is independent of the prior
volume.

A particularly instructive case is that of two one-dimensional Gaussian likelihoods.
Then £1 = N(dy,01) and Ly = N (da,02), and we get (—2In R12) = (d1 — d2)?/(0? + 03).
The application of our new measure to the marginalized Hubble constant Hg likelihoods
from Planck L1 ~ N(66.93,0.62) [1] and distance ladder Lo ~ N(73.24,1.74) [4], therefore,
trivially gives us the values expected from Gaussian statistics i.e. In Rjo = —5.83 [28] with a
p-value 6.4 x 10~ or 3.40.



Figure 2. In this example, we verify that the two distributions shown in the figure: (i) Gaussian
(dashed), and (ii) non-Gaussian (solid), are consistent with each other; the effect of the peak around
6 = 3 in the non-Gaussian distribution is small with In R15 = —0.064 (compared to In R15 = —0.0625
if L5 had no second peak at 6 = 3).

We note that our new measure is related to the tension measure defined in [29], because
in some situations Eicj‘?m can be approximated by shifting one of the posterior probability
density functions while preserving its shape. However, there can be ambiguity in the pro-
cess of shifting one or both of the posterior distributions (for non-Gaussian and multimodal
distributions), as discussed in section X.B. of [11]. That ambiguity is removed in our defi-
nition, as we reference the likelihood functions directly. We provide an example in figure 2,
in which the Gaussian likelihood is simply, £1(d|0) = N(d,1). The non-Gaussian likelihood
is a (normalized) sum of two Gaussians, defined as L£5(d|f) = 0.9N (d,1) + 0.1N (d + 3,0.1).
The distributions plotted in figure 2 are £1(d = —0.5|f) (dashed) and Lo(d = 0|6) (solid).
Because the combined fit is insensitive to the narrow peak near 8 = 3, we get In R1o = —0.064
without any ambiguity in how to shift the distributions, which shows that the two sets of
parameters 61 = —0.5 and 6 = 0 from the two likelihoods are consistent, as expected.
Without the additional peak at 6 = 3, the level of consistency is slightly better: In Rjs =
—0.5x (0.5%)/2 = —0.0625, a simple verification that the new measure gets contribution from
non-Gaussian features.

Next, we calculate In R15 using different pairs of datasets (e.g. TT vs. EE) from the
Planck satellite, in which case g;(0) is no more a simple linear function but has to evaluated
numerically.

4 Application to Planck data

We use the binned and foreground-marginalized plik_lite likelihood from the Planck collabo-
ration [30] which includes multipoles 30-2508 for T'T power spectrum, and multipoles 30-1996
for EE power spectrum. We fix the Planck calibration factor y, to 1; see section C.6.2 of [30],



Parameter Range Parameter Range
In(1019Ay) (2.7, 3.4] s 0.8, 1.2]
Qe [0.1, 0.45] Qp [0.044, 0.055]
Hy [50, 95] T [0.005, 0.2]

Table 1. Cosmological parameters and their prior ranges. A, and n, are the amplitude and spectral
index of primordial scalar fluctuations, 2. and €2}, are cold dark matter and baryonic matter densities,
Hy is the Hubble constant, and 7 is the optical depth to reionization.

from which the CMB-only Gaussian plik-lite likelihood is:
~CMB| th AT 1 S
In £L(Cy™2|CyY) = —5X Y¥ix— 5111 {det(27r2)] , (4.1)

where x = C'I?MB / yf, — Cl‘;h. The binned and marginalized mean C’,?MB and covariance matrix

3 are provided by the Planck team. To evaluate the likelihood in eq. (4.1), we compute lensed
Ch for a given set of parameters 6 using camb [31, 32] and bin the C{" using the appropriate
weights to get C’gh.

Without low-multipole polarization data, the optical depth to reionization 7 is only
weakly constrained and is strongly degenerate with the amplitude of scalar fluctuations As.
To break this degeneracy, we use a low-¢ polarization prior 7 = 0.07 £ 0.02. The evidences
we compute are:

B = [ d07(0)LHCTT O}, CEM o)
(4.2)
Effine = [ d0w(0)L({CTT(61). CER (6} o)

where 0¥L and H%L are obtained individually by using the respective TT and EE data,
while Y is the maximum likelihood model parameters from the combined fit. We ob-
tain the maximum likelihood values 8™ by using a global optimization algorithm differen-
tial_evolution [33] implemented in scipy [34]. We calculate the evidences using the Multi-
Nest package [35, 36], and quote results and statistical errorbars produced by the importance
nested sampling method [37]. For evidence calculations, we take uniform priors on six cos-
mological parameters listed in table 1.

The results are shown in table 2 where, in addition to In R, we also quote the correspond-
ing probability-to-exceed (p-value) and Gaussian n-o values. For the discrepancy between
model parameters obtained from TT and EE spectra, we obtain In Rt gg = —1.93 £ 0.03
(approximately 0.40). Previous studies also find no indication of strong discrepancy be-
tween these datasets [38], albeit by using more complicated methods, or by directly using
the posteriors [28].

We perform another test using the Planck power spectrum data, by splitting the temper-
ature data into ¢ < 1000 and ¢ > 1000 samples and calculating In R for these two datasets.
We again find that the level of inconsistency is small with In Rprgy = —4.13 & 0.16 or
approximately 1.2¢0, which agrees with the significance obtained using simulated data sets
in [39]. Note that, to obtain the values in table 2, we are using the plik lite likelihood in
which low-¢ (£ < 30) multipoles are not included; inclusion of these large-scale multipoles
would likely increase the discrepancy as their amplitude is known to be anomalously low.



datasets  TT,EE TTlow, TThigh (s = 1000)  EElow, EEhigh (£sp1i¢ = 1000)
InR —-1.93+0.03 —4.13+0.16 —0.83+0.16
p-value  0.7(0.40) 0.22(1.20) 0.95(0.10)

Table 2. Summary of applications of our new statistic to Planck data, discussed in the text. The
second column shows In R for TT and EE as the two datasets using Planck pliklite likelihood. The
last two columns show In R for splitting the data into two multipole ranges at £+ = 1000 using only
TT or only EE data. Each p-value is computed by taking (—21n R) as X?Vparam distributed, and the
corresponding Gaussian n-o value is also quoted in parentheses.

To estimate the effect of low-£ part of the TT likelihood, we implement an approximation
to the low-¢ likelihood following [39] (see their section 3.2 for details), which they have
tested to find that the approximation gives similar cosmological parameters compared to the
computationally more demanding pixel-space likelihood. To summarize: f;(2¢ 4+ 1)Cy/Cy
is drawn from a X?‘e(% +1) probability distribution function, where f; are mask-dependent
fitting factors determined for the commander mask. Here Cy is the mask-deconvolved power
spectrum, which we take to be the Planck commander quadratic maximum likelihood (QML)
Cys. Any correlation between different multipoles for £ < 30 and with the plik_lite multipole
bins is ignored. For /gy, = 1000, including the approximate low-£ likelihood, we now get
In Rrrspiit = —5.32 £ 0.05 or approximately 1.60, which again agrees with the significance
quoted in [39] obtained using simulations.

We finally carry out a similar analysis with the polarization data: we split the Planck
EE data in multipole, using the plik_lite likelihood for each multipole range. The large
and small scale multipole split for the EE spectrum results in consistent ACDM parameters:
In Rpgspiit = —0.83 £ 0.16 (or approximately 0.10).

5 Summary and conclusion

We have introduced a new statistic to quantify tension between experiments. The statistic
is based upon Bayesian evidence, and has advantages of not depending on the prior volumes
of the parameters, and of being straightforward to apply to multiparameter, non-Gaussian
likelihood distributions. We have shown that our new measure reduces to the expected
discrepancy measure for Gaussian distributed posteriors, and gives sensible results in the
non-Gaussian tests that we performed.

Applying the new statistic to the Planck power spectrum data, we find that the cos-
mological parameters obtained from TT and EE spectra are consistent, and that the level of
discrepancy of the parameters obtained from the TT spectrum split into smaller and larger
scales at fgp1i; = 1000 is slightly larger at about 1.60.

We have limited our application to just the Planck data in this work. It is worthwhile to
apply the new measure to comparing the Planck constraints with weak-lensing constraints [2]
and smaller-scale CMB constraints [40]. It will also be useful to consider using the statistic
in the context of ACDM extensions. Further, we have only carefully investigated the ratio
for comparing two datasets. A straightforward application of the ratio for more than two
datasets might be possible by evaluating (—21n R) as x? distributed with Nparams X (Ngets —1)
degrees of freedom, but detailed investigation of this possibility, application to likelihoods
with very non-Gaussian posteriors, and application to other cosmological datasets is left for
future study.
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