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ABSTRACT
The massive dark matter haloes that host groups and clusters of galaxies have observable
properties that appear to be lognormally distributed about power-law mean scaling relations
in halo mass. Coupling this assumption with either quadratic or cubic approximations to
the mass function in log space, we derive closed-form expressions for the space density of
haloes as a function of multiple observables as well as forms for the low-order moments of
properties of observable-selected samples. Using a Tinker mass function in a � cold dark
matter cosmology, we show that the cubic analytic model reproduces results obtained from
direct, numerical convolution at the 10 per cent level or better over nearly the full range of
observables covered by current observations and for redshifts extending to z = 1.5. The model
provides an efficient framework for estimating effects arising from selection and covariance
among observable properties in survey samples.

Key words: galaxies: clusters: general – cosmology: theory – large-scale structure of
Universe.

1 IN T RO D U C T I O N

Counts of galaxy clusters provide constraints on cosmological
parameters (e.g. Voit 2005; Allen, Evrard & Mantz 2011, and
references therein), and test fundamental theories of gravity and
cosmic acceleration (e.g. Weinberg et al. 2013). Such studies typi-
cally use cluster samples identified via optical (Rozo et al. 2010),
X-ray (Henry et al. 2009; Mantz et al. 2010), or thermal Sunyaev–
Zel’dovich (SZ; Benson et al. 2013; Planck Collaboration 2013;
Sievers et al. 2013) signatures of the baryons in the haloes that host
cluster phenomena. These analyses are empowered by simulation
studies that calibrate the space density as a function of halo mass,
known as the mass function, within a given cosmology (Tinker et al.
2008; Bhattacharya et al. 2011; Murray, Power & Robotham 2013).

Modelling the expected counts of clusters in a wide-area obser-
vational survey requires combining the mass function with a statis-
tical model that expresses the likelihood for a halo of mass M at
redshift z to have some intrinsic observable signal, S, detectable in
the survey. Evidence from observations (Arnaud, Pointecouteau &
Pratt 2005; Maughan 2007; Pratt et al. 2009; Vikhlinin et al. 2009;
Zhang et al. 2011; Ettori 2013; Ruel et al. 2013; Saliwanchik et al.
2013; Maughan 2014) and simulations (Evrard et al. 2008; Stanek
et al. 2010; Fabjan et al. 2011; Munari et al. 2013; Jiang et al. 2014;
Le Brun et al. 2013; Biffi et al. 2014) support a model in which the
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scaling law behaviour is power law with mass in the mean, with
approximately lognormal variance.

While scaling behaviour of cluster properties has been studied for
decades (see Giodini et al. 2013, for a recent review), most works
have focused on correlating pairs of observed signals, {S2, S1}, or
on studying how a single observable scales with mass, {S1, M}.
Simulations provide a natural environment for the latter, since the
true halo mass is known. For observations, mass estimates are made
indirectly from measured signals, for example through assumption
of virial or hydrostatic equilibrium, and this methodology introduces
the potential for bias and additional variance that must be calibrated
(e.g. Rasia et al. 2012; Battaglia et al. 2013; Nelson et al. 2014).
Alternatively, masses can be inferred through inversion of a given
observable–mass relation. In this way, an observable serves as proxy
for halo mass.

Evidence of biases in mass proxies can arise from comparisons
among different observable signals. Planck satellite measurements
of the thermal SZ effect in the optically selected maxBCG sample
(Planck Collaboration 2011) led to a detailed re-examination of
X-ray, SZ, and optical scaling relations by Rozo et al. (2014a,b,
2014c). That study concluded that the Planck YSZ mass calibration
was biased low by a few tens of per cent, a finding supported by
independent weak gravitational lensing estimates of Planck clus-
ters (von der Linden et al. 2014), although other studies are less
supportive (Israel et al. 2014).

Rozo et al. (2014b) present a model for multivariate signal counts
and other statistics under the assumption of a locally power-law
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mass function. That model was employed to interpret a combined
set of X-ray, SZ, and optical data, resulting in a set of preferred
scaling relations presented in Rozo et al. (2014c, see their table 4).

In this paper, we present a non-local extension of that model
that expands its scope to effectively cover the complete dynamic
range of properties displayed by the population of galaxy clusters.
Within a � cold dark matter (�CDM) cosmology, we show that the
mass function of the massive haloes that host groups and clusters
of galaxies can be represented by a low-order polynomial (in log
space) to a typical accuracy of a few per cent, comparable to its
calibrated level of precision from N-body simulations. Convolving
this mass function representation with a multivariate Gaussian of
logarithmic halo properties at fixed mass and redshift results in
analytic expressions for the space density as a function of multiple
observables and other derivative statistics. By offering a fast method
for estimating survey sample and follow-up study outcomes, this
formalism is intended to complement data analysis methods based
on similar model assumptions (Maughan 2014).

We employ a halo mass convention of M500c, the mass within a
spherical region encompassing 500 times the critical density, ρc(z),
but the analytic expressions can be applied using any choice of halo
mass convention. We use M500c to be consistent with the scaling laws
presented in Rozo et al. (2014c). In Section 2, we derive expressions
for multi-observable cluster population statistics using low-order
polynomial approximations of the mass function in log space. These
are then applied to X-ray and SZ statistics in Section 3. In Section 4,
we discuss some of the model’s strengths and limitations, and we
summarize our results in Section 5.

2 M O D E L F O R L OW- O R D E R M O M E N T S

We first develop expressions for the space density of clusters as
a function of observables such as temperature or luminosity, then
compute first and second moments for properties of samples se-
lected by a specific observable. Our model expands the results pre-
sented in Rozo et al. (2014b) and uses slightly different notation.

Consider a set of N bulk observable properties Sa where
a ∈ {1, N}; these observables can be, for example, X-ray lumi-
nosity, LX, temperature, TX, gas thermal energy measured in the
X-ray or SZ flux, YX or YSZ, number of galaxies, Ngal or λ, inferred
lensing mass Mlens, etc., measured within some characteristic radius.
Let sa ≡ ln (Sa) represent the natural logarithms of these properties
in some chosen basis of units (for example, 1044 erg s−1 for X-ray
luminosity).

We assume power-law forms for the observable–mass scaling
relations. Choosing a halo pivot mass scale, Mp, at some fiducial
redshift (values discussed below), and letting μ ≡ ln(M/Mp), the
vector of log-observables, s, scales in the mean with mass as

〈s|μ〉 = π + αμ , (1)

where the vectors π and α are the normalizations and slopes of the
relevant scaling laws. We consider redshift-dependent normaliza-
tions, π(z), which scale in a self-similar manner (Böhringer, Dolag
& Chon 2012). While the slopes may also be redshift dependent,
we take them as constant here.

Individual haloes drawn from the cosmic population deviate from
this mean behaviour in a manner that we assume is lognormal. At
all redshifts, the full probability density function (PDF), P (s|μ), is
described by a covariance matrix with elements Cab = 〈(sa − 〈sa|μ〉)
(sb − 〈sb|μ〉)〉, and where Caa = σ 2

a is the intrinsic log variance of
the ath observable. We assume this covariance to be independent of
mass and redshift.

2.1 First-order (local) mass function

The model of Rozo et al. (2014b) uses a first-order Taylor expansion
of the mass function, n(ln M) (with dimension of number density
per ln (M)), around some pivot mass Mp,

n1(μ) = Ae−β1μ , (2)

where A and β1 are the local amplitude and (negative) slope of the
mass function evaluated at the pivot, μ = 0. Note that A and β1 are
functions of redshift, cosmology, and pivot location, as explained in
Section 3. The subscript on the space density indicates the first-order
nature of the mass function expansion.

Using equations (1) and (2), Bayes theorem in the form P (μ|s) =
P (s|μ)P (μ)/P (s) allows us to obtain the mean and variance of the
log mass selected by a fixed combination of observables. In the
first-order approximation to the mass function, this probability is
Gaussian, with mean and variance

〈μ|s〉1 = [
αT C−1(s − π) − β1

]
σ 2

μ|s,1 , (3)

σ 2
μ|s,1 = (αT C−1α)−1. (4)

In the case of a single observable quantity sa, these expressions re-
duce to 〈μ|sa〉1 = (sa − πa)/αa − β1σ

2
μ|a,1 and σ 2

μ|a,1 = (σa/αa)2.
The mean mass is biased low relative to the assumed scaling by an
amount given by the product of the local slope of the mass function
and the mass variance of the chosen observable.

Space density of multiple observables. Convolving equation (2)
with the lognormal likelihood, P (s|μ) yields the halo number den-
sity as a function of the full vector of observable properties as

n1(s) = A′
1 exp

[
−1

2

(
(s − π)T C−1(s − π) − 〈μ|s〉2

1

σ 2
μ|s,1

)]
,

A′
1 = A σμ|s,1

(
(2π)N−1|C|)−1/2

. (5)

Observable-selected samples. Now consider selecting a sample by
a certain observable, sa. With the full space density above, we can
derive the PDF of any second observable, sb, by P(sb|sa) = n(sa,
sb)/n(sa). The result is also Gaussian with mean and variance as

〈sb|sa〉1 = πb + αb[ 〈μ|sa〉1 + β1 rab σμ|a,1 σμ|b,1 ] , (6)

σ 2
b|a,1 = α2

b

[
σ 2

μ|a,1 + σ 2
μ|b,1 − 2rab σμ|a,1σμ|b,1

]
, (7)

where rab is the correlation coefficient between properties sa and sb

at fixed mass. When the intrinsic correlation of these observables
is non-zero, then a shift in the mean of sb is induced that is similar
in form to the bias of equation (3) but with opposite sign if rab is
positive. This effect can be understood by the fact that the dominant
lower mass haloes that scatter upwards into the chosen sa bin will
also have a positive deviation from the mean sb if rab is positive. If
rab is negative, the effect is reversed.

Along with these purely observable properties, one can compute
the correlation coefficient between mass and sb for samples chosen
by sa, finding

r(μb|a),1 = σμ|a,1/σμ|b,1 − rab

[1 − r2
ab + (σμ|a,1/σμ|b,1 − rab)2]1/2

. (8)

In the case of uncorrelated observables (rab = 0), a positive corre-
lation between mass and sb is induced by the fact that haloes with
lower mass that scattered up into the sa bin will also have lower
sb, and vice-versa. In the limit that the selection property, sa, is a
much better mass proxy than sb such that σμ|a,1/σμ|b,1 � 0, then the
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correlation of sb and mass takes on the opposite sign of the intrin-
sic correlation, rab. Relative to the mean behaviour in the selection
bin, haloes of lower mass, 	μ < 0, will have positively enhanced
selection signal at that mass, 	sa > 0, and then 	sb � rab	sa �
−rab	μ.

2.2 Higher order (non-local) mass functions

The first-order model functions well over a relatively narrow range
in mass or observable near the chosen pivot point. We now wish to
extend the range of the model by introducing quadratic and cubic
terms into the mass function approximation. We derive here exact
expressions for the quadratic case, and approximate expressions for
the cubic case, and show below that the latter are accurate to better
than 10 per cent for a wide range of halo mass scales and redshifts.

The second-order model uses a mass function

n2(μ) = Ae−β1μ− 1
2 β2μ2

, (9)

where β2 is the magnitude of the second derivative of the mass
function at the pivot mass scale, which is negative for massive
haloes in �CDM cosmologies.

The convolution remains analytic, and the halo number density
as a function of multiple observables retains the form of equa-
tion (5), but adding local curvature reduces the weight of lower
mass haloes scattered upwards into the signal bin. Consequently,
the Gaussian distribution of halo mass at fixed observable proper-
ties has a compressed mean and variance relative to the first-order
treatment as

〈μ|s〉2 = xs 〈μ|s〉1, (10)

σ 2
μ|s,2 = xs σ 2

μ|s,1, (11)

where the compression factor, xs ≡ (1 + β2 σ 2
μ|s,1)−1, is less than

unity and is well approximated by 1 − β2σ
2
μ|s,1 for most of the

applications discussed below.
Consider again the case of two observables sa and sb. The PDF of

having observable sb in a population selected by observable sa also
remains Gaussian, and the expressions written in mass equivalents
are somewhat simpler. Letting δi = (si − πi)/αi , then the mean and
variance for the second-order mass function approximation are

〈δb|sa〉2 = xa

[〈μ|sa〉1 + (β1 + β2δa) rab σμ|a,1 σμ|b,1

]
, (12)

σ 2
b|a,2

α2
b

= xa

[
σ 2
b|a,1

α2
b

+ β2 σ 2
μ|a,1 σ 2

μ|b,1 (1 − r2
ab)

]
. (13)

The first expression indicates that the mean observable now senses
the curvature in the mass function through the β2δa term, where
recall that δa is measuring the equivalent log-mass distance from
the pivot location.

In the limit of uncorrelated observables (rab = 0), the second
expression reduces to xaσ

2
μ|a,1 + σ 2

μ|b,1, as it should since the mass
function curvature affects the mass variance in the selection variable
but not that of the non-selection variable.

Finally, the correlation coefficient between mass and property sb

at fixed sa is now given by

r(μb|a),2 = σμ|a,1/σμ|b,1 − rab

[(1 − r2
ab)/xa + (σμ|a,1/σμ|b,1 − rab)2]1/2

. (14)

For uncorrelated observables, this expression again reduces to equa-
tion (8) with σ 2

μ|a,2 replacing σ 2
μ|a,1.

In the appendix, we show a further extension to the third order,
with n3(μ) = Ae−β1μ− 1

2 β2μ2− 1
6 β3μ3

.

3 A PPLI CATI ONS TO OBSERVABLE CLUS TER
PROPERTI ES

We now evaluate the utility of the above expressions by comparing
their predictions to expectations calculated via explicit local con-
volution of the Tinker mass function (Tinker et al. 2008). For hot
gas observables, we examine the X-ray luminosity at soft-photon
energies, LX, and the total gas thermal energy as determined by the
thermal SZ, YSZ. These cases represent examples of relatively high-
and low-scatter mass proxies, respectively. We also examine the
case optical richness, Ngal, a relatively high-scatter proxy for which
the correlation with hot gas properties at fixed mass is currently
poorly understood.

We perform analysis at z = 0.23, the redshift where local mass–
observable relations used here are calibrated, and also at z= 1.5. The
higher redshift is chosen to be representative of the outer reaches
of near-term cluster surveys and is also an epoch at which the mass
function is both steeper and more strongly curved compared to
low redshift, aspects that make the higher order corrections more
important.

3.1 Mass function and log-space polynomial fits

The Tinker mass function employs an updated version of the normal-
ized mass fraction functional, f(σ ), in the form originally calibrated
for CDM cosmologies by Sheth, Mo & Tormen (2001) and Jenkins
et al. (2001) as

nTinker(μ, z) = dn

dμ
= ρm(z)

M

d ln σ−1(M, z)

dμ
f (σ ) , (15)

where ρm(z) is the mean cosmic matter density and σ 2(M, z) is the
linearly evolved variance of matter density fluctuations filtered on
a mass scale M ≡ Mpeμ, both evaluated at redshift z. In this work,
we use the mass function calculator published by Murray et al.
(2013) and employ the Tinker fit for f(σ ) (Tinker et al. 2008) using
the CAMB transfer function of a Wilkinson Microwave Anisotropy
Probe 7 (WMAP7) cosmology. The cosmological parameters for
the �CDM model are: scaled Hubble constant, h = 0.704, baryon,
CDM, and dark energy parameters of �b = 0.0455, �c = 0.226,
�DE = 0.728, respectively, spectral index, ns = 0.967, and present
amplitude of matter density fluctuations, σ 8 = 0.81.

At our two fiducial redshifts, we compute the coefficients A, β1,
β2, and β3 by taking numerical derivatives of nTinker(μ, z) at the cho-
sen pivot mass. Values of the pivot mass, Mp, in units of 1014 M	
along with the fit parameters are shown in Table 1. At higher
redshifts, the mass function steepens and becomes more strongly
curved. For observables with large mass variance, the second-order
compression factor, 1 + β2σ

2
μ|s , can be important since β2 = 0.70

and 1.22 at redshifts z = 0.23 and 1.5, respectively.

Table 1. Mass function expansion param-
eters at two redshifts for a WMAP7 cos-
mology. The pivot mass, Mp, is in units of
1014 M	 and the amplitude, A, is in units of
10−6 Mpc−3.

z Mp A β1 β2 β3

0.23 2.0 1.944 1.97 0.70 0.40
1.5 1.0 0.293 3.07 1.20 0.73
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Table 2. Observable–mass scaling parameters at z = 0.23
and pivot mass, Mp = 2 × 1014 M	, from Rozo et al.
(2014c). See text for unit definitions. Along with the pub-
lished scatter values for Ngal, we also consider a smaller
value in parentheses based on the λ richness estimator
(Rykoff et al. 2012).

S Sp = eπs αs σ ln S σμ|s

LX 0.61 1.55 0.39 0.252
D2

AYSZ 0.62 1.71 0.15 0.088
Ngal 37 0.94 0.42 (0.21) 0.45 (0.23)

3.2 Scalings for LX, YSZ, and Ngal

As specific examples of scaling laws we use results derived in the
panchromatic study of Rozo et al. (2014c). In that work, LX is the
X-ray luminosity in the rest-frame [0.1, 2.4] keV band, expressed
in units of 1044 erg s−1 and measured within a cylindrical aperture
of radius R500c. The thermal SZ signal, D2

AYSZ, where DA is the
angular distance of the source, is given in units of 10−5 Mpc2 and is
measured within the spherical aperture of radius R500c. The optical
richness, Ngal, is the count of red sequence galaxies determined by
the maxBCG cluster-finding algorithm within an estimated sphere of
radius R200c (Koester et al. 2007).

We use the observable–mass parameters, πs , αs, and σ ln S, at
z = 0.23 given in table 4 of Rozo et al. (2014c). The parameters, with
normalizations rescaled to our choice of pivot mass, 2 × 1014 M	,
are summarized in Table 2. At z = 1.5, we employ self-similar
scalings for normalizations of LX and YSZ discussed below.

For the optical richness, we use a simple inversion of the scaling
of lensing mass at fixed Ngal and consider both the published value
of the scatter as well as a more optimistic value that is appropriate
for the multicolour richness estimator, λ (Rykoff et al. 2012; Rozo
& Rykoff 2014). The improvement of a factor of 4 in variance has
significant implications that we illustrate below.

3.3 Application to cluster number counts

We first compare the approximate analytical formulae, ni(ln S), to
nTinker(ln S), where the latter quantity is obtained by explicit convo-
lution of the Tinker mass function,

∫
nTinker(μ)P (ln S|μ)dμ.

In Fig. 1, we show the X-ray luminosity function at redshifts
z = 0.23 and 1.5, derived using the parameters in Tables 1 and 2.
The normalization of the high-redshift LX–M relation is scaled using
the assumption that the soft-band luminosity at fixed mass scale in
a self-similar fashion, L(z) ∼ H(z)2 (Böhringer et al. 2012). While
the first-order model is locally accurate, the second- and third-order
models extend the accuracy over increasingly wider ranges of X-
ray luminosity. The third-order model traces well the local Tinker
convolution results across more than two decades in luminosity.

In Fig. 2, we evaluate the accuracy of the different orders for all
observables listed in Table 2. Values of the properties range from
0.03to100 for LX/1044 erg s−1 and D2

AYSZ/10−5 Mpc2 and from
3to1000 for Ngal.

At first order, the first-order counts always overestimate the
Tinker-convolved estimates. The normalization error is approxi-
mately 1 − √

xs � β2σ
2
μ|a,1/2. The first-order approximation is thus

most accurate for YSZ at low redshift and worst for Ngal at high red-
shift. With xs = 0.80, the first-order Ngal counts at z = 1.5 lie more
than 10 per cent above the Tinker convolution, even near the pivot
point. When the optical richness scatter is reduced by a factor of
2 (dotted grey lines), the first order improve dramatically. In all

Figure 1. Comoving space density of haloes as a function of LX evaluated
at redshift z = 0.23 (upper curves) and 1.5 (lower), assuming self-similar
redshift evolution of the X-ray normalization for the latter. Black lines show
expectations from local convolution of the Tinker mass function, while
the dotted (grey), dot–dashed (green), and dashed (red) curves show our
analytic expressions based on first-, second-, and third-order mass function
expansions, respectively. Pivot masses of Mp = 2 and 1 × 1014 M	 are
used at z = 0.23 and 1.5, respectively, and the latter are offset by a factor
of 0.1 in LX for clarity. Deviations of the approximations from the direct
Tinker convolution are plotted in Fig. 2.

cases, the range within which the first-order estimates are accurate
is limited to a factor of a few close to the pivot location.

At second order, the dynamic range over which the counts lie
within 5 per cent of the Tinker expectations widens, reaching nearly
a decade for YSZ and LX at low redshift. The approximation is always
better at low redshifts where the second and third derivatives, β2

and β3, of the mass function are lower. Note that the zero crossing
is shifted upwards from the pivot location by an amount that scales
with the signal variance.

The third-order approximation is accurate to within 5 per cent in
number over more than two decades in both LX and YSZ, with the
larger errors only occurring at high signal values that correspond to
M500 masses above 1 and 0.5 × 1015 M	 at low and high redshift,
respectively. Such massive haloes are quite rare, with space densities
of roughly 20 and 0.2 Gpc−3 at z = 0.23 and 1.5. For statistical
cluster samples that typically reach space densities many times
higher, the third-order model is capable of yielding highly accurate
estimates of counts as a function of observable properties.

One can always vary the pivot mass scale in order to improve the
quality fit over a certain range of signal. However, even with a tuned
pivot, the first- and second-order models cannot reach 10 per cent
accuracy over the wide dynamic range of observables covered by
current surveys. In particular, unless the pivot mass scale is chose
to be very high, it is very difficult for these models to obtain good
accuracy at large masses and high redshifts.

3.4 Observable-selected sample expectations

Dedicated follow-up observations or joint studies of overlapping
surveys at different wavelengths can allow multiple properties to
be measured for clusters selected by a particular observable. Here,
we explore expectations for such secondary properties based on the
different orders of the multivariate model of Section 2.
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Figure 2. Fractional error in number counts, δnm(ln S) ≡ nm(ln S)/nTinker(ln S) − 1, are shown for first-, second-, and third-order expansions of the log-space
mass function (top to bottom) at z = 0.23 (left) and 1.5 (right). The observable signals S represented are X-ray luminosity, LX (blue solid lines), the SZ flux,
D2

AYSZ (green dashed), and the optical richness, Ngal, using either the high-scatter value, σμ = 0.45 (grey solid) or low value, σμ = 0.23 (grey dotted). Signals
are plotted relative to the log-mean values, Sp, expected at the pivot mass scales of 2 and 1 × 1014 M	 (left and right, respectively) using parameters in Table 2.

Figure 3. PDF, P(ln Sb|Sa), for the SZ signal, Sb = D2
AYSZ, at a chosen X-

ray luminosity, Sa = LX = 1045 erg s−1 at z = 0.23 as inferred from direct
convolution of the Tinker mass function (black line) or from the approximate
model using first- (grey dotted), second- (green dot–dashed), and third-order
(red dashed) forms.

Fig. 3 shows an example for low redshift (z = 0.23) in the
form of the SZ thermal decrement expected for clusters selected at
fixed X-ray luminosity. We chose a relatively bright luminosity of
LX = 1045 erg s−1 appropriate for a mass scale of 1.2 × 1015 M	, a
factor of 6 above the low-redshift pivot point. The correlation coef-
ficient, r, between ln(D2

AYSZ) and ln(LX) is expected to be positive
since both signals scale as positive powers of the intracluster gas
mass and temperature (Stanek et al. 2010; Angulo et al. 2012). We
take r = 0.5 as an example value.

In Fig. 3, the first-order likelihood overestimates the mean by ∼20
per cent. This relatively small error arises from near-cancellation
of the much larger errors made in both n1(ln LX, ln D2

AYSZ) and
n1(ln LX) relative to their Tinker values at this high mass. The first-
order model is surprisingly accurate for conditional likelihoods.

By sensing the local mass function curvature, the second-order
estimate, equation (12), corrects the first-order logarithmic mean
by roughly αb(xa − 1) � −0.07, which reduces, but does not fully
eliminate, the discrepancy with the local Tinker convolution. The
third-order succeeds in matching the local Tinker probability with
high accuracy.

The behaviour of the low-order analytical likelihoods depends
primarily on the mass variance of the selection variable and the sig-
nal value relative to the pivot location. At the pivot, the first-order
estimate, 〈sb|sa〉1, overestimates the second-order value, 〈sb|sa〉2,
by approximately β2σ

2
μ|a,1. At z = 0.23, this error is 0.04 for LX

selection, 0.005 for YSZ selection, and 0.12 for Ngal selection. These
corrections are smaller than or comparable to the quoted uncertain-
ties in the scaling relation amplitudes derived by Rozo et al. (2014c)
using a first-order approach.

Selecting at an X-ray luminosity below, rather than above, the
pivot luminosity, Lp, results in different behaviour because the cor-
rections at odd and even orders have different sign. Selecting at
LX = Lp/A, where A > 1, the first-order mean ln D2

AYSZ lies lower
than the Tinker expectation, but the overshoot is smaller in mag-
nitude than for the case of selecting at LX = ALp. The second-
order correction then slightly overcorrects, with the mean above the
Tinker estimate. The third-order applies a small, negative correction
to closely align with the Tinker value.

3.5 Covariance between high-scatter mass proxies

As a final demonstration of the model, we explore the relatively
poor mass proxies, Ngal and LX, with ln M scatter of 0.45 and 0.25,
respectively (Table 2). There are currently no theoretical or empir-
ical constraints on the covariance between cold and hot baryons at
fixed halo mass and redshift, so there is complete freedom in choos-
ing the correlation coefficient, r, linking their deviations about the
mean scaling behaviours.

From equation (12), with the aforementioned mass scatter for
the two proxies, the shift in 〈ln Ngal|LX〉 as r is varied from −0.5
to 0.5 will be of the order of 0.11 times the magnitude of the
local logarithmic slope of the mass function. At a mass scale of
5 × 1014 M	, the latter is of order three, implying a shift of roughly
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Figure 4. Expectations for optical richness at z = 0.23 are demon-
strated for two extreme cases. The top panel selects haloes with LX =
2.5 × 1044 erg s−1 and assumes a log-mass scatter at fixed richness of 0.45,
appropriate for the original maxBCG sample Ngal richness estimator. The
lower panel selects haloes with D2

AYSZ = 3 × 10−5 Mpc2 and assumes a
log-mass scatter at fixed richness of 0.23, appropriate for the improved λ

richness estimator. In both panels, the different PDFs arise from different
choices of correlation coefficient between richness and the selection vari-
able, as indicated by the legend. The third-order, log-space approximation
to the mass function is used in all calculations.

30 per cent. In addition, the variance, equations (7) and (13), is
maximized when the properties strongly anticorrelate while it is
minimized as r → 1.

In the top panel of Fig. 4, we show the likelihood of optical rich-
ness at z = 0.23 for haloes selected to have an X-ray luminosity of
2.5 × 1044 erg s−1, which highlights a mass M500 � 5 × 1014 M	.
The third-order estimator is used to calculate the conditional like-
lihood, and we show expectations for three discrete values of the
correlation coefficient, r = −0.5, 0, 0.5.

As anticipated, the large mass scatter in these proxies means that
predictions for the mean and variance in Ngal shift considerably as r
is varied. The modal value of Ngal is 62 for r = −0.5, increasing to
86 at r = 0.5, while the scatter in ln Ngal drops from 0.60 to 0.38 for
these two cases. These effects conspire to dramatically change the
2.5σ lower limits for Ngal, with values of 14 and 33 for r = −0.5
and 0.5, respectively.

Observational data demonstrate large variance between Ngal and
LX (e.g. Rykoff et al. 2008; Andreon & Hurn 2010), but a new ap-
proach to estimating optical richness from multicolour photometry
offers significant improvement. The λ richness estimator (Rykoff
et al. 2012) uses a probabilistic membership trained on spectro-
scopic calibration of the red sequence in multicolour space. This
richness estimator shows considerably smaller scatter in LX com-
pared to Ngal and the technique has been extended for use as a
cluster finder in photometric surveys (Rykoff et al. 2014). Based
on matching clusters found in the SDSS DR-8 sample to known
X-ray clusters, Rozo & Rykoff (2014) demonstrate that the implied
mass scatter of the λ richness measure is ∼25 per cent, considerably
reduced relative to the original Ngal richness.

The lower panel of Fig. 4 demonstrates how the use of low-scatter
mass proxies can significantly tighten the conditional likelihood of
optical richness. Shown is the likelihood, p(λ|YSZ) at z = 0.23
for D2

AYSZ = 3 × 10−5 Mpc2, a value that selects roughly the same

mass as the LX choice used in the top panel. We assume 23 per cent
mass scatter in λ and 8.8 per cent mass scatter in YSZ. Relative to the
top panel, the scatter in P (λ|YSZ) is reduced by more than a factor
of 2, and the sensitivity of 〈λ|YSZ〉 to the correlation coefficient is
also weakened.

This dramatic improvement results from the combination of im-
proved mass selection and tighter mass scaling of λ. Results for λ

richness using LX as the selection variable would lie intermediate
to the two panels shown in Fig. 4.

4 D I SCUSSI ON

We have emphasized an application of the model to the massive
haloes that host galaxy clusters at late cosmic times, but the math-
ematical framework is general, so the model could be applied at
earlier epochs to describe phenomenology associated with the high-
mass end of the mass function. Galaxies and quasars at redshifts
of a few or early star formation at redshifts of tens are potential
applications. The key requirements are observables or properties
that of haloes that scale as power laws with halo mass in the mean,
with variability described by a lognormal covariance.

Applied to groups and clusters, the third-order model is essen-
tially global in scope. Compared to local Tinker convolution es-
timates, the cubic approximation achieves better than 10 per cent
accuracy over nearly the whole signal ranges covered by current
observations, and for redshifts z < 1.5. This level of accuracy is
comparable to the current level of systematic uncertainty in the
mass function derived from simulations, particularly when the ef-
fects of baryon physics are included (Stanek, Rudd & Evrard 2009;
Cusworth et al. 2014; Martizzi et al. 2014; Cui, Borgani & Murante
2014).

The pivot location sets the range of accuracy for the lower order
approximations. Since the third-order approximation is based on a
Taylor expansion of e−β3μ3/6 � 1 − β3μ

3/6, where μ = ln(M/Mp),
the model breaks down as μ3 → 6/β3. For the pivots cho-
sen here, this occurs only for very rare, massive systems with
M500 � 1015 M	. To achieve the widest possible dynamic range,
the second-order expressions could be interpolated using multiple
pivot points, Mp,k, requiring values of β1(Mp,k,z) and β2(Mp,k,z) to
be provided. For light-cone applications, these derivatives could be
modelled as low-order polynomials in redshift.

The pivot masses we employ at the two demonstration redshifts
correspond closely to those satisfying a fixed sky surface density
condition, dN(>M)/dz = const., in a �CDM cosmology (Evrard
et al. 2002; Mortonson, Hu & Huterer 2011). For cluster survey
applications, this would seem a natural choice.

While power-law scaling with lognormal covariance is supported
for intrinsic properties of clusters, the available evidence is often
limited. In particular, covariance among different signals is poorly
understood (Maughan 2014) and there are few constraints as to
whether the slope and variance of a particular signal’s scaling with
mass is indeed constant with mass and redshift, as is assumed here
(e.g. Balaguera-Antolı́nez et al. 2012, provided a hint of evidence for
curvature in the LX–M relation). Redshift dependences are easily
incorporated into the existing framework by writing the slopes,
α(z), intercepts, π(z), and covariance, C(z), as explicit functions of
z. Extensions to the model that incorporate weak mass dependence
in the scaling parameters are also possible.

We interpret the model covariance as reflecting that of intrinsic
halo properties, but observed properties of clusters inevitably in-
clude some contribution from projection effects and other sources
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of noise. If these additional sources combine with intrinsic scatter to
produce a lognormal form of property covariance, then model pre-
sented here remains directly applicable. The measured covariance
matrix in this case will be a mixture of intrinsic and extrinsic sources.
Characterizing these effects, particularly SZ and optical projection,
deserves further investigation (White, Cohn & Smit 2010; Angulo
et al. 2012; Noh & Cohn 2012).

5 SU M M A RY

Using polynomial log-space approximations to the high-mass end
of the cosmic mass function, we present analytic forms for statistics
of multi-observable properties of the haloes that host groups and
clusters of galaxies. The model employs scaling laws between ob-
servables and mass that are power law in the mean with lognormal
covariance.

The model provides closed-form expressions for cluster counts
as a function of multiple observables and for conditional likelihoods
of observable-selected samples. Comparing to a locally convolved
Tinker mass function, we show that the first-order model is generally
accurate within a narrow range near the pivot mass, except for very
high mass-scatter proxies. The second- and third-order extensions
provide increasingly wider coverage in observables irrespective of
the mass scatter. The third-order model is nearly global in scope.

The mass variance in a particular observable determines many ex-
pected features, as does the covariance between pairs of observables
at fixed mass. As multiwavelength surveys and dedicated follow-up
campaigns provide increasingly rich, uniform samples of clusters,
opportunities to apply this model to better constrain the statistical
properties of massive haloes will become apparent. Such knowl-
edge will provide useful constraints on the physical processes that
govern baryon evolution in massive haloes.
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MNRAS, 425, 2244
Battaglia N., Bond J. R., Pfrommer C., Sievers J. L., 2013, ApJ, 777, 123

Benson B. A. et al., 2013, ApJ, 763, 147
Bhattacharya S., Heitmann K., White M., Lukić Z., Wagner C., Habib S.,
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A P P E N D I X A : T H I R D - O R D E R M O D E L

A1 Multiproperty halo number density

The accuracy gained in going from n1(s) to n2(s) motivates a third-
order approach. We thus now consider

n3(μ) = Ae−β1μ− 1
2 β2μ2− 1

6 β3μ3
, (A1)

where β3 = −[(d3/dμ3) ln nexact](μ = 0) > 0. We could not find
a closed-form solution at this order, so we instead consider the
approximation that limits the mass range to be near enough to the
pivot point so that

n3(μ) � n2(μ)

(
1 − 1

6
β3μ

3

)
. (A2)

Convolving this approximated form of n3(μ) with P (s|μ) yields

n3(s) = n2(s)

{
1 − β3

2

(
σ 2

μ|s,2〈μ|s〉2 + 1

3
〈μ|s〉3

2

)}
. (A3)

One can see clearly that the signal range will be limited from above
by the requirement that the space density be non-negative.

A2 Selecting on an observable property

We have P3(sb|sa) = n3(sa, sb)/n3(sa), which, using the previous
formula, gives

P3(sb|sa) = P2(sb|sa)

× 1 − β3
2

(
σ 2

(μ|a,b),2〈μ|sa, sb〉2 + 1
3 〈μ|sa, sb〉3

2

)
1 − β3

2

(
σ 2

μ|a,2〈μ|sa〉2 + 1
3 〈μ|sa〉3

2

) . (A4)

We can calculate analytically the mean and variance of P3(sb|sa),
which gives

〈sb|sa〉3 = K1J1 − K2C(J2 + DJ1)

− K3C
3(J4 + 3DJ3 + 3D2J2 + D3J1) (A5)

σ 2
b|a,3 = K1J2 − K2C(J3 + DJ2)

− K3C
3(J5 + 3DJ4 + 3D2J3 + D3J2) − 〈sb|sa〉2

3, (A6)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Jn =
∫ +∞

−∞
sn
b P2(sb|sa)dsb (A7)

= 1√
π

�n/2�∑
k=0

(
n

2k

)
Mn−2k(2σ 2)k�(k + 1/2) (A8)

M = 〈sb|sa〉2 (A9)

σ = σb|a,2 (A10)

(in particular : J0 = 1, J1 = M, J2 = σ 2 + M2)
and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

C = X σ(μ|a,b),1

1−r2
ab

(A11)

D = 1
X

[
Y − Xπb − β1

(
1 − r2

ab

)]
(A12)

X = αb

σ 2
b

− rabαa

σaσb
(A13)

Y = (sa − πa)
(

αa

σ 2
a

− rabαb

σaσb

)
(A14)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K1 = [
1 − β3

2

(
σ 2

μ|s,2〈μ|s〉2 + 1
3 〈μ|s〉3

2

)]−1
(A15)

K2 = K1
β3
2 σ(μ|a,b),1 x2

a,b (A16)

K3 = K1
β3
6 x3

a,b . (A17)

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 441, 3562–3569 (2014)

 at U
niversity of M

ichigan on A
ugust 15, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/

