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ABSTRACT: We present cosmological constraints on deviations from general relativity (GR)
from the first-year of clustering observations from the Dark Energy Spectroscopic Instrument
(DESI) in combination with other available datasets including the CMB data from Planck
with CMB-lensing from Planck and ACT, BBN constraints on the physical baryon density,
the galaxy weak lensing and clustering from DESY3 and supernova data from DESYS5.
We first consider the u(a, k)-X(a, k) modified gravity (MG) parameterization (as well as
n(a,k)) in a ACDM and a wow,CDM cosmological backgrounds. Using a functional form
for time-only evolution gives ug = 0.111‘8:% from DESI(FS+BAO)+BBN and a wide prior
on ng. Using DESI(FS+BAO)+CMB+DESY3+DESY5-SN, we obtain pg = 0.05 £ 0.22 and
Yo = 0.008 4 0.045 and similarly po = 0.02703% and 79 = 0.0973-30 in an ACDM background.
In wow,CDM we obtain uy = —O.24f8:§§ and Yo = 0.006 & 0.043, consistent with GR, and
we still find a preference of the data for a dynamical dark energy with wg > —1 and w, < 0.
Using functional dependencies in both time and scale gives g and ¥y with a same level of
precision as above but other scale MG parameters remain hard to constrain. We then move
to binned parameterizations in a ACDM background starting with two bins in redshift and
obtain, p; = 1.02 +0.13, o = 1.04 £ 0.11, ¥; = 1.021 £ 0.029 and Yo = 1.022709%  all
consistent with the unity value of GR in the binning formalism. We then extend the analysis
to combine two bins in redshift and two in scale giving 8 MG parameters that we find all
consistent with GR. We note that we find here that the tension reported in previous studies
about Yo being inconsistent with GR when using Planck PR3 data goes away when we use the
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recent LoLLiPoP+HiLLiPoP likelihoods. As noted in previous studies, this seems to indicate
that the tension is indeed related to the CMB lensing anomaly in PR3 which is also resolved
when using the recent likelihoods. We then constrain the class of Horndeski theory in the
effective field theory of dark energy approach. We consider both EFT-basis and a-basis in
the analysis. Assuming a power law parameterization for the EFT function €2, which controls
non-minimal coupling, we obtain Qg = 0.012700% and so = 0.9967)52 from the combination
of DESI(FS+BAO)+DESY5SN+CMB in a ACDM background, which are consistent with
GR. Similar results are obtained when using the a-basis and assuming no-braiding (ap = 0)
giving cps < 1.14 at 95% CL in a ACDM background, also in agreement with GR. However,
we see a mild yet consistent indication for ¢g > 0 when ap is allowed to vary which will
require further study to determine whether this is due to systematics or new physics.
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1 Introduction

A pillar of our standard model of cosmology is the general relativity theory of gravity that was
proposed over a century ago by Einstein [1]. The model and its foundational theory have since
flourished through a lot of successes in making predictions that continue to be confirmed by
various astronomical observations [2-4]. However, the problem of cosmic acceleration and the
dark energy associated with it, as well as the tedious problems of the cosmological constant,
have motivated further the question of testing general relativity at cosmological scales [5-11].
Is cosmic acceleration the symptom of an extension or deviation from general relativity? Or
is it a hint for a new understanding of our notion of space and time? Moreover, it is worth
noting that testing general relativity on cosmological scales is an appealing endeavor on its
own right with all the high precision data that is accumulating from many surveys [12-17].
Testing general relativity on cosmological scales has been the subject of a tremendous effort



within the cosmology community and we refer the reader to multiple reviews on the subject
and the references therein [18-22].

From the multitude of works done on this subject in the last two decades, three major
approaches to testing general relativity in cosmology have emerged. The first approach is
to add to the perturbed Einstein equations some physically motivated phenomenological
parameters or functions that are free to vary and are constrained from fits to the data. Such
parameters are predicted by general relativity to take some specific known values. The goal
then becomes to try to measure if these parameters take values that are different from those
predicted by the theory of general relativity. Then, significant deviations may either point out
to systematics in the data that have not been accounted for yet, or indicate a deviation in the
underlying theory of gravity away from general relativity. An advantage of this approach is
that we do not need to know in advance what the potential of the exact modified gravity model
is. In this sense, this approach is more general and rather than looking for any deviations
from general relativity as a first step and then if such a departure is found, one can use
such new values to investigate what models could be associated with such modified gravity
signatures. Additionally, there are systematic approaches for constructing parameterized
forms, such as those used in effective field theories of dark energy and modified gravity (see
e.g., [23, 24]). Despite the advantages of this approach, some modified gravity models feature
degrees of freedom that cannot be captured by such parameterizations. Another promising
possibility is to employ non-parametric methods to reconstruct the time evolution of the
modified gravity functions directly from the data [e.g., 25-32, and references therein].

The second approach is to analyze specific modified gravity models that are consistent
theories on their own, or the low energy limit of what may be conceived as a more fundamental
description of nature. Among theories which have driven interest in cosmology in recent
years are those that exhibit a screening of these modifications on certain environments or
scales, such as the popular f(R) or nDGP. The following reviews describe in more detail
the different categories behind some of these gravity theories, see e.g. [18, 33]. A known
difficulty in this second type of analyses is that they require to derive non trivial specific
cosmological observables and functions to be able to confront them to observations. Also,
when it comes to available cosmological simulations, such modified gravity models are far
behind ACDM simulations [34] and computational frameworks have also not been raised to
the same sophistication level or code-running speed as in ACDM. For some of these models,
it remains a challenge to compare them to the full CMB data or the weak lensing and galaxy
clustering data and their cross-correlation. Nevertheless, such specific models can allow one
to study gravity beyond the limited orders of phenomenological parameterization approaches.

A third method that could be looked at as being an indirect method is that of ana-
lyzing and quantifying tensions and discordance between cosmological parameters within
the standard model as determined by different datasets, see e.g. [35—41]. The detection and
quantification of such a significant inconsistency would signal a problem with the standard
model used and its underlying theory of gravity. Studies for this third approach are com-
plementary and usually try to motivate the need for going to extended models to alleviate
discordance such as the Hubble tension or the amplitude of matter fluctuation (see e.g [42-49]
for modified gravity models that aim to alleviate cosmological tensions).



In this paper, we focus on the first approach, i.e. parameterizations of deviations from
general relativity to test gravity using clustering data from the Dark Energy Spectroscopic
Instrument (DESI), in combination with other datasets.

DESI is an instrument on the Mayall telescope capable of capturing thousands of
simultaneous spectra during each sky exposure, aided by 5000 positioners on the focal
plane [50-54] and 9 spectrographs with a spectral resolution ranging from 2000 to 5000 over
the wavelength range of 3600 to 9800 Angstroms [55]. Among many interesting scientific cases
(see, for example, [56-58]), DESI has the potential to test gravity using various estimators
across targets spanning multiple redshift bins [34, 57]. In particular, DESI’s full shape
clustering measurements trace the growth rate of large scale structure in the universe which
is sensitive to the underlying theory of gravity. The growth of large-scale structure is able to
distinguish between gravity theories even if they have exactly the same expansion history
and can thus act as a discriminant between such theories.

We explore various combinations of DESI with other datasets such as redshifts and
distances to supernovae, the cosmic microwave background (CMB) radiation temperature
and polarization data as well as CMB lensing, constraints on the baryons physical density
from the Big Bang Nucleosynthesis (BBN), the weak lensing and clustering data and their
cross-correlation from the Dark Energy Survey (DES).

The paper outline is as follows. In section 2, we describe the datasets and the inference
methodology we use. In section 3, we constrain physically motivated phenomenological
parameters that are added to the perturbed Einstein gravitational field equations including
functional and binned forms for time and scale evolution. In the following section 4, we
constrain the parameters of the EFT parameterization of modified gravity. We conclude
in section 5.

2 Data and methodology

This work uses the observations of DESI’s Data Release 1 (DRI, [59]), which covers the first
year of observations in the main survey. The main survey began in May 2021, following
a successful survey validation campaign with its associated data release [60, 61], which
included a detailed characterization of the extra-galactic target selection [62] and visual
inspections [63, 64].

The DESI 2024 results using DR1 focus on the separate two point statistics measurements:
Baryonic Acoustic Oscillations (BAO) and the full-shape of the power spectrum. These two
point measurements were extensively validated, as described in [65] for the galaxy and quasar
sample, and in [66, 67] for the Lyman alpha forest (Lya). A first group of publications centers
around galaxy [68] and Lya [67] BAO measurements, along with its cosmological parameter
inference [69]. Accompanying this work, a second set of publications explores the full-shape
using galaxies and quasars [70] and the corresponding impact on cosmological models [71].

2.1 DESI DR1 data and full-shape measurements

The measurements adopted by DESI’s DR1 are derived from the redshifts and positions of
over 4.7 million unique galaxies and QSOs observed over a ~7,500 square degree footprint
covering the redshift range 0.1 < z < 2.1. These discrete tracers, described in detail in [70],



are broken into four target classes: 300,017 galaxies from the magnitude-limited bright
galaxy survey (BGS, [72]); 2,138,600 luminous red galaxies (LRG, [73]); 1,415,707 emission
line galaxies (ELG, [74]) and 856,652 quasars (QSO, [75]) (see table 1 of [70]). These four
tracers are split into six redshift bins: one bin with the BGS (0.1 < z < 0.4), three bins
with the LRGs (0.4 < z < 0.6, 0.6 < z < 0.8, and 0.8 < z < 1.1), one bin with the ELGs
(1.1 < z < 1.6), and one redshift bin with the QSOs (0.8 < z < 2.1). The power spectrum
in each redshift bin is subsequently computed as described below.

We complement the information from discrete tracers with that from the Ly« forest —
features in the spectra of distant QSOs that are sensitive to the large-scale structure in the
intergalactic medium. Measurements of the 3D correlation function of the DR1 Ly« forest
data are presented in [67]. We currently only use the baryon acoustic oscillation information
in the large-scale clustering of the Ly« forest to constrain the background geometry, and
do not provide a measurement of growth.

Power-spectrum measurements, including the treatment and control of systematic er-
rors that include sky masks, fiber-assignment completeness, imaging systematics, redshift
systematics, and other sources of error are all described in [65]. In brief, we measure the
monopole, quadrupole and hexadecapole of the Fourier-space power spectra, as they quantify
the information imprinted by redshift-space distortions. These measurements are obtained
with the Yamamoto estimator [76] that was implemented in PYPOWER.! The power-spectrum
measurements are obtained from the galaxy catalogs (“data”) and from synthetically gen-
erated catalogs with random distribution of points (“randoms”) to which we assign the
same selection as for the data. We also use the random catalog to compute the window
matrix [77, 78] that relates the measured power spectrum multipoles to the theory power
spectrum prediction. We make use of the power-spectrum measurements in wavenumber
range 0.02 < k/(h~'Mpc) < 0.2, adopting the binning width of Ak = 0.005 hMpc~—!. We
only use the monopole and quadrupole of the power spectrum for our cosmological tests as
the hexadecapole did not pass the systematics tests [70].

To obtain the cosmological tests, we employ the methodology that was described in [70, 71],
and we summarize the approach here. The essential element are the “full-shape” measurements,
that is, measurements of the monopole and quadrupole in redshift bins as a function of
scale. The full-shape measurements rely on a perturbation-theory model that directly fits to
power-spectrum multipoles. In the perturbative expansion, the growth of structure is treated
systematically by expanding order-by-order in the amplitude of the initial fluctuations, with
nonlinearities at small scales encoded using a series of “counterterms” that are constrained
by the symmetries of the equations of motion. This so-called “effective-field theory” approach
also consistently treats the fact that the objects that we utilize (galaxies, quasars, and the Ly«
forest) are biased tracers of the large-scale structure. Our approach has been described and
developed in some detail in [79-82] and references therein, and validated via the comparison
of several perturbation theory codes, and to a series of simulations, in [70, 83]. As a default,
we use the Eulerian perturbation theory implementation in velocileptors [84].

We combine these full-shape measurements with BAO measurements obtained from
post-reconstruction correlation functions [68] for all six redshift bins. To combine power

"https://github.com/cosmodesi/pypower.
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spectrum and BAO measurements, we compute the complete covariance matrix that covers
the power spectrum measurements, the post-reconstruction BAO parameters, and their
mutual correlation (for more details, refer to section 2.3.1 of [71]).

The total log-likelihood is sum of log-likelihood for the six redshift bins and the Ly«
BAO log-likelihood [67], closely following the methodology outlined in our DR1 Full-Shape
analysis [71].

2.2 External datasets

We use the same external datasets as the key DESI DR1 cosmology papers [69, 71], and
summarize them as follows.

o Cosmic Microwave Background (CMB): we employ the official Planck 2018 high-¢
TTTEEE (plik) likelihood, supplemented with the low-¢ TT (Commander) and EE
(SimA11) likelihoods. In addition to the temperature and polarisation anisotropies, we
also include measurements of the lensing potential auto-spectrum C’Z)d) from Planck’s
NPIPE PR4 CMB maps [85], in combination with lensing measurements from the
Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) [86, 87]. Specifically, we
use cobaya’s public implementation, using the actplanck_baseline option.? Finally,
whenever relevant, we will also report the constraints using two updated likelihood
releases of the Planck data Camspec [88, 89] and LoLLiPoP-HiLLiPoP [90, 91|, based
on the PR4 CMB maps.

o Type Ia supernovae (SN Ia): we use the DES-SN5YR dataset, a compilation of 194
low-redshift SN Ia (0.025 < z < 0.1) and 1635 photometrically classified SN Ia covering
the range 0.1 < z < 1.3 [92]. Since supernovae are not expected to significantly affect
the constraints on modified gravity models when combined with DESI and CMB data,
we have opted to utilize just this one SN Ia dataset, and not three datasets (i.e. we
do not use PantheonPlus [93] or Union 3 compilation [94]) which we employ when we
constrain dark energy (in general relativity) in our companion paper [71]. We chose
this sample just for simplicity and to avoid unnecessary repetitions of results in the
case of modified gravity.

o Weak Gravitational Lensing (WL): we follow the MG analysis by DES [12], and utilize
the results from DES Year 3, which include the combined measurements of cosmic
shear, galaxy-galaxy lensing, and galaxy clustering, which we refer to as the “DESY3
(3%2-pt)” analysis. In line with this, we do not apply the Limber approximation for
galaxy clustering on large angular scales, but rather follow the exact method described
in [95]. The DESY3 (3x2-pt) analysis was conducted using source galaxies in four
redshift bins [0, 0.36, 0.63, 0.87, 2.0] and lens galaxies from the Maglim sample in the
first four redshift bins [0.20, 0.40, 0.55, 0.70, 0.85, 0.95, 1.05]. To confine the 3x2-pt
data to linear scales and improve constraints on MG parameters, we apply conservative
cuts consistent with the DES linear scale cuts and set use_Weyl=true.

2For details, visit https://github.com/ACTCollaboration/act_dr6_ lenslike.
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e Big Bang Nucleosynthesis (BBN) We add the prior on the physical baryon density,
Qph?%, coming from Big Bang Nucleosynthesis in the dataset combinations that do not
include the CMB information. Measurements of light elements abundances from BBN,
specially deuterium (D) and Helium (*He), constrain the baryon density. However, this
depends on details of the theoretical framework, particularly the crucial input of nuclear
interaction cross-sections. We adopt the results obtained in a recent analysis [96] that
made use of the PRyMordial code [97] to recompute the predictions while marginalizing
over uncertainties in the reaction rates. We utilize the joint constraint on Qyh? and
the number of relativistic species Neg,®> and fix the latter parameter to its fiducial
value of 3.044; the resulting projected constraint on the physical baryon density is
wp = Qph? = 0.02198 £ 0.00053. When we combine DESI with the CMB data, however,
we do not use the BBN prior on Qh? as this parameter is tightly constrained by
the CMB.

2.3 Cosmological inference, likelihoods and modeling

Our inference approach follows the methodology described in the two DESI DR1 cosmology
papers [69] but as in [71], we include a larger number of nuisance parameters specific to
the full-shape analysis. We employ the cosmological inference software cobaya [98, 99],
incorporating the DES-SN5YR likelihood along with our DESI likelihood, desilike. For
CMB likelihoods, we utilize public packages that are either part of the cobaya distribution
or available from the respective research teams.

For our modified gravity parameterizations including functional and binning methods,
we use the ISiTGR (Integrated Software in Testing General Relativity) code [100, 101], which
is built on CAMB [102, 103], and is also integrated within cobaya through a Python-wrapper
described in [104]. ISiTGR can run on a ACDM or dynamical dark energy background and
allows for time-dependent equation of state as well as a spatially flat or curved background.
It has been tested to provide a consistent implementation of anisotropic shear to model
massive neutrinos throughout the full formalism. It allows to use functional, binned and
hybrid time- and scale-dependencies for MG parameters.

We perform Bayesian inference using the Metropolis-Hastings MCMC* sampler [106, 107]
within cobaya.

Table 1 provides a summary of the cosmological parameters sampled in different runs and
the priors applied to them. For the basic DESI (FS+BAO) analysis in the ACDM background
model, we vary five key cosmological parameters: Hubble constant (Hp), physical densities
of baryons (Q,h?) and cold dark matter (Qcqmh?), and the amplitude (A,) and spectral
index (ns) of the primordial density perturbations. When incorporating the CMB likelihood,

3The 2 x 2 covariance matrix in Q,h? and Neg, and their respective central values, are available at
https://tinyurl.com/29vzc592.

“We require a convergence of R — 1 < 0.01 for MCMC chains for the large majority of the y — ¥ and
1 — n parameterizations. However, for a few combinations, and in particular with the new Planck likelihood
LoLLiPoP-HiLLiPoP, the chains converge at a slower rate than those using PR3. We required for those
R —1 < 0.03. Also, for the case of EFT parameterization, the chains run at a much slower rate and we
required R — 1 < 0.03 for the EFT-basis, but for the a-basis we accepted R — 1 < 0.1, similar to other works,
see e.g. ref. [105].
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we replace Hy with Oy, an approximation of the acoustic angular scale 6, and include
the optical depth to reionization parameter (7). In the dynamical dark-energy background
model (wow,CDM), we introduce two additional parameters: wg and w,. Additionally, we
account for a set of nuisance parameters necessary to describe the full-shape clustering signal.
Detailed descriptions of the DESI F'S nuisance parameters can be found in [70], and they
are listed at the bottom of Table 1. In the same table we also summarize the modified
gravity parameters and their priors; we introduce the definitions of some of these parameters
in the respective sections and subsections.

As a test of the effect of the priors on the full shape EFT modeling parameters, we
increased the prior range on these parameter by a factor of 3 for some test runs. We find only
a small shift in the mean on the MG parameter py (well-below the 1o uncertainty) for the
baseline p-33 analysis and for the less constraining combination of data DESI+BBN+n41g.
The shift goes away when using the next constraining combination DESI+CMBL with no-shift
of pp. A shift is even less expected for the more constraining dataset combinations like
when adding 3x2pts and/or supernova.

Although we provide results for DESI (FS+BAO)+BBN+n,g data for completeness,
we provide various combinations of datasets where projection effects are expected to be
effectively mitigated (see [70] and [71]). Projection effects have been extensively explored in
the [70] analysis and then further discussed for beyond LCDM (i.e. wow,CDM) in [71]. The
reason that the projection effects are much more pronounced in the FS+BAO constraints in
wow,CDM than in the equivalent BAO-alone analysis [69] is the presence of many additional
nuisance parameters in the full-shape analysis which allow additional freedom and open
new degeneracy directions. In models beyond ACDM, when using combinations of datasets
that included both CMB and Supernova data sets with DESI (and also DES Y3 data here),
such projection effects were found to be effectively mitigated. We mainly focus here on
results where we have used the combination DESI+CMB+DESy3+DESY5SN, but for less
constraining combinations like DESI+BBN+ns10 or DESI+CMB results should be taken
with some caution. This is illustrated in appendix C where we show in figure 14 that the
maximum a posteriori and mean values for the MG parameters g and g lie well within 1o.
This indicates that projection-induced biases are minimal when those datasets are combined.

For the EFT-basis modified gravity inference, we utilize the EFTCAMB [24, 108] code
which implements the EFT action in the Boltzmann code CAMB [102, 103]. For the properties
functions (a-basis), we use the publicly available mochiclass [109], a recently released branch
of the code hi_class [110, 111]. We interfaced EFTCAMB and mochiclass with the MCMC
sampler cobaya to perform Bayesian inference.

For the DESY3 3x2-pt analysis, we employ a likelihood that we specifically tailored
for our modified gravity analyses. The likelihood has been validated against the DESY3
modified-gravity results from [12] and it is noteworthy that we also made the same scales
cuts as this paper limiting the data to linear scales where our theoretical modeling and
parameterizations are valid. This likelihood has been integrated into our main pipeline
using desilike and cobaya.

It is worth noting that the perturbation theory employed for the full shape analysis
here relies on the commonly used Einstein-de Sitter (EdS) kernels. This approach is valid



when the growth rate and the matter density parameter are related by f2 = €,,. In ACDM
and similar dark energy models, where f ~ Q%H provides an excellent approximation, the
use of EdS kernels is generally considered suitable. But, this assumption does not always
hold in MG models. However, we note that our MG parameterizations are defined at the
linearly perturbed Einstein Field Equations level, and that the scale cuts applied in the
full-shape analysis of DESI (FS+BAO) [71] ensure that nonlinear terms are small, specifically
the one-loop terms in the effective field theory expansion. Moreover, the velocileptors
method used in the underlying DESI full-shape analysis, and that we use here as well, has
been compared with the MG non-linear code fkpt [112], demonstrating good agreement in
loop corrections for small departures from GR. Such correction are expected to be small
in such a case since the correction due to MG in nonlinearities is small (i.e one loop) x
small (i.e. deviation from GR). Therefore, this validates in this work our results where our
mean values for modified gravity parameters are found to be close to their GR values as it is
the case of our most constraining data combinations where for example CMB and galaxy
lensing are added to DESI data as well as supernova data. These strongly constraining data
combinations are found to indeed force us to be in this vicinity of GR where our use of
velocileptors and EdS assumptions are valid.

Furthermore, we tested our approximation given by the EdS kernels when we fit the model
given by eq. (3.6) below, with ¢; = A = 0, that is, its scale-independent version. We compared
power spectrum outputs of the code fkpt® [112], that in the case of scale-independent MG,
utilizes the full, correct kernels in MG, against the code utilizing EdS kernels. We estimated
the ratio between the power spectra with the full kernels versus the EdS ones. We considered
the first three multipoles, ¢ = 0, 2 and 4 (although we do not use the latter in the fits), for
several values of ug and redshift. For example, we provide in the appendix figure 12 that
illustrate such a power ratio for the particular case where the modified gravity parameter
1o = 0.5 at redshift z = 0.3. We found that for larger redshifts, or smaller values of the
parameter g, the differences are always smaller so this should be considered as an extreme
case. As shown in the figure, the difference in the monopole is smaller than the 1% for scales
k < 0.12hMpc~! and smaller than the 2% for scales k < 0.25 h Mpc™!. For the quadrupole,
the difference is smaller than the 2.4% for scales k < 0.10 A Mpc ™! and remains bellow 3.6%
when it gets to k& = 0.20 h Mpc~!. Although we never fit the hexadecapole in this work, we
just show it here for future references in the figure. Again, this is for value of ug = 0.50
which are far from the GR value of zero, and this is consistent with our discussion in the
previous paragraph where the mean values obtained from our most constraining combinations
of data sets are found to be ~ 0.05 for pg. This analysis shows that the use of EdS is safe
within DESI DR1, provided that the deviations from GR give kernel differences with EdS
that remain small when using eq. (3.6) and we work within such an assumption.

Additionally, knowing how much the 2-loop corrections can be more important in MG
than in the more commonly used GR-case is worth exploring. While our best fit MG
parameters are close to GR values with very little deviations from it and in that case, one
would expect similar effects in the MG case as in the GR case. However, to look into this
point further, we performed comparisons of the linear, 1-loop and 2-loop spectra for the

Shttps://github.com/alejandroaviles/fkpt.
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extreme case of 119 = 0.50. We found that up to k < 0.20 h Mpc ™!, the MG 1-loop and 2-loop
estimations always remain subdominant, just like in GR, and that the respective differences
between MG and GR are nearly constant over k and only constitute a multiplicative constant
factor that ultimately can be absorbed by the linear bias factors, which are different in values
in MG and GR. Such contributions from beyond 1-loop should be analyzed in detail for
both GR and MG in future analyses.

In the case of scale-dependent MG the growth rate also becomes scale-dependent. Al-
though, in principle, the perturbative technique should be modified to include the factors
f(k,t) [112], for simplicity, we choose to use the same pipeline as in the rest of the paper
since this approach is also expected to be accurate for small deviations from GR.

Last, we also note that our method relies on linear parameterizations only, in that sense
our approach is not complete at quasi-linear scales. However, there are multiple ways to extend
beyond linear order, even while enforcing physically motivated symmetries, see e.g. [113, 114].
It is worth noticing that these additional terms only influence the theoretical power spectrum
through loop contributions, which are likely to be minimal for theories that are close to GR.
Hence, in this work we are assuming that such (unspecified) non-linear terms can be neglected.

3 Constraints on modified gravity functions u(z, k), X(z, k) and n(z, k)

3.1 Perturbed Einstein’s equations and MG parameter formalism

Following standard practices in the field, we introduce physically motivated phenomenological
parameters for modified gravity (MG) into the perturbed Einstein Field Equations (EFEs) and
constrain them using observational data to test any deviation from the predictions of general
relativity (GR). For further details, see, e.g., the reviews [18, 19, 21] and references therein.

We adopt the conformal Newtonian gauge for the flat Friedmann-Lemaitre-Robertson-
Walker metric with scalar perturbations. The line element in this gauge is:

ds? = a(T)*[—(1 +2W)dr* + (1 — 2®)d;;dz"dx’], (3.1)

where ¥ and ® are the two gravitational potentials and 7 is the conformal time.

The EFEs for this metric yield two evolution equations that describe how the gravitational
potentials couple to the matter-energy content of spacetime. The first equation is a relativistic
version of the Poisson equation in Fourier space, which, in the late universe when anisotropic
stresses are negligible, simplifies to:

kU = —4rGa’pu(a, k) Z pil\i, (3.2)

where p; is the density of the matter species ¢, and 4A; is the gauge-invariant, rest-frame
overdensity for species 7. This equation governs the growth of linear structures in the universe.

The phenomenological function p(a, k) introduces scale and redshift dependencies to the
gravitational coupling strength, thus modifying the growth rate of structure. This parameter
is associated with the clustering of massive particles, and DESI directly constrains it through
clustering measurements.

The second equation relates the two gravitational potentials, ® and ¥. In GR, these
potentials are expected to be nearly equal at late times, as anisotropic stresses become



data or model parameter default prior comment
DESI (ACDM) Ho (kms—'Mpel) — U[20,100] —
Wh — N(0.02218,0.00055%) BBN prior
- — N(0.9649,0.0422) Planck 100
Wedm — 24[0.001, 0.99] _
In(10194,) — U[1.61,3.91] —
CMB (ACDM) 1000nc - U[0.5, 10] -
T 0.0544  14[0.01,0.8] —
wh, — 1[0.005,0.1] no BBN prior
Ng — U[0.8,1.2] no 100 prior
Beyond ACDM wo -1 Ul-3,1] —
(dynamical DE) W, 0 U[-3,2] —
| (redshift dependence) — po o u-33  — ]
%o 0 Ul-3,3] —
Mo 0 Uf=3,3] —
(for scale dependence) A 0 U[-5,5] —
€1 1 U[-5,5] —
c2 1 Ul-5,5] —
(redshift-only binning) 1, p2 1 U[-3, 3] —
S, T 1 Ul-3,3] —
(redshift & scale binning) w1, pa, g3, pa 1 U[-3, 3] —
S, o, Ts, Oy 1 U-3,3] -
| (asbasis) v o u-w,10  — ]
cB 0 U[-10,10] —
| (EFT-basis) Q0 o u-ny o —
s 0 U[-5,5] —
nuisance (DESI) (1+b1)0s Uulo, 3] each z-bin
beod N[0, 5% each z-bin
bso? N0, 5% each z-bin
ap N10,12.57] analytic
Qg N10,12.5?] analytic
SNy N0, 2% analytic
SN, N0, 5% analytic

Table 1. Parameters and priors used in the analysis. All of the priors are flat in the ranges given.
Here, U refers to a uniform prior in the range given, while AV'(z,0?) refers to the Gaussian normal
distribution with mean x and standard deviation o. In addition to the flat priors on wgy and w, listed
in the table, we also impose the requirement wy + w, < 0 in order to enforce a period of high-redshift
matter domination. Similarly, modified gravity parameters g and 3y are imposed an extra prior
po < 2%+ 1 (see section 3.2). Bias parameters (14 by)os, bao2 and beo? are independent within each
tracer and redshift bin, as well as counter-terms «aq, as and stochastic parameters SNg, SN», which
are marginalized over analytically. Refer to ref. [70] for detailed discussions of DESI FS nuisance
parameters. Note that the BBN and n, priors are added as a default in the DESI (FS+BAO) analysis
and noted as DESI (FS+BAO)+BBN+n10, but dropped when DESI data is combined with the CMB.

,10,



negligible. However, in MG models, they can differ even in the late universe. This deviation
is typically parameterized using the gravitational slip parameter:

. o

By combining the two equations above, we derive an expression particularly relevant to
the motion of massless particles in a gravitational field. This equation is especially important
for gravitational lensing surveys and takes the form:

K@+ U) = —81Ga’S(a k) > pild;. (3.4)

Here, in the left-hand side, (® + ¥), represents twice the Weyl potential, which governs
the motion of massless particles. The right-hand side introduces the MG parameter ¥(a, k),
which modifies the equation from its GR-based form.

At low redshift, where the anisotropic stress induced by free-streaming particles can be
safely neglected, these MG parameters are related by,

Y(a, k) = M(C;’k)(n(a, k)+1). (3.5)
In GR, these MG functions pu(a, k), X(a, k) and n(a, k) are predicted to be just one, leaving
the perturbed EFEs unchanged from their standard form.

Lastly, we note that our parameterization using u, 3 and 7 are defined at the linearly per-
turbed EFEs level. For DESI (FS+BAO), the scale cuts applied in the full-shape analysis [71]
ensure that nonlinear terms are small with implications as discusses above in section section 2.
Moreover, the external data we use also rely on linear scales or has been reduced to them:
SNIa and the CMB data are inherently linear; CMB lensing is almost entirely within the
linear regime; and for the DESY3 (3x2-pt) data, we apply the same conservative scale cuts as
in the DES MG paper [12], limiting the data to linear scales. Accordingly, our analyses here

on modified gravity are based on linear scales where these parameterizations are well-defined.

3.2 Functional forms of MG parameterizations

We consider a functional form of the MG parameters that includes both time and scale
dependencies following previous works and based on the same motivation to seek whether
modified gravity can be associated with the observed late time cosmic acceleration. The time
dependence is often parameterized using a proportionality to the time evolution of the dark
energy density parameter Qpg(a), e.g. [115, 116]. For scale, it was shown in [117, 118] that
within the quasi-static approximation, a specific scale dependence for the MG parameters in
the form of ratios of polynomials in the wave number, k, can be adequate to capture such
a dependence. We therefore use the following forms (that were also used in, e.g., [15, 117,
119, 120]) to represent ratios of polynomials in &

2
T Wi R
and
2
ek 14 zogtgff“) 11++2( i;fff();]/j)? ] , (3.7)

where the MG parameters ug, and Yo take the value of zero in GR.
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It is noteworthy to mention that while these forms of time and scale dependencies have
been widely used in the literature and can serve for constraints and comparison with other
works, they may have limitations and, like any other phenomenological parameterizations,
maybe not cover all MG models, see e.g. [121]. Further discussions of phenomenological
parameterizations including functional and binning forms can be found in, e.g. [18, 19, 21].

We note that the scale-dependent parameterization satisfies the limiting case that at
high-%k (small scales), u(a) — 1 — poQpgr(a)/Q and 3(a) — 1 — XoQpge(a)/Q2x. Whilst for
low-k (large scales), p(a) — 1 — poc1Qpge(a)/Qx and X(a) — 1 — XocaQpgr(a)/Q2s. Thus,
the parameters ¢; and co represent, respectively, the behavior of © and X at large scales.
Since we are using units where we set the speed of light as ¢ = 1, the factor H(a)/k
becomes dimensionless. Finally, when one sets A = 0 and ¢; = ¢2 = 1, this recovers the
redshift-only dependence.

To finalize, we note that for the ug — Xo functional parameterization, we impose a hard
prior pg < 2% + 1 when running our MCMC chain inference, as done in previous studies,
see e.g. [12, 116]. This prior is necessary to circumvent the part of parameter space where
MG software codes based on CAMB run randomly into numerical errors when integrating the
evolution of perturbations. However, this prior does not affect the interpretation of results.
This can be seen in our figures showing that when using DESI-only, a horizontal-band posterior
is expected. Similarly, we see that the CMB-only contour do hit this prior. But for any other
dataset combination, the contours are much smaller, and thus unaffected by this prior.

We also employ the parameterization p(a) — n(a) to run separate analyses for the case
of redshift-only using the following functional form that is slightly different from the above
one [15, 122, 123]:

u(a) =14+ EHQDE(G) (38)

and
n(a) =1+ EQQQDE(CL), (39)

where we assume again a time evolution of MG parameters to be proportional to dark energy
density in the context of cosmic acceleration. The functions u(a) and n(a) take the value of
one in GR. We report our results for this parameterization in terms of pg = p(a = 1) — 1 and
1o = n(a = 1) — 1 which are determined from Ej;, F29 and the dark energy density today.

3.2.1 Results for redshift-dependent MG functions in ACDM and wow,CDM
backgrounds

Our results for the pu—Y parameterization with time-dependence only (i.e. fixing ¢; = 1,
ca = 1 and/or A = 0 into eq. (3.6) and eq. (3.7)) in a ACDM background are presented
in the four panels of figure 1, figure 2, the left panel of figure 4 and summarized for the
various dataset combinations in table 2.

The top-left panel of figure 1 shows the constraint from DESI (FS+BAO)+BBN+ng
on the MG parameter pg = 0.11:’8:?3. DESI full shape power spectra are able to constrain
this parameter via its embedded growth of large scale structure function associated with
the clustering of massive particles. The DESI constraint and its credible-interval contours

are centered around the value of zero predicted by general relativity and is fully consistent
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Flat [,L()EO ACDM Qm as Ho[km/b/l\/h)(,] Ho ZU
DESI (FS+BAO) 0.2956 + 0.0096  0.838 £0.034  68.53 £0.75 0117532

L BBNAReo oo o T
CMB (PR3)-nl 0.3041 £0.0093  0.7427388, 6821071 —0.66753, 047515
CMB (CamSpec)-nl 0.3083 +0.0079  0.74370-13; 67.77+0.59  —0.64153,  0.327514

CMB (LoLLiPoP-HiLLiPoP)-nl

(
(
(
(

0.3060 £ 0.0076

0.7370: 08,

67.93 £0.57

4
—073 i,

0.2370:55

CMB (PR3)-1 0.3105+0.0083  0.73210-12 67.71+0.61  —0.80% 03, 0257512
CMB (CamSpec)-1 0.3128£0.0074  0.734701  6744+054  —0.77754, 0237011
CMB (LoLLiPoP-HiLLiPoP)-1 0.3093£0.0073  0.73070¢8,  67.69+£054  —084753, 0227013

DESL+CMB (PR3l 02985 +0.0055 082240024 6863+044 0234024 0388704,
DESI+CMB (CamSpec)-nl 0.3013+0.0053 0.822+0.024  68.29+0.41 0244024 026712
DESI+CMB (LoLLiPoP-HiLLiPoP)-nl 0.3006 £0.0051  0.824 £0.024  68.33+0.40  0.22+0.24  0.148739
DESI+CMB (PR3)-1 0.3023+0.0053 0.824+0.024  68.32+0.41  0.21+0.24 0.166+0.074
DESI+CMB (CamSpec)-1 0.3044 +£0.0050 0.823+0.024  68.05+0.38  0.21+£0.24 0.144 £ 0.071
DESI+CMB (LoLLiPoP-HiLLiPoP)-1 0.3028 £0.0050 0.825+0.024  68.184+0.38  0.18+0.24  0.11979:958

| DESI+CMB (PR3)}ul+DESY3 0302700051 080840023  6828%040 0.04+022 0.0440047
CMB-nl+DESY3 0.3074 £0.0081  0.69073-347 67.934£0.61  —1.217522  0.19+0.10
Diséggggi&?s);% 0.3073+0.0049 0.810+0.023  67.93+£0.37  0.04+0.23 0.028 £ 0.046
DESI+CMB (LoLLiPoP-HiLLiPoP)-nl+DESY3 0.3027 +0.0048 0.808 +0.023  68.16+0.37  0.04+0.23 0.024 4 0.046
D E%Eggigg;g?;?mLLiP°P)'n1 0.3068 +£0.0047 0.811+0.022  67.86+0.35  0.05+0.22 0.008 + 0.045
Flat poXowow, wo Wq Ho[km/s/Mpc] Ho o
DESI+CMB (LoLLiPoP-HILLiPoP)-nl —0.784£0.061  —0.82%0%  67.33+£0.62 —0.247032  0.006 % 0.043

+DESY3+DESSNY5

Table 2. Constraints on modified-gravity parameters po and g from DESI (FS+BAO) data alone,
and in combination with external datasets. We show results in the flat ACDM background expansion
model and in the (wp,w,) dark energy parameterization for the background. Constraints are quoted
for the marginalized means and 68% credible intervals in each case. In this and other tables, the
shorthand notation “CMB-1” is used to denote the addition of temperature and polarization data from
Planck and CMB lensing data from the combination of Planck and ACT, while “CMB-nl” means
CMB lensing is not used.

with it. However, the 68% credible intervals still allow for significant departures from general
relativity. Moreover, the same figure confirms the expectation that DESI does not constrain
the parameter Yo that is associated with the dynamics of massless particles and, for example
lensing, as shown by the horizontal “band”.

The other three credible-interval areas that appear nearly vertically in figure 1 show the
constraints from CMB with no-lensing from three Planck likelihoods, namely from PR3 [124],
Camspec [88, 89] and LoLLiPoP-HiLLiPoP [90, 91]. As explained at the end of section 3.2,
these CMB constraints are hitting the necessary computational prior pg < 2% + 1, but are
nearly orthogonal to the DESI “band” and very complementary to it.

We see in the same top-left panel that the constraint from Planck PR3 on the parameter
> is in tension with the zero value of general relativity. Moreover, the bottom-left panel
shows that when DESI is added to Planck PR3, this tension reaches well-above the 3-X level.
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Figure 1. MG parameterization u—Y with time-dependence only. 68% and 95% credible-interval
contours in a ACDM background cosmology plus scalar perturbations to GR. Top-Left: DESI in the
horizontal band and CMB no-lensing for the 3 different likelihoods. Top-Right: similar constraints
but adding CMB Lensing data. Bottom-Left: DESI combined with CMB no-lensing for the three
likelihoods. Bottom-Right: similar constraints as on bottom left, but adding CMB Lensing data. See
section section 3.2.1 for discussion. We note that the shaded area on the top left of figures shows the
hard prior pg < 23y + 1 that is added due to a numerical computational limitation of MG software
codes based on CAMB CMB code. As we explain in section 3.2, this prior does not affect our main
results from combinations of datasets.

It is worth noting that although DESI is not driving this tension, its addition to Planck
breaks parameter degeneracies and exacerbates the tension. This discordance of ¥y with
GR when using CMB data was noted in Planck 2015 analysis [15] and confirmed in Planck
2018 [122]. It was attributed to the CMB lensing anomaly or the Ajeps problem [125-127].
This anomaly and the corresponding Ajens nonphysical parameter are associated with a
systematic effect in Planck data that manifests as an excess lensing effect that smooths the
peaks and troughs of the power spectra [122]. This non physical parameter can enter as a
multiplicative scaling factor in the lensing of the CMB power spectra. By construction, it
should be equal to unity for the ACDM model. However, it was found repetitively, first in
WMAP data [125] and then by Planck collaboration and PR3 data, e.g. [15, 122, 128] that
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Figure 2. MG parameterization of y—Y with time-dependence only. Marginalized means and 68%
credible intervals on pg and Y in a ACDM background cosmology plus scalar perturbations to GR.
Note that DESI alone does not constrain Y.

the fit of a ACDM model, plus the Ajns parameter allowed to vary, gives a better fit to the
data with an A, value that departs from the unity value expected in the ACDM model.
The parameter Ajns is known to be degenerate with other physical parameters and affects
their accuracy, including the sum of Neutrino masses, spatial curvature and modified gravity
parameters, see e.g. [15, 122] for further general discussion.

Relevant to our analysis, the nonphysical A5 parameter is degenerate with the parameter
>0 and, if not mitigated, provides a value of ¥y that departs from the GR zero value as
shown for PR3 in the let-top panel of figure 1. Recently, the Ajo,s anomaly was partly fixed
with the Camspec Planck analysis [88, 89] and completely resolved with the LoLLiPoP and
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HiLLiPoP likelihoods [91]. Interestingly, we find in our analysis that the departure of the
> parameter from the zero GR-value gets alleviated when using Planck PR4 Camspec, as
the GR value is within the 95% credible-interval contours, and then gets even closer to the
GR value when using the LoLLiPoP-HiLLiPoP likelihoods. This indicates that the found
departure of ¥ from the GR value is rather related to the CMB lensing anomaly in the
Planck PR3 data than to any new physics.’

As in previous works, we also find that this discordance of ¥y with GR becomes insignifi-
cant when the reconstructed CMB lensing data is added to the CMB power spectra as we
show in the top-right panel of figure 1 and table 2 for all three Planck likelihoods, where we
have added in the present analysis the specific results for Camspec and LoLLiPoP-HiLLiPoP
likelihoods.

In the next step, we combine DESI (FS+BAO) with CMB constraints with and without
CMB lensing. We see in the bottom-left and bottom-right panels of figure 1 as well as figure 2
and table 2 that regardless of lensing, combining DESI and CMB breaks degeneracies among
parameters and allows to improve the constraints on the parameter p by roughly a factor
of 5 compared to CMB-only and a factor of 2 compared to DESI-only. Moreover, adding
DESI to CMB with without lensing improves the constraints on > by a factor of 1.5 — 2.0
and adding DESI to CMB with lensing also tightens the constraint on this parameter by
at least a factor of two.

As expected, the addition of the DES Y3 3x2-pt data to the combination of DESI and
CMB without lensing improves the constraints on the lensing-sensitive MG parameter Yo by
roughly a factor of two, while providing only marginal improvements on the parameter pyg,
see table 2 and left-panel of figure 4. We do not add CMB lensing to these combinations
because of covariances with DES Y3 3x2-pt data.

It is worth noting as well that when adding DESI data to the combination CMB-without-
lensing and DESY3, we obtain roughly a factor of 2.5 improvement on g and roughly a
factor of 2 improvement on Y, as shown on figure 1 and table 2.

Finally, the addition of type Ia supernova data (e.g. the DES-YR5 SN that we use here
as an example) adds practically no further improvement to the DESI+CMB-nl4+DES Y3
combination in a ACDM background cosmology. We provide the combinations with SN Ia
here for comparison, see table 2 and left panel of figure 4. SN Ia data will play a more
important role when we adopt the wyw,CDM cosmology background which we will discuss in
section 3.2.2. Moreover, we also use this full combination when we analyze other demanding
cases such as binning with multiple parameters or when we include both redshift and scale.
Again, even in some of these cases, the gain is very small when we add supernovae but we
keep them in the combination to have consistent comparisons between our own different cases
but also other previous studies that kept supernovae in their external datasets.

In sum, we find that all our results for the u — ¥ parameterization are consistent
with GR for all dataset combinations. The tightest constraints we obtain on both pa-

5We note that while our papers were in DESI internal collaboration wide review, the paper [129] appeared
on the arXiv showing a similar finding about the ¥y tension being resolved when using LoLLiPoP and high-¢
HiLLiPoP, and using a different modified gravity software (MGCAMB than the one (ISiTGR) the we used in our
analysis. It is also worth mentioning as well that the very recent paper [130] reports some more complex
findings concerning the Planck lensing anomaly.
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rameters, and free from the Aj.,s anomaly mentioned above, come from the combination
DESI+CMB (LoLLiPoP+HiLLiPoP)-nl+DES Y3 or DESI+CMB (LoLLiPoP+HiLLiPoP)-
nl+DES Y3+DESY5 SN where the latter provides only minute improvements but we quote
them for comparison with other cases:

1o = 0.05 £ 0.22,

LoLLiPoP-HiLLiPoP DESY3 3.10
2 = 0.008 =+ 0.045, (LoLL1PoP-HiLLiPoP)+ * (3.10)

} DESI (FS+BAO)+CMB
DESY5 SN.

The constraints on MG parameters in eq. (3.10) are comparable in precision to the ones
from [12] using two decades of BAO+RSD from SDSS + CMB (PR3) + DESY3 (3 x 2-pt)+
PantheonPlus SN, but we note that 1-year only of data from DESI can provide comparable
constraining power on specifically po as two decades of BAO+RSD data from SDSS [131] and
the entire BAO from 6dFGS [132]. We also observe that constraints on pg including DESI with
or without other datasets are more centered around the GR value than those from SDSS which
show a mild shift of slightly above 1o from the GR zero value. This shows the constraining
power of DESI and the promise of the four years of data to come from the DESI program.

Next, we now consider constraints in the ACDM background for the y—n parameterization
with time-only dependence as shown in our figure 3, figure 4 and table 3. The results for pg—ng
are very comparable to the ones for the g — ¥g. Specifically, DESI (FS+BAO)+BBN+n,
gives g = 0.17f8:§g with similar error bars. Again, like in previous studies, CMB (PR3)
no-lensing gives results on 7 that are in tension with GR due to the Planck PR3 lensing
anomaly indicated above and manifest in the Aj.,s parameter. But when using the LoLLiPoP-
HiLLiPoP likelihood for Planck, such a tension goes away for Aj.,s and we find that the
tension for 1y also goes away as shown in figure 3 and table 3. When adding CMB lensing, the
contours are shifted to the GR values in both cases, as in the py — 3o case. As further above,
adding CMB with or without lensing to DESI improves the constraints on g by roughly a
factor of 2 and, likewise, adding DESI to CMB improves constraints on 7 by roughly a factor
of two as well. Finally, using the combination DESI+-CMB (PR3)-nl+DESY3+DESY5SN
gives us the best constraints as

fo = 0.0219:19, } DESI (FS+BAO)+CMB (PR3)+ (3.11)

no = 0.0979:3 [ DESY3+ DESY5 SN.

We finish this section with results for the py—3 parameterization but in a wow,CDM
cosmological background. We assume a dynamical dark energy model with an equation of
state that takes the commonly-used form [133, 134]:

wpg(a) = wo + we(l — a). (3.12)

Our results for pg and g MG parameters, as well as the equations of state parameters
(wg, w,), are given in the last two rows of table 2 and figure 5 for the our constraining
combination of our datasets, i.e. DESI+CMB (LoLLiPoP-HiLLiPoP)-nl +DESY3+DESY5SN.
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Figure 3. MG parameterization of u—7 with time-dependence only. 68% and 95% credible intervals
in a ACDM background cosmology plus scalar perturbations to GR. Left: CMB constraints with and
without lensing for the two likelihoods PR3 and LoLLiPoP-HiLLiPoP for Planck data. Right: DESI
(FS+ BAO) + CMB combinations using the same two likelihoods, respectively.
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Figure 4. Left: MG parameterization of y—> with time-dependence only. 68% and 95% credible
intervals in a ACDM background cosmology plus scalar perturbations to GR for the datasets indicated.
Right: MG Functional parameterization for u—n with time-dependence only. 68% and 95% credible
intervals in a ACDM background cosmology plus scalar perturbations to GR for the datasets indicated.
See section section 3.2.1 for discussion for both panels.

The first observation is that, unlike the case of the ACDM background, here in the
wowy, CDM background the addition of a supernovae dataset to the DESI+CMB-nl+DESY 3
combination does have a significant effect in providing substantially tighter constraints on
both the dark energy equation of state parameters as well as the MG parameters. For such a
full combination of datasets, we obtain for the following constraints for w(a):

DESI+CMB
(LoLLiPoP-HiLLiPoP)-nl + (3.13)

wo = —0.784 4 0.061, }
DESY3 + DESY5 SN.

_ +0.28
wa — _0-82_024’
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Flat pono CDM Qm o8 Hylkm/s/Mpc] 10 Mo

DESI (FS+BAO)

BBN 1,10 0.2959 +0.0097 < 0.853 68.52+0.75  0.1770%
CMB (PR3)-nl 0.3041 £0.0092  0.8157003)  68.21+0.70  0.12502%  0.6250%
CMB (LoLLiPoP-HiLLiPoP)-nl 0.3059 +0.0078  0.81075:029 67.94 £ 0.58 0.067025  0.297953
CMB (PR3)-1 0.3094£0.0083  0.8107003]  67.79+£0.62 004307 031707
CMB (LoLLiPoP-HiLLiPoP)-1 0.3093 £0.0074  0.81215:03% 67.69+0.55  0.0470%  0.2879:%
DESI+CMB (PR3)-nl 0.2987 +£0.0055 0.822+0.024  68.62+0.43  022+024 0337555

DESI+CMB (LoLLiPoP-HiLLiPoP)-nl  0.3006 + 0.0051 0.820 +0.023  68.34+0.39  0.17+0.23 —0.0379:33
DESI+CMB (LoLLiPoP-HiLLiPoP)-1  0.30124+0.0049 0.822+0.023  68.29+0.38  0.184+0.23 —0.06703}
DESI+CMB (PR3)-nl+DESY3 0.3021 +0.0051  0.80670922  6832+0.39  0.03*92  0.13*00

DESI+CMB (PR3)-nl+DESY3

DESSNYS 0.3069 4+ 0.0049 0.808+£0.021  67.96+0.37  0.02*31)  0.09+33

Table 3. Constraints on modified-gravity parameters o and 79 from DESI (FS+BAO) data alone,
and in combination with external datasets. We show results in the flat ACDM background expansion
model. Constraints are quoted for the marginalized means and 68% credible intervals in each case.

and

_ 40.32 DESI+CMB
po = —0.247 5%,
S 0.006 4 (‘) 043 (LoLLiPoP-HiLLiPoP)-nl + (3.14)
0= 7%/ DESY3 + DESY5 SN.
for MG parameters.
We note here the interesting result that despite adding two MG parameters to the model,

the constraints on (wy, wg) still show a well-above 3-0 preference for a dynamical dark energy
with MG parameter constraints being consistent with GR values.

3.2.2 Results for redshift and scale dependent MG functions in ACDM and
wowy, CDM backgrounds

Our results for the y—Y parameterization with both time and scale dependence in a ACDM
background are presented in table 4. We use the time and scale dependencies as expressed in
the functional form in eq. (3.6) and eq. (3.7). This adds the three parameters we discussed
in section section 3.2 noted as A, ¢; and cs.

Clearly, this model requires more constraining power for MG parameters from the data
and we use here the combination DESI + CMB (PR3)"-nl + DES Y3 + DESY5 SN. While
we find that the constraints on pg and ¥y are easily obtained with comparable precision to
those form redshift-only dependence, the scale dependence parameters are harder to constrain.
Typically, the A parameter is difficult to constrain, and it only sets the scale below which
the MG parameters start to be sensitive to the scale-dependent effects. We investigate two
choices for \. We first set A = 10, which allows the function u(a = 1,k) to begin evolving

"We use here PR3 instead of LoLLiPoP-HiLLiPoP as our MCMC chains were taking a much larger time to
converge in this case.
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Figure 5. Left: MG Functional parameterization for p— with time-dependence only. 68% and
95% credible intervals in a wow,CDM background cosmology plus scalar perturbations to GR for
the dataset indicated. Right: 68% and 95% credible intervals for the dark energy equation of state
parameters (wp, w,). See section section 3.2.1 for discussion for both panels.

Flat ACDM background o 3o A fixed-value c &)
DESI+CMB (PR?))—HI +0.13 +1.4
L DESY3+DESY5SN 0.03T511  0.027 £0.043 10 097176
DESI+CMB (PR3)-H1 +0.14 +1.1 +0.94
A27 5 .015+0.04 1 APy R VARY
+DESY3+DESY5SN 01202 00150045 00 07225 052533

Table 4. Constraints on modified-gravity parameters po and X with time (redshift) and scale
evolution. We show results in the flat ACDM background expansion. Constraints are quoted for the
marginalised means and 68% credible intervals in each case, see discussion in section 3.2.2.

asymptotically from 1 + po to 1 + pocy at scales k < 0.01Mpc/h. This somehow matches
the transition scale that we use in the binning methods. Alternatively, we also set A = 100,
where the scale dependence on y is induced starting from k& < 0.1Mpch ™!, as an extreme
case. The results of these constraints can be found in table 4.

It is found that in both cases, the constraints on pg and >y do not deteriorate substantially
from the time-only dependence cases and are consistent with GR. The 68% error bars on
the parameters ¢; and ¢ while still too wide are also consistent with the GR value of 1. As
we will see further below, the binned parameterization in both redshift and scale is found
to provide much better constraints on all MG parameters than the functional form here. It
remains an open question whether other scale functional parameterization are able to provide
better constraints using current data or not and we leave such open question (and beyond
the scope of our paper) to be explored in other future analyses but refer the readership to
our results in the binning method in section 3.3.
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Redshift bins
Scale bins 0<z<1l|1<2z<?2 z>2
0<k<0.01 1, 21 13, 23 GR is assumed
k>0.01 L2, 22 a, 2q GR is assumed

Table 5. Redshift and scale (i.e. wavenumber) bins used in this work, with the corresponding
MG parameters. In the context of cosmic acceleration, deviations from GR are tested in the range
0 < z < 2 (more discussion in the text).

3.3 Binned MG parameterizations

As mentioned earlier, we extend our analysis to binning methods that do not assume a specific
analytical functional form for the MG parameters. This will complement the functional
methods and also validate them. We first consider an analysis that employs binning in redshift
(time) only, and then an analysis that includes binning in both redshift and scale. Using bins
in redshift-only requires less constraining power and has been done before in, for example [135],
where results were found consistent with GR and with no significant improvement in the fit
over the ACDM model, but, again, with error bars that leave room for a lot of improvement.
On the other hand, other works that used bins in both redshift and scale observed some
mild deviations from GR using previous survey datasets, e.g. [14, 119, 136-139], and that
is worth investigating here.

Indeed, with the additional constraining power available to us here from DESI and
DESY3, we will explore such a dual binning in redshift and scale. For that, we set four bins
consisting of two bins in redshift and two bins in scale that are implemented in ISITGR. We
consider the redshift bins to be fit in the ranges 0 < z < zgjv and zgiv < 2z < zpgr Where
Zdiv = 1 and zpqr = 2. zgijv is the redshift that divides the two bins and zrgr is the redshift
above which we assume that GR is the correct theory. This has been designed with the idea of
cosmic acceleration in mind where we seek for any modification to GR at relatively late times
and assume GR at earlier times, if z > zpgr = 2. For the binning in scale, we use a bin with
k < k. and another one with k > k., where k. = 0.01 Mpc™! is the scale dividing them. Such
a dividing scale roughly represents the scale at which the non-CMB probes start to play a role
for k > k. as well as the scale of matter-radiation equality horizon specifying the matter power
spectrum turnover. To encapsulate this, we note each MG parameter by X (z, k) and write

1 +XZ1(]€) + XZQ(k) - Xz1(k) tanh <Z - Zdiv)
2 2
+ 1- XZQ(k) tanh (Z - ZTGR) )

2 Ztw

X(z,k) =
(27 ) Ztw

(3.15)

We note that we have constructed the binning parameterizations here to be centered around
the value of 1 which will be considered as the GR expected value. This is summarized
in table 5. By design, (eq. (3.15)) gives a smooth and continuous transition of the MG
parameters between the redshift bins. The transition width is controlled by the parameter
Ztw that sets how rapidly the transition from one bin to another happens in time. Obviously,
a very small value of 2ty could lead to numerical errors and a rejection of such parameter
values so we have chosen a moderate value for such a transition with zy, = 0.05.
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Next, we set the functions X, (k) and X, (k) for scale binning using a hyperbolic tangent
function for scale (as is done for the redshift bins) with a transition parameter ki, = k¢/10.
These parameters are thus given by

Xo+X) Xo— X k— ke
X, (k) = 224 22 1tanh< ) (3.16)

2 2 tw

and Xi+Xs Xi-X k—k
X., (k) = 4; 3 4 4; 3tanh< k_ > (3.17)

tw

This formulation of the scale binning is labeled as traditional binning method in ISiTGR
documentation [100, 101] and we employ it here. Notice that with this configuration, the
DESI data directly impacts the X1 and X3 parameters for scales k > k., while the parameters
X5 and X4 are constrained by CMB. This by construction implies that we are using the
whole DESI data to probe the MG parameters at scales below the matter power spectrum
turnover, and the MG effects at larger scales are sensitive to the CMB data. Finally, for our
binning in redshift only, we assume that X,, (k) = X; and X,, (k) = X5 are constants and
do not provide them with any scale dependence. This is equivalent to having two redshift
bins, in the ranges 0 < z < 1 and 1 < z < 2, parameterized by X; and Xs, respectively.
In this case, all the MG parameters are constrained by DESI, as we are probing redshift
ranges covered by the DESI tracers.

3.3.1 Results for binning in redshift in ACDM and wow,CDM backgrounds

Our results for binning in redshift are given in figure 6 and table 6. We expect to obtain
analogous results for the p(a)-X(a) or the pu(a)-n(a) space, so for a consistent presentation over
the sub-sections, we show results for the former pair. We derive constraints on MG parameters
in both the flat ACDM expansion background and the flat wow,CDM expansion background.

We fix the scale dependence in eq. (3.15)-eq. (3.17), which effectively gives two redshift
bins with parameters p; and ¥; defined in the first bin with 0 < z < 1 and parameters po
and Yo defined in the second bin with 1 < z < 2, while for z > 2 the parameters are set to
take the GR value of 1 in the binning form convention we use.

The combinations DESI+CMB(PR3)+DESY3+DESY5SN provides our best constraints
on the 4 parameters as follows:

1 = 1.0240.13,

pp = 1.04 +0.11,
DESI+CMB(PR3)+DESY3+DESY5SN. (3.18)
S = 1.021 + 0.029,

0.027
Yo = 1022754

All our constraints on the MG parameters are consistent with GR with clear improvement
compared to the redshift-binning results with the four parameters obtained in a previous
study [135] using other datasets from SDSS, CMB, and CMB lensing data instead of 3x2-pt
weak-lensing along with clustering data. Our constraints for u; and us are comparable to the
forecast made for DESI plus CMB and CMB Lensing in [140] where similar overall binning
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B DESI(FS+BAO)+CMB(PR3)-nl+DESY3+DESY5SN (ACDM)
DESI(FS+BAO)+CMB(PR3)-nl+DESY3+DESY5SN (wuw,CDM))
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Figure 6. Constraints on redshift-binned form for the p — ¥ MG functions in ACDM and wow,CDM
cosmological backgrounds, respectively, plus scalar perturbations to GR. The binning in redshift
results are indicated in the first part of table 5. The contours represent the 68% and 95% credible
intervals for the combination DESI(FS+BAO)+CMB(PR3)-nl+DESY3+DESY5SN. The results are
listed in the first part of table 6.

ranges in redshift were employed, although their higher redshift bin goes up to redshift 3
while we assumed GR for redshift above 2.

Finally, its worth noting that in the wow,CDM, while the MG parameters are found
all consistent with GR, we still find values of the equations of state parameters that show
preference for a dynamical dark energy, see table 6.

Finally, it is interesting to find that the results for our binning scheme give competitive
constraints on MG parameters compared to functional forms. The results are not only
independent from the functional form results but also consistent with them within the
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Redshift binning

Datasets 11 Lo i Yo wo We

ACDM background
DESI+Planck (PR3)
+DES Y3 + DES5YSN
wow, CDM background
DESI+Planck (PR3)
+DES Y3 + DES5YSN

1.024£0.13  1.04£0.11  1.021+£0.029  1.0227092% — —

1.03+£0.14  0.79+£0.15 1.019+£0.029 1.017+£0.024 —0.740 +£0.070 —1.06703

Redshift and scale (wavenumber) binning

Datasets i=1 =2 i=3 i=4 wo We

ACDM background

DESI+Planck (PR3) wi 0.97+0.18  0.95+0.11  0.83+024  1.14+0.15 — —
+DES Y3 + DESYSSN 5, 1.04540.046 1.020+0.035 1.017+0.028  1.048+0:03) — —
wow, CDM background

DESI+Planck (PR3) i 0.78702% 0.86 +0.14 0.78 £ 0.25 1.0240.15  —0.741 +£0.068 —1.0315:3¢
+DES Y3 + DESYSSN 5, 1044 40.045 1.032+0.036 101770020 1.047+:0% n I

Table 6. Constraints on the p and ¥ binned in redshift (top part of the table), and in redshift
and scale (bottom part). We show results in both the flat ACDM expansion background and the
flat wow,CDM expansion background. Constraints are quoted for the marginalized means and 68%
credible intervals in each case.

constraining power of current data which could address some concerns expressed about
some limitations in functional forms. It would be good to see if this holds in future studies
using a larger number of bins.

In sum, our results for binning in redshift show that all the constraints on the 4 MG
parameters are consistent with GR and in agreement with the functional method.

3.3.2 Results for binning in redshift and scale in ACDM and wow,CDM
backgrounds

Our results for binning in redshift and scale are given in figure 7 and table 6. Results in the
table are provided in both the flat ACDM and the flat wow,CDM expansion backgrounds.

The use of the full eq. (3.15)—eq. (3.17) gives 4 p; and 4 ¥; MG parameters to be
constrained by the data. Specifically, we have two bins in redshift and two bins in scale
that are combined as shown in table 5. Our results from figure 7 can thus be categorized
as crossing “low”-z and “high”-z versus small scales and large scales.

We find that all 8 MG parameters are around the GR values of 1 (as designed in the
binning scheme) and consistent with Einstein’s theory. The 68% credible intervals for u; range
from 11% to 25% and those on ¥; range from 3% to 5%. So, interestingly, current combined
datasets start giving tight and informative constraints when using binned forms including both
redshift and scale which is very promising in testing modified gravity using cosmological data.

Moreover, in the flat wow,CDM expansion background, we still find that a dynamical
dark energy is preferred by the data.

— 24 —



B DESI(FS+BAO)+CMB(PR3)-nl+DESY3+DESY5SN (ACDM)
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Figure 7. Constraints for redshift and scale binned form for the p — 3 MG functions in ACDM and
wow, CDM cosmological backgrounds, respectively, plus scalar perturbations to GR. The binning in
time and scale are as indicated in table 5. The contours represent the 68% and 95% credible intervals
for the DESI(FS+BAO)+CMB(PR3)-nl+DESY3+DESY5SN combination. The results are listed in
the second part of table 6.

4 Constraints on MG EFT /alpha parameterization

The Effective Field Theory (EFT) of dark energy [23, 141-143] is a powerful framework to
study general modifications of gravity® in a flexible and unified manner. In this section,
we present the constraints using both the EFT-basis [23, 145] and the a-basis [146]. The

8In this work, we focus on the Horndeski class of theories [144]. The Horndeski Lagrangian encompasses
most dark energy and modified gravity models with a scalar degree of freedom and second-order equations
of motion.
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EFT-basis and a-basis are inter-convertible with redefinitions of variables in the effective
Lagrangian.” The EFT-basis is advantageous because it closely reflects the underlying
structures in the effective Lagrangian through changing operator coefficients, whereas the
a-basis directly characterizes the properties of the linearized scalar field perturbations, offering
a more direct connection to observational data. In particular, in the a-basis, the background
evolution is clearly separated from dynamics of linearized perturbations, controlled by the
functions «;(t). However, it is more convenient to work on EFT-basis if extending beyond
second derivatives in the Einstein equations. In this study, the two bases are equivalent
frameworks. One also needs to be careful about the Boltzmann solver precision to ensure
a fair comparison of observables computed using both the EFT- and a-basis.

In the absence of a compelling microscopic theory for dark energy, it is nevertheless
possible to constrain its phenomenology from observations in a model-agnostic way using a
few free parameters. This “bottom-up” approach does not specify the functional form of the
Lagrangian; instead, it parameterizes the time evolution of the EFT functions characterizing
departures from ACDM/General Relativity, while remaining agnostic about the field theory
content of the model.

4.1 EFT-basis

The action of the EFT of dark energy in unitary gauge is

Spg = /d4$\/jg {Mgl[l + Q(t)]g = A(t) = c(t)g™
+ MO 502 1) Lag sk — ) Lo

(4.1)
- M?,?(t)%myw(/ 4 M2(t)%5g0053<3>

—+ mo (t)@igooaigoo} + Sm (g#u, \Ijm)7

where Mpy is the Planck mass, R is the Ricci scalar, R®) is the perturbation of the spatial
component of the Ricci scalar, 6g% is defined as g% + 1, 6 K .~ 1s the perturbation of the
extrinsic curvature, 0K is its trace, and Sm(gu, ¥Ym) is the action of matter field except dark
energy. There are nine time dependent functions in the action modeling the dark energy
{Q(), A(t), ct), Ma(t), Myi(t), My(t), Ms(t), M(t), me(t)}. The functions {A(t), c(t)}
affect the background evolution. After specifying the expansion history, these two functions
are determined from the Friedman equations. The rest of free functions only change the
perturbation evolution. We study the EFT of dark energy models using EFTCAMB [24, 108].
In this basis, the second-order EFT functions are defined in a dimensionless form.

Mo (t)* M;y(t)3 Mo(t)?
1= ) 2 = ) 3 = ’
NTmgHZ P T m2H, T w2 @3
M (t)? M(t)? ma(t)? '
VY4 = 7 V5= 7 5 Y6 = 2 -
my my my

For the complete equations, see equations (55) and (56) of [147].
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We demand the following constraints to avoid higher-order spatial derivatives [145, 148]:

me = 0,
-2 )

o M, _ M (4.3)
2 2

The constraint from eq. (4.3) is equivalent to 2v5 = 73 = —7y4 and 75 = 0. Additionally,
the EFT-basis can be converted into the p(z, k) and X(z, k) (see [149] for details).

For background evolution, we consider both ACDM and wyw,CDM background cosmology.
For the wow,CDM background evolution, the dark energy equation of motion follows the
Chevallier-Polarski-Linder (CPL) parametrization [133, 134] as used previously:

wpg(a) = wo + we(1 — a). (4.4)

The prior is wp € [-3,1] and w, € [-3,2].

We assume the following time-dependence parametrization for the EF'T model:
Qa) = Qoa®,  ~i(a) =0, (4.5)

where €y and s are free parameters to be constrained and i = 1, 2, 3. The parameter sg
models how early §2(a) returns to GR prediction. €(a) controls non-minimal coupling to
gravity. As mentioned above, the EFT parameters can be converted into parameters in the
a-basis {anr, ap, ax,ar} discussed below in section 4.2 (see [146] for full definitions). The
EFT parameter Q(a) is related to the aps through

e
Q4 1da’

ang (4.6)
The ~; affects kineticity in the EFT of dark energy Lagrangian and o relates to the kinetic
braiding. Both are set to zero.

The parameter 3 relates the speed of gravitational waves to the speed of light through

g Y3(a)
2 1 1+ Q(a) +v3(a)’ (4.7)

we choose y3(a) = 0 to avoid non-luminal gravitational-wave speed at low redshifts given
the constraint from gravitational-wave event GW170817. Table 1 shows the priors on the
EFT parameters.

Additionally, we require both ghost stability and gradient stability. The former requires
there is no wrong sign of the kinetic term. The latter avoids negative speed of the sound
propagation, cz < 0 in the equations of motion of perturbations.

4.1.1 Results in ACDM background

First, we report the constraints on the EFT of DE model assuming the ACDM background.
Figure 8 shows the constraints on {2y, so} in the ACDM background with ;2 = 0. The
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—— DESI (FS+BAO) + DESY5SN + CMB (ACDM)
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Figure 8. Left: the 68% and 95% credible contours on the EFT parameters {Qq, sg} using DESI
(FS+BAO), CMB (with lensing), and DESY5SN data in the ACDM expansion history. We present
the constraints on the EFT parameter )y for values greater than zero, as the region where g < 0 is
unphysical due to stability conditions. Right: the marginalized posterior distribution for the EFT
parameter g under power law and exponential parameterizations in ACDM background. Both
parameterizations yield consistent constraints on Qg(a), with no deviation from GR predictions.

combination of DESI (FS + BAO), CMB with lensing, and five-year SN Ia sample from DES
gives the following constraints on background properties:

O = 0.3220 + 0.0047,
DESI (FS+BAO) +

og = 0.8152 £ 0.0052,
DESY5SN + CMB.

(4.8)

Hy = (66.87 +0.34) kms~! Mpc™.

We note that a higher value of €, relative to the best-fit ACDM values is preferred, similar
to the constraints in the wyw,CDM background without modified gravity [71].
The constraints on the EFT parameters are the following:

_ +0.00099
{30 = 0.01189%5 01>, | DESI (FS+BAO) +

(4.9)

The parameter 2(a) controls the non-minimal coupling through the effective Planck mass
term M3 (1 + Q(t)). The constraints on the EFT parameters are consistent predictions of
GR in this model. Note that the no-ghost and no-gradient conditions already imply that
Q(a) > 0 (see [150] for more details). Using combinations of DESI (FS+BAO), DESY5SN,
and CMB measurement, we find the 95% C.L. constraint to be €y < 0.0412. The sy value
is consistent with one, implying a linear evolution of Q(a).

Furthermore, combining DESI (FS + BAO) with CMB with no-lensing, weak lensing
and galaxy clustering datasets from DESY3 (3 x 2-pt), we obtain the following constraints
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for the EFT parameters:

0.016
DESY3 (3x2-pt) + (4.10)

Qo = 0.015019-0041 } DESI (FS+BAO) +
CMB-nl.

0.49

The 95% C.L. constraint is Qg < 0.0476 in this combination of data sets. This result is
consistent with the prediction of GR, i.e., 2(a) = 0. This constraint yields a tighter constraint
on the parameter sg compared to previous constraint that utilized five-year SN Ia data.

The right panel of figure 8 shows the marginalized posterior distribution on Q4 in ACDM
expansion history. We also include the marginalized posterior distributions when modeling
2(a) as an exponential evolution in the ACDM background: §2(a) = exp (%cﬁ) —1.0, where
apo and [ are parameters we aim to constrain (see figure 8). We find a tight constraint
of app < 0.0445 in the 95% C.L., and that 8 is 1.227072. Given the small value of ayg
and ( close to unity, the exponential evolution effectively approximates a linear evolution
of Q(a), aligning with our constraints assuming a power-law evolution. We also note that
we have tighter constraints on EFT parameter 2(a) compared to similar constraints in the
literature, e.g., [15, 151].

4.1.2 Results in wow,CDM background

In this section, we discuss the constraints on the EFT parameters when fixing background
to woweCDM cosmology. Figure 9 shows the constraints shows on the EFT parameters
{Q0, so} with 712 = 0 in the wow,CDM background. In this model, the constraints on
the dark energy equation of state from DESI (FS+BAO), DESY3 (3 x 2-pt), and CMB
measurement without lensing are the following:

DESY3 (3x2-pt) + (4.11)

CMB-nl.

wy = —0.657 £ 0.051, | DESI (FS+BAO) +
we = —0.53 +0.12,

We note that the small error bars on wg and w, here do not come from the constraining
power of the data. It is a result of assuming a simple parametrization in eq. (4.5) for EFT
parameter §2(a), which restricts the exploration of further possible EFT models. Subsequently,
this imposes a tighter constraint on the wg-w, plane compared to when, for example, binned
non-parametric reconstruction [152] and allowing more freedom on EFT parameters (e.g.,
varying {Q(a), v1(a), y2(a)} simultaneously).!® See [153] for results using an improved
parametrization for Q(a) inferred from non-parametric reconstruction methods, which avoids
the issue described above.

19%e tried to constrain EFT parameters with {Q(a), y1(a), 72(a)} varying simultaneously using combination
of DESI (FS+BAO), DESY5SN, and CMB; however, the memec chains were difficult to converge in this case.
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Figure 9. Left: the marginalized posterior distribution for the EFT parameter 2y under power
law parametrization in wow,CDM background. The constraints on EFT Qq(a) are consistent with
GR predictions within 20. Again, we present the constraints on the EFT parameter g for values
greater than zero. Right: the 68% and 95% credible contours on the {wg, w,} using DESI (FS+BAO),
DESY3 (3 x 2-pt), and CMB measurement without lensing in the wow,CDM expansion history. The
tight constraint on {wg, w,} is caused by simple assumption in eq. (4.5) of the parametrization and
setting 1,2 = 0.

Combining DESI (FS 4+ BAO), DESY3 (3 x 2-pt), and CMB with no-lensing, we obtain
the following constraints for the EFT parameters:

Qo = 0.04379:916, DESI (FS+BAO) +
o DESY3 (3x2-pt) + (4.12)
so=1232002, ) CMB-nlL

The constraints on EFT parameters are compatible with GR predictions in this dataset
combinations. At the 95% C.L., we find the constraint of EFT €y to be Qg = 0.0431'8:82%.
Despite consistent with GR in the EFT parameters, indication of dynamics dark energy still
persists in the wg-w, plane. Past work constraining €2y and sg in the wyw,CDM background
did not find such signal using BOSS BAO measurement, Supernovae, CMB, and weak lensing
from KiDS [151].

We also observe that our results yield a lower value of Hp, which worsens the Hubble
tension, and higher €2,, values. This may be caused by the parametrization of EFT Q(a) in
eq. (4.5) is not a good fit to the data, which gives larger wp-w, deviation. However, further
work is needed to understand what is driving these constraints.

The full-shape analysis of these EFT parameters may be subject to projection effects
and other systematics, considering the full shape information includes many more nuisance
parameters and are thus more sensitive to modified gravity models compared to BAO
measurement.'! Nevertheless, we expect projection effects to be small with the inclusion of

HRef. [154] shows that the BAO measurement is robust to Horndeski models considering EFT parameters
with power law evolution.
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Model/Dataset Qm o3 Hy wo W, Qo S0

Flat ACDM
(Q(a) free, y1,2(a) = 0)
DESI(FS+BAO)+DESY5SN

0.3220 £ 0.0047 0.8152 & 0.0052  66.87 + 0.34 -1 0 0.0118915:095%  0.9965:54
+CMB ; )
DESI(FS+BAO)+DESY3(3x2-pt
( ) (3x2pt) 0.3187 + 0.0046  0.8135 + 0.0066 67.11 £ 0.34 -1 0 0.015070:99%41  1.0619-49
+CMB-nl 0.016 0.15

Flat wow,CDM
(22(a) free, y1,2(a) = 0)
DESI(FS+BAO)-+DESY3(3x2-pt)
+CMB

0.3647 £0.0087  0.756 £0.010  62.34£0.70 —0.657 £0.051 —0.53+0.12  0.04375:03S 1.2370:3)

Table 7. Mean values and 68% credible intervals on the cosmological parameters for a subclass of
Horndeski model in the EFT-basis.

the DESY3 (3 x 2-pt) and CMB measurements with lensing. Table 7 summarizes all the
constraints we have obtained for the EFT parameters.

4.2 «-basis

Next, we present constraints on the EFT of DE using an alternative basis, the so-called
a-basis [146]. In this formalism, the dynamics of the linear perturbations associated with
the scalar degree of freedom ¢ are fully specified by four free functions of time. Namely,
ap(t) = dln M2 /dIna characterizing the running of the effective Planck mass M2(t) =
[1+Q(t)]ME,, ap(t) controlling the mixing between the kinetic terms of the scalar and the
metric, ax (t) related to the scalar field’s kinetic term, and finally, the tensor speed excess
ar(t) = & — 2. The so-called a-functions have a direct mapping'? to the G;(X, ¢) functions
appearing in the Horndeski Lagrangian [144] and have the advantage of providing a closer link
with observations. In our baseline analysis, we adopt the commonly used parameterization

ai(a) = ¢; Qpg(a), (4.13)

where i = {M, B, K, T}, Qpg(a) = %pDE(a), and ¢; is a constant free parameter. While
this choice is not unique, eq. (4.13) provides a good approximation for certain subclasses of
Horndeski models [155-157]. This approximation is further supported by the expectation that
dark energy (DE) significantly influences the dynamics only at late times, implying a; — 0 as
z — oo. Different parameterizations, such as the EFT basis (£2, ;) in eq. (4.5) and the a-basis
in eq. (4.13), span distinct functional spaces and may lead to subtle differences in the derived
constraints [146, 158, 159]. Thus, testing multiple parameterizations is essential for obtaining
robust, unbiased results. However, it is important to emphasize that, as with any parametric
analysis, the results should be interpreted with caution. For a detailed discussion on these and
other parameterizations commonly used in the literature, we refer the reader to refs. [159-164].

Under the quasi-static approximation (QSA) [118, 165, 166], the a-functions can be
related to the phenomenological functions u(z, k) and X(z, k) described previously. Assuming

23ee e.g. appendix A of [146] for the exact definitions.
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ar = 0 at all times, they can be expressed as [146, 167]

M]?’l Q(aM + %(XB)2
= 1 4.14
=) =3 [ T 2ok +3a2) | (4.14)
M3 (an + 2ap)(am + ap)
Y(z) = =21+ 2 , 4.14b
(2) M2 [ Alak + %aQB) ( )

where M3, and M? are the bare and effective Planck masses. The stability conditions

2

discussed in section 4.1 require (ax + %O&ZB) > 0 to avoid ghosts and c;

> 0 to prevent
gradient instabilities, where ¢? is given by eq. (3.13) in [146].

Motivated by the simultaneous detection of GW170817 and its electromagnetic (v-ray)
counterpart GRB170817A [168], which constrains ap < 1071 [169-174], we focus here on
the subclass of models satisfying ar = 0.3 In what follows, we also fix cg = 1072 since
observations are generally insensitive to ax [158, 176]. Thus, the remaining functions are the
running a7 and the braiding ap. To derive constraints on cosmological parameters, we use
the publicly available Boltzmann solver mochi_class [109-111] interfaced with the MCMC
sampler cobaya [99]. In addition to the four (time-dependent) «;(t)’s, we need to specify
the evolution of the effective energy density, py(2). In this work, following the structure in
the previous subsection, we consider both a ACDM expansion history (wy = —1,w, = 0)
and a wow,CDM expansion history, where wy € [—3,1] and w, € [—3,2] are free to vary.
In addition to the usual ACDM parameters, we also vary the coefficients ¢; by imposing
flat uninformative priors ¢; € [—10,10]. Let us note that under such assumptions, some
parameter combinations might lead to ghosts or gradient/tachyonic instabilities [146]. To
avoid ill-defined (pathological) theories, we reject those points in parameter space violating
the stability conditions tested within hi_class [111].

We will present constraints for three different subclasses of models, which translates
into “activating” certain properties of the linear perturbations. The first class of interest
is the one with maximal freedom, allowing both the running «aj; and the braiding ag to
vary following eq. (4.13). The second one, closely related to the first model presented in
section 4.1, is the subclass of models with no braiding, ap = 0. Finally, we focus on a third
subclass of models satisfying ap = —2ays, dubbed “no-slip” gravity [177] (i.e. ® = V), for
which ¥ = p = M3,/M?2, as is obvious from eq. (4.14). Note that the subclass of Horndeski
theories satisfying ay; = —ap corresponds to the well-known case of f(R) gravity, which
might be the subject of future work.

4.2.1 Results in ACDM background

We start by constraining the cosmological and EFT parameters assuming a ACDM expansion
history. In what follows, we report the constraints when allowing for both ap and aj; to

13Note that this constraint applies only at z ~ 0, and in principle, ar(z) # 0 could be allowed in the past.
See also [175] for a discussion on the validity of the EFT of DE at LIGO scales.
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Figure 10. Left panel: 2D posterior distributions for the EFT coefficients c¢j; and cp and for various
data combinations, where CMB-nl refers to the CMB anisotropies with no lensing. Note that the
region ¢y < 0 and ¢ > 0 is plagued by gradient instabilities, which explain the sharp “cut-oftf” of the
posterior distributions in the bottom-left region of the plot. Right panel: marginalized 1D posterior
distribution for c¢p; and the three classes of models considered. These constraints are derived using the
DESI (BAO+FS)+DESY5SN+CMB combination, with (solid) and without (dashed) CMB lensing,
assuming a ACDM expansion history. Note that stability conditions exclude the region c¢j; < 0 for
theories with ag = 0 (blue).

vary in time, according to eq. (4.13). The constraints on the background quantities are

Q= 0.3054 £+ 0.0050,
DESI (FS+BAO) +

og = 0.837 £ 0.017,
DESY5SN + CMB.

(4.15)
Hy = (68.08 +0.38) kms ! Mpc™!.

We find that the constraints on the (background) cosmological parameters are relatively
stable across the three sub-classes of models studied here, as reported in table 8. For the
coefficients describing the evolution of the «;’s, we get

(4.16)

car = 1.05+0.96, | DESI (FS+BAO) +
cp=092+033, | DESY5SN + CMB.

The marginalized posterior distribution is shown in figure 10. The data indicates a mild
preference for ap # 0, while remaining consistent with no running of the Planck mass
(apr = 0). Stability bounds, in particular, due to gradient instabilities, exclude significant
regions in parameter space, such as models with ¢y < 0. When growth measurements
from DESI are not included, the constraints on the «;’s are primarily driven by the late
Integrated Sachs-Wolfe (ISW) effect on the CMB [158, 171]. Large values of aj; (or ap)
modify the late-time evolution of the gravitational potentials (<i> and \i/), resulting in excess
power at large angular scales (low-£) [111, 159].

When both ap and ay; are allowed to vary, they can interfere destructively, suppressing
the low-¢ ISW tail. This interaction can lead to significant deviations from GR while
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still maintaining a satisfactory fit to the data. This degeneracy is broken when full-shape
measurements of the power spectrum multipoles are included, as they tightly constrain the
running of the Planck mass, ajs, by probing the growth of structures at late times. The
combined data favor the region cg 2 0 and c¢j; < 2. Let us note that at this stage that
such a region can be efficiently probed by cross-correlating galaxies with the CMB [178, 179].
Including such cross-correlation would result in even tighter constraints on the «a;’s through
a more sensitive probe of the ISW effect.

A notable subclass of theories, which falls nicely in the region currently allowed by
observations, is “no-slip” gravity [177]. This subclass of theories is characterized by ap =
—2aps, which ensures ® = U and a slip parameter of n = 1. In such theories, the mild
preference for c¢p # 0 is reflected in the 1d marginalized posterior distribution for ¢y, shown
in the right panel of figure 10.

For models with no braiding (ap = 0), known as “only-run” gravity [121], stability
conditions impose ajps > 0, as shown in figure 10. In such theories, although dark energy
does not cluster on subhorizon scales, the growth of matter perturbations is still affected by
the non-minimal coupling (aps # 0). Consequently, the inclusion of full-shape measurements
results in an upper bound on c¢p; < 1.14 at 95% C.L., consistent with GR. These results can
be seen as complementary to the ones presented in section 4.1, for the first model, where
Q(a) is free and ~v1(a) = y2(a) = 0.

4.2.2 Results in wow,CDM background

Next, we let the effective dark energy density pys vary with time according to the canonical
w(a) = wo + we(1 — a) parametrisation [133, 134]. Our background parameters estimates are

O = 0.3131 £ 0.0063,
DESI (FS+BAO) +

— 0.832 +0.017,
o8 DESY5SN + CMB-nl.

(4.17)
Hy = (67.36 + 0.62) kms~! Mpc ™.

Despite a small increase in 2,,, these are in good agreement with those reported in the
previous section 4.2.1, where we assumed a ACDM-expansion history. The equation of state
parameters are constrained to be

wp = —0.801 = 0.65, } DESI (FS+BAO) (4.18)

wg = —0.70 £ 0.29, +DESY5SN + CMB-nl.

We note that, while the statistical significance decreases due to an extended parameter space,
the tantalizing hints for w(z) # —1 previously reported in [69, 71, 180, 181] remain. For the
coefficients describing the evolution of the a-functions, we obtain

car = 0.337063, } DESI (FS+BAO) + (4.19)

cp =1.25+0.33, | DESY5SN +CMB-nl.
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Figure 11. 2D posterior distributions for the EFT coefficients cj; and cg and for various data com-
binations.

Our results (see also figure 11) are consistent with no running of the Planck mass, ap; = 0,
as predicted by General Relativity. Interestingly, when allowing the dark energy equation of
state to vary with time — under the assumption of a; x 2pg — the combined data continues
to favor a non-zero braiding parameter, cg # 0 [155, 182, 183]. These findings, summarized in
table 8, align with recent literature [26, 105, 179, 184, 185] however, the inclusion of DESI’s
full-shape measurements in this work places strong constraints on aj; and consistently shows
the possibility of ap # 0. From a theoretical standpoint, we expect at least one of the a; # 0
to stabilize the phantom-crossing in w(z), as suggested by parametric and non-parametric
techniques [186]. Given the importance of such results, more work is needed to clarify the
source of such deviations from GR, be it due to a physical or systematic origin, and we leave
that for future work. For example, as discussed in section 3.2.1 — and shown in figure 1
— the derived modified gravity constraints are moderately sensitive to the choice of CMB
likelihood. Notably, the statistical significance of deviations from GR decreases when moving
from Planck PR3 to newer CamSpec [88, 89] or HiLLiPoP /LoLLiPoP [90, 91] likelihoods based
on Planck PR4, which lack the Ajens and € anomalies that often correlate with modifications
to gravity [129]. Due to the high dimensionality of our parameter space, we did not repeat
the analysis with these alternative CMB likelihoods. However, we anticipate that the results
would trend towards GR-predicted values (ap = ap = 0) when using Planck PR4 data,
especially with the addition of DESY3 (3 x 2pt) measurements.

An important point worth mentioning is that full-shape analyses based on the EFTofL.SS
may be subject to prior and projection effects (thoroughly discussed in [70]), particularly
in extended parameter spaces [71], as considered here. We assume that the combination of
DESI (BAO+FS), DESY5SN, and CMB data effectively mitigates such projection effects,
though further work is needed to clarify whether these effects or other systematics in the
data could contribute to the preference for ag # 0. Lastly, we expect that including the ISW
effect could be crucial in constraining the a-functions. We leave this for future work.
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model/dataset Hy O oy wo W (9] cB
Flat ACDM
(o & ap free)
DESI BAO4+DESY5SN+CMB-nl ~ 68.20 0.43 0.3042 +0.0056  0.87113:9% -1 0 2.175¢ 166704
DESI(FS+BAO)+DESY5SN 0011 0.50
CMBonl 68.14 +£0.41 0.3049 £0.0054  0.840F0 031 -1 0 0.43%08 1.43 £0.40
+CMB-n
DESI(FS+BAO)+DESY5SN
OMB 68.06 +0.37  0.3057 +£0.0048  0.835 % 0.015 -1 0 0.98+0.89  0.91+0.31
(anr free & ap = 0)
DESI BAO+DESY5SN+CMB-nl  67.82+0.41 0.3088 +0.0055  0.818010:9976 -1 0 0.4475:12 0
DESI(FS+BAO)+DESY5SN X 0,007 o
CMBal 67.78 +0.37  0.3093 +0.0050  0.81907:007% -1 0 < 0.636 0
IB-n
DESI(FS+BAO)+DESY5SN X ) ’
OMB 67.714+0.35  0.310370:954 0.8219100072 -1 0 0.547013 0
(ap = —2aun)
DESI BAO+DESY5SN+CMB-nl  68.14 £0.42  0.3049 £ 0.0055  0.830670 002 -1 0 —0.85104% —2cpr
DESI(FS+BAO)+DESY5SN
( ) 7 68.14£0.43  0.3048 £0.0056  0.82871000% -1 0 —0.8910:37 —2¢r
+CMB-nl : :
DESI(FS+BAO)+DESY5SN
OMB 68.04+0.41  0.3062 +0.0053 0.8161 % 0.0053 -1 0 —0.51+0.21 —2cnm
Flat wow,CDM
(am & ap free)
DESI BAO+DESY5SN+CMB-nl ~ 67.2170%¢  0.3136 +£0.0067  0.843%0-037 —0.775+0.073 —0.75+0.33  0.930-7° 1.237041
DESI(FS+BAO)+DESY5SN 0,015 0.63
67.36 £0.62 03131 +£0.0062  0.83270013  —0.801£0.065 —0.70+£0.29  0.33%05%  1.25+0.33
+CMB-nl ’ ’
DESI(FS+BAO)+DESY5SN y . ‘ .
( ) 67.35+£0.65 0.3127+0.0063  0.823+0.017  —0.803709%2  —0.68703L 0.3919:3¢ 0.957931
+CMB : : : :

Table 8. Mean values and 68% credible intervals on MG and cosmological parameters for various
subclasses of Horndeski models, using the a-basis and various dataset combinations.

5 Conclusions

We derive constraints on modified gravity parameters using data from the full-shape (F'S)
modeling of the power spectrum, including the effects of redshift-space distortions from
the first year of DESI Data Release 1 (DR1). This clustering data is very sensitive to the
growth rate of large scale structure and is very effective at constraining gravity theory at
cosmological scales.

We present results for DESI in combination with other available datasets including: the
CMB temperature and polarization data from Planck as well as CMB lensing from Planck
and ACT, BBN constraints on the physical baryon density, the galaxy weak lensing and
clustering as well as their cross-correlation referred to as the DESY3, and supernova data
from DES Y5. We avoid using CMB lensing and the DESY3 (3x2-pt) data at the same
time in any combination due to their covariance.

We first consider the often-used p(a, k)-X(a, k) phenomenological parameterization (as
well as n(a, k)) in order to test deviations from general relativity. In this approach, one aims
to test whether the data shows any departures from the values predicted by GR (zero in this
parameterization) without assuming a specific model of modified gravity. By construction,
w(a, k) is featured in the equation that governs the dynamics of massive particles, while
Y(a, k) appears in the equation that governs the dynamics of massless particles that can
be constrained by gravitational lensing as an example.
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We start by deriving constraints for p(a)-X(a) using a functional form to express the
dependence on time (or redshift) of such parameters in a ACDM cosmological background.
We find that DEST (FS+BAO)+BBN+n1¢ gives g = 0.117021 which is consistent with the
GR value of zero for this scheme. DESI produces no direct constraints on the parameter
>0; however, when combined with other datasets, it breaks degeneracies in cosmological
parameters and allows to significantly improve the constraints on .

We next derive constraints on these parameters using the Planck CMB data with and
without lensing. We find that using Planck CMB PR3 without lensing gives results on X
that are in some tension with the GR value of zero. This was associated, in previous studies,
with the CMB lensing anomaly (a systematic effect) that was usually expressed in terms of
non-unity of the non-physical parameter Aje,s. In fact when CMB (PR3) is combined with
DESI, this tension raises well above the 3-o level (see bottom-left panel of figure 1) (but again,
this is driven by Planck PR3 not DESI). We also derive constraints on these MG parameters
using the Planck CMB likelihood Camspec and the most recent LoLLiPoP-HiLLiPoP. The
problem of Ajeng is partly alleviated with Camspec and resolved with LoLLiPoP-HiLLiPoP.
We find in our new results on MG that the tension in X is alleviated with Camspec and
goes away with LoLLiPoP-HiLLiPoP. We then combine DESI (FS+BAO) with the no-lensing
CMB data using the three likelihoods and observe the same trend for this tension. This thus
seems to demonstrates the connection of this tension to the lensing anomaly, and that it
seems to be related to a possible systematic effect in Planck PR3.

We find the tightest constraints on the two MG parameters come from our combination
DESI+CMB-no-lensing+DESY3+DESY5-SN and are given by pg = 0.05 £ 0.22 and ¥y =
0.008 % 0.045 and similarly po = 0.0175:3) and 79 = 0.097535 (but noting that the DESY5
SN in this case is not adding any significant further constraints but this will not be the
case for the wyw,CDM background or other extended dependencies). All the constraints
are consistent with the GR predicted values but the resultant constraint on ¥ is found to
be nearly a factor of 5 better than that on pyp.

We then consider the same parameterization and time evolution but in a wyw,CDM
cosmological background. In view of the increase in the total number of cosmological
parameters, we use the full combination DESI+CMB (LoLLiPoP-HiLLiPoP)-nl + DESY3 +
DESY5 SN and find that adding the supernova dataset does make a significant improvement on
both the dark energy equation of state parameters and also the MG parameters. Interestingly,
even in this extended case of parameters, the constraints on the dark energy parameters
still indicate a preference for a time evolving equation of state with wg = —0.784 + 0.061
and w, = —0.82793% while the MG results pp = —0.247032 and Yo = 0.006 4 0.043 are
still all consistent with GR.

Next, we finish for the functional parameterization by allowing for both time and scale
dependence. That is done by adding three further MG parameters that control the scale
functional dependence, i.e. A, ¢; and c3. We again use the full and most constraining
combination of datasets, DESI4+CMB (PR3)-nl+DESY3+DESY5SN and obtain, pg =
0.037913, $o = 0.027 + 0.043, but the scale parameters remain difficult to constrain using

this functional form. Interestingly, the binning method in redshift and scale does much
better and is able to return meaningful constraints on all parameters. In all cases, the results
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are found to be consistent with GR.

We now move to the binning parameterization where, instead of using analytical functions
to express time or scale evolution, we rather design bins of redshifts and bins of scales with
smoothed transitions. We start by binning in redshift-only and assume two bins with MG
parameters p1 and ¥ in a first bin with 0 < z < 1 and pe and 35 in a second bin with
1 < z < 2. We assume that beyond z > 2, gravity is given by GR and all the parameters
are set to take the GR value of 1 (note the convention for the binning form). Using again
the combination DESI+CMB (PR3)-nl+DESY3+DESY5SN, we obtain p; = 1.02 4+ 0.13,
pi2 = 1.04 £ 0.11, $1 = 1.021 £ 0.029 and ¥y = 1.0227505%, which are all consistent with GR.

The next level in the binning parameterization is to allow for binning in both redshift
and scale and we implement that. We use the two bins in redshift above but crossed with
two other bins in scale, giving 4 parameters p; and 4 parameters ;. Similarly, we find that
the combination DESI4+-CMB (PR3)-nl+DESY3+DESY5SN is able to give constraints on
all 8 parameters, that are consistent with GR.

It is worth noting that in both the functional forms and binned forms of MG parameteri-
zations, when we use a wow,CDM expansion background, we still find that the combined
data show preference for a dynamical dark energy with wy > —1 and w, < 0.

In sum for the above part, we find that all the constraints are consistent with the
GR predicted values. We also find that current combined datasets provide a more precise
measurement on the ¥ parameters than the y parameters by up to a factor 5. This indicates
that there is room for a lot of improvement on g where DESI is expected to play a major
role in reducing such uncertainties with its next four years of data.

We also note that the analysis including both redshift and scale seems to start providing
tight and meaningful constraints on the MG parameters for the binned parameterization
which is an important step in testing modified gravity in cosmology.

We next constrain the class of Horndeski theory in the effective field theory of dark
energy approach. We assume both an EFT-basis and an a-basis in the analysis. In the
EFT-basis, we first assume non-minimal coupling with a parameterization Q(a) = Qya®
with 71 (a) = v2(a) = v3(a) = 0. Specifically in a ACDM background, using data from DESI
(FS+BAO), DESY5SN, and CMB data, we obtain Qy = 0.0118970:395% and s = 0.99675:5¢.
Additionally, when combining DESI (FS+BAO), DES Y3 (3 x 2-pt), and CMB without lensing
measurement, we obtain the constraints Qy = 0.0150730%! and sp = 1.0675-{2 assuming
a ACDM background. In the wow,CDM background, we find that the EFT parameters
Qo = 0.0437538 and so = 1.237)3; are consistent with GR, predictions within 20, and we
still find an indication for dynamical dark energy. The constraints on the EFT parameters in
this model in both the ACDM and the wow,CDM background show consistency with the
predictions of GR (Qp = 0), although these constraints were derived only for the power-law
parametrization of the EFT functions adopted here.

Assuming o; x Qpg(a), we investigated three distinct classes of Horndeski models, each
characterized by different properties in the linear perturbations. Our results, analyzed using
this basis, are broadly consistent with no running of the Planck mass (cy; = 0), as expected
from general relativity (GR), while consistently showing mild departures in a g, from its GR
value of zero. This could indicate projection effects, potential systematics in the data, or
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new physics beyond ACDM and deserves further exploration. These findings underscore the
critical role of growth and lensing measurements in constraining modifications to gravity.
Below, we summarize the main results for each class:

No Braiding (ap = 0): assuming a ACDM expansion history, the combined DESI
(BAO+FS)+DESY5SN+CMB data constrains ¢y < 1.14 at the 95% confidence level, in
agreement with the expectations from GR (aps = 0). No-Slip Gravity (ap = —2an):
in this scenario, the relationship ap = —2ay; fixes the gravitational potentials such that
U = &. Consequently, lensing is closely tied to the growth of structures. Our analysis yields
cyy = —0.51 £ 0.21, which is consistent with GR within 2-0. Running & Braiding (ap,
ayy): for this case, we find that DESI full-shape measurements are crucial for constraining
apr- However, they are insufficient to fully break degeneracies with ap, leading to a mild
deviation of ap from 0. Combining DESI full-shape constraints with CMB lensing and
weak lensing measurements will prove essential for disentangling the effects of the running
ayr and the braiding ap in upcoming analyses. In summary, while the combined DESI
(FS+BAO)+DESY5SN+CMB data yield results consistent with GR when ap is set to zero,
there is a mild yet consistent preference for cg > 0 when this braiding term ap is allowed to
vary. This preference is more pronounced in the absence of lensing constraints. More work is
needed to explore the origin of such departure from GR and whether it is due to unknown
systematic effects or new physics, and we leave that for future studies.

Our results are based on the DESI full shape analysis that employed perturbation theory
that has been compared in previous studies to an MG non-linear code, e.g. [112], and found
to be in good agreement in loop corrections for small departures from GR as we find here
for MG parameter mean values from our most constraining dataset combinations. However,
future work should be conducted to estimate more quantitatively any modeling systematics
related to MG models and to determine if any additional systematic errors need to be added
to the overall error budget of the full shape results and corresponding MG constraints.

In sum, we focused in this paper on an analysis dedicated to testing modified gravity at
cosmological scales using data from DESI, a Stage IV dark energy experiment, in combination
with other publicly available datasets. We find that one year of data from DESI is able
to provide constraints on MG parameters that are as competitive as two decades of data
from SDSS. Moreover, DESI provides direct effective constraints on the MG parameter(s)
associated with the growth rate of large scale structure using the full shape analysis indicating
that forthcoming DESI data will play a major role in constraining the nature of gravity
theory at cosmological scales.

6 Data availability

The data used in this analysis will be made public along the Data Release 1 (details in
https://data.desi.lbl.gov/doc/releases/).
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Figure 12. Comparison between MG kernels using fkpt and EdS kernels to compute the 1-loop
corrections of the power spectrum for the model given by eq. (3.6) with ¢; = A = 0. The ratios are
shown for a case that depart from GR with pg = 0.5. Shown are the power spectrum multipoles ¢ = 0,
2 and 4, although the latter is not used in the fits for this analysis.
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A Einstein de Sitter kernels versus MG full kernels using

We added in this appendix figure 12 in support of the discussion of the EFT kernels in
section 2 and refer the reader to that subsection.

B Constraints and comparison using ShapeFit results

The cosmological information can be extracted from large-scale structures using two primary
methods: the Full Shape method as used in section 3 or compression techniques. Here,
we perform a direct comparison of the constraints obtained from ShapeFit compression
with those derived from the full-shape method in the context of a ACDM background
with time-only dependence of MG parameters. The compression method, such as ShapeFit
(SF) [187], relies on fitting power-spectrum multipoles using a template cosmology and a set
of free parameters that capture information about the underlying cosmology. The ShapeFit
compression combines BAO scaling parameters, o) and « , the growth of the structure, df,
and two shape parameters, m and n, which model the broadband shape of the linear power
spectrum, pivoting at a specific scale, allowing the capture of information from both the
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matter-radiation equality epoch and the spectral index through:

k k
Pl = Plfffl1 exp m tanh |aln | — || +nln | — , (B.1)
a kp kp

where k;, and a values has been kept fixed at k, = 0.03R9Mpc™, @ = 0.6 and n = 0. We set
n = 0 due to the strong anti-correlation between the shape parameters n and m [80, 187].

We closely follow the compression outlined in [70] and utilize the ShapeFit measurements
from six redshift bins combined with distance-scale information from the post-reconstruction
correlation function, and BAO Ly« likelihood [67] used in DESI DR1 BAO measurements.
For more details of the Shapefit pipeline, we refer readers to section 4 of [70]. The ShapeFit
compression, similar to RSD fo,s measurements, serves as an independent probe for the
redshift dependence of the gravitational constant p(z). For the sake of brevity, we will denote
the combined likelihood as DESI (SF + BAO).

When considering the (o, Xo) anstaz discussed in section 3, we find DESI (SF 4+ BAO)
+ CMB(PR3)-nl + DESY5SN gives the following constraints:

o = 0.10 £ 0.25,
Yo = 0.3631042,.
These constraints tighten up when DESY3 is added to the mix.

pio = —0.10 & 0.23,

S = 0.03979:943,
However, when CMB lensing is used instead of DESY3, we obtain the following constraints

1o = —0.06 % 0.25,
Yo = 0.144 + 0.071.

In figure 13, we show the constraints obtained from the DESI (SF + BAO) in combination
with the CMB (without lensing) and DESY5SN, depicted in blue. The incorporation of CMB
lensing data lowers the constraints on the parameter ¥, making them more consistent with
GR. Finally, the combination of DESI(SF 4+ BAO) + CMB(PR3)-nl + DESY5SN + DESY3
further tightens the constraints on g, centering credible contours around prediction of GR
(o = 0, Xp = 0). Additionally, we show corresponding DESI(FS+BAO) data combinations
in dotted lines, which, as expected, provide tighter constraints compared to those from
SF+BAO, indicating consistency across different dataset combinations.

Our results reveal that the constraints on the parameters ug and ¥g are overall consistent,
although slightly weaker when using SF compression in comparison to the full-shape analysis
and as expected. This difference is attributed to the fact that ShapeFit employs a single
SF parameter (m) to capture information around the matter-radiation equality epoch. In
contrast, the full-shape analysis leverages the complete shape of the power spectrum, allowing
for efficient extraction of the cosmological information.

Despite the agreement between full-shape and Shapefit results, it’s important to note
that the ShapeFit compression is not designed and validated for MG scenarios and extra
caution should be exercised when interpreting the results within the context of MG theories.
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Figure 13. The data combination of DESI(SF + BAO), CMB (without lensing), and DESY5SN,
depicted in blue contours, presents 68% and 95% credible limits on pg and ¥y parameters. Upon the
addition of CMB lensing to the combination, represented in orange, the constraints on Xy shift to
a lower value, aligning with the predictions of GR. Lastly, the combination of DESI(SF + BAO) +
CMB(PR3)-nl + DESY5SN + DESY3, shown in green, is completely consistent with GR (9 = 0,
3o = 0). We also compare these constraints with the DESI (FS 4+ BAO) results, which are illustrated
with dotted lines and discussed in the previous section.

C Projection effects in the context of modified gravity

In this appendix, we investigate projection effects by comparing the Maximum A Posteriori
(MAP) values to the mean values of posteriors within the framework of the MG parameteri-
zation. In this context, projection effects refer to the shifts that may occur when nuisance
parameters, such as bias, stochastic terms, and counter-terms, are partially degenerate with
cosmological parameters, see e.g. ref. [70] for detailed discussions. When marginalizing
over these nuisance parameters, the peak of the posterior distribution can shift away from
the marginal posterior distribution.

We determine the MAP by maximizing the log-posterior using the prospect [188]
package, initiated from the maximum log-posterior points identified within the MCMC chains.
[188] utilizes simulated annealing, a gradient-free stochastic optimization algorithm, which
incorporates adaptive step-size tuning and covariance matrices derived from the MCMC
to optimize the log-posterior effectively'*

As illustrated in figure 14, the maximum a posteriori and mean values for the MG
parameters po and g fall well within 1o, demonstrating that projection-induced biases are
limited when all datasets are combined, supporting the robustness of the MG constraints
presented in our study. We report in table 9 the MAP values for MG and other cosmological
parameters for various selected dataset combinations to allow comparison with the posterior

We have validated the prospect results with the wo — w, model results presented in the appendix of [71]
where another software was used, and the findings were very similar.
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Figure 14. The impact of projection effects on the modified gravity parameters. The left subplot

illustrates the marginal posterior distribution of uy — 3¢ with a wg-w, cosmological expansion
background using DESI+CMB(L-H)+DESY5SN+DESY3, with blue contours representing 68% and
95% credible interval regions, and the red cross highlighting the maximum a posteriori (MAP) values
obtained from prospect. The right subplot presents the corresponding constraints for binned p(z)

and X(z) in the ACDM expansion background.

Flat p,oz() ACDM Qm (oF] H(] [km/s/Mpc] Ho EO
DESI+CMB (PR3)-1 0.3016  0.8287 68.38 02531  0.1612
DESI+CMB (PR3)-nl + DESY3 0.302  0.8057 68.34 0.02158  0.05945
DESI+CMB (LoLLiPoP-HiLLiPoP)-1  0.3018  0.8325 68.25 0.2536  0.1027
DESI MB (LoLLiPoP-HiLLiPoP)-nl
SI+CMB (LoLLiPOP-HALLIPOP)-nl 0y 0 103 68.24 0.08183  0.03205
+DESY3
DESI+CMB (LoLLiPoP-HiLLiPoP)-nl
0.3068  0.8155 67.86 01013 0.01112
+DESY3+DESSNY5
Flat pono ACDM O o8 Hy [km/s/Mpc] o 0
DESI+CMB (LoLLiPoP-HiLLiPoP)-l  0.3011  0.8343 68.31 04148  —0.4939
DESI+CMB (LoLLiPoP-HiLLiPoP)-nl
307 81 7.82 . —0.064
DESY34+DESSNYS 0.3075 0.8 67.8 0.05567 —0.06469
Flat Mozo’wo’wa wo Wq Ho[km/S/MpC] Ho ZO
DESI+CMB (LoLLiPoP-HALLiPoP)ml o _oog 169 66.72 —0.096  0.0078

+DESY3+DESSNY5

Table 9. Maximum A Posteriori (MAP) estimates of cosmological parameters and modified gravity
parameters obtained using the PROSPECT for selected models and combinations of datasets to inform

comparison with posterior values from table 2 and table 3.

results in the analysis. We leave a detailed characterization of these effects for various MG

models and datasets for future work.
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