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Abstract: We analyse the large-scale clustering of the Luminous Red Galaxy (LRG) and
Quasar (QSO) sample from the first data release (DR1) of the Dark Energy Spectroscopic
Instrument (DESI). In particular, we constrain the primordial non-Gaussianity (PNG) pa-
rameter f loc

NL via the large-scale scale-dependent bias in the power spectrum using 1, 631, 716
LRGs (0.6 < z < 1.1) and 1, 189, 129 QSOs (0.8 < z < 3.1). This new measurement takes
advantage of the enormous statistical power at large scales of DESI DR1 data, surpassing
the latest data release (DR16) of the extended Baryon Oscillation Spectroscopic Survey
(eBOSS). For the first time in this kind of analysis, we use a blinding procedure to mitigate
the risk of confirmation bias in our results. We improve the model of the radial integral
constraint proposing an innovative technique allowing the correction through the window
matrix convolution. We also carefully test the mitigation of the dependence of the target
selection on the photometry qualities by incorporating an angular integral constraint contri-
bution to the window function, and validate our methodology with the blinded data. Finally,
combining the two samples, we measure f loc

NL = −3.6+9.0
−9.1 at 68% confidence, where we assume

the universality relation for the LRG sample and a recent merger model for the QSO sample
about the response of bias to primordial non-Gaussianity. Adopting the universality relation
for the PNG bias in the QSO analysis leads to f loc

NL = 3.5+10.7
−7.4 at 68% confidence. Due to

restricted selection in the LRG sample, the inclusion of the LRGs allows for 10% improvement.
This measurement is the most precise determination of primordial non-Gaussianity using
large-scale structure to date, surpassing the latest result from eBOSS by a factor of 2.3.
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1 Introduction

Since its introduction in the early 80s, inflation [1–3] is still the leading paradigm for
describing the early Universe. Without direct observation of this epoch, one can only probe
the properties of the primordial fields from later time, such as the tilt of the primordial
scalar power spectrum, the primordial gravitational waves, or the primordial non-Gaussianity
(PNG) to test different inflation models. The tild is well constrained with the latest Planck
cosmic microwave background (CMB) data [4]. The gravitational waves are gaining a growing
interest with the future missions to observe B-mode polarization of the CMB [5, 6].

PNG remains still poorly constrained by current experiments [7, 8] relative to the
precision needed to rule out inflationary scenarios of interest. At the same time, it is a
powerful probe to distinguish the simplest models of inflation that predict a nearly Gaussian
distribution of primordial fluctuations i.e. a minimal amount of PNG, to more sophisticated
ones like multi-field inflation [9]. In particular, one can study the so-called local primordial
non-Gaussianity, quantified by the parameter f loc

NL,

Φ = Φg + f loc
NL

(
Φ2

g − ⟨Φ2
g⟩
)

, (1.1)

where Φ is the primordial gravitational potential field parametrised in terms of Φg, a Gaussian
potential field. A detection of local non-Gaussianity such that O

(
f loc

NL

)
∼ 1 could rule out

slow-roll single-field inflation [10].
Currently, the best constraints on PNG are obtained from Planck data: f loc

NL = −0.9± 5.1
at 68% confidence [7], but they are almost limited by the cosmic variance. A promising
approach to circumvent this limit in CMB observations is to use the enormous statistical
power in the 3D galaxy clustering, and in particular, through the tiny imprint left at large
scales on the matter power spectrum by local PNG, known as the scale-dependent bias [11, 12].
The best constraint using this imprint is from the latest data release of the extended Baryon
Oscillation Spectroscopic Survey (eBOSS) [13] using the quasar sample and measuring
−23 < f loc

NL < 21 at 68% confidence [14].
Despite a significant effort to mitigate the residual dependence of the targets on the

properties of the imaging survey used to select them [15, 16], imaging uncertainties were the
main systematic in this measurement. This effect, known as the imaging systematics, will
still be a crucial systematic for the upcoming galaxy survey that can bias the measurement
of f loc

NL [17]. To avoid this systematic [18, 19] cross-correlate the galaxy field with CMB
lensing, but the statistical power is lower than the autocorrelation of the galaxy field although
not biased by this systematic. Recent works try also to incorporate high-order correlation
functions and to include also the small scales [20–23].

Here, we will analyse, for the first time, the large-scale modes of the Luminous Red
Galaxy and the Quasar power spectra from the first data release (DR1) [24, 25] of the Dark
Energy Spectroscopic Instrument (DESI). DESI is a robotic, fiber-fed, highly multiplexed
spectroscopic surveyor that operates on the Mayall 4-meter telescope at Kitt Peak National
Observatory [26–28]. DESI can obtain simultaneous spectra of almost 5000 objects over a
3° field [29–31], and is currently conducting a five-year survey of about a third of the sky.
The data used here correspond to the first year and half of the main survey.

– 2 –
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This first data release of DESI is already the most extensive catalog from a spectroscopic
galaxy survey for galaxy clustering measurement and provides the best constraints on baryon
acoustic oscillations (BAO) [32, 33] and on redshift space distortion (RSD) measurements [34],
leading to some of the most precise constraint today, when combine it with Planck 2018
result [35], on the cosmological parameters describing the Universe [36, 37]. Note that Early
DESI Data Release [38], used for the survey validation phase [39] is already publicly available.

This analysis is the natural follow-up of the latest measurements performed with the
eBOSS data [8, 14, 16, 40] but improves it on several points. First, with the first data release
of DESI, we use the most extensive data set available to date. Then, we forward model a
multiplicative correction to deal with the radial integral constraint and compute the angular
integral constraint associated with the imaging systematic weights. Finally, for the first time
for such a scale-dependent-bias PNG measurement, we conduct a complete blinded analysis,
enabling us to validate the systematic imaging mitigation carefully. The paper is organised
as follows: section 2 describes the theoretical model used, section 3 the data from the first
DESI data release, section 4 gives the geometrical effect from the survey and tests it with
simulations. Finally, the blinded analysis is performed in section 5, the unblinded constraints
is given in section 6, and we conclude in section 7.

2 Theory

The presence of local primordial non-Gaussianity imprints scale-dependent bias on the
spatial distribution of biased tracers, impacting the power spectrum of biased tracers as
follows [11, 12]:

P (k, z) =
(

b1(z) + bΦ(z)
TΦ→δ(k, z)f loc

NL

)2
× Plin(k, z), (2.1)

where b1 is the linear bias of the tracer and bΦ is the PNG bias given the response to the
presence of local PNG of the tracer, Plin is the linear matter power spectrum and TΦ→δ(k, z)
is the transfer function between the primordial gravitational field Φ and the matter density
perturbation. It can be computed directly from CLASS1 [41] by:

TΦ→δ(k, z) =
√

Plin(k, z)
PΦ(k) with PΦ(k) = 9

25
2π2

k3 As

(
k

kpivot

)ns−1

, (2.2)

where PΦ is the primordial potential2 power spectrum, ns is the spectral index and As the
amplitude of the initial power spectrum at kpivot = 0.05 Mpc−1. Hence, with the Poisson
equation, TΦ→δ(k, z) has the well-known scale dependency [11]:

TΦ→δ(k, z) ∝ k2 × TΦ→Φ(k, z), (2.3)

where TΦ→Φ(k, z) is the usual transfer function, oftenly denoted T .

1We are using the user-friendly Python wrapper: https://github.com/cosmodesi/cosmoprimo.
2Φ is normalised to 3/5R to match the usual definition of [12].
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In addition, as in the latest eBOSS measurement [8, 14, 40], we model the redshift space
distortion [42] effect with a simple model including the Kaiser effect [43] and a damping
factor for small scales3

P (k, µ) =

[
b1(zeff) + bϕ(zeff)

TΦ→δ(k, zeff)f loc
NL + f(zeff)µ2

]2

[
1 + 1

2 (kµΣs)2
]2 × Plin(k, zeff) + sn,0, (2.4)

where the different redshift-dependent quantities are fixed or measured at the effective redshift
zeff of the tracer sample, see section 3.2.3 for how we estimate it. f is the linear growth
rate and Σs the amount of damping at small scales. Although the shot noise contribution is
always removed from our power spectrum measurements, we include also a potential residual
shot noise sn,0 which should be close to 0.

Finally, the power spectrum is expanded in Legendre multipoles:

Pℓ(k) = 2ℓ + 1
2

∫ 1

−1
dµP (k, µ)Lℓ(µ). (2.5)

In the following, we use only the monopole (ℓ = 0) and the quadrupole (ℓ = 2) since the
statistical errors on the hexadecapole are too big at large scales. The statistical gain on f loc

NL
when adding the quadrupole is detailed in appendix E.

The theoretical prescription of the PNG bias bΦ is a widely discussed topic [44–51], but
it will not be discussed here. We simply follow [12], assuming the usual relation

bΦ(z) = 2δc × (b1(z)− p) (2.6)

where δc = 1.686 is the critical density for spherical collapse and p quantifies the merger
history of the tracer. For the QSOs, by default, we assume a recent merger model i.e.
following [12], we use p = 1.6. Note that with this choice we assume that all the quasars have
a recent merger history which it is not known [52]. This choice leads to an increase of the
statistical uncertainty on f loc

NL and shift the measured value of f loc
NL compared to using p = 1.0

as in the universality relation. For the LRGs, we use the universality relation (p = 1.0) i.e.
we assume that their halo occupation distribution (HOD) depends only on halo mass. Note
that [53] suggests that stellar mass selected samples could have a PNG bias described by
p = 0.55 which would increase the statistical power of the LRG sample. Measuring and
validating the description of the PNG bias is deferred to future work and will represent a
crucial upgrade for upcoming analyses.

In addition, we give also the assumption-free constraint on bΦ×f loc
NL in order to circumvent

this discussion. However, this constraint cannot be given in the case where we combine
the LRG and the QSO measurements. In practice, we fit either (f loc

NL, b1, sn,0, Σs) assuming
eq. (2.6) or (bΦf loc

NL, b1, sn,0, Σs). Note that in the following, we fix the ΛCDM parameters
to the values of the Plank 2018 cosmology [35] values, thus neglecting the uncertainty on
the shape of the power spectrum.

3The model is available: https://github.com/cosmodesi/desilike/blob/hmc/nb/png_examples.ipynb.
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3 Data

In this section, we present the two samples from the first DESI data release [25] that are
used to constrain the local primordial non-Gaussianity, the power spectrum estimator, and
the optimal weights that we are using, and finally, how we generate simulations as realistic
as possible to mimic these two samples.

3.1 DESI DR1 samples

3.1.1 Luminous Red Galaxies (LRG) and Quasars (QSO)

In this analysis, we use the LRG [54] and QSO [55] samples from the first DESI data release.
Compared to the baseline of the DESI clustering measurements used in [32, 36], we consider
each tracer in its full range and include quasars with a higher redshift (z > 2.1): 0.4 < z < 1.1
for the LRGs and 0.8 < z < 3.1 for the QSOs, to enhance the measurement of the large-scale
modes of the power spectrum. Hence, this work analyses the clustering of 2,130,621 LRGs
and 1,189,129 QSOs, improving the size of the sample by a factor 8 and 2.5 times larger
compared to the latest measurement performed in eBOSS [8, 56]. The angular density
distributions of these two samples are displayed in figure 1. Although both appear isotropic
at first order, the angular fluctuations of the number of densities due to the alteration of
the target selection by the quality of the imaging survey heavily contaminate the large-scale
modes of the power spectrum. This effect is known as imaging systematics and is the primary
source of systematics in this analysis; see section 5.

The target selection of the LRGs and QSOs are based on the DESI Legacy Imaging
Survey4 [57] that contains four different photometric regions with different image qualities,
see figure 1 of [58] for instance. These photometric regions are called:

• North is the northern part of the footprint in the North Galactic cap (NGC) (Dec. >

32.375 deg) corresponding to the part of the sky covered by BASS [59], and MzLS [60].

• DES is the region covered by the Dark Energy Survey [61] and is significantly deeper
than the rest of the footprint.

• South (NGC) is the rest of the footprint in NGC, which was also collected by DECam [62]
but is less deep than DES.

• South (SGC) is similar to South (NGC) but in the South galactic cap (SGC). We split
South (NGC) and South (SGC) although they have similar photometry because the
two regions are spatially disjointed, and thus are never used in the same time when we
compute the power spectrum either on the full NGC or SGC.

The target selection for the LRGs is the same across each region [54]; however, to adapt to
each region specificities, the target selection for the QSOs is adapted for each region [55].
The discrepancy in either the target selection or imaging quality leads to different mean
densities in these different photometric regions, as given in table 1, and slightly different
redshift distributions as displayed in figure 2. In particular, DES has more high-z quasars

4https://www.legacysurvey.org.
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(a) DESI DR1 LRG. (b) DESI DR1 QSO.

(c) LRG corrected by the completeness. (d) QSO corrected by the completeness.

Figure 1. Angular density distribution for the DESI DR1 LRG/QSO on the left/right corrected by
the completeness of the observation (some regions of the sky have yet to be fully observed) on the
bottom and not on the top. The comparison between top and bottom panel shows from which region
the statistical information comes from. Although both appear almost isotropic, one must correct for
the anisotropy due to the dependence of the target selection on the image quality. The dark gray
region represents the expected final DESI footprint.

LRG [deg−2] QSO [deg−2]

North 531.7 184.5
South (NGC) 535.3 186.6
South (SGC) 532.6 187.2
Des 519.5 191.7

Table 1. Mean density of the LRG and QSO samples (corrected by the completeness of the observation)
in each photometric region.

than the others because the imaging is deeper, and DES and North have less low-z quasars
than the South since the PSF is better resolved, such that low-z quasars are preferentially
detected with a non-PSF morphology and therefore do not pass the cut on PSF-like objects
imposed by the QSO target selection, see figure 11 in [55]. Therefore, in the following, these
regions are always treated separately and mutually renormalised before computing the power
spectrum over the entire NGC or SGC, see section 3.2.4.
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Figure 2. On the top, the redshift distributions for the LRGs (left) from 0.4 to 1.1 and QSOs
(right) from 0.8 to 3.1 not corrected by the completeness of the observation, split according to the
four distinct photometric regions: North in blue, South (NGC) in red, South (SGC) in green and
DES in gold. The black dashed line is for the four regions combined. The difference in amplitudes
highlights the difference of completeness between the different footprints. There are more objects
in South (NGC) because it is the area that is the most complete, see figure 1. On the bottom, the
ratio between the redshift distributions of the different photometric regions and the ones from the
four regions combined. At the bottom panel, redshift distributions are normalized to have the same
amplitude than the ones from the four regions combined. The redshift distributions are remarkably
similar for the LRGs; some differences in the North are visible for the QSOs.

The construction of the catalogues for the data and the randoms are described in [63],
and [64–66] describe the spectroscopic reduction pipeline, as well as, the redshift estimation
from the spectra. We only discuss, in the following, the correction of the imaging dependence
of the target selection, see section 5.3.2. During this analysis, we only use ten files of randoms5

instead of 18 as in the fiducial BAO [32] and RSD [34] analysis, and after comparison, we
denote no impact on the scales of the power spectrum that we use.

Note that at this stage of the DESI DR1 analysis and with the standard treatment, the
large-scale modes of the Emission Line Galaxy (ELG) sample [67] are not yet fully reliable
despite a significant effort and development of new tools [68] and are therefore not used here.
See, in particular, the large-scale modes of the ELGs power spectrum displayed in appendix B
that exhibit an unexpected excess of power about one magnitude. One could only analyse
smaller scales (k > 0.008 hMpc−1) where the power spectrum seems more reasonable, but

5Each randoms file has a density of 2, 500 randoms per deg2. So, one needs to compare 10 × 2, 500 to the
densities given in table 1, leading to a randoms/data ratio of 50 for the LRGs and 125 for the QSOs.

– 7 –
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due to the low linear bias of this tracer, no interesting constraints can be extracted at present.

3.1.2 Correct for observational systematics

As described in [63], one needs to correct the data for several observational effects by
weighting them with

wtot = wcomp × wsys × wzfail. (3.1)

The different contributions in eq. (3.1) are for

• Completeness (wcomp): the complex geometry of the survey is taken into account via
the randoms, uniform distribution of objects without any clustering which occupies the
same volume as the data, and does not represent any difficulties. On the other hand,
targets that are unobserved because there are no free fibers to observe them during
the fiber assignment step [24], lead to a biased estimation of the power spectrum. The
randoms cannot take these missing targets into account since the survey observes the
geometrical regions associated with these missing targets. This impacts both large
and small scales. The large scales can be easily corrected by the completeness weights
wcomp,6 that simply overweight the observed objects to match the number of total
targets in the patrol radius of a fiber. The impact of the fiber assignment is shown in
appendix A.

• Imaging systematics (wsys): imaging systematics can be defined as the dependence
of the target selection on the properties of the used photometric survey and create,
unfortunately, an excess of correlation at large scales (see appendix B). Since the imaging
systematics are the major bias in our analysis, the mitigation of this contribution is
carefully validated in section 5.3.2.

• Spectroscopy efficiency (wzfail): classification and redshift determination depend on the
quality of the observation. Poor weather, noise in the CDDs, or dust in the sky can
indeed impact the spectra collected. This effect is corrected but has a minor impact, as
reported in [69, 70]. Note that any residual redshift determination errors are naturally
be taken into account in our theoretical model, given in eq. (2.4), by the parameter Σs

representing the typical damping velocity dispersion.

The completeness and redshift failures weights are the same as the ones summarized in [71],
while the imaging systematic weights are fully re-determined for this analysis, see section 5.1.

Since the randoms should reproduce the same redshift distribution as the data, we
randomly draw the redshifts and associated weights from the data for the randoms, such that
randoms have similar weights (wtot,r). This procedure is known as the shuffling method [72]
and impacts the measurement as described in section 4.4.

6As described in [63], the completeness weights were split into two parts: 1 / FRACZ_TILELOCID and 1
/ FRAC_TLOBS_TILES, where 1 / FRAC_TLOBS_TILES is applied to the randoms (multiply the weights
after the shuffling method by FRAC_TLOBS_TILES) instead of applying to the data directly. This choice
has no impact on our scales of interest.

– 8 –
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a b

LRG 0.209± 0.025 1.415± 0.076
QSO 0.237± 0.010 0.771± 0.070

Table 2. Value of the parameters (a, b) used to describe the redshift evolution of the linear bias b1 as
given in eq. (3.3). These values are estimated from the unblind DESI DR1 LRG and QSO samples.

3.1.3 Blinding the data

To avoid any confirmation bias during our analysis, we have developed a blinding scheme
that reproduces the scale-dependent bias in the power spectrum. This blinding is described
and validated in [73]. Note that this is the first time the scale-dependent bias has been
measured with a blinding strategy.

Similar to the blinding schemes applied to conceal the BAO and RSD signal [74], this
blinding is applied at the catalog level. The one for PNG is a set of weights reproducing a
value of fblind

NL ∈ [−15, 15] randomly chosen, such that the amount of PNG measured from
the blinded data, fobs

NL , is

fobs
NL = f loc

NL + fblind
NL . (3.2)

These weights are multiplied by the completeness weights, preventing anyone from breaking
the blinding since the large-scale modes of the power spectrum cannot be recovered without
correcting for completeness.

As described in [73], the blinding is applied coherently across all the samples such that
one can compare the large-scale modes of the power spectrum measured from sub-part of the
sample, allowing us internal consistency validation, see section 5.3.1. Although the blinding
value fblind

NL is the same for the different tracers, the weights were generated with a value of
bΦ computed for p = 1.0 in each situation so that the apparent blinding value for the QSO
when analysing with p = 1.6 should be larger in absolute value.

3.1.4 Linear bias evolution

The evolution of the linear bias can modeled by

b1(z) = a(1 + z)2 + b, (3.3)

where a, b are given for LRGs and QSOs in table 2. These two parameters are measured
from the unblind DESI DR1 LRG and QSO samples. The measurement is detailed in
appendix C. The evolution of the linear bias will be used to compute the optimal weighting
scheme described in 3.2.2.

3.2 Measuring the power spectrum from a spectroscopic survey

3.2.1 Power spectrum estimator

In the following, the multipoles of the power spectrum are estimated through the so-called
Yamamoto estimator [75]. The estimation of the average power spectrum P̂ (kµ), in a phase-
space volume Vkµ corresponding to the binning used in kµ space for the measurement, is

– 9 –
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given by

P̂ℓ (kµ) = 2ℓ + 1
AVkµ

∫
Vkµ

dk
∫

dx1

∫
dx2 eik·(x2−x1)F (x1)F (x2)Lℓ

(
k̂ · x̂1

)
−Nℓ , (3.4)

where we use the first-point x1 as the line-of-sight instead of the midpoint line-of-sight to
speed up the computation (see below), F (x) is the FKP field [76] estimated from the data
and the random catalogues

F(x) = ng(x)− αnr(x) with α =
∫

dx ng(x)∫
dx nr(x) , (3.5)

where ng is the galaxy weighted density, wg = wFKP × wtot, and nr the randoms’ one,
wr = wFKP × wtot,r. The randoms are used to sample the survey geometry, more specifically
the survey selection function W (x), which is the ensemble average of the galaxy density:

W (x) ≡ ⟨ng(x)⟩ = α ⟨nr(x)⟩ . (3.6)

The FKP weights7 [76], wFKP, are weighting scheme that improve the power spectrum
measurement by minimising the expected errors of P̂ (kµ):

wFKP(x, k) = 1
1 + n̄g(x)P (k) , (3.7)

where P (k) is fixed as about the maximal amplitude measured in the data around keq which
are the scales of interest:8 P (k) = P0 = 3×104 (Mpc/h)3 for the QSO and 5×104 (Mpc/h)3

for the LRG. In what follows, FKP weights are computed independently in each of the four
photometric regions using the redshift distributions displayed in figure 2.

Additionally, the normalization factor used in eq. (3.4) is given by9

A =
∫

dx n̄g(x)2, (3.8)

and the shot noise contribution is removed with

Nℓ = δℓ0
A

∫
dx W (x) [wg(x) + αwr(x)] . (3.9)

Finally, the choice of x1 as a line-of-sight coordinate reduces the computation time of
eq. (3.4), by splitting the double integral [75],

P̂ℓ (kµ) = 2ℓ + 1
AVkµ

∫
Vkµ

dk F0(k)Fℓ(−k)−Nℓ , (3.10)

7Note that contrary to equation (7.2) of [63], we do not use the dependence of the number of overlapping
tiles for the density n̄(z), since this refinement was developed in particular for the emission line galaxy sample.

8This is a different choice than in the BAO analysis [32, 71] which uses the value of the power spectrum at
k ∼ 0.14 hMpc−1.

9See https://pypower.readthedocs.io/en/latest/api/api.html#pypower.fft_power.normalization for its
numerical derivation.
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where we have introduced10

Fℓ(k) =
∫

dx eik·xF(x)Lℓ(k̂ · x̂). (3.11)

Note that this choice of line-of-sight leads to the so-called wide-angle effects that is described
in section 4.1.

In the following, all power spectra are computed with pypower11 using the Triangular
Shaped Cloud (TSC) sampling and interlacing at order n = 3 to mitigate the aliasing. For
both LRG and QSO samples, we use a physical box sizes of 16000 h−1Mpc with a grid cell
size of 6 h−1Mpc, leading to a Nyquist frequency of kN ∼ 0.5 hMpc−1.

3.2.2 Optimal quadratic estimator for the scale-dependent bias

The FKP weights introduced above miss the redshift dependence of the PNG signal that
we want to measure, such that introduce this dependence into the FKP weights provides a
more optimal way to extract the scale-dependent bias signal in the power spectrum. This
can be achieved by using optimised redshift weights that are inspired from the optimal
quadratic estimator (OQE) for f loc

NL [40, 78]. In the following, we follow [40] who propose to
weight each galaxy, which is more natural to compute the FKP field F , instead of weighting
pairs of galaxies as in [8].

The optimal estimator for extracting f loc
NL has the same form as eq. (3.10) but with a

different weighting scheme:

P̂ℓ (kµ) = 2ℓ + 1
AℓVkµ

∫
Vkµ

dk F̃ (k)Fℓ(−k)−Nℓ, (3.12)

where 
F̃ (k) =

∫
dx eik·xw̃ (x)F(x)

Fℓ(k) =
∫

dx eik·xwℓ (x)F(x)Lℓ(k̂ · x̂)
, (3.13)

and the shot noise contribution is

Nℓ = δℓ0
A

∫
dx W (x) [wg(x) + αwr(x)] w̃ (x) wℓ (x) . (3.14)

Similarly, the normalization factor in eq. (3.8) becomes

Aℓ =
∫

dx n̄g(x)2w̃ (x) wℓ (x) . (3.15)

10eq. (3.11) can be written as a sum of Fourier transforms [77], by decomposing the Legendre polynomials
Lℓ into spherical harmonics Yℓm:

Lℓ(x̂ · k̂) = 4π

2ℓ + 1

m=ℓ∑
m=−ℓ

Yℓm(x̂)Y ⋆
ℓm(k̂),

eq. (3.11) becomes

Fℓ(k) = 4π

2ℓ + 1

m=ℓ∑
m=−ℓ

Y ⋆
ℓm(k̂)

∫
d3x e−ik·xF (x)Yℓm(x̂),

and requires the computation of only 2ℓ + 1 Fast Fourier Transforms for each multipole ℓ.
11https://github.com/cosmodesi/pypower.
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Figure 3. Optimal weighting scheme used to measure f loc
NL for LRG sample (left) and QSO sample

(right) as a function of redshift. The usual FKP weights are displayed in blue. For the quasars, the
most important weight is w̃, which follows the redshift evolution of the linear bias. For comparison,
we normalize the weight to one at z = 0.7 for the LRGs and z = 2.0 for the QSOs.

The optimal weights12 w̃, w0 and w2 for the quadratic estimator are


w̃(z) = [b(z)− p]
w0(z) = D(z) [b(z) + f(z)/3]
w2(z) = 2/3D(z)f(z)

, (3.16)

where p is the parametrization used for bΦ in eq. (2.6), f is the growth rate and D is the
growth factor.

These weights used in this analysis are displayed in figure 3 for the LRG and QSO
samples. For the LRGs (left panel), the shapes of w̃, w0 and w2 are very similar to wFKP such
that we do not expect substantial improvement by using these optimal weights compared
to the traditional FKP ones. The FKP weight shape, increasing a lot around z ∼ 1, comes
from the decrease of the density n(z) of this sample in this region.

For the QSOs (right panel), the optimal weights in eq. (3.16) overweight the objects at
high redshift, naturally increasing the effective redshift of the sample. The first effect is to
increase the value of b1 and bΦ in our weighted sample such that the precision on f loc

NL is
improved. Due to this effective redshift modification, it is hard to quantify precisely how
these weights improve the measurement compared to the standard FKP weights.

Practically speaking, computing the power spectrum with the OQE weights is just the
cross-power spectrum between one FKP field weighted by w̃ and another one weighted by wℓ.
Therefore, the computation of the power spectrum causes no problem.

Since the bias vanishes in the hexadecapole (ℓ = 4), no specific weights are needed for
this multipole. Due to a lack of statistical significance, we do not include the hexadecapole
in our analysis. The gain by using the quadrupole (ℓ = 2) in addition to the monopole
(ℓ = 0) is shown in appendix E.

12Here, we assume that the density distribution is isotropic and only depends on the redshift.
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Figure 4. Comparison between the monopoles of the power spectrum at two effective redshifts for
the quasar sample (FKP in blue and OQE in red) and the weighted average of the monopoles over
the selection function in dotted black.

3.2.3 Effective redshift

During the parameter estimation step, one needs to evaluate the model eq. (2.4) at the
effective redshift of the data. We are following the definition used in [40] that is correct
up to first order in the Taylor expansion:13

zeff =
∫

dz n(z)2wa(z)wb(z)z∫
dz n(z)2wa(z)wb(z) , (3.17)

where wa, wb are the weights of two fields that are cross-correlated. This definition of the
effective redshift is validated in figure 4 where the color lines are the monopoles computed
at the effective redshifts while the dotted lines are the weighted averages of the monopole
over the selection function similarly to eq. (3.17).

Table 3 gives the effective redshift under the different sets of weights used in the following.
The redshift distribution of the DR1 LRGs and QSOs are displayed in figure 2. For comparison,
we also give the effective redshift without any weighting scheme and the effective redshift
for the quasars when using p = 1.0. Using OQE weights significantly increases the effective
redshift for the quasar, while it is less pronounced for the LRG since the n(z) is mostly
flat. Using p = 1.6 reduces the response of the scale-dependent bias to the presence of PNG
such that the OQE weights increase the weight for the higher redshift part of the sample,
where the signal is the most important.

Note that the use of OQE weights requires to evaluate the linear power spectrum at
two different effective redshifts, one for the monopole and one for the quadrupole. In the
following, when we use the OQE weights with ℓ = 0, 2, we assume that Σs does not depend
on the redshift while we fit b1 by considering the evolution given in eq. (3.3).

3.2.4 Normalization across the different photometric regions

As shown in table 1 and in figure 2, the LRG [54] and QSO [55] samples have different redshift
distributions and angular densities in different photometric regions of the Legacy Imaging

13See, for instance, appendix B from [79].
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LRG QSO
0.4 < z < 1.1 0.8 < z < 3.1

z̄ 0.741 1.768
zeff 0.665 1.573
zeff (FKP) 0.733 1.651

zeff (OQE ℓ = 0, p = 1.0) 0.754 1.926
zeff (OQE ℓ = 2, p = 1.0) 0.751 1.813

zeff (OQE ℓ = 0, p = 1.6) — 2.082
zeff (OQE ℓ = 2, p = 1.6) — 1.989

Table 3. Effective redshift for the DESI DR1 LRG and QSO samples computed with the completeness
and spectroscopic efficiency weights. For comparison, the mean redshift of the samples is displayed in
the first line, and the unweighted effective redshift in the second one. Due to the shape of the redshift
distribution, using OQE weights significantly increases the effective redshift for the quasars.

Surveys used for the target selection: North, South and DES. These differences may be due
to slightly different target selection cuts or to different photometric properties of a specific
region. For instance, the DES region is about one magnitude deeper than South [57].

Although one can compute the power spectrum independently on each of these photo-
metric regions, one wants to compute the power spectrum simultaneously on the different
regions to avoid losing any modes across the different regions and reduce the statistical
uncertainty of our measurement. In the following, the power spectrum is computed on all
the NGC and on all the SGC such that we need to normalize the North to the South (NGC)
and DES to the South (SGC).

Here, the normalization of the randoms means that α in eq. (3.5) is set to match the
corresponding data separately in each region. Thus, the randoms weights in the South (NGC)
are multiplied by the normalization factor:

fnorm =
∑

i∈North wr,i∑
i∈North wd,i

×
∑

i∈South (NGC) wd,i∑
i∈South (NGC) wr,i

, (3.18)

and similarly for the weights in the South (SGC) (South (NGC), North→ South (SGC), DES).
This normalization is crucial to measure the power spectrum’s large-scale modes without

bias. The impact of the normalization of DES to South (SGC) is shown in appendix D.

3.3 Estimating the covariance matrix

3.3.1 EZmocks

In the following, the covariance matrix is estimated as the covariance between the measure-
ments done in a large set of realistic simulations (mocks) that emulate the observations
as faithfully as possible.

As in eBOSS [80], we choose the approximate method known as EZmocks [81] to generate
our realistic simulations. This method generates a galaxy field with position and velocity
that follows an input power spectrum at an effective redshift, thanks to the Zel’dovich

– 14 –
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approximation [82]. This approximation is enough in our situation since our analysis is
focused on large scales where the linear theory holds such that the EZmocks predict the
desired covariance matrix [83].

We use the EZmocks generated for DESI that are similar to what is described in [80].
For a full description of these simulations, we refer the reader to [84]. In particular, we use
2000 boxes of 6 Gpc h−1 side, 1000 for the NGC and 1000 for the SGC, so that we do not
need duplications to cover the full volume of DESI. Boxes for the LRGs (resp. QSOs) are
generated at z = 0.8 (resp. z = 1.4) using the fiducial DESI cosmology. Despite the large
size of these boxes, quasars are too dispersed in redshift such that they can be emulated
only up to zmax = 3.1 without repeating the box. It explains why we stop our analysis
at this maximum redshift for the quasars, although DESI has observed quasars at higher
redshifts, ∼32,500 with 3.1 < z < 3.5.

In section 5.7 of [33] (see also section 10.2 of [71]), the covariance matrix from the EZmocks
is rescaled to match the analytical prediction from RascalC [85]. Here, however, we do not
rescale our covariance matrix. The difference arises because the EZmocks in [33] incorporate
a method to emulate the fiber assignment of DESI known as the FFA [86] (see section 11.2
of [71]), which results in an underestimation of the variance. In our case, we neglect the
impact of the fiber assignment and we verified that our EZmocks do not under-estimate the
covariance. Further investigations could be required for the upcoming data release.

3.3.2 Generate realistic simulations

First, the cubic EZmocks are remapped according to [87] to increase the sky coverage of these
simulations, and all the coordinates are transformed into sky coordinates (R.A., Dec., z) after
the remapped box is moved along an axis. Then, we add the redshift space distortion effect
along the line-of-sight by translating the real space position to redshift space [43].

Next, we match these simulations to the DESI survey.14 We imprint the redshift
distribution (figure 2) and the mean density (table 1) independently in each of the photometric
regions. At that time, we did not differentiate between South (NGC) and South (SGC), and
we used the redshift distribution and density from South (NGC+SGC) for the two regions.
This will be improved with the upcoming DESI data release and is neglected in the following.

As illustrated in appendix A, the large-scale modes of the power spectrum are only
sensitive to the global completeness of the observation, such that we do not need to apply
the entire fiber assignment step in each mocks. Hence, we apply the global completeness
by downsampling the data and the randoms via an HEALPix map [88, 89] at Nside = 256
representing the fraction of the pixel that was observed in DESI DR1. We finally remove
objects located in bad imaging regions as in [63]. In particular, we use the LRG mask
developed in [54] for the LRGs and the imaging maskbits15 1, 7, 8, 11, 12 and 13 for the
QSOs. This is not exactly what it is done in [71] that, in addition, also removes pixels where
the imaging properties of the photometric survey are too extreme and regions with bad
hardware.16 This represents a small fraction of the sky that is negligible for our covariance
matrix estimation compared to the expected statistical errors.

14All these steps can be performed with mockfactory (https://github.com/cosmodesi/mockfactory) an
MPI-based code to generate cutsky mocks from box simulations.

15https://www.legacysurvey.org/dr10/bitmasks/.
16https://github.com/desihub/LSS/blob/main/py/LSS/globals.py#L77.
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Figure 5. Comparison between the multipoles (NGC+SGC) from the mean of 1000 EZmocks (solid
lines) and the blinded data (diamond points) for the LRGs (left) and the QSOs (right). The coloured
dashed regions are the ±1σ regions from the EZmocks. Note that although the large scales are blinded
for the data, there is a good agreement between the mean from the EZmocks and the data. The discrep-
ancy at large scales on the quadrupole is from the radial integral constraints and is detailed in section 4.4.

We also generate, from the same boxes, mocks that describe the expected final DESI
sample after the five years of observation referred in the following as Y5. We use the exact
sky coverage to match the expected observations and assume full completeness and the same
redshift distribution and density for each photometric region as the DR1 sample. These Y5
mocks will be used to have an accurate forecast for the expected final DESI sample and
validate our theoretical description, see section 4.2.

3.3.3 Computing the covariance matrix

Once each mock realization is matched to DESI DR1, the power spectrum with different sets
of weights (FKP or OQE) is computed precisely in the same way as the one calculated from
the data, as explained in section 3.2. Figure 5 shows the power spectrum of the mean of
1000 EZmocks for LRGs (left) and QSOs (right) as well as the power spectrum from the
blinded data catalog. The coloured shaded regions represent the ±1σ deviation estimated
from 1000 realizations. Although the EZmocks were not generated at the correct effective
redshift of the data (see table 3), they remain usable to estimate the covariance matrix
because they match the amplitude of the power spectrum from the data, and our analysis
is limited to scales that are almost linear.

Finally, the covariance Cij is simply the covariance between these 1000 measured power
spectra. As proposed in [90], we re-scale by multiplying the inverse of the covariance by the
Hartlap factor to deal with the skewed nature of the inverse Wishart distribution as

C−1
ij ←−

Nm − n− 2
Nm − 1 C−1

ij , (3.19)

where Nm is the number of mocks, and n is the number of data points. In addition, we
also add the extra correction provided in [91] to correct for the propagation of errors in the
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covariance matrix to the errors on estimated parameters, re-scaling eq. (3.19) by dividing
it by the Percival factor

C−1
ij ←−

(
1 + B(n− np)

1 + A + B(np + 1)

)−1

C−1
ij , (3.20)

with A = 2[(Nm−n−1) (Nm−n−4)]−1, B = (Nm−n−2) [(Nm−n−1) (Nm−n−4)]−1 and
np the number of estimated parameters. Typically, in the following, Nm = 1000, n = 116, and
np = 4 such that the Hartlap factor evaluates to ∼ 0.88 and the Percival factor to ∼ 1.12.

Note that in practice, all the inference is performed using the desilike17 framework.
The posterior profiling is performed through the iminuit [92] minimiser18 and all the Monte
Carlo Markov chains (MCMC) use the emcee [93] sampler.19

4 Modeling of geometrical effects

The large-scale modes of the observed power spectrum are impacted by the geometry of the
survey. In this section, we present how to modify our model in order to account for the
geometry as well as correct for the integral constraints.

4.1 Window function and wide-angle effect

Due to stars, Milky Way dust, or incompleteness of the observations, some parts of the
footprint are masked or unobserved such that we do not exactly observe the full density
field, but only a fraction of it. This is described by the survey selection function W (x), see
eq. (3.6). Hence, the expected value of the power spectrum estimator in eq. (3.10) reads as20

〈
P̂ℓ(k)

〉
= (2ℓ + 1)

A

∫ dΩk

4π

∫
ds1

∫
ds2 eik(s2−s1)ξ(s1, s2)W (s1) W (s2)Lℓ

(
k̂ · ŝ1

)
(4.1)

Following [94], the correlation function can be expanded into Legendre multipoles and
under the local plane-parallel approximation limit (s ≪ s1, s2 with s = s1 − s2), eq. (4.1)
becomes〈

P̂ℓ(k)
〉

=(2ℓ + 1)
A

∑
p

∫ dΩk

4π

∫
dx
∫

ds e−ik·sW (x)W (x− s)ξp(s)Lp(x̂ · ŝ)Lℓ(k̂ · x̂)

= 4π(−i)ℓ(2ℓ + 1)
∑
ℓ1,ℓ2

(
ℓ1 ℓ2 ℓ

0 0 0

)2 ∫
ds s2jℓ(ks)ξℓ1(s)Wℓ2(s)

(4.2)

where we have introduced the real space window matrix

Wℓ(s) ≡ (2ℓ + 1)
4π ×A

∫
dΩs

∫
dx W (x)W (x− s)Lℓ(x̂ · ŝ). (4.3)

17Publicly available: https://github.com/cosmodesi/desilike. In particular, the model that we used is
presented in https://github.com/cosmodesi/desilike/blob/hmc/nb/png_examples.ipynb.

18https://github.com/cosmodesi/desilike/blob/hmc/desilike/profilers/minuit.py.
19https://github.com/cosmodesi/desilike/blob/hmc/desilike/samplers/emcee.py.
20[76] shows that ⟨F(x)F(x′)⟩ = W (x)W (x′)ξ(x, x′) + W (x)δ(3)

D (x − x′).
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To speed up the computation of the eq. (3.4), we have chosen the first galaxy as the line-
of-sight [75]. This is a good choice under the local plane-parallel approximation. However, this
choice creates the so-called wide-angle effect when this approximation does not hold [95]. One
can take into account this wide-angle effect by expanding the theoretical correlation function as

ξ (x1, x2) =
∑
p,n

(
s

d

)n

ξ(n)
p (s)Lp(d̂ · ŝ), (4.4)

where s = x2 − x1 is the pair separation and d the line-of-sight.
As described in [94], the wide-angle effect can be easily handled with the above window

matrix formalism by introducing the (s/d)n expansion in eq. (4.2), and one need to compute
new window matrices

W(n)
ℓ (s) = 2ℓ + 1

4π ×A

∫
dΩs

∫
dx x−nW (x)W (x− s)Lℓ(x̂ · ŝ). (4.5)

In the following, we only consider the first order of the effect (n = 1) such that
ξ

(1)
1 (s) = −3

5ξ
(0)
2 (s)

ξ
(1)
3 (s) = 3

5ξ
(0)
2 (s)− 10

9 ξ
(0)
4 (s)

, (4.6)

and the multipoles of the correlation function ξ
(0)
ℓ are computed from eq. (2.4) and eq. (2.5)

using

ξ
(0)
ℓ (r) = iℓ

2π2

∫
dk k2jℓ(kr)Pℓ(k). (4.7)

Hence, the convolved power spectrum is evaluated on a finite size wavelength vector
ki through a single matrix multiplication(

P obs
ℓ

)
i

= (Wℓℓ′)ij (Pℓ′)j , (4.8)

where the summation run over ℓ′ and j the indices on which the unconvolved power is evaluated.
The real space window matrix for the DESI DR1 LRG and QSO sample is displayed in

figure 6. One can note that, as indicated by [96], the real space window matrix W0(s) is not
normalised to 1 when s → 0. The normalization factor is the same as the one used in Ya-
mamoto’s estimator eq. (3.10) and does not introduce a bias during the parameter estimation.

The multipoles of the theoretical convolved power spectrum accounting for the geometry
of the DESI DR1 LRG or QSO sample are shown in figure 7. The impact on large scales
of the window matrix cannot be neglected when measuring the large-scale modes of the
power spectrum. Additionally, the impact of considering the wide-angle effect is displayed
in left panel. As expected, no strong effects are visible for the QSOs, since the quasars are
sufficiently far away from us for the local plane-parallel approximation to hold. However, the
effect is larger for the LRG but is still very small such that we do not account for high-order
contribution (n ≥ 2) of the wide-angle effect [97].

In practice, the window matrix is computed from the random catalog that fully described
the geometry of the data, using the implementation available in pypower.21 Then the

21The window matrix is from the concatenation of three windows obtained with box sizes 20x, 5x and 1x
the nominal box size used for the power spectrum measurement, as shown in https://github.com/cosmodesi/p
ypower/blob/main/nb/window_examples.ipynb.
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the first order (n = 1) contribution are displayed on the right.
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Figure 7. Multipoles of the convolved (resp. unconvolved) power spectrum are displayed in solid
(resp. dashed) lines for the DESI DR1 LRG (left panel) and QSO (middle panel) sample. Right panel
shows the ratio between the convolved power spectrum accounting for the first order wide-angle effect
and not accounting for it. As expected the wide-angle effect is bigger for the LRG that are closer to us.

convolution of the model with the window function is done in desilike.22 As in [98], we
only use the multipoles up to ℓ = 4 in eq. (4.2) such that we only consider the window
matrix up to ℓ = 8.23

4.2 Validation with EZmocks

4.2.1 Analysis setup

One can use the mean of the power spectrum over the 1000 EZmocks as a null test, to
validate the theoretical prediction given in eq. (4.8) and forecast with great accuracy the

22https://github.com/cosmodesi/desilike/blob/hmc/desilike/observables/galaxy_clustering/power_spec
trum.py#L19.

23Non-zero Wigner 3-j symbols must respect: |l1 − l2| < l ≤ l1 + l2.
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statistical errors expected for this analysis. During the MCMC and the profiling, we fit either
(f loc

NL, b1, sn,0, Σs) assuming eq. (2.6) or (bΦf loc
NL, b1, sn,0, Σs) together.

First, as explained in section 3.3.1, the EZmocks were not generated at the correct
effective redshift with the correct bias. Fortunately, the amplitudes of the power spectrum
of these EZmocks match quite well the one from the data, see figure 5, such that they can
be used without renormalization to build the covariance matrix. However, to use them
as a null test, we need to match the amplitude to recover the expected bias at a specific
effective redshift24 by renormalising the monopole and the quadrupole. This does not pose
any problems, as we mainly use linear scales of the power spectrum. This can be achieved by
measuring the actual bias b from the mocks at zeff and then replacing the multipoles by

P0(k) −→ b2
n

b2
1 + 2/3βn + 1/5β2

n

1 + 2/3β + 1/5β2 × P0(k)

P2(k) −→ b2
n

b2
4/3βn + 4/7β2

n

4/3β + 4/7β2 × P2(k)
,

where bn is the desired bias and βn = f(zeff)/bn (similarly for β).
Next, we quantify the dependence of the statistical error as a function of the range that

it is used during the fit. This dependence is shown in figure 8 for the different tracers and
the different weighting scheme. This range is limited by two factors:

• kmin: at large scales, the measurement is impacted either by a mismodeling of the
geometrical effects or by a imperfect correction of the imaging systematics (see section 5).
Due to the statistics, the very large-scales are not the most important ones as shown
in the left panel of figure 8, and we decide to use a conservative cut for our fiducial
pipeline, avoiding any bias in our measurement: kmin = 0.003 hMpc−1. Note that the
geometrical effects are still handled up to kmin = 0.001 hMpc−1, the limiting factor
here is the efficiency of the imaging systematic mitigation.

• kmax: at small scales, the simple description that we used, see eq. (2.4), cannot deal
with the non-linearity. As shown in the right panel of figure 8, there is not much to
gain by increasing kmax to constrain f loc

NL. However, we still need some small-scale
information to obtain a small uncertainty on b1. Consequently, we choose to include
the scales where the modes are mostly linear: kmax = 0.08 hMpc−1.

Hence, unless mentioned, all the fits in the following use{
ℓ0 : 0.003 < k < 0.08 with ∆k = 0.001 hMpc−1

ℓ2 : 0.003 < k < 0.08 with ∆k = 0.002 hMpc−1 .

4.2.2 DR1 validation and Y5 forescast

Using the EZmocks as a null test, we can test our model with the fiducial scale range. The
posteriors for the different tracers and weighting schemes are displayed in figure 9 and the best

24Note that we have performed all these tests before the final weights for the clustering catalog were available.
In particular, at that time we did not have the spectroscopic efficiency weights such that, in the following, we
use a slightly different effective redshift than the one given in table 3, typically lower about ∆z ∼ 0.002.
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Figure 8. Dependence of the errors on f loc
NL (top) and b1 (bottom) as a function of either kmin (left)

or kmax (right) for the LRGs and the QSOs and for the different weighting schemes. The fiducial
values, kmin = 0.003 hMpc−1 and kmax = 0.08 hMpc−1, are denoted with dashed vertical lines. Note
that the errors here are the standard deviation from MCMC chains, however the distribution is not
symmetric for f loc

NL, see figure 9. Therefore, the errors displayed here do not perfectly match those
quoted in table 4 that are the 1σ credible interval.

fit values in table 4. The second row in figure 9 gives the posterior when considering bΦf loc
NL as a

single parameter25 without assuming any value for bΦ and gives the overall sensitivity of the two
tracers for the detection of the presence of primordial non-Gaussianity. For each configuration,
we also give the measurement performed with mocks describing the DESI Y5 data.

In all the configurations, we recover f loc
NL = 0 well within 1σ validating the description

of the geometrical effects described in section 4.1. The difference between the value of the
linear bias b1 and the different weighting configurations is from the difference of effective
redshift zeff , see table 3. Although, there is a small discrepancy for the LRG DR1 EZmocks,
it seems this is only a statistical fluctuation since it disappears when considering the Y5
footprint of the same realization. The systematic error contribution is discussed in section 6.3.
In addition, for the QSO case, one can notice a discrepancy between the value fitted with
FKP and OQE weights; it will be discussed in section 4.3.

As illustrated in figure 9(b), the use of OQE weights helps to increase the value of b1
since we are fitting the data with a higher effective redshift, see table 3, which improves
the constraint on f loc

NL.

25While fitting bΦf loc
NL with the OQE weights, we fit the quadrupole at the effective redshift computed for

the monopole because we do not know the redshift evolution of bΦf loc
NL . The gain including the quadrupole is

very small and this choice has a negligible impact.
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(a) LRG with bΦ(b1) = 2δc(b1 − 1).
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(b) QSO with bΦ(b1) = 2δc(b1 − 1.6).
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(c) LRG with bΦf loc
NL as a free parameter.
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bΦf
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(d) QSO with bΦf loc
NL as a free parameter.

Figure 9. Posteriors in the (f loc
NL, b1) plane with bΦ(b1) derived via eq. (2.6) in (a) / (b) and in

the (bΦf loc
NL, b1) plane in (c) / (d). The parameters sn,0, Σs are free during the MCMC but are not

shown for visibility. We fit the mean the 1000 realizations and use them to derive the covariance
matrix. Filled contours are for the DR1 mocks while the dark dashed contours are for the Y5 mocks.
Red colours are for the FKP weights, while the blue ones are for the OQE weights. For comparison,
the case without any weighting is also included for the DR1 posteriors in green. The corresponding
maximum-a-posteriori (MAP) values are displayed in table 4.

The constraints on bΦf loc
NL, given in table 4, are better with the FKP weights compared

to the OQE weights. This is not surprising, as the effective redshift, and due to the redshift
evolution of b1, the value of bΦ, is higher when using the OQE weights. This same reasoning
explains why the errors on f loc

NL are smaller with OQE weights compared to FKP weights.
Note that, without assuming any value for bΦ, we cannot obtain a competitive constraint
with respect to Planck18 [7].
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f loc
NL b1 sn,0 Σs

LRG DR1 6+21.
−11 2.010+0.033

−0.036 0.048+0.068
−0.065 4.45+0.49

−0.44

DR1 (FKP) 5+18
−11 2.061+0.032

−0.037 0.042+0.064
−0.061 4.35+0.52

−0.37

DR1 (OQE) 5+18
−11 2.077+0.035

−0.035 0.040+0.069
−0.058 4.32+0.49

−0.42

Y5 (FKP) 2.0+10.7
−8.4 2.068+0.022

−0.023 0.031+0.042
−0.045 4.56+0.31

−0.28

Y5 (OQE) 2.2+10.2
−7.6 2.083+0.023

−0.023 0.029+0.044
−0.044 4.52+0.33

−0.28

QSO DR1 3+20
−16 2.339+0.042

−0.051 −0.076+0.057
−0.048 3.15+1.19

−0.58

DR1 (FKP) 3+18
−13 2.442+0.051

−0.045 −0.010+0.056
−0.051 2.69+1.22

−0.81

DR1 (OQE) −3+13
−10 3.085+0.064

−0.080 −0.045+0.075
−0.074 0+0.25

−0.93

Y5 (FKP) 3.4+9.9
−9.6 2.437+0.030

−0.033 −0.292+0.035
−0.037 3.43+0.59

−0.39

Y5 (OQE) −2.4+7.8
−7.8 3.086+0.045

−0.049 −0.080+0.053
−0.050 0+0.19

−0.67

bΦf loc
NL b1 sn,0 Σs

LRG DR1 (FKP) 21+68
−38 2.061+0.034

−0.035 0.041+0.066
−0.060 4.35+0.46

−0.43

DR1 (OQE) 19+65
−41 2.077+0.036

−0.035 0.039+0.065
−0.065 4.32+0.54

−0.37

Y5 (FKP) 9+37
−26 2.066+0.023

−0.021 0.034+0.047
−0.041 4.55+0.32

−0.27

Y5 (OQE) 9+42
−24 2.082+0.023

−0.024 0.032+0.046
−0.044 4.50+0.33

−0.28

QSO DR1 (FKP) 7+54
−34 2.442+0.047

−0.047 −0.010+0.056
−0.048 2.69+1.28

−0.76

DR1 (OQE) −1+62
−48 3.058+0.064

−0.075 −0.013+0.077
−0.068 0.0+0.39

−1.26

Y5 (FKP) 10+29
−25 2.437+0.030

−0.031 −0.292+0.036
−0.035 3.44+0.61

−0.39

Y5 (OQE) 4+41
−35 3.055+0.043

−0.050 −0.045+0.049
−0.051 0.0+0.34

−1.04

Table 4. Results of the fit using the mean of the power spectrum over 1000 realizations with the
corresponding covariance matrix for the LRGs and QSOs and the different weighting scheme. Central
values are the best fit values from the minuit minimization while the errors are the 1σ credible
interval from the chains that are displayed in figure 9. The second part of the table gives the best fits
using bΦf loc

NL as single parameter avoiding any assumption on the value of bΦ. The systematic error
contribution is discussed in section 6.3.

Fixing the value of bΦ via the universal mass relation breaks the degeneracy between
bΦ and f loc

NL such that the different tracers can be combined to increase the statistical
accuracy. Note that this is the first time this is done for f loc

NL with 3D galaxy clustering.
The posterior combining the two tracers are displayed in figure 10 and the best fit values
are given in table 5. Note that we assume the two tracers are independent and neglect
the cross-covariance between them. The gain combining the LRGs and the QSOs is about
20% in the statistical errors compared to the QSOs only, and this motivates the inclusion
of the LRGs in this analysis.
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Figure 10. Posteriors in the (f loc
NL, b1,LRG, b1,QSO) plane of the combine fit of the mean of power

spectrum (ℓ = 0, ℓ = 2) over the 1000 realizations of the LRGs and QSOs. bΦ(b1, p) is derived via
eq. (2.6), where p = 1 for the LRGs and p = 1.6 for the QSOs. The other parameters are allowed to
vary but not shown here. The corresponding MAP values are displayed in table 5.

f loc
NL b1,QSO sn,0,QSO Σs,QSO b1,LRG sn,0,LRG Σs,LRG

DR1 (FKP) 5+13.0
−9.8 2.437+0.043

−0.045 −0.006+0.056
−0.049 2.63+1.36

−0.79 2.062+0.032
−0.035 0.039+0.066

−0.062 4.35+0.54
−0.42

DR1 (OQE) 1.1+10.5
−7.9 3.068+0.064

−0.072 −0.031+0.078
−0.072 0.0+0.26

−0.95 2.087+0.032
−0.034 0.022+0.062

−0.065 4.35+0.52
−0.44

Y5 (FKP) 3.6+7.6
−6.8 2.439+0.028

−0.029 −0.293+0.035
−0.036 3.46+0.58

−0.46 2.064+0.022
−0.022 0.038+0.045

−0.044 4.55+0.33
−0.31

Y5 (OQE) −0.1+6.8
−6.2 3.078+0.044

−0.045 −0.073+0.054
−0.049 0.0+0.18

−0.70 2.088+0.022
−0.022 0.023+0.043

−0.046 4.59+0.34
−0.29

Table 5. Results of the fit of the combine mean of power spectrum over 1000 realizations of the
LRGs and QSOs. Central values are the best fit values from the minuit minimization while the errors
are the 1σ credible interval from the chains that are displayed in figure 10. Combining the LRGs and
the QSOs leads to a direct statistical gain about 20% compared to the QSOs only.

Based on our mocks (table 5), we forecast that the DESI Y5 sample will enhance the
constraint on f loc

NL by approximately 40% compared to the current DR1 sample, achieving
σ(f loc

NL) ∼ 6.5 in the current setup and with the combined LRG and QSO samples.
Due to the shape of the redshift distribution, the OQE weights have a negligible impact

on the constraint of f loc
NL for the LRGs such that we do not use them in the following, and

we only give the result for the use of FKP weights.
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Figure 11. Normalised distribution from individual fit of the 1000 realizations of the difference
between the best-fit value of f loc

NL obtained with FKP or OQE weights. LRGs are on the left and QSOs
on the right. Blue is for DR1, red for Y5 mocks and green is for DR1 but with the bias fixed during
the fit. The mean and the standard deviation for each histogram are given in the legend.

4.3 Discrepancy between FKP and OQE weights

As reported in table 4, in the case of the QSO there is a discrepancy between the measured value
of f loc

NL between the use of the FKP (f loc
NL ≃ 3) or OQE (f loc

NL ≃ −3) weighting schemes. This
discrepancy is statistically significant because we are fitting the mean over 1000 realizations,
which reduces the expected statistical uncertainty by a factor

√
1000 ∼ 31. For the LRGs,

OQE weights have a minor impact such that the discrepancy does not exist. Although shown
in the following, we do not discuss it and only focus in the QSO case.

To investigate this effect, we fit individually the 1000 realizations with the different
weighting schemes. First, we check that the standard deviation from the best fit value of f loc

NL
on the 1000 EZmocks is compatible with the errors given in table 4. Then, the normalised
distribution of the difference between the best fit value of f loc

NL with the different weights
are shown in figure 11, where the mean and the standard deviation of each distribution
are displayed in the legend.

The shift observed between the FKP and the OQE weights in table 4 (−6) is consistent
with the mean (−5.8) of the distribution displayed in blue in figure 11. The shift does not
disappear by increasing the data size (blue versus red histogram), however, the standard
deviation becomes lower, meaning that the shift seems to be a real bias between the two
weighting schemes.

The shift between the measurement of f loc
NL with the two weighting schemes is lower than

the statistical errors, and it is still the case for this first DESI data release (∼ 0.5σ). However,
as shown with the forecast for the Y5 data, this will not be the case with the increase of
the data size in the upcoming DESI release. Thus, additional study will be required to
avoid biaising the measurement. To investigate, we perform the fit with the linear bias b1
fixed for the Y1 mocks and the discrepancy vanished as shown by the green histogram in
figure 11. Hence, a better knowledge on b1 could help to obtain an unbiased measurement
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of f loc
NL with the OQE weighting scheme. This could be achieved by increasing kmax, which,

in turn, would require the use of much more complex model than eq. (2.4) as in [34]. We
leave this analysis and improvement for future work.

This discrepancy appears also later when measuring f loc
NL from the data. However, the

majority of this discrepancy is due to a residual systematics in the lower redshift range of
the QSO sample that is under-weighted by the OQE weighting scheme. The difference is
∆f loc

NL ∼ 20, so that the use of OQE weights is necessary to have an unbiased measurement,
see section 6.

4.4 Radial Integral Constraint

First, the Global Integral Constraint (GIC) [96] is described in appendix F and we show
that it can be neglected in this analysis.

Up until now, the randoms of the EZmocks were generated in a box in three dimensions
such that they already have their proper redshifts. We simply sampled them to match the
desired redshift distribution. However, as explained in section 3.1.2, the redshift of the
randoms are drawn directly from the data catalog using the so-called shuffling method [72].
By imprinting the data redshifts into the randoms, radial modes in the measured power
spectrum are nulled leading to the so-called Radial Integral Constraint (RIC) [96]. To quantify
the contribution of the effect, we apply the shuffling method on the first 100 EZmocks that
we use. As illustrated in figure 12 and in table 6, the use of the shuffling method without any
correction biases the measurement of f loc

NL by 1σ of the statistical uncertainty.
In contrast to [8, 14] which implement an additive correction to account for the radial

constraint by taking simply the difference of the power spectrum between the mocks with
and without shuffling, we instead provide a multiplicative correction26 by modifying the
window function:

W →W −WRIC. (4.9)

Hence, the correction does not depend on the value of the power spectrum on which it
is estimated.

As described in section 2.2 of [96], the contribution of the RIC has a similar shape as the
global one with additional anisotropy and scale dependence coming in compared to eq. (F.2)
such that it may be reasonable to look for:(

WRIC
ℓℓ′

)
ij

=
(Wℓp)im

(W00)00
(fpq)mn

(
Wqℓ′

)
nj , (4.10)

with the summation runs over p, q, n, m. (fpq)mn decreases rapidly with increasing p, q, e.g.:

(fpq)mn = Apq e−(k2
n+k2

m)/σ2
pq , (4.11)

where Apq and σpq are 2× (3× 3) unknown coefficients. Note that under this parametrization,
one can retrieve the GIC contribution given in eq. (F.2) by setting (f00)00 = 1 and 0 for
the others.

26Multiplicative because the convolved power spectrum is obtained by multiplying the window matrix to the
theoretical prediction, as described in eq. (4.8), and thus, any correction to the window matrix is propagated
in a multiplicative way in the convolved power spectrum.
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The coefficients Apq and σpq can be estimated with the set of EZmocks with and without
the shuffling method. The convolved power spectrum of this EZmocks with the shuffling
method can be written as(

P̂ shu
ℓ

)
i

= (Wℓℓ′)ij

(
P̂ box

ℓ′

)
j
−
(
WRIC

ℓℓ′

)
ij

(
P̂ box

ℓ′

)
j

, (4.12)

where P̂ box
ℓ′ is the power spectrum from the box used to build the cutsky mock i.e. corresponds

to one realization of the underlying P theo
ℓ′ used to generate the mocks. The first term of the

r.h.s. is the observed power spectrum measured without the shuffling:(
P̂ no shu

ℓ

)
i

= (Wℓℓ′)ij

(
P̂ box

ℓ′

)
j

. (4.13)

Due to the large variance during the subsampling to go from the box to the cutsky, we
do not want to compare the power spectrum from the box and the one from the cutsky.
Fortunately, one can extract the window matrix from eq. (4.10) such that the RIC contribution
can be re-written as(

WRIC
ℓℓ′

)
ij

(
P̂ box

ℓ′

)
j

= (Wℓp)im (fpq)mn

(
P̂ no shu

q

)
n

. (4.14)

Note that (W00)00 is a constant, and to simplify, we renormalise (fpq)mn such that (fpq)mn →
(fpq)mn / (W00)00 without changing the result.

Finally, the coefficients Apq and σpq in (fpq)mn can be estimated by minimising the sum
over 100 independent realization of a standard χ2 defined for each realization by

χ2 = (∆ℓ)T
i

(
C−1

ℓℓ′

)
ij

(∆ℓ′)j , (4.15)

where (Cℓℓ′)ij is the covariance matrix and (∆ℓ)i is given by

(∆ℓ)i =
(
P̂ shu

ℓ

)
i
−
(
P̂ no shu

ℓ

)
i
+ (Wℓp)im (fpq)mn

(
P̂ no shu

q

)
n

. (4.16)

The minimization is performed with iminuit and is fitted independently for the FKP or
OQE weights and for the different tracers. We use ℓ = 0, 2, 4 for FKP weights and only
ℓ = 0, 2,27 for OQE weights with 0.003 hMpc−1 < k < 0.01 hMpc−1. As a verification, the
minimization was also performed only with the first 50 mocks and tested on the mean of
the 50 others, and similar result were obtained.

Note that by definition the GIC is included in the RIC [96]. However, in eq. (4.16),
we used only measured power spectra such that the GIC vanished in P̂ shu

ℓ − P̂ no shu
ℓ and

cannot be modelled with this method. Fortunately, we show in appendix F that GIC is
negligible for our analysis.

Figure 12 shows the mean power spectrum over the 100 realizations for the LRGs and
the QSOs using the shuffling method. The dashed lines are the best fits to the mean power
spectrum without the shuffling method, illustrating the radial integral constraint contribution
to both the monopole and the quadrupole. The contribution to the monopole can be easily

27We do not have computed the window matrix for ℓ = 4 in the OQE case. The contribution obtained from
the minimization of ℓ = 4 in the FKP case could be neglected as well.
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(b) QSO (0.8 < z < 3.1) with FKP.

Figure 12. Multipoles of the mean power spectrum (dotted points), computed with FKP weights,
over 100 realizations describing either the DESI DR1 LRGs (left) or QSOs (right) with the shuffling
method applied. The errors are from the covariance matrix for the DR1 analysis. The colour dashed
lines are the best fits from the realizations without the shuffling method. The black lines are the
best fit from the realizations with the shuffling method but without taking into account the radial
integral constraint contribution while the solid colour lines are the best fit taking into account this
contribution. On the monopole, this contribution can be reproduced by decreasing the value of f loc

NL,
thus needs to be corrected to measure this parameter correctly. Note that the quadrupole (ℓ = 2) has
almost no constraining power on f loc

NL such that even with the important lack of power at large-scales
on the shuffled quadrupole, this does not impact the value of f loc

NL.

reproduced by decreasing the value of f loc
NL, while the suppression of the power at large-scales

in the quadrupole cannot. Adding the RIC correction enables us to measure f loc
NL as shown in

table 6 which compares the result of the best fit with and without the RIC correction to the
one without the shuffling method. Not introducing this correction would bias f loc

NL by 2/3σ.
To validate this multiplicative correction, we also test the RIC correction on the mean

of 30 mocks with a different power spectrum than the ones used to estimate this correction.
For this reason, we applied the blinding procedure described in [73] with fblind

NL = 20. As
shown in the last row of table 6, the correction performs well even if the shape of the power
spectrum is different, validating the multiplicative correction proposed here.28

Finally, the covariance obtained from 100 realizations with the shuffling method is very
similar to the one obtained from 100 realizations without it. Thus, in what follows, we
always use the covariance estimated from 1000 realizations without the shuffling method
as described in section 3.3.3.

28We also tested for this test the standard additive correction that is the option used in [8, 14] and found
consistent results.
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parameter no shuffle shuffle shuffle + RIC

DR1 LRG f loc
NL 6+17

−12 −4+16
−13 7+17

−12

b1 2.060+0.032
−0.037 2.069+0.033

−0.036 2.055+0.031
−0.035

sn,0 0.046+0.062
−0.063 0.058+0.058

−0.070 0.052+0.064
−0.058

Σs 4.32+0.52
−0.37 4.57+0.47

−0.38 4.42+0.48
−0.39

DR1 QSO f loc
NL 3+16

−15 −7+19
−15 6+14

−16

b1 2.438+0.046
−0.049 2.451+0.048

−0.054 2.431+0.047
−0.045

sn,0 −0.002+0.052
−0.054 −0.001+0.058

−0.052 0.004+0.053
−0.050

Σs 2.67+1.25
−0.78 2.98+1.20

−0.67 2.87+1.19
−0.77

DR1 QSO with blinding f loc
NL − fblind

NL 8+13
−12 1+16

−12 9+14
−12

(RIC from DR1 QSO) b1 2.406+0.042
−0.043 2.410+0.043

−0.048 2.403+0.038
−0.046

sn,0 −0.011+0.052
−0.048 0.006+0.051

−0.053 0.000+0.049
−0.049

Σs 2.72+1.31
−0.74 2.99+1.24

−0.65 2.95+1.26
−0.65

Table 6. Results of the fits using the DR1 covariance matrix on the mean of the power spectrum with
FKP weights, with and without the shuffling method and the RIC contribution, over 100 realizations
for the LRGs and QSOs and over 30 realizations for the QSOs with the blinding applied (fblind

NL = 20).
The central values are best fit values from the minuit minimization while the errors are the 1σ credible
intervals from the chains. Note that the RIC correction for the bottom row is computed from the
mocks without the blinding (i.e. the correction is the same for the second and bottom row), validating
our multiplicative correction. The systematic error contribution is discussed in section 6.3.

5 Imaging systematics: weights validation

Imaging systematic mitigation aims to correct for the spurious density fluctuations in the
angular distribution of the objects from the fluctuation of the imaging quality and foreground
across the photometric survey used for the target selection. These fluctuations are illustrated
in figure 13 and in figure 14 that show the relative density of the number of objects as a
function of different templates where the black lines are for the sample not corrected for
these dependences.

These systematics represent the most significant source of contamination in measuring
the large-scale modes of the power spectrum. Over the past decade [99–102], mitigating these
effects has been a major focus in both galaxy clustering analyses from spectroscopic surveys,
as in eBOSS [15, 16, 103, 104], and from photometric surveys as in the Dark Energy Survey
(DES) [105, 106]. In section 5.1, we present the methodology used in DESI and through this
paper to compute the imaging systematic weights. Then, in section 5.2, we use EZmocks to
test the impact of different imaging mitigation weighting schemes on f loc

NL, and compute the
angular integral constraint contribution to correct for the use of these weights. Finally, in
section 5.3, we analyse the blinded data and validate the fiducial mitigation method.
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5.1 Mitigation of the dependence on the imaging quality of the target selection

5.1.1 Default configuration in DESI

In DESI [71], we follow the commonly applied method based on template fitting that was
developed in the last major surveys [15, 107–110]. This method provides a per-tracer
correction weight wsys calibrated from the observed variation of target density as a function
of features that describe the imaging qualities. Recently, [15, 16] showed that this method
could be improved by introducing some non-linearities between the template using supervised
machine learning. Hence, in the following, the imaging weights wsys are estimated at HEALPix
level [88] using either a linear or a random forest-based regression with a k-fold training.
Note that compared to the one in [71], the linear regression here does not fit the data to
binned statistics but rather the fluctuation at HEALPix level. All the weights are computed
with regressis29 as described in [58].

Following [32, 111] that assess the correlation between the target density and the different
features, we consider only these 12 observational features:30

• Stellar density [deg−2] is the density of point sources from Gaia DR2 [112] in the
magnitude range: 12 < PHOT_G_MEAN_MAG < 17.

• HI [cm−2] is the hydrogen column density from the Effelsberg-Bonn HI Survey (EBHIS)
and the third revision of the Galactic All-Sky Survey [113].

• E(B-V) diff GR / E(B-V) diff RZ [mag]: is the difference between the SFD E(B-V) [114]
and the E(B-V) determined from DESI stars spectra [115]. This new method from
DESI data produce two values one based on g − r and the other on r− z. Note, we are
not using the standard E(B-V) map alone since it is strongly correlated to the large
scale structure of the Universe via the Cosmic Infrared Background [116].

• PSF Depth [1/nanomaggies2] (in r, g, z, W 1, W 2) is the 5-sigma point-source magnitude
depth.31

• Galaxy Depth [1/nanomaggies2] (in r, g, z) is an alternative to PSF Depth. It mea-
sures the 5-sigma galaxy32-source magnitude depth. It is only used instead of the
corresponding PSF Depth.

• PSF Size [arcsec] (in r, g, z): inverse-noise-weighted average of the full width at half
maximum of the point spread function, also called the delivered image quality.

As in [32], the default configuration for the LRG sample is to compute the imaging
weights in three different redshift bins (0.4 < z < 0.6, 0.6 < z < 0.8 and 0.8 < z < 1.1)
and on three independent photometric regions (North, South (NGC), South (SGC) + DES)
with the following features:

29https://github.com/echaussidon/regressis.
30The creation of these feature maps is detailed in appendix A of [32]. Some visualization of these maps can

be found in figure 4 of [58].
31For a 5σ point source detection limit in band x, 5/

√
x gives the PSF Depth as flux in nanomaggies and

−2.5
(
log10(5/

√
x) − 9

)
gives the corresponding magnitude (see https://www.legacysurvey.org/dr9/catalogs/).

32(0.45" exp, round).
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• 0.4 < z < 0.6: stellar density, HI, PSF Size r, Gal Depth z / r, PSF Depth W1,

• 0.6 < z < 0.8: stellar density, HI, PSF Size r, Gal Depth z / g, PSF Depth W1,

• 0.8 < z < 1.1: stellar density, HI, PSF Size r / z, Gal Depth z, PSF Depth W1.
The default configuration for the QSO sample is also to compute the weights in three redshift
bins (0.8 < z < 1.3, 1.3 < z < 2.1 and 2.1 < z < 3.1) and in three photometric regions
(North, South (NGC) + South (SGC), DES) of but considering the same features in each bin:

• 0.8 < z < 1.3 / 1.3 < z < 2.1 / 2.1 < z < 3.1: stellar density, HI, E(B-V) diff GR / RZ,
PSF Depth r / g / z / W1 / W2, PSF Size g / r / z.

These redshift bins were designed to match the redshift ranges of the sample used for the
BAO or RSD measurements, except for the additional split for the QSOs at z = 1.3.

This additional split was motivated by the lack of QSOs with small redshift (z < 1.3)
in the regions where the PSF Depth is higher, as noted in [55]. Indeed, QSOs that are
sufficiently close to us are increasingly identified as extended sources in regions with high
PSF depth, leading to their rejection during the target selection. This effect is limited to
the low-z end of the QSO sample and is not apparent when using the broad redshift bin of
0.8 < z < 2.1. However, it contributes to an excess of power on large scales in the power
spectrum if it is not properly addressed as shown in appendix G.

In our template-fitting methodology, we assume that a template is fixed across the
redshift bin (but allowed to vary between different bins). Hence, we are not able to model
any redshift dependence inside a redshift bin. Note that this could also be useful for LRGs
as found in [111]. A more detailed analysis, which we leave for the future, might want to
allow the template weights to vary within the redshift bins of individual tracers.

5.1.2 Test with other configurations

To assess the efficiency of the imaging systematic mitigation, we test several modifications of
the default configuration. In particular, for the LRGs, we alternately adopt:

• Default: default configuration, as described in section 5.1.1, computed either with
a random forest using either Nside = 128 or 256 or with a Linear regression using
Nside = 256.

• PSF Depth: Default with a linear regression using Nside = 256, where the Gal Depth
features are switched with the PSF Depth features.

• Same Feature Zbin: using all the features for each redshift bins: stellar density, HI,
E(B-V) diff GR / RZ, PSF Size r / z, Gal Depth z / r, PSF Depth W1. We test the
linear regression using either Nside = 128 or 256.

• With DES: as Default, but the regression is performed independently in (North, South,
DES) instead of (North, South (NGC), all the SGC) with a linear regression using
Nside = 256.

• 4 regions: as Default, but the regression is performed independently in (North, South
(NGC), South (SGC), DES) instead of (North, South (NGC), all the SGC) with a linear
regression using Nside = 256.
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Figure 13. Relative density centered around 0 as a function of the amplitude of several observational
features of the LRGs (0.6 < z < 0.8) in the South (SGC) region. Back lines are without the imaging
systematic correction while the different colours are for the different corrections (RF regression in
red, Linear in blue/green). The histogram represents the fraction of objects in each bin for each
observational feature and the error bars are the estimated standard deviation of the normalised density
in each bin.

For the QSOs, we test:

• Default: default configuration computed either with a random forest with Nside = 256
or with a Linear regression using either Nside = 128 or 256.

• No PSF Size: Default with a linear regression using Nside = 128 where the PSF size
features in the g, r, z bands are all removed.

• No PSF Depth: Default with a random forest regression using Nside = 128 where the
PSF depth features in the g, r, z, W1 and W2 bands are all removed.

The efficiency of some of these variants is shown in figure 13 for the LRG (0.6 < z < 0.8)
sample in the South (SGC) region and in figure 14 for the QSO (1.3 < z < 2.1) sample in the
South (NGC) region. These plots show the relative density of the objects as a function of the
amplitude of the templates corresponding to different features. The black lines are without any
imaging systematic weights while the different colours are when we apply the different weights
computed with the configurations explained above. Similar plots for the other regions and
other redshift sub-samples were also used to assess the efficiency of the different corrections.
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Figure 14. Same as figure 13 but for the QSOs (1.3 < z < 2.1) in the South (NGC).

All the configurations using the linear regression, even if not shown in these figures
for clarity, give very similar results. The most important difference appears when we use
the non-linear regression (red lines) instead of the linear one (blue lines). However, as
noted in [16, 17, 58], non-linear regressions have more degrees of freedoms to “flatten” the
black line such that it does not necessarily result in a better correction. In addition, this
additional degree of freedom leads to a modification of the power spectrum at large scales
as illustrated in the next section.

5.2 Angular Integral Constraint

To compare the efficiency of the different imaging systematics, we first need to quantify their
impacts on mocks without any contamination. Then, if necessary, we need correct for the
angular integral constraint that appears due to the use of these weights.

5.2.1 Illustration with the EZmocks

As shown in [17], allowing too much flexibility with a neural network during regression
results in significant removal of large-scale power in the monopole that strongly biases
the measurement of f loc

NL. To address this, we first perform a null test, by using our set
of EZmocks that does not contain any imaging systematic contamination. Doing so, the
mock density of tracers (either QSOs or LRGs) is strictly uncorrelated (when averaging
over many realizations) with the different imaging features presented in section 5.1. Hence,

– 33 –



J
C
A
P
0
6
(
2
0
2
5
)
0
2
9

the imaging systematic mitigation i.e. the computation of the per-tracer weights wsys from
linear or random forest regression, should not bias f loc

NL. Any observed impact on the power
spectrum measurement is then attributable to the methodology itself and must be corrected
to prevent bias in our results.

From the different setups described above, we can compute the per-tracer correction
weights wsys, to be used in the power spectrum estimator through eq. (3.1). We measure
the power spectrum monopoles as the mean computed over the first 30 EZmocks, for the
LRGs and QSOs to isolate and quantify the impact of the imaging systematic weights.33 The
impact on the monopole of these different configurations are shown in figure 15 where we
displayed the relative difference between the monopoles estimated with and without imaging
systematic weights divided by the DR1 statistical errors. The regression using the random
forest is displayed in red, while the linear regression in blue. From figure 15, it is clear that
the random forest-based regression biases negatively the estimation of the monopole for either
QSOs or LRGs compared to the linear regression, whose effect is smaller. This is because
the regression has enough freedom to completely homogenise the angular distribution at a
specific Nside, nulling a lot of large cosmological angular modes. By removing physical modes
on the large scales, random forest-based mitigation biases negatively the measurement of
f loc

NL, while the linear regressions has a relatively small impact.
To quantify the bias introduced on f loc

NL measurement, we fit the mean of the power
spectrum using the associated DR1 covariance matrix. The best fit for LRGs and QSOs using
either FKP or OQE weights are displayed in figure 16. The Random Forest-based regression
introduces an important negative bias in the estimation of f loc

NL. Indeed, by construction,
these weights tend to flatten the angular density at the level of the difference pixels used
during the regression, thus canceling modes that are in common between the different pixels.
In the QSO case, the OQE weights help to prevent this effect by over-weighting the high-z
objects since at higher redshift the angular modes, nulled out by the use of imaging weights,
are physically larger and so impact lower k’s. For the same reason, this effect is less important
for the QSOs than for the LRGs.

Although less statistically significant than the random forest mitigation, this bias exists
also in the case of the linear regression. One can reduce it by reducing the number of features
used in the fit, as is already the case for the LRGs’ default configuration compared to Same
Feature Zbin. However, reducing the number of features can also reduce the efficiency of
the weights by not including a feature that actually describes a remaining imaging systematic.
A correction in this regard is proposed in section 5.2.2.

To be conservative and have less significant correction of the effect illustrated in figure 15,
we choose in the following as fiducial weight Default (Linear 256) for the LRGs and
Default (Linear 128) for the QSOs. Establish the correction of this effect is the topic
of the following section.

5.2.2 Estimation of the Angular Integral Constraint

The suppression of power in figure 15, introduced by the imaging systematic weights, can be
seen as an Angular Integral Constraint (AIC) [96]. Indeed, the imaging systematic weights

33The imaging systematic weights are computed independently for each realization.
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Figure 15. Relative difference between the power spectrum monopoles obtained using FKP weights
with and without imaging systematic weights to the DR1 statistical errors derived from the 1000
EZmocks. Each monopole that we show represents the mean computed from 30 realizations. LRGs
are on the top and QSOs are on the bottom. The blue (resp. red) lines are for linear (resp. Random
Forest) regressions while the specificity for each regression is explained in the text. The resulting
values of f loc

NL are displayed in figure 16 and given in table 14.
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Figure 16. Best fit values of f loc
NL with different imaging weights where the value from the EZmocks

without weight is subtracted. Red whiskers denote the scenario of using FKP weights, while blue
whiskers denote the OQE weights case. For the LRG, red is for kmin = 0.003 hMpc−1 and orange
for kmin = 0.006 hMpc−1. The impact of the imaging weights on the power spectrum is shown in
figure 15. The values are given in table 14.
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aim to remove the angular fluctuations of the density at a pixel level, nulling out some angular
modes and reducing the power at large scales. Hence, this effect can be taken into account
by adding its contribution to the window matrix:

W →W −WRIC −WAIC, (5.1)

where WAIC can be estimated using the same method introduced in section 4.4. We choose
to use the same shape for the (fp,q)m,n coefficients than for the RIC contribution. Note the
WAIC is estimated with the realization of mocks without the shuffling method i.e. without
the RIC contribution, so that the AIC and RIC contributions is added linearly in the total
window function. However, one can imagine, in the future, to model the two contributions
simultaneously.

It is impossible to correctly quantify the efficiency of the imaging systematic mitigation on
the power spectrum without taking into account the AIC correction. First, for the QSO and
LRG fiducial weights that use linear regression, and second, for the weights that use random
forest-based correction and either more features (for the LRGs) or a better Nside resolution
(for the QSOs). Following the same methodology as in section 4.4, the WAIC correction is
estimated from the first 30 EZmock realizations on which the weighting scheme is applied.

To test the impact of the AIC correction on parameter constraints, we fit the mean of 30
uncontaminated EZmock power spectra, each of them estimated with the imaging mitigation
weighting schemes to be tested. The best fits using (red points) or not (blue points) the
AIC correction in the parameter fit are given in figure 17. First, even if the contribution is
very small (∼ 0.4σ) for the linear-based weights, it exists, biasing the result, however, can
be corrected. In all configurations, taking into account the AIC contribution enables us to
recover the expected value of f loc

NL that is measured from the realization without the weighting
scheme applied (first column). Our correction is slightly worse for the random forest-based
weights but is enough to quantify the efficiency of weights.

In the following, we neglect the impact of the AIC on the covariance matrix since it is
too numerically expensive to run for the different wsys configuration as many power spectra.

Note that the angular integral constraint is purely geometrical and does not reflect the
efficiency of the imaging weights, meaning it can be reliably estimated using uncontaminated
simulations.

5.2.3 Total window function

In this section, we summarize the total window function given in eq. (5.1):

• W: standard window matrix that contains the wide-angle correction at first order as
described in section 4.1.

• WRIC: radial integral constraint contribution derived in section 4.4.

• WAIC: angular integral constraint contribution derived in section 5.2.2. This contribu-
tion depends on the choice of the imaging systematic weights.

The computation of the three contributions depends on the choice of the weighting scheme to
compute the power spectrum and is computed for the difference cases accordingly. In the
following, all the fits presented used this total window function.
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Figure 17. Best fit values of (f loc
NL, b1) without (blue) and with (red) the angular integral constraint

contribution into the window function for different imaging weights where we have substracted the
value from the EZmocks without imaging systematic weights. The values are given in table 15. The
systematic error contribution is discussed in section 6.3.
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Figure 18. Impact of the window function and the different integral constraints on the monopole
and the quadrupole for the LRG (left) and QSO (right) sample with the FKP weights. The theory
without any window is in dotted color, while the window convolved theory is in dashed color, the
window convolved theory corrected for the radial integral constraint is in full color, and the window
convolved theory corrected for both the radial integral constraint and the angular integral constraint
is in dotted black.

The impact of the window function and the different integral constraints are shown
in figure 18 for the fiducial choice used to analyse the LRG and QSO samples with FKP
weights. As mentioned in appendix F, we do not include the global integral contribution
that is negligible in our case. We choose in section 5.3.3, imaging systematic weights that
lead to a very tiny angular integral constraint contribution, such that the full color lines
and the dotted black ones are very similar.
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5.3 Validation with the blinded data

Following the analysis in [63] and supported by the results on EZmocks (section 5.2.1), our
fiducial analyse uses the Default (Linear 256) weights for the LRGs and the Default
(Linear 128) weights for the QSOs. In section 5.3.1, we check the internal consistency of
the default configurations for LRG and QSO. From this, we identifiy possible remaining
systematics that we explore through extended mitigation methods in section 5.3.2. Finally,
we check the robustness of the f loc

NL measurement from blinded data in section 5.3.3.

5.3.1 Search for residual systematics

First, we can assess the efficiency of the default configurations for imaging systematic
mitigation by examining the compatibility between the blinded large-scale modes in the
monopole, which are measured in different photometric regions and redshift bins. This
is possible because, as shown in [73], the blinding is not sensitive to the variation of the
shot noise in the sample, and therefore is the same across the different redshift bins and
photometric regions. Note also that RIC and AIC contributions to the window and the
window matrix itself are different for each sub-sample either for the redshift or photometric
region split, such that the very large scales should be different. Hence, the aim of this section
is not to quantify the agreement of the different sub-samples, but only to look for any spurious
excess of power at large scales resulting from a remaining systematic.

In the following, we measure LRG and QSO blinded power spectrum monopoles separately
in the different redshift bins detailed in section 5.1, as well as in the three different photometric
regions, North, South (NGC) and South (SGC). As an indication of the statistical significance
of the different photometric regions compared to the complete sample, the effective area
for the DESI DR1 LRGs and QSOs are (in %):

• North: (18, 20),

• South (NGC): (48, 44),

• South (SGC): (25, 27),

• DES: (9, 9).

The DES region is the smallest region, while South (NGC) is the most important one. These
differences in effective areas are visible in figure 1. To assess the statistical significance of
each redshift bin, one can look at the redshift distribution shown in figure 2. From this, we
note that DES has a very low statistical significance compared to others. Then, using the
fiducial imaging mitigation weighting schemes, these monopoles are shown in figure 19(a)
(resp. in figure 19(b)) for the LRGs (resp. for the QSOs).

For the LRGs (figure 19(a)), the shape of the monopole for the full sample (black line)
exhibits a unusual shape at very large scales (k ∼ 0.003 hMpc−1). We also note a relatively
strong discrepancy at these scales between the monopole from the different photometric
regions (bottom right panel). In addition, this discrepancy around these scales is the most
important for the middle redshift bins (top right panel) where South (SGC) region shows an
unexpected excess of power. This could be due to residual systematic contamination that
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(a) DESI DR1 LRG (blinded)
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Figure 19. Monopole of the power spectrum, measured with the fiducial wsys, of the blinded LRG
(top panels) and blinded QSO (bottom panels) samples for different redshift bins and the different
photometric regions (North in blue, South (NGC) in yellow, South (SGC) in green and the DES
region in red). For each redshift bin, the black dashed line is the monopole measured on the entire
footprint, while the solid black line is the monopole measured on the full redshift range and the entire
footprint. The bottom right plot in each set of panels gives the monopole from the full redshift range
on the different photometric regions. The gray region for each panel is the 1σ deviation from the
EZmocks with the full redshift range and the entire footprint. The vertical grey dashed lines depict
the scale range used for the fit.
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the current default weight do not remove. For the two other redshift bins (top and bottom
left panel), the monopoles agree with each other, and with the one from the entire footprint
(black dashed lines), such that no clear remaining systematics appear in these bins.

In section 5.3.2, we investigate different imaging weights to remove this excess of power.
However, we note that increasing the minimal scale from kmin = 0.003 hMpc−1 to kmin =
0.006 hMpc−1 helps to reduce the discrepancy between the different photometric regions in
figure 19(a) (middle gray dashed lines) such that it can be a conservative approach.

In contrast to the case of LRGs, the results for the QSO monopole show a remarkable
consistency between the different regions of the sky, for each redshift ranges (figure 19(b)). In
nearly each case shown in the figure, the results agree within 1σ of the monopole evaluated
from the full footprint. We observe no spurious signals at large scales. We do observe
some deviations in the highest redshift bins 2.1 < z < 3.1 (lower left panel) for the North
and the DES regions, however, this bin has much less statistical information than the full
range and these two regions have a much smaller footprint and completeness compared to
the South (NGC/SGC), such that the measurement is still compatible and does not raise
any significant concern.

5.3.2 Validation of the imaging systematic weights

In this section, we aim to validate the default weighting scheme as the best choice for
correcting imaging systematics for the QSOs and to improve the correction on the LRGs.
To quantitatively assess the full imaging systematics mitigation procedure, we compare the
measurement of f loc

NL for the different imaging weight configurations with the corresponding
AIC contribution that we compute for each different setups (see section 5.2.2), rather than
looking at the power spectrum level which do not inform us about due to the different
integral constraints.

The blinded f loc
NL constraints using the different imaging systematic weights are shown

in figure 21. To assess the importance of the imaging weights, we also include the best fit
when no imaging weights are used. Note that all fits, except when no weight is applied,
incorporate the AIC contribution into the window matrix, requiring the computation of this
contribution for each case. For the LRGs, we show the blinded constraints for two minimal
scale cuts: kmin = 0.003 hMpc−1 or kmin = 0.006 hMpc−1.

We explore whether new regression methods and/or new set of templates can solve the
remaining systematics highlighted in the previous subsection for the LRG sample. The relative
density of LRGs (0.6 < z < 0.8) in South (SGC) region as a function of the most relevant
observational features are displayed in figure 13. As mentioned in the introduction of this
section, the aim of the imaging systematic weights is to mitigate the trend in the black lines
by flattening them. We show the corrected densities using five different imaging mitigation
weighting schemes: Default (Linear 256) in blue (our default mitigation method), Default
(RF 256) in red, Same Feature Zbin (Linear 256) in green, With Des (Linear 256) in
pink, and 4 regions (Linear 256) in gold. While the first three configurations use the
entire SGC footprint (South (SGC) + DES) for the regression, the fourth one uses the entire
South footprint (South (NGC) + South (SGC)) and the last one only South (SGC). These
different setups were tested with uncontaminated EZmocks, where the details can be found
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in section 5.1.2. Here, we show only one subregion of one redshift bin for simplicity, but
the others have similar behavior.

Except for the RF weights, the four other (linear) corrections provide very similar results
and have only a slight impact on the relative density although we have increased the number
of templates or isolated the zone in the regression. The impact on the power spectrum of
the full sample is shown in figure 20 where only the RF weights appear to have a significant
impact. However, as explained in section 5.2, one needs to take into account the angular
integral constraint that is different for which weights. With this contribution the differences
between the RF and the other linear weights in figure 13 or in figure 20 are mostly due
to this contribution. Indeed, when fitting f loc

NL with the AIC contribution, we find roughly
the same amount of f loc

NL, see figure 21.
In particular, all the weights tested here provide only a minor correction and do not

eliminate the apparent excess power at large scales described in section 5.3.1 at very large
scales. We note also that the errors on f loc

NL obtained with kmin = 0.003 hMpc−1 for the
different weighting schemes are smaller than expected from the mean of the EZmocks. This
discrepancy may indicate the presence of a non-physical signal at these scales.

Hence, we resort to adopting a conservative approach to avoid any bias in our measurement
by increasing the minimal scale from kmin = 0.003 hMpc−1 to kmin = 0.006 hMpc−1. This
change improves the compatibility between the different regions and redshift bins and provides
compatible errors between blinded data and simulations. As shown in appendix B, at this
new kmin the impact of imaging systematic weight is rather small. Note that with this new
minimal scale cut in our LRG fit, the constraint on f loc

NL is degraded by about ∼ 30% for
the LRGs alone and ∼ 6% when the LRGs are combined with the QSOs compared to the
previous minimal scale cut.

Finally, the different configurations provide a consistent measurement of f loc
NL with

differences relative to the truth of ∆f loc
NL ∼ 4, and uncertainties σ(f loc

NL) ∼ 18, illustrating the
fact that the default configuration mitigates already all the effect that could be explained by
our set of templates. Since none of the new configuration improve the statistical uncertainty
of the measurement of f loc

NL, we decide to use Default (Linear 256) to be aligned with the
recommendation of [71] and to avoid strong dependence on the AIC correction (see table 14).
In this way we reduce our measurement’s sensitivity to a mismatch of the AIC estimation.

For the QSOs, we have conducted tests by using different sets of templates and/or
regression methods. We showed in figure 14 the uncorrected/corrected overdensities as a
function of different imaging features for QSOs (1.3 < z < 2.1) in South (NGC) for the
two configurations: Default (Linear 256) in blue (our default configuration) and Default
(RF 256) in red. The impact of these weights on the power spectrum is shown in figure 20,
while the measurement of f loc

NL for the different configurations (again using their respective
AIC corrections) is given in figure 21. The deficiency of power at large scales when using
Default (RF 256) is not a sign of a better correction since one needs to include the AIC
contribution, as explained in section 5.2. In this case, the use of Default (RF 256) leads to
a measurement similar to Default (Linear 256). We note that removing the PSF Depth
templates increases a lot the value of f loc

NL with the FKP weights. This is expected since
these templates explain, for instance, the lack of true QSO at low-z which motivated the
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Figure 20. Monopole of the power spectrum measured on the blinded data (LRG on the left and
QSO on the right) with FKP weights and different imaging systematic weights. The gray region is the
standard deviation from the 1000 EZmocks around the blue lines that are our fiducial choice. Since
we need do include the angular integral constraint in the model, the very large-scale modes cannot be
compared directly in this figure. The best fit values are displayed in figure 21.

additional redshift split at z = 1.3, see appendix G. However, not using these templates has
a very small impact for the measurement with OQE weights. That can be explained by the
fact that these templates describe a systematic at low-z that is under-weighted by the OQE
weights and therefore does not impact the measurement.

Moreover, we found a tension between OQE and FKP results that cannot be explained
by the small discrepancy found in section 4.3. Again, since OQE down-weights the low-z
QSO sample compared to FKP, the tension can be explained by the presence of an unresolved
systematic effect; we will address this point in the next section.

As for the LRGs, to reduce our sensitivity to the AIC correction, we decide to use
Default (Linear 256). This is different from [71] who use Default (RF 256).

5.3.3 Robustness of the measurement

Before measuring f loc
NL from the data without blinding, we assess the robustness of our analysis

by testing several variations of our fiducial choices i.e. by measuring f loc
NL:

• from NGC and SGC power spectra separately compared to the fiducial NGC+SGC
measurements,

• using the tracers in smaller redshift intervals,

• fitting the power spectra in different k-ranges either by increasing kmin from 0.003 (resp.
0.006) for QSOs (resp. for LRGs) to 0.008 hMpc−1 or increasing kmax from 0.08 to
0.1 hMpc−1.

Note that we occasionally observe biases on f loc
NL with the increasing kmax for the LRGs,

where we may need to include perturbative theory instead of the linear power spectrum as
well as non-linear galaxy bias model [117].
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Figure 21. Best fit values of (f loc
NL, b1) for the DR1 blinded LRGs with two values of kmin and

for the blinded QSOs using either FKP and OQE weights, for various configurations of imaging
weights. All the fits include the radial and angular integral constraint contributions. The errors and
the central values are from the minimization performed with iminuit and the covariance matrix is
the one from the 1000 EZmocks. Note that the errors obtained on f loc

NL for the blinded LRGs with
kmin = 0.003 hMpc−1 are too small compared to the expected on from the mean of EZmocks, see
table 4. The configuration chosen for the unblinded analysis is Default (Linear 256) for LRGs
and Default (Linear 128) for QSOs. The table reporting the numbers are given in table 16. The
systematic error contribution is discussed in section 6.3.

For each case, the window matrix W, the RIC contribution WRIC and the AIC contri-
bution WAIC are computed following the description given above in section 5.2.2. For the
separate NGC/SGC fits, the covariance is estimated with the EZmocks in the corresponding
photometric region. However, the covariance for the two redshift sub-samples is approximated
by the full sample covariance matrix, re-scaled by the ratio of the full and sub-sample effective
volumes. The effective volume is computed with

Veff =
∫ (

n (z) P0
1 + n (z) P0

)2
dV (z) , (5.2)

where for simplicity we use a fixed value for P (k, z) = P0 which we evaluate at the effective
redshift and at the turnover scale of the power spectrum.34 It is computed at the effective
redshift of the sample and at the turnover of the power spectrum.

34Here, we use P0 = 5 · 104 h−3Mpc3 for LRGs and 3 · 104 for the QSOs. Note these values are not the
same as in [32].
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Veff [(Gpc/h)3] zeff (FKP) zeff (OQE - ℓ = 0)

LRG 0.4 < z < 1.1 6.5 0.733 —
0.4 < z < 0.8 3.1 0.601 —
0.6 < z < 1.1 5.3 0.831 —

QSO 0.8 < z < 3.1 8.3 1.651 2.082
0.8 < z < 2.1 6.4 1.441 1.691
1.6 < z < 3.1 4.6 2.087 2.236

Table 7. Effective volume computed with eq. (5.2) and effective redshift with eq. (3.17) for the
sub-sample of the LRGs and QSOs. For the OQE weights, we give only, for simplicity, the effective
redshift for the monopole and p = 1.6.

The effective volume of the different sub-samples is given in table 7. Hence, for the LRGs
(0.4 < z < 0.8) (resp. 0.6 < z < 1.1), the full covariance matrix is rescaled by ∼ 2.1 (resp.
∼ 1.2). For the QSOs (0.8 < z < 2.1) (resp. 1.6 < z < 3.1), the full covariance matrix is
rescaled by ∼ 1.3 (resp. ∼ 1.8). We also need to compute the specific effective redshift for these
sub-samples; they are given in table 7. The result of the different posteriors over the f loc

NL − b1
parameter space are displayed in figure 22 (we give the values in the appendix, see table 17).

For the LRGs, we conducted the different robustness tests for the full sample (0.4 <

z < 1.1) in figure 22(a). We find that the posterior is bimodal for the low-z sub-sample
(0.4 < z < 0.8) compared to the high-z sample posterior which is Gaussian. This is not
expected based on results from simulations. Such discrepancy between the low-z and high-z
samples is most likely due to residual systematics in the mitigation of imagining systematics.
In addition, we note that the result does not appear to be robust when decreasing kmin.

Alternatively, we can focus on the high-z sub-sample, whose robustness tests are repeated
and displayed in figure 22(c). When repeating these tests, the fits are more robust when
varying the fiducial configuration than for the full sample. Since the effective redshift of the
high-z sub-sample is higher, the linear bias is higher such that the constraining power on f loc

NL
remain relatively unchanged, even if the covariance matrix is properly rescaled by the ratio
of the two effective volumes. Accordingly, one can restrict our baseline analysis to the high-z
sub-sample without degrading our measurement of f loc

NL, and in what follows, this is what
we do to avoid any potential bias that could come from the low-z sub-sample.

For the QSOs using FKP weights (see figure 22(b)), we find a good consistency between
the NGC and SGC constraints, emphasising the robustness of our mitigation of imaging
systematics in the different photometric regions. Moreover, the kmin and kmax robustness
tests are fairly compatible, as our model of linear bias is consistent at these scales for QSOs.
However, the low-z (0.8 < z < 2.1) sub-sample and the high-z (0.8 < z < 3.1) sub-sample
prefer two different values of f loc

NL, even though they are statistically compatible, while the
full sample prefers a value between the two. Since imaging systematics only add power, this
slight tension on f loc

NL may indicate a residual unknown systematic in the low-z sample.
Fortunately, we can remove this potential systematic at low-z thanks to the use of the

OQE weights that drastically under-weight the low-z object, see figure 3. The robustness
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LRG QSO

weighting scheme FKP OQE
z range 0.6− 1.1 0.8− 3.1
zeff 0.831 2.082
kmin [hMpc−1] 0.006 0.003
kmax [hMpc−1] 0.08 0.08
wsys (section 5.1.1) Default (Linear 256) Default (Linear 128)

Table 8. Summary of the fiducial choices that we used to fit the unblinded LRG and QSO sample.

tests for the OQE weights, see figure 22(d), show excellent agreement even better than when
we use the FKP weights, except for the low-z sub-sample part that is now clearly biased. We
note also that, the difference between f loc

NL from FKP or OQE measurement is much more
in agreement when considering only the high-z sub-sample: ∆f loc

NL = 11 that is statistically
acceptable regarding35 figure 11, compared to ∆f loc

NL = 37 when comparing the full sample.
For these reasons, we consider OQE weights and the Default (Linear 128) mitigation
option to analyse QSO unblinded data.

Moreover, for the QSO sample, we obtain in figure 22 a lower bias than expected. We
measured the linear bias as in appendix C from the 2-point correlation function, and we
also obtained a lower bias that is compatible to the one measured here. The problem seems
to come from the blinded data itself, and we do not investigate this further since the bias
obtained with the unblinded data is compatible with the one from eBOSS.

Finally, the decisions took in this section are based on the robustness tests from the
blinded data, such that are insensitive to any confirmation bias, and can be used as our
fiducial confirmation in the following.

6 Primordial non-Gaussianity measurement

The model validation done in section 4 and the data analysis performed with the blinding
scheme in section 5 lead to no relevant systematic bias in our methodology, see section 6.3
for the quantification of the systematic errors. Therefore, we can measure confidently f loc

NL
from the unblinded data of the DESI DR1 LRG and QSO samples. We remind the reader
that the fiducial choices for our analysis are given in table 8.

Before we proceed, we draw the reader attention to the fact that several versions of the
clustering catalogues were built as described in [71]. The last version with the blinding is v1.2,
and this is the version used for all the tests in section 5. Here, for the unblinded measurement,
we are using v1.5, the last version available, and the one used for RSD measurement in [34].
The differences between the versions are described in appendix B of [71], and we note no
relevant change for our analysis between the unblind catalogues from v1.2 and v1.5.

35The high-z sub-sample has a higher effective redshift and so a higher linear bias, such that the dispersion
in figure 11 is smaller for this specific configuration.
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Figure 22. Posteriors in the (f loc
NL, b1) plane for the blind analysis applied to real data with different

modifications around our fiducial choices. We show QSO with FKP (top right) and with OQE (bottom
right), as well as the LRG (top left) and the high-z (0.6 < z < 1.1) LRG (bottom left). In each
panel, the fiducial choice is displayed in black, while the redshift sub-samples are with dashed lines,
and in full colors the measurement using only a part of the footprint or with the modification of the
fitting ranges. For the LRGs, the posteriors for the different redshift range are the same in (a) and
(c). The parameters sn,0, Σs are free during the MCMC but are not shown for better visibility. The
corresponding MAP values are given in table 17.

– 46 –



J
C
A
P
0
6
(
2
0
2
5
)
0
2
9

6.1 Consistency validation with the unblinded data

We perform the same tests as in section 5.3.3 but with the unblinded data, to check the
internal consistency of the data. The best fit values are given in table 9, and the associated
posteriors for (b1, f loc

NL) are given in figure 23 for the different samples and weighting scheme.
Similar to our conclusions raised with blinded measurements, there are no major differ-

ences for the QSO case displayed in figure 23(b), and the discrepancy between the low-z and
high-z sample still exists. However, we note one unexpected minor change: the linear bias
measured in the blinded catalogues is lower than that measured in the unblinded ones. Note
that the blinding method described [73] does not create a such large bias modification, and
we do not know what is the reason of this difference. This has a direct consequence on the
error bars that we have in table 9 compared to table 17 as the errors are smaller.

We observe that the high-redshift QSO sample provides an unexpectedly stronger con-
straint on f loc

NL relative to the use of the full sample with σ(f loc
NL) = 8.4 instead of σ(f loc

NL) = 11.5,
and despite the use of the OQE weights. This result is consistent with what is seen in the
blinded data (see table 9), although the errors were larger due to a lower-than-expected bias
recovered in the blinded catalog. For this high-z sample, the expected constraint from the
mean of EZmocks is σ(f loc

NL) = 10.5 and from individual fits, 8.4 is compatible. However,
the aim of the OQE weights is to provide the optimal measurement on f loc

NL by introducing
a redshift dependence in the FKP weights and under-weight the subpart of the sample
that does not really matter, such that they give the best constraints with the full sample
compare to a subpart of it. Given this, we do not consider the high-redshift sample for
our final constraint on f loc

NL.
For the LRGs, the high-z sample displayed in figure 23(a) is still robust with respect

to the different choice of analysis, except with the low-z part of the sample. Moreover, the
1D posterior of the low-z LRG sample in f loc

NL has a very non-Gaussian shape, and this may
be responsible for the wide f loc

NL posterior of the full LRG sample shown in red dashed in
figure 23(a) which displays larger errors than the high-z sample alone. This unexpected
mismatch between b1 and f loc

NL constraints between the low-z and high-z samples validates
our choice to use the high-z sample instead of the full sample.

The unblinded power spectrum for the LRG high-z and the QSO (OQE), with their best
fit that are given in table 10 (first block), are displayed in figure 24. The gray regions around
the best fit model (black lines) are computed as the standard deviation of 1000 realizations
of the theory generated with the posteriors from the chains partially shown in figure 23 and
centered around the best fit values given in table 9. This region illustrates the 1σ fluctuation
where the model can be, although in this case, each bin k is not independent.

Hence, the choice of the analysis done in section 5.3.3 remains viable, with the unblinded
data requiring no further investigation.

6.2 Constraints on PNG with DESI DR1

The f loc
NL constraints from the LRG and QSO samples:

f loc
NL = 6+22

−18 (68%) [LRG] and f loc
NL = −2+11

−10 (68%) [QSO] (6.1)
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(a) Unblinded LRG (FKP) high-z.
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(b) Unblinded QSO (OQE).

Figure 23. Analogous of figure 22 but using the unblinded data. The fiducial choices for our analysis,
see table 8, are displayed in black. The MAP values are given in table 9. Note that the linear bias b1
is higher with the unblinded data.

f loc
NL b1 sn,0 Σs χ2

red

LRG (FKP) high-z fiducial 6+22
−18 2.166+0.045

−0.045 −0.024+0.074
−0.075 3.70+0.68

−0.53 1.24

(0.6 < z < 1.1) NGC 19+39
−25 2.132+0.062

−0.071 0.02+0.107
−0.100 3.84+0.96

−0.57 0.93

SGC 4+25
−26 2.132+0.062

−0.069 0.05+0.11
−0.11 3.1+1.55

−0.90 1.34

(0.4 < z < 0.8) 46+45
−19 1.936+0.044

−0.061 0.014+0.105
−0.088 3.14+1.23

−0.61 0.62

(0.4 < z < 1.1) −25+27
−34 2.124+0.047

−0.053 −0.101+0.081
−0.076 3.86+0.62

−0.42 1.27

kmin = 0.008 hMpc−1 9+25
−22 2.161+0.045

−0.052 −0.017+0.084
−0.074 3.69+0.68

−0.54 1.27

kmax = 0.1 hMpc−1 25+19
−15 2.092+0.024

−0.024 0.100+0.032
−0.029 2.65+0.53

−0.36 1.24

QSO (OQE) fiducial −2+11
−10 3.048+0.064

−0.070 −0.039+0.076
−0.068 0.0+0.43

−1.41 1.18

(0.8 < z < 3.1) NGC 2+14
−14 2.996+0.086

−0.082 −0.007+0.095
−0.086 0.0+0.49

−1.62 1.19

SGC −12+15
−18 3.09+0.123

−0.100 −0.02+0.12
−0.12 3.0+1.5

−1.7 1.26

(0.8 < z < 2.1) 37+33
−18 2.353+0.067

−0.084 0.087+0.087
−0.079 0.0+0.43

−1.44 0.61

(1.6 < z < 3.1) −2.3+8.4
−8.4 3.236+0.088

−0.079 −0.055+0.090
−0.093 4.38+1.18

−0.88 0.75

kmin = 0.008 hMpc−1 −5+14
−18 3.060+0.086

−0.080 −0.048+0.081
−0.085 0.7+0.45

−1.44 1.22

kmax = 0.1 hMpc−1 3+11
−10 2.987+0.048

−0.050 0.039+0.043
−0.041 2.17+1.20

−0.73 1.14

Table 9. Best-fit results with the unblinded LRGs and QSOs for different variations of our fiducial
analysis. The central values are best fit values from the iminuit minimization while the errors are
the 1σ credible intervals from the chains. The window functions used during these fits contain both
RIC and AIC contributions and were recomputed for the different configurations when it was needed.
We use kmin = 0.006 hMpc−1 for the LRGs and 0.003 hMpc−1 for the QSOs. The posteriors are
displayed in figure 23.

– 48 –



J
C
A
P
0
6
(
2
0
2
5
)
0
2
9

104

P
`
(k

)
[(

M
p

c/
h

)3
]

best fit
±1σ

best fit

` = 0

` = 2

−2.5

0.0

2.5

∆
P

0
/
σ
P

0

10−2

k [h/Mpc]

−2.5

0.0

2.5

∆
P

2
/
σ
P

2

(a) LRG (FKP) high-z.

104

P
`
(k

)
[(

M
p

c/
h

)3
]

best fit
±1σ

best fit

` = 0

` = 2

−2.5

0.0

2.5

∆
P

0
/
σ
P

0

10−2

k [h/Mpc]

−2.5

0.0

2.5

∆
P

2
/
σ
P

2

(b) QSO (OQE).

Figure 24. Monopole (blue) and quadrupole (red) of the unblinded DESI DR1 LRG high-z (left)
and QSO (right) with the best fit model (black). The errors are the standard deviation from the
DR1 power-spectrum covariance matrix. The two lower panels give the relative difference normalised
to the errors between the data and the best fit model. Gray regions around the best fit are the 1σ

fluctuation of the model computed as the standard deviation of 1000 realizations of theory generated
using the posteriors of the parameters.

are in good agreement such that one can combine them to improve the constraint on f loc
NL.36

The best fit measurement and the posterior for the combination37 are shown in table 10
(second block) and in figure 25 in brown (resp. in purple) for LRG high-z (FKP) + QSO (FKP)
(resp. for LRG high-z (FKP) + QSO(OQE)), as well as the summary of the independent
measurements. Combining these two tracers leads to

f loc
NL = −3.6+9.0

−9.1 (68%) [LRG + QSO] , (6.2)

and improves the constraint by a factor of 10% compared to QSO (OQE) alone. Moreover,
we see that our combined results are compatible at the < 1σ level with f loc

NL measurement
from CMB data by Planck in 2018 represented by the gray shaded region in figure 25, given
by f loc

NL = −0.9 ± 5.1 at 68% CL [7].
In this analysis, we have chosen a recent merger model for the QSO leading to p = 1.6

since we do not have precise knowledge of bΦ, see [12, 52]. Adopting a more aggressive
36As described in [53], a stellar mass selected sample leads to p = 0.55, and thus, to f loc

NL = 2+15
−14 (68%) from

the LRG sample.
37Note that we combine the LRG high-z sample even if it is not mentioned in the labels of figure 25 and in

table 10.
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approach by setting p = 1.0 leads to

f loc
NL = 1.7+8.4

−7.7 (68%) [LRG (p = 1.0) + QSO (p = 1.0)] (6.3)

when combining the LRG and the QSO sample, and reduces the f loc
NL error bars by a factor

of 11%. The gain for QSO (OQE) alone is about 10% compared to using p = 1.6, as shown
in the corresponding row of table 10. For the case of p = 1.0, we recomputed the power
spectra with the OQE weights (eq. (3.16)), as well as the corresponding covariance matrix
and the window matrix and its integral constraint contributions.

So far, we have built the bias model for bΦ in our fitting procedure eq. (2.6), linked to
the linear bias b1. Without further information about bΦ, one can only measure directly the
product bΦ × f loc

NL in eq. (2.4), jointly with the linear bias b1, which leads to

bΦf loc
NL = 22+92

−63 (68%) [LRG] and bΦf loc
NL = −13+56

−56 (68%) [QSO]. (6.4)

The constraints with DESI DR1 data are given in the last row of table 10, but the uncertainties
remain too large to provide meaningful insights in the search for PNGs. Note that as already
shown with the EZmocks (see table 4), the errors on the recovered parameters for the OQE
weights are equal than the ones obtained with FKP weights, since in the case of the OQE
weighting scheme the higher effective redshift leads to a higher value of bΦ, thus increasing
the errors on the combined parameter bΦ × f loc

NL.
Since our combined constraints are compatible with f loc

NL = 0 at the < 1σ level, we can
proceed to a sanity check by comparing the unblinded errors to the ones obtained with
EZmocks, where f loc

NL = 0 was used (see section 4.2). We note that the errors derived from
the fit with the unblinded QSOs are remarkably in agreement with the ones given in table 4
that we found during the fit of the mean on 1000 EZmocks. This comparison highlights
that, at the scales over which we fit the data, our pipeline provides a fair description of the
different statistical noises and accounts for the different systematic effects that appear in
the real data. The LRG unblinded errors are larger than the EZmocks ones as expected,
because we are considering here only the high-z part of the sample. After re-normalising
the EZmocks errors to the effective linear bias for the high-z sample, the EZmocks and
unblinded errors are compatible.

6.3 Evaluation of systematic errors

The errors presented in this analysis exclude any contribution from systematic errors. In
this section, we provide an estimate of these errors. They are summed up in table 11 where
they are given as a percentage of the statistical error.

First, the geometrical description provided in section 4.2 recovers the parameters of
interest within ∼ 0.3σ in the worst case, see table 4. Then, the systematic errors from the
RIC contribution (table 6) can be estimated by comparing the first and the last column of
table 6 and can lead up to 0.2σ discrepancy. Similarly, for the AIC contribution (table 15),
the systematic error is about 0.06σ, see table 6, so that one can neglect these systematics
that come from our theoretical model. Note that in the case of the LRG, the systematic is
estimated from the fit up to kmin = 0.006hMpc−1, while the systematics from our model is
for kmin = 0.003hMpc−1, such that they should be even smaller for this new kmin.
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Individual (f loc
NL) f loc

NL b1 sn,0 Σs

LRG (FKP) high-z 6+22
−18 2.166+0.045

−0.045 −0.024+0.074
−0.075 3.70+0.68

−0.53

QSO (OQE) −2+11
−10 3.048+0.064

−0.070 −0.039+0.076
−0.068 0.0+0.43

−1.41

QSO (OQE) (p = 1.0) 3.5+10.7
−7.4 2.792+0.059

−0.064 −0.038+0.064
−0.067 1.8+0.74

−1.41

Joint (f loc
NL) f loc

NL b1 sn,0 Σs

LRG QSO LRG QSO LRG QSO

LRG + QSO (OQE) −3.6+9.0
−9.1 2.181+0.035

−0.033 3.081+0.066
−0.070 −0.051+0.063

−0.062 −0.063+0.072
−0.078 3.64+0.67

−0.47 0.0+0.41
−1.36

LRG + QSO (OQE) (p = 1.0) 1.7+8.4
−7.7 2.174+0.035

−0.032 2.816+0.065
−0.059 −0.042+0.063

−0.063 −0.054+0.063
−0.073 3.64+0.62

−0.52 1.6+0.60
−1.45

Individual (bΦf loc
NL) bΦf loc

NL b1 sn,0 Σs

LRG (FKP) high-z 22+92
−63 2.166+0.045

−0.046 −0.024+0.082
−0.068 3.70+0.69

−0.49

QSO (OQE) −13+56
−56 3.036+0.072

−0.066 −0.002+0.070
−0.072 2.7+1.36

−0.89

QSO (OQE) (p = 1.0) 12+54
−47 2.800+0.058

−0.058 −0.039+0.058
−0.064 2.3+1.2

−1.0

Table 10. Our final constraints on PNG, obtained with unblinded DR1 data. The central values are
the best fit value from the iminuit minimization while the errors are the 1σ credible interval from the
chains. We use kmin = 0.006 hMpc−1 for the LRGs and 0.003 hMpc−1 for the QSOs. The posteriors
are displayed in figure 25.

LRG QSO

Geometry 34% 26%
RIC 6% 20%
AIC 6% 6%
wsys 22% 38%

Table 11. Summary of the systematic error estimates in our analysis. All are given as a percentage
of the associated statistical errors.

Regarding the efficiency of the imaging weights, we adopted conservative cuts to guard
against any residual effects though it weakens our final constraints. With the upcoming data
releases and the reduction of the statistical uncertainty on f loc

NL, one will need to carefully
assess the systematics in the future analysis. However, we can estimate it by looking the
fluctuation in f loc

NL as a function of the different imaging weights in table 16, the imaging
systematics contribute to 0.22σ for the LRGs and 0.38σ for the QSOs. Hence, the imaging
errors are still the most important source of the systematics in our analysis.

Finally, assuming all these contributions independent, one can add them in quadrature
such that

σtot =
√

σ2
stat + σ2

geo. + σ2
RIC + σ2

AIC + σ2
wsys . (6.5)

Hence, in the worst case (table 11), the total systematic error represents an increase of
8% for LRGs and 12% for QSOs over the statistical errors alone. We neglect them in this
analysis, and further work may be required as the data sample size increases with the next
release of DESI data.
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Figure 25. Posteriors in the (b1, f loc
NL) plane of our final constraints on PNG, obtained with unblinded

DR1 LRG and QSO samples. The gray band is the constraint from Planck 2018. The MAP values
are given in table 10. The gray dotted lines are the values of b1 for LRG and QSO samples measured
from the monopole of the 2-point correlation function, see appendix C. We do not consider the
cross-covariance between the LRGs and QSOs.

7 Conclusions

In this work, we investigate the large-scale modes of the power spectrum from the largest
LRG and QSO sample from the first DESI data release. We then proceed to measure the
scale-dependent bias with DESI the luminous red galaxies and quasars, and obtain the first
constraints on the PNG parameter f loc

NL from DESI spectroscopic data.
We validate the power spectrum description that handles the geometrical effects used in

DESI, and we develop an innovative method to include the radial integral constraint (RIC)
and the angular integral constraint (AIC) contributions into the power spectrum window
matrix formalism. RIC appears due to the use of the shuffling method that consists of
drawing the randoms redshifts from the data ones, while AIC stems from the geometrical
impact inherent to the regression method used to correct for imaging systematics. This is
the first time that both of these two contributions are handled in a multiplicative way for the
analysis of the large scale modes of the power spectrum. In addition, we show that using
the optimal quadratic weights as in [14] improves our constraint on f loc

NL and does not bias
the signal if the linear bias is sufficiently well constrained.
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We re-weight the QSO and LRG angular distribution to mitigate the dependence of the
target selection on the different imaging properties of the DESI Legacy Imaging Surveys. The
bias introduced by these weights, along with the imaging systematics themselves, was the most
important systematic effect in the previous measurement using large-scale structures [8, 17].
In this paper, our incorporation of the angular integral constraint (AIC) in the power spectrum
window matrix enables us to not bias the measurement by using of standard imaging weights
wsys. In addition, correctly handling this AIC contribution allows us to properly test the
different imaging weights by looking at the impact of each weight on f loc

NL.
Our f loc

NL measurement is carried out, for the first time, with a fully blinded procedure
that enables us to make the fiducial choices of our analysis without any confirmation bias.
Specifically, we decide to use the QSOs (0.8 < z < 3.1) with the optimal quadratic weights
from kmin = 0.003 hMpc−1 to kmax = 0.08 hMpc−1, and the high-z part of the LRG sample
(0.6 < z < 1.1) with FKP weights from kmin = 0.006 hMpc−1 to kmax = 0.08 hMpc−1.

Combining both the DESI DR1 LRG and QSO samples, we find

f loc
NL =

−3.6+9.0
−9.1 (68%) with pQSO = 1.6

1.7+8.4
−7.7 (68%) with pQSO = 1.0

(7.1)

leading to the tightest constraint to date using the large-scale structure and improving by
a factor ∼ 2.3 the previous one performed with the latest data release of eBOSS: −23 <

f loc
NL < 21 [8, 14]. Our new measurement, despite the significant reduction in error bars, is

in agreement with the one from Planck 2018: f loc
NL = −0.9± 5.1 at 68% confidence [7]. For

each tracer independently, we obtain

f loc
NL =


6+22

−18 (68%) LRG only

−2+11
−10 (68%) QSO only with pQSO = 1.6

3.5+10.7
−7.4 (68%) QSO only with pQSO = 1.0

. (7.2)

This analysis could benefit from several improvements that we plan to implement in future
analyses of DESI data. First, residual systematics in the LRG sample prevent us from using
the full redshift sample and using larger scales up to kmin = 0.003 hMpc−1. The upcoming
DESI DR2 data with a larger LRG sample should help us investigate these systematics and
correct them. Furthermore, to better handle imaging systematics, we plan to enhance our
imaging mitigation method and allow their redshift dependence within individual bins. Such
improvements should be feasible in the future, in the forthcoming DESI data releases.

For the DESI Y5 data, we forecast that with our current maximal scale kmin =
0.003 hMpc−1 and by combining the full LRG and QSO samples, we should achieve
σ(f loc

NL) ∼ 6.5. Moreover, the geometrical model outlined here can be extended to larger scales,
reaching kmin = 0.001 hMpc−1. We may need some additional validations for the window
matrix computation and for the correct incorporation of the different integral constraint
contributions into the window matrix. This larger maximal scale is expected to yield a 20–25%
improvement in f loc

NL constraints, resulting in σ(f loc
NL) ∼ 5. Thus, DESI data in the near future

could approach the constraining power [27, 118] of the 2018 Planck CMB results [35].
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Data availability. Data from the plots in this paper are available on Zenodo38 as part of
DESI’s Data Management Plan. The data used in this analysis will be made public along
with Data Release 1 of DESI planed in 2025.39
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A Impact of the fiber assignment

As described in [24], the DESI survey follows a complex strategy with a limited amount of
available fibers per observation, resulting in the fiber assignment step that could impact
our cosmological measurement. The lack of available fibers has two effects: reducing the
completeness of the observation (too many targets compared to the number of fibers) and
reducing the number of closed pairs that could be observed (objects are too close to be
reached by different fibers within the same observation). The first one is corrected by the
completeness weights, wcomp, as described in [63], while the second one, known as the fiber
assignment impact at small scales, can be modeled following [119].

Figure 26 shows the impact of the fiber assignment on the monopole of the power
spectrum computed from mocks that describe the DR1 LRG sample. These monopoles
are the mean over 25 realizations. The mocks are the AbacusSummit mocks described in
section 11 of [71]. The blue lines are the monopoles when no fiber assignment is applied,
known as complete mocks, while the green one is when the fiber assignment is applied and no
weights are used to correct for its impact. However, once the completeness of the observation
is corrected by wcomp, the large-scale modes of the power spectrum are correctly recovered
up to k ∼ 0.1 hMpc−1. In addition, in our case, Σs in the model eq. (2.4) can capture some

38https://doi.org/10.5281/zenodo.15185403.
39Details can be found here: https://data.desi.lbl.gov/doc/releases/.
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Figure 26. Impact of the DESI fiber assignment on the monopoles of mocks mimicking the DR1
LRG sample. The monopoles are the mean over 25 realizations. Blue lines are for the mocks without
fiber assignment applied, reds are mocks with the fiber assignment applied and corrected by the
completeness weights, while the green one is for mocks with fiber assignment applied but without
the correction for completeness of the observations. For large scale study, the impact of the fiber
assignment is therefore negligible.

residual effect if needed. Hence, any analysis using only large-scale modes of the power
spectrum can neglect the fiber assignment impact if they correct for the completeness of
the observation with wcomp.

Note that quasars have higher priority during the observation and are less dense, such
that the impact of the fiber assignment is lower than for the LRGs. Naturally, we expect
this effect to become less significant as the DESI survey continues to observe the sky and
increases its completeness.

B Impact of imaging systematic weights

Despite the low stellar and extra-galactic contamination of the DESI galaxy clustering sample
thanks to the spectroscopy, the fluctuations imprinted into the target density still play a
major role at the large scales of the power spectrum.

Figure 27 shows the monopole for the different dark time tracers of DESI, namely the
Luminous Red Galaxies (LRG) with 0.4 < z < 1.1 [54], Emission Line Galaxies (ELG) with
0.8 < z < 1.6 [67] and the Quasars (QSO) with 0.8 < z < 3.1 [55], with and without the
imaging systematic weights that mitigate these spurious fluctuations.

The value of f loc
NL measured without applying the imaging systematic weights for LRGs

and QSOs was given in table 16. Recall that, due to a residual systematic, which we are not
able to correct in the LRG sample, we had to increased kmin from 0.003 to 0.006 hMpc−1

such that the imaging systematic weights have no impact on the monopole and on the
f loc

NL measurement.
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Figure 27. Monopoles of the DESI DR1 LRG, ELG, and QSO samples with the blinding scheme
applied. Solid lines are with the imaging systematic weights, while the dotted ones are without.

C Linear bias for DESI LRGs and QSOs

The optimal weighting scheme for measuring f loc
NL, detailed in section 3.2.2, assumes a redshift

evolution of the linear bias b1. Hence, we provide here the measurements of the linear bias of
the LRGs and QSOs in several redshift bins from the unblind DESI DR1 data.

The linear bias is measured in the monopole of the 2-point correlation function ξ0 using
only the scales: 30 h−1Mpc < s < 80 h−1Mpc, so that one can only consider the simple
Kaiser formula to take into account the redshift space distortion

ξ0(s) =
(

b2
1 + 2

3b1f + 1
5f2

)
ξlin(s), (C.1)

where f is the growth rate and ξlin is the linear 2-points correlation function obtained from
Class. Both of these quantities are evaluated assuming Planck 2018 cosmology [35] and at
an effective redshift that is computed as in eq. (3.17). The covariance matrix that we use
is estimated using the jackknife method with 128 sub-samples.

The linear bias for the LRGs and QSOs is given in table 12, while these measurements
are displayed in figure 28. We propose a function to describe the redshift evolution and
measure its parameters from the data; specifically,

b1(z) = a(1 + z)2 + b, (C.2)

with a, b = 0.209±0.025, 1.415±0.076 for the DESI DR1 LRGs and a, b = 0.237±0.010, 0.771±
0.070 for the DESI DR1 QSOs.

Note that we can transform eq. (C.2) to match the function used in [120]:

b1(z) = aL

[
(1 + z)2 − 6.565

]
+ bL, (C.3)

where aL, bL = 0.237± 0.010, 2.328± 0.026 for the DESI DR1 QSOs. For comparison, [120]
found for the BOSS/eBOSS QSO sample a slightly higher bias at high redshift described
by aL, bL = 0.278 ± 0.018, 2.393 ± 0.042.
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Tracer zmin–zmax zeff b1

LRG 0.4–0.5 0.45 1.834± 0.036
0.5–0.6 0.55 1.900± 0.038
0.6–0.7 0.65 2.029± 0.037
0.7–08 0.75 2.053± 0.033
0.8–0.9 0.84 2.153± 0.038
0.9–1.0 0.94 2.217± 0.040
1.0–1.1 1.03 2.167± 0.069

QSO 0.8–1.0 0.90 1.579± 0.057
1.0–1.2 1.10 1.851± 0.067
1.2–1.4 1.29 2.116± 0.062
1.4–1.6 1.49 2.263± 0.064
1.6–1.8 1.69 2.355± 0.084
1.8–2.0 1.89 2.713± 0.078
2.0–2.2 2.09 3.070± 0.097
2.2–2.6 2.36 3.551± 0.098
2.6–3.0 2.76 4.137± 0.156
3.0–3.5 3.15 4.350± 0.418

Table 12. Measurements of the linear bias b1 of the LRGs and QSOs from the unblind DESI DR1 data.

0.5 1.0 1.5 2.0 2.5 3.0

z

2

3

4

5

b 1

LRG

QSO

Figure 28. Redshift evolution of the linear bias b1 as measured in the unblind DESI DR1 LRGs (blue)
and QSOs (red). Black dashed lines are the best fit of eq. (C.2) to these points, while the gray dotted line
is the redshift evolution measured from the BOSS and eBOSS QSO sample [120]. Gray regions around
the best fit are the 1σ fluctuation of the model computed as the standard deviation of 1000 theory
generated assuming Gaussian posteriors of the parameters with covariance matrix from the best fit.

D Impact of photometric region normalization on the power spectrum

As described in section 3.2.4, one need to normalize South (NGC) to North when we compute
the power spectrum on all the NGC as well as South (SGC) to the DES region for the full
SGC part of the footprint. The normalization means that α in eq. (3.5) is set to match
the corresponding data separately in each region.
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Figure 29. Comparison of the monopole of the blinded QSO sample computed either on South (SGC)
(blue), DES (red), South (SGC) + DES without the normalization (yellow) or with the normalization
given in eq. (3.18) (green).

with ℓ = 2 without ℓ = 2
f loc

NL b1 f loc
NL b1

LRG Y1 (FKP) 5+18
−11 2.065+0.032

−0.037 7+18
−12 2.032+0.043

−0.044

LRG Y5 (FKP) 3.8+10.7
−7.5 2.065+0.021

−0.024 2.5+9.8
−8.9 2.044+0.043

−0.044

QSO Y1 (FKP) 3.0+18
−13 2.440+0.050

−0.046 2+18
−14 2.427+0.060

−0.069

QSO Y5 (FKP) 4.6+9.9
−9.6 2.435+0.030

−0.033 3+10.3
−10.0 2.417+0.050

−0.051

QSO Y1 (OQE) −4+13
−10 3.088+0.064

−0.080 1+13
−10 3.009+0.080

−0.088

QSO Y5 (OQE) −1.4+7.8
−7.8 3.083+0.045

−0.049 1.8+8.7
−7.4 2.994+0.071

−0.062

Table 13. Result of the fit using the mean of the power spectrum over 1000 realizations including
or not the quadrupole (ℓ = 2) with the corresponding covariance matrix for the LRGs and QSOs.
Central values and the errors are both from the MCMC chains.

In particular, one needs to perform this renormalization between the South (SGC) and
DES even though the two regions are from the same photometric survey. Figure 29 shows
the monopole for the blinded QSO sample without the normalization factor (yellow) that
exhibits an excess of power at large scales compared with the monopole computed to the
normalization factor given in eq. (3.18) (green). Not accounting for this normalization would
bias the measurement of primordial non-Gaussianity.

E Impact of quadrupole on PNG measurement

Table 13 shows the gain of including the quadrupole (ℓ = 2) during the fit. It leads only
to few percent of improvement and can be neglected in this entire analysis, simplifying
a lot the measurement with the OQE weights. However, for completeness, we include it
during all the analysis.

– 58 –



J
C
A
P
0
6
(
2
0
2
5
)
0
2
9

10−4 10−3 10−2 10−1

k [hMpc−1]

104

105
P
`
=

0
(k

)
[h
−

3
M

p
c3

]
P theo
`=0 (k)

P obs
`=0(k)

(a) LRG (0.4 < z < 1.1) with FKP.

10−4 10−3 10−2 10−1

k [hMpc−1]

104

105

P
`
=

0
(k

)
[h
−

3
M

p
c3

]

f loc
NL :

0

10

20

−10

(b) QSO (0.8 < z < 3.1) with FKP.

Figure 30. Monopole of the power spectrum for LRGs (left) and QSOs (right) for several values of
f loc

NL at very large-scales. The convolved (resp. unconvolved) monopole is shown in solid (resp. dashed)
lines. The value of Pℓ=0(k → 0) depends of f loc

NL.

F Global Integral Constraint

As explained in [96, 121–124], the real mean density of the tracer in the Universe, used in
the FKP field (eq. (3.5)), is unknown and has to be estimated from our finite survey volume.
Such an estimation suppresses all the fluctuations with scales larger than the survey size
such P (k) −→

k→0
0. This effect is known as the global integral constraint (GIC) and can be

taken into account in the convolved prediction (eq. (4.8)):(
P obs

ℓ

)
i

= (Wℓℓ′)ij (Pℓ′)j −
(
WGIC

ℓℓ′

)
ij

(
P theo

ℓ′

)
j

, (F.1)

where the summation runs over ℓ′ and j. The contribution of the global integral constraint(
WGIC

ℓℓ′

)
ij

is given by

(
WGIC

ℓℓ′

)
ij

= (Wℓ0)i0 / (W00)00 (W0ℓ′)0j . (F.2)

The GIC contribution in eq. (F.1) is directly proportional to Pℓ=0(k → 0) [96] such that
this contribution depends on the value of f loc

NL used to evaluate the theory. The convolved
power spectrum for LRGs and QSOs at very large scales (k < 10−3 [h/Mpc]) is displayed
figure 30. The convolved monopole of the power spectrum converges at very large scales
to a non-zero value such that the contribution of the GIC is 4 (resp. 10) times larger for
a situation with f loc

NL = 20 compared to f loc
NL = 0.

The GIC contribution is shown in figure 31 for the DESI DR1 sample. As expected, the
GIC contribution is larger for the LRGs since they probe a smaller volume of the Universe
than the QSOs. In the QSO case, the GIC contribution, even for an underlying value of
f loc

NL = 20 is negligible compared to the fluctuation of the signal due to a modification of
∆f loc

NL = 1 for the scales of interest (k > 0.003 [h/Mpc]). For the LRGs, the contribution
becomes comparable to the fluctuation of the signal due to a modification of ∆f loc

NL = 1 for the
largest scales. As shown in the following, the expected sensitivity for f loc

NL with this sample is
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Figure 31. Top panel: convolved power spectrum with the global integral constraint contribution
(red dashed lines) on the monopole and the quadrupole for the LRGs (left) and the QSOs (right)
compared to the convolved power spectrum given by eq. (4.8) (blue lines). The gray lines are the
unconvolved monopoles. Bottom panel: comparison between the GIC contribution for f loc

NL = 0 (resp.
f loc

NL = 20) in red solid (resp. dashed) lines and the amplitude of the signal of ∆f loc
NL = −1 at f loc

NL = 0
(resp. f loc

NL = 20) in solid (resp. dashed) blue lines.

about 14.5 so that one can neglect this impact, especially because this contribution impacts
only the largest scales that are the one with the most statistical uncertainty, see (figure 5).
Since these scales are also very sensitive to the residual imaging systematics, such that one
need for the data to increase our fiducial value (see the following section, section 4.2) of
kmin to 0.006 [h/Mpc] where the contribution becomes, as for the QSOs, negligible compare
the fluctuation of the signal for ∆f loc

NL = 1.
Since, this contribution does not contribute significantly to our measurement, we do not

include its contribution to the window matrix W . Note that this contribution is lower due to
the increase of the survey size of the upcoming DESI data release, such that one can certainly
still neglect it even in light of the reduction in errors associated with this new data.

G Target selection dependence on the PSF detection at low-z

As noted in [55] (figure 11), the QSO target selection requires objects to be classified as point
sources, which leads to the exclusion of many low-redshift quasars classified as extended
sources as their host galaxies were resolved. Improved photometry exacerbates this issue, as
more host galaxies are resolved, meaning the number of low-redshift quasars affected more
so than the number of their higher-redshift counterparts. This behavior is demonstrated
in figure 32, where the low-redshift sample (0.8 < z < 1.3) in red shows a distinct pattern
compared to the mid-redshift sample (1.3 < z < 2.1) in green. The choice z = 1.3 is motivated
by comparing the relative density as a function of the PSF Depth z of several redshift bins.
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Figure 32. Relative density of the QSO sample for different redshift subsamples as a function of
PSF Depth z in the South (NGC+SGC) region. The histogram represents the fraction of objects in
each bin of the observational feature and the error bars are the estimated standard deviation of the
normalized density in each bin.
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Figure 33. Comparison of the monopole of the blinded QSO sample with (empty marker) or without
(solid marker) the additional split at z = 1.3 to compute the imaging systematic weights.

The figure highlights the dependence on PSF depth in the z-band, the deepest band in
the Legacy Surveys which drives object morphology classification. The distinct behavior of
the low-redshift sample is masked when analysing the full range (0.8 < z < 2.1) and cannot
be properly addressed with imaging systematic weights computed across the entire sample.
However, the small fraction of low-redshift objects (23% of the data) has a significant impact
on the large-scale modes of the power spectrum if not properly accounted for.

Figure 33 compares the monopole across different photometric regions: using a single
weight for the full sample (solid markers) versus separate weights (open markers) for the two
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redshift ranges, 0.8 < z < 1.3 and 1.3 < z < 2.1. Without these tailored weights, it becomes
impossible to correctly measure the large-scale modes of the power spectrum.

We note that this improvement in imaging systematic weights does not yet account for
any redshift dependence within the sub-samples. Addressing this limitation is left to future
work, expected with the next DESI data release.

H Additional tables

In this appendix, we include several tables that were used to generate figures in the main
text and that we may need for the assessment of systematic errors.

f loc
NL b1 sn,0 Σs

LRG (FKP) No weight 4± 13 2.066± 0.032 0.044± 0.061 4.32± 0.44
kmin = 0.003 hMpc−1 Default (RF 128) −24± 17 2.102± 0.038 0.009± 0.068 4.58± 0.41

Default (RF 256) −22± 14 2.103± 0.036 0.003± 0.065 4.61± 0.41
Default (Linear 256) 1± 16 2.068± 0.035 0.044± 0.063 4.31± 0.44
PSF Depth (Linear 256) 1± 16 2.068± 0.034 0.045± 0.063 4.31± 0.44
Same Feature Zbin (Linear 128) −5± 19 2.075± 0.038 0.038± 0.067 4.31± 0.44
Same Feature Zbin (Linear 256) −6± 18 2.076± 0.037 0.035± 0.066 4.33± 0.44
With DES (Linear 256) 0.± 16 2.069± 0.035 0.044± 0.063 4.31± 0.44
4 regions (Linear 256) −4± 18 2.074± 0.037 0.038± 0.066 4.32± 0.44

LRG (FKP) No weight 7± 18 2.062± 0.038 0.049± 0.067 4.31± 0.44
kmin = 0.006 hMpc−1 Default (RF 128) −19± 20 2.096± 0.040 0.016± 0.070 4.57± 0.42

Default (RF 256) −23± 20 2.104± 0.041 0.001± 0.070 4.60± 0.41
Default (Linear 256) 1± 19 2.070± 0.039 0.042± 0.068 4.32± 0.44
PSF Depth (Linear 256) 1± 19 2.070± 0.039 0.042± 0.068 4.32± 0.44
Same Feature Zbin (Linear 128) −4± 19 2.075± 0.039 0.037± 0.069 4.32± 0.44
Same Feature Zbin (Linear 256) −5± 20 2.076± 0.039 0.036± 0.069 4.33± 0.44
With DES (Linear 256) 1± 19 2.069± 0.039 0.042± 0.068 4.32± 0.44
4 regions (Linear 256) −2± 19 2.073± 0.039 0.039± 0.068 4.33± 0.44

QSO (FKP) No weight 6± 16 2.428± 0.047 0.007± 0.053 2.71± 0.87
Default (RF 256) −16± 15 2.467± 0.048 −0.017± 0.053 3.19± 0.74
No PSF Depth (RF 128) 5± 15 2.431± 0.046 −0.001± 0.052 3.20± 0.75
Default (Linear 128) 0± 17 2.439± 0.049 0.000± 0.054 2.75± 0.85
Default (Linear 256) −3± 17 2.445± 0.050 −0.004± 0.054 2.74± 0.86
No PSF Size (Linear 128) 1± 17 2.437± 0.049 0.001± 0.053 2.75± 0.85

QSO (OQE) No weight 0± 12 3.062± 0.071 −0.020± 0.074 0.0± 9.2
Default (RF 256) −10± 11 3.101± 0.069 −0.054± 0.073 0.0± 7.9
No PSF Depth (RF 128) 4.0± 9.9 3.050± 0.066 −0.029± 0.070 0.0± 6.9
Default (Linear 128) −3± 13 3.071± 0.075 −0.027± 0.077 0.0± 6.3
Default (Linear 256) −6± 14 3.085± 0.079 −0.035± 0.079 0.0± 5.2
No PSF Size (Linear 128) −2± 13 3.070± 0.074 −0.026± 0.076 0.0± 9.1

Table 14. Best fit results on the mocks for the LRGs and QSOs (mean over 10 realizations) using
either FKP and OQE weights, for various configurations of imaging weights with the radial integral
constraint but without the angular integral constraint. The errors are from the minimization performed
with iminuit. The f loc

NL values are plotted in figure 16 for visualization.
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params w.o. wsys w. wsys w. wsys + AIC

DR1 LRG (FKP) f loc
NL 4± 13 −24± 17 −1± 19

Default b1 2.067± 0.032 2.102± 0.038 2.074± 0.037
(RF 256) sn,0 0.042± 0.061 0.009± 0.068 0.026± 0.065

Σs 4.32± 0.44 4.58± 0.41 4.50± 0.43

Default f loc
NL 4± 13 0.± 16 3± 14

(Linear 256) b1 2.067± 0.032 2.070± 0.035 2.066± 0.033
sn,0 0.042± 0.061 0.042± 0.063 0.044± 0.062
Σs 4.32± 0.44 4.30± 0.44 4.31± 0.44

Same Feature Zbin f loc
NL 4± 13 −6± 19 3± 15

(Linear 256) b1 2.067± 0.032 2.076± 0.038 2.065± 0.033
sn,0 0.042± 0.061 0.035± 0.067 0.047± 0.062
Σs 4.32± 0.44 4.31± 0.44 4.33± 0.44

DR1 QSO (FKP) f loc
NL 6± 16 −16± 15 4± 16

Default b1 2.428± 0.047 2.467± 0.048 2.428± 0.048
(RF 256) sn,0 0.007± 0.053 −0.017± 0.053 0.013± 0.053

Σs 2.71± 0.87 3.19± 0.74 2.91± 0.81

Default f loc
NL 6± 16 0.± 17 5± 16

(Linear 128) b1 2.428± 0.047 2.439± 0.049 2.434± 0.048
sn,0 0.007± 0.053 0.000± 0.054 −0.003± 0.053
Σs 2.71± 0.87 2.75± 0.85 2.42± 0.94

Default f loc
NL 6± 16 −3± 17 4± 17

(Linear 256) b1 2.428± 0.047 2.445± 0.050 2.433± 0.049
sn,0 0.007± 0.053 −0.004± 0.054 0.001± 0.053
Σs 2.71± 0.87 2.74± 0.86 2.55± 0.90

Table 15. Result of the fit on the mocks using the DR1 covariance matrix on the mean of the power
spectrum with FKP weights over 30 realizations for the LRGs and QSOs without (first column) /
with (second column) the imaging systematic weights and adding the angular integral constraint
contribution into the window function (third column). The central values and errors are from the
minuit minimization. The first column is comparable to the result from table 4. These values are
sum up in figure 17.
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features (method) f loc
NL b1 sn,0 Σs

LRG (FKP) No imaging weights 42.6± 6.9 2.018± 0.028 0.125± 0.056 4.50± 0.43
kmin = 0.003 hMpc−1 Default (RF 128) 16± 10 2.069± 0.029 0.036± 0.058 4.53± 0.41

Default (RF 256) 22.5± 9.0 2.061± 0.029 0.059± 0.058 4.81± 0.40
Default (Linear 256) 24.2± 9.3 2.041± 0.029 0.089± 0.057 4.52± 0.42
PSF Depth (Linear 256) 25.1± 9.1 2.041± 0.029 0.090± 0.057 4.52± 0.42
Same Feature Zbin (Linear 128) 20.± 10 2.044± 0.030 0.086± 0.058 4.56± 0.42
Same Feature Zbin (Linear 256) 25.4± 9.3 2.042± 0.029 0.088± 0.057 4.56± 0.42
With DES (Linear 256) 26.5± 8.9 2.039± 0.029 0.097± 0.057 4.61± 0.42
4 regions (Linear 256) 25.5± 9.3 2.039± 0.029 0.092± 0.057 4.53± 0.42

LRG (FKP) No imaging weights 28± 15 2.041± 0.033 0.090± 0.061 4.57± 0.42
kmin = 0.006 hMpc−1 Default (RF 128) 27± 16 2.059± 0.032 0.046± 0.060 4.48± 0.42

Default (RF 256) 28± 14 2.059± 0.031 0.061± 0.060 4.82± 0.40
Default (Linear 256) 24± 18 2.044± 0.035 0.086± 0.063 4.54± 0.42

PSF Depth (Linear 256) 25± 17 2.043± 0.035 0.087± 0.063 4.54± 0.42
Same Feature Zbin (Linear 128) 20.± 18 2.048± 0.035 0.081± 0.063 4.58± 0.42
Same Feature Zbin (Linear 256) 28± 17 2.041± 0.034 0.089± 0.062 4.57± 0.42
With DES (Linear 256) 37± 15 2.029± 0.032 0.108± 0.060 4.60± 0.42
4 regions (Linear 256) 26± 18 2.041± 0.034 0.090± 0.062 4.55± 0.42

QSO (FKP) No imaging weights 140.± 17 2.109± 0.039 0.274± 0.044 7.61± 0.50
kmin = 0.003 hMpc−1 Default (RF 256) 35± 19 2.218± 0.044 0.213± 0.049 7.58± 0.47

no PSF Depth (RF 128) 64± 21 2.203± 0.042 0.204± 0.046 7.42± 0.48
Default (Linear 256) 31± 21 2.206± 0.046 0.204± 0.049 7.37± 0.48
Default (Linear 128) 28± 22 2.210± 0.048 0.196± 0.050 7.23± 0.48

no PSF Size (Linear 128) 34± 22 2.203± 0.047 0.208± 0.050 7.35± 0.48

QSO (OQE) No imaging weights 39± 11 2.689± 0.061 0.241± 0.063 7.50± 0.63
kmin = 0.003 hMpc−1 Default (RF 256) 7± 18 2.790± 0.078 0.169± 0.073 7.68± 0.60

no PSF Depth (RF 128) −1± 13 2.782± 0.069 0.190± 0.069 7.77± 0.61
Default (Linear 256) −4± 14 2.799± 0.073 0.171± 0.071 7.85± 0.60
Default (Linear 128) −9± 15 2.822± 0.075 0.147± 0.072 7.62± 0.60

no PSF Size (Linear 128) −10.± 14 2.824± 0.074 0.148± 0.071 7.67± 0.60

Table 16. Values used for figure 21. Best fit results for the DR1 blinded LRGs and blinded QSOs
using either FKP ot OQE weights, for various configurations of imaging weights. All the fits include
the radial and angular integral constraint contributions. The errors and the central values are from the
minimization performed with iminuit and the covariance matrix is the one from the 1000 EZmocks.
The green rows are the default choices for the analysis on the unblinded data.
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f loc
NL b1 sn,0 Σs

LRG (FKP) fiducial 24+19
−15 2.044+0.032

−0.039 0.086+0.066
−0.063 4.54+0.44

−0.42

(0.4 < z < 1.1) NGC 27+25
−16 2.062+0.043

−0.046 0.054+0.080
−0.082 4.86+0.57

−0.48

SGC −7+25
−26 2.051+0.057

−0.057 0.08+0.10
−0.11 3.81+1.13

−0.67

(0.4 < z < 0.8) 16+33
−28 1.993+0.050

−0.051 −0.01+0.106
−0.087 3.63+1.00

−0.52

(0.6 < z < 1.1) 22+20
−17 2.137+0.041

−0.044 0.081+0.076
−0.068 4.72+0.51

−0.45

kmin = 0.008 hMpc−1 64+33
−19 1.994+0.038

−0.043 0.153+0.076
−0.061 4.47+0.44

−0.43

kmax = 0.1 hMpc−1 34+16
−13 2.017+0.019

−0.020 0.100+0.029
−0.026 3.38+0.31

−0.30

LRG (FKP) NGC 32+31
−19 2.133+0.053

−0.067 0.084+0.107
−0.092 4.95+0.62

−0.54

(0.6 < z < 1.1) SGC 2+27
−30 2.128+0.074

−0.064 0.10+0.10
−0.13 4.08+1.19

−0.77

kmin = 0.008 hMpc−1 41+25
−24 2.109+0.047

−0.046 0.117+0.072
−0.079 4.65+0.56

−0.44

kmax = 0.1 hMpc−1 37+16
−15 2.096+0.022

−0.025 0.107+0.031
−0.029 2.94+0.43

−0.36

QSO (FKP) fiducial 28+23
−22 2.210+0.044

−0.054 0.197+0.050
−0.050 7.23+0.51

−0.47

(0.8 < z < 3.1) NGC 47+33
−21 2.199+0.062

−0.059 0.212+0.063
−0.061 7.11+0.67

−0.65

SGC 12+36
−40 2.247+0.084

−0.086 0.183+0.095
−0.077 7.23+0.79

−0.68

(0.8 < z < 2.1) 101+53
−55 1.905+0.047

−0.055 0.276+0.055
−0.054 6.90+0.67

−0.59

(1.6 < z < 3.1) −22+15
−22 2.783+0.083

−0.082 0.178+0.079
−0.067 9.16+0.72

−0.43

kmin = 0.008 hMpc−1 44+42
−43 2.195+0.059

−0.066 0.206+0.060
−0.053 7.20+0.51

−0.49

kmax = 0.1 hMpc−1 32+23
−16 2.225+0.034

−0.033 0.144+0.030
−0.029 6.20+0.36

−0.37

QSO (OQE) fiducial −9+13
−15 2.822+0.064

−0.083 0.147+0.073
−0.069 7.62+0.64

−0.58

(0.8 < z < 3.1) NGC −8+18
−18 2.783+0.094

−0.088 0.164+0.085
−0.092 7.34+0.84

−0.77

SGC −11+20
−23 2.84+0.12

−0.11 0.19+0.11
−0.11 9.29+1.07

−0.31

(0.8 < z < 2.1) 72+43
−30. 2.119+0.068

−0.087 0.283+0.079
−0.077 6.29+0.88

−0.81

(1.6 < z < 3.1) −11+10
−14 2.986+0.096

−0.086 0.125+0.092
−0.080 9.22+0.84

−0.38

kmin = 0.008 hMpc−1 −4+18
−29 2.811+0.108

−0.082 0.155+0.089
−0.076 7.67+0.69

−0.54

kmax = 0.1 hMpc−1 −3+13
−14 2.783+0.054

−0.050 0.167+0.042
−0.041 6.90+0.47

−0.45

Table 17. Best-fit results from the blinded LRGs and QSOs for different variations of our fiducial
analysis. The central values are best fit value from the iminuit minimization while the errors are the
1σ credible intervals from the chains. The window functions used during these fits contain both RIC
and AIC contributions and were recomputed for the different configurations when it was needed. We
use kmin = 0.006 hMpc−1 for the LRGs and 0.003 hMpc−1 for the QSOs. The posteriors are displayed
in figure 22.
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