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Avenida Ejército Libertador 441, Santiago, Chile
65Department of Physics and Astronomy, University of Waterloo,
200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada

66Perimeter Institute for Theoretical Physics,
31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada

67Waterloo Centre for Astrophysics, University of Waterloo,
200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada

68Space Sciences Laboratory, University of California,
Berkeley, 7 Gauss Way, Berkeley, California 94720, USA

69Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, s/n, Granada E-18008, Spain
70Max Planck Institute for Extraterrestrial Physics, Gießenbachstraße 1, Garching 85748, Germany

71Departament de Física, EEBE, Universitat Politècnica de Catalunya,
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We conduct an extended analysis of dark energy constraints, in support of the findings of the Dark
Energy Spectroscopic Instrument (DESI) second data release cosmology key paper, including DESI data,
Planck cosmic microwave background observations, and three different supernova compilations. Using a
broad range of parametric and nonparametric methods, we explore the dark energy phenomenology and
find consistent trends across all approaches, in good agreement with the w0waCDM (cold dark matter) key
paper results. Even with the additional flexibility introduced by nonparametric approaches, such as binning
and Gaussian processes, we find that extending ΛCDM to include a two-parameter wðzÞ is sufficient to
capture the trends present in the data. Finally, we examine three dark energy classes with distinct dynamics,
including quintessence scenarios satisfying w ≥ −1, to explore what underlying physics can explain such
deviations. The current data indicate a clear preference for models that feature a phantom crossing;
although alternatives lacking this feature are disfavored, they cannot yet be ruled out. Our analysis confirms
that the evidence for dynamical dark energy, particularly at low redshift (z ≲ 0.3), is robust and stable under
different modeling choices.
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I. INTRODUCTION

The Λ cold dark matter (ΛCDM) model has withstood
the test of time as the standard framework of modern
cosmology, and it provides a robust foundation for under-
standing the Universe. It describes a spatially flat Universe
that is homogeneous and isotropic on large scales, gov-
erned by Einstein’s general relativity [1]. The model
incorporates two key components: about 70% is in dark
energy that is described by the vacuum-energy contribution
(corresponding to the cosmological constant Λ in the
equations), while another 30% is in pressureless matter
that is made up of a combination of cold dark matter and
baryons. Despite its elegant simplicity, ΛCDM has suc-
cessfully explained a broad range of cosmological obser-
vations [2–14]. On the whole, measurements made over the
past several decades have largely confirmed this paradigm
and, in particular, cemented dark energy [15–17] as the
essential component of concordance model to explain the
observed accelerated expansion of the Universe [2,3].
While the cosmological constant has been a cornerstone

of the standard model of cosmology, various dark energy
models with an evolving equation of state have been
proposed as alternatives [18–26]. Specifically, we are
motivated to study these time-evolving alternatives by
the recent cosmological results from the Dark Energy
Spectroscopic Instrument (DESI) [27,28]. DESI is able
to measure multiple spectra simultaneously by means of its
5,000 fibers [29] and a robotic plane assembly [30] across
the field of view given its 3.2° diameter prime focus
corrector [31]. This is complemented by a high-perfor-
mance spectroscopic data processing pipeline [32] and a
streamlined operations plan [33]. DESI is designed to help
better understand the nature of dark energy [34] and its
successful survey validation [35] based on early data [36]
showed that it meets the expected requirements of a
Stage-IV survey. In particular, its Data Release 1 (DR1)
[37] has already provided new insights into the behavior of
dark energy. DESI DR1 measured the baryon acoustic
oscillations (BAO) signature in the clustering of galaxies
and quasars [38], as well as the Lyman-α (Lyα) forest [39].
The combined constraints from DESI DR1 BAO and
external data [40], followed up with a similar analysis that
combines the BAO with the full clustering information
from DESI galaxies and other tracers [41,42], as well as the
supporting DESI DR1 papers that considered alternative
descriptions of the dark energy sector [43,44], all showed
tantalizing hints of the departures from the cosmological
constant dark energy model. Cosmological hints in the dark
energy sector are currently a source of debate, and it is of
high priority to explore them with more data. In this work,
we make use of the BAO measurements from the second
data release (DR2) [45–47] from DESI to explore the
possibility of an evolving, dynamical dark energy, and
evaluate whether existing observations support such a
paradigm shift. This paper is part of a set of supporting

papers that aim to extend the cosmological analysis
presented in Ref. [47] (see Ref. [48] for the supporting
paper focusing on neutrino constraints).
An essential ingredient, in a study confronting dark-

energy models with data, is the physical description of dark
energy (DE). In the standard concordance model, ΛCDM,
it is described by its contribution to the stress-energy tensor,
Λ or, equivalently, by its energy density relative to critical,
ΩDE. A dynamical dark energy is enabled by allowing the
equation of state, w ¼ P=ðρc2Þ, to differ from its ΛCDM
value of −1. There are many possible ways to achieve
this, a large number of which have been introduced and
tested in the literature [49–62]. We can classify them as
parametric and nonparametric approaches. Parametric
approaches rely on predefined functional forms for
quantities like wðzÞ (where z is redshift), while non-
parametric methods seek to reconstruct these quantities
directly from data without assuming predefined func-
tional forms or specific cosmological models. Both
methods have advantages and disadvantages. On the
one hand, parametric models are mathematically simple
and easy to interpret, but may lead to biased inferences if
the assumed parametric form deviates substantially from
reality. On the other hand, nonparametric methods offer
greater flexibility and are less subject to model-dependent
biases. However, these are harder to implement and
require careful validation with simulations. For this
reason, we perform initial tests using simulated (mock)
datasets. While there is no substitute for comprehensive
validation, these tests check the methodology’s imple-
mentation and mitigate potential biases that could affect
the results. We remind readers that all the analyses in
this paper rely on the assumption that the data used are
reliable and free from unknown systematics.
The paper is structured as follows: in Sec. II, we

introduce the datasets and general methodology used in
the analyses, followed by Sec. III, where we summarize
the current status of the DESI results from the w0wa
parametrization [47]. Various alternative dark energy para-
metrizations are explored in Sec. IV, before the implemen-
tation of nonparametric methods in Sec. V. Section VI
provides an interpretation of the possible physical mech-
anisms behind deviations fromΛCDM. Finally, in Sec. VII,
we present our conclusions.

II. DATASETS AND METHODOLOGY

In this section, we provide a brief cosmological back-
ground on distance measurements relevant to DESI, with
an emphasis on dark energy. We start by introducing the
relevant cosmological functions, before proceeding to
describe the datasets used and the statistical tools employed
in our analysis.
As shown in Ref. [40], the evidence for spatial curvature

in the Universe is not significant. Therefore, we assume a
flat Universe for all the results presented in our analyses.
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The time-dependence of the dark energy density is enabled
via the equation of state wðzÞ; the expansion rate reads

HðzÞ
H0

¼
�
Ωbcð1þ zÞ3 þ Ωγð1þ zÞ4 þ Ων

ρνðzÞ
ρν;0

þ ΩDE
ρDEðzÞ
ρDE;0

�
1=2

; ð1Þ

where Ωbc ¼ Ωc þ Ωb, H0 is the Hubble parameter today,
and Ωb, Ωc, Ωγ , Ων, and ΩDE are the present-time energy
density parameters in baryons, cold dark matter, radiation,
massive neutrinos, and dark energy, respectively. The
neutrino species contribute to the matter content of the
Universe at the present day, since they behave as non-
relativistic matter once they have passed through a tran-
sition redshift during the matter domination era (e.g.,
transitioning around a redshift ∼100 for a neutrino mass
eigenstate with a mass of 0.06 eV) [63,64]. This detail will
be important when defining our cosmic microwave back-
ground (CMB) compression scheme, since relativistic
neutrinos do not contribute significantly to matter density
at the time of recombination. We define Ωm ¼ Ωbc þΩν

to denote the matter content that scales ð1þ zÞ3 when
neutrinos are nonrelativistic.
For a dark energy component with an equation-of-state

parameter wðzÞ ¼ PDEðzÞ=ðρDEðzÞc2Þ, the energy density
ρDE normalized to its present value evolves as

fDEðzÞ≡ ρDEðzÞ
ρDE;0

¼ exp

�
3

Z
z

0

½1þ wðz0Þ� dz0

1þ z0

�
: ð2Þ

For a constant value of wðzÞ, the dark energy density
becomes proportional to ð1þ zÞ3ð1þwÞ, while for a model
based a cosmological constant (w ¼ −1), the right-hand
side of Eq. (2) is unity. The conventional w0wa para-
metrization for time-varying wðzÞ is [50,51]

wðzÞ ¼ w0 þ wa
z

1þ z
; ð3Þ

with energy density following the expression

fDEðzÞ ¼ ð1þ zÞ3ð1þw0þwaÞe−3wa
z

1þz: ð4Þ
BAO measures the comoving distance at the effective

redshift of a given galaxy sample, in units of the sound
horizon (rs) at the drag epoch, labeled as rd ≡ rsðzdÞ. The
drag epoch corresponds to the release of baryons from
the drag of CMB photons, occurring at a redshift (zd). The
scale rd is thus the distance that sound waves in the photon-
baryon fluid were able to travel all the way from the big
bang, slightly after the time of recombination, to the drag
epoch, given by

rd ¼
Z

∞

zd

csðzÞ
HðzÞ dz; ð5Þ

where csðzÞ is the speed of sound waves in the fluid, and
zd ≈ 1060 is the redshift at which photons and baryons
decouple [7]. The BAO measurements are sensitive to the
distance in the direction transverse to the line of sight,
corresponding to the comoving distance

DMðzÞ ¼
c
H0

Z
z

0

dz0
H0

Hðz0Þ : ð6Þ

BAO also measures the Hubble distance along the line of
sight, which is directly related to the expansion rate as

DHðzÞ ¼
c

HðzÞ : ð7Þ

However, as described in Ref. [47], some DESI BAO
measurements are isotropic, as in the case of the bright
galaxy sample (BGS) tracer. Hence, we also make use of
the spherically averaged distance DVðzÞ that quantifies the
average of the distances measured along, and perpendicular
to, the line of sight to the observer [65], and is given by

DVðzÞ ¼ ðzDMðzÞ2DHðzÞÞ1=3: ð8Þ
Since these measurements are relative to the sound horizon
rd, which sets the BAO scale, the directly constrained
quantities are the ratios DM=rd, DH=rd, and DV=rd. With
this, we can now define the primary dataset used for our
searches of dynamical dark energy, based on the latest
DESI data:
i. Baryon acoustic oscillations (BAO): We use the BAO

distance measurements from DESI DR2, as detailed in
Table III in Ref. [47]. In particular, for the BGS tracer, we
use measurements of DV=rd providing compressed low
redshift information from the range 0.1 < z < 0.4. For the
rest of DESI tracers, we use the BAO distance measure-
ments of DM=rd and DH=rd. Explicitly, we use two
luminous red galaxies (LRG) bins in the ranges 0.4 < z <
0.6 and 0.6 < z < 0.8, a combined tracer measurement for
LRGþ ELG in the range 0.8 < z < 1.1, a measurement
spanning 1.1 < z < 1.6 for the emission line galaxies
(ELG) tracer and the quasars (QSO) in the range
0.8 < z < 2.1. The systematics tests associated with the
BAO measurements from galaxy and quasar clustering are
presented in Ref. [66]. We also include the Lyα measure-
ments in 1.8 < z < 4.2, which provides our highest redshift
data point. This measurement is described in detail in
Ref. [46] (see also Ref. [67] for validation tests and
Ref. [68] for specific catalog details). We refer to this
whole dataset, encompassing information from redshift 0.1
to 4.2, split into seven main samples, as “DESI.”
We now proceed to define the cosmological datasets that

we use, in combination with DESI, to obtain constraints
on cosmological parameters. The cosmological probes and
specific external datasets used in our analysis are:

(i) Supernovae Ia (SNe Ia): we combine DESI data with
either of the following three SNe Ia datasets, namely
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PantheonPlus, Union3, and DESY5. The Pantheon-
Plus [69] dataset comprises 1550 spectroscopically
confirmed SNe Ia in the redshift range 0.001 <
z < 2.26. The Union3 compilation [70] has 2087
SNe Ia in the redshift range 0.01 < z < 2.26, 1363
of which are common to PantheonPlus, though the
analysis methodologies are substantially different.
Finally, the DESY5 dataset [71] is a sample of
1635 photometrically classified SNe Ia with red-
shifts in the range 0.1 < z < 1.13, complemented
by 194 historical low-redshift SNe Ia (which are
also present in the PantheonPlus sample) spanning
0.025 < z < 0.1.

(ii) Cosmic microwave background: we include temper-
ature and polarization measurements of the CMB
from the Planck satellite [72]. In particular, we use
the high-l TTTEEE likelihood (planck_NPIPE_
highl_CamSpec.TTTEEE), together with low-l
TT (planck_2018_lowl.TT) and low-l EE
(planck_2018_lowl.EE) [73,74], as imple-
mented in Cobaya [75]. Additionally, we combine
temperature and polarization anisotropies with CMB
lensing measurements from the combination of
NPIPE PR4 from Planck [76,77] and the Atacama
Cosmology Telescope DR6 [78,79].

(iii) Compressed CMB: we use the Gaussian correlated
prior over ωb ≡ Ωbh2, ωbc ≡Ωbh2 þ Ωch2 and θ�
as defined in Ref. [47]. Here, the angular acoustic
scale θ� adds extra geometrical information from
the CMB, while ωb and ωbc

1 serve to set the sound
horizon rd and calibrate our BAO measurements.
These CMB-based quantities capture most of the
relevant information from the early CMB by mar-
ginalizing over contributions from late-time effects,
such as the integrated Sachs-Wolfe effect and CMB
lensing, resulting in a robust CMB compression for
testing late-time physics [80]. In particular, we use
these compressed measurements as a conservative
alternative for constraining dark energy at the back-
ground level, thereby allowing for negative fDEðzÞ,
as in Secs. IV B and VA. For brevity, we refer to
these as ðθ�;ωb;ωbcÞCMB.

In our analysis, we utilize Markov Chain Monte Carlo
(MCMC) sampling to explore the parameter space using
the Metropolis-Hastings algorithm [81,82] as implemented
in Cobaya [83,84]. For the alternate parametrizations, non-
parametric methods, and DE classes, we adopt priors
similar to Ref. [40], with exact specifications presented
in Table I, and have modified the Boltzmann solver CAMB

[85,86], incorporating a generalized equation of state for

dark energy for the theoretical prediction of observables.
We employ the parametrized post-Friedmann framework
[87,88] to compute cosmological perturbations for the
time-dependent equation of state wðaÞ, where a is the
scale factor, which permits transitions across the phantom
divide at w ¼ −1. Additionally, we use custom theory code
in Cobaya for the analysis of fDEðzÞ binning and crossing
statistics. For quintessence models, we have a modified
version of the CLASS [89,90] integrated into our inference
pipeline. We switched to the Recfast option for recombina-
tion as it does not assume anything about the equation of
state. We assume one massive and two massless neutrino
species a with

P
mν ¼ 0.06 eV and Neff ¼ 3.044. For the

SNe Ia likelihoods (PantheonPlus, Union3, and DESY5),
we analytically marginalize over the absolute magnitude
MB. For clarity of presentation, we utilize Union3 in the
figures as a conservative result, as it has larger uncertainties
compared to the PantheonPlus and DESY5 datasets.
Nevertheless, we will also discuss constraints derived from
other supernova datasets wherever they are relevant to our
analysis. Finally, Δχ2 is defined with respect to the ΛCDM
best fit. For the calculation of the best fit points themselves,
we start with the maximum a posteriori (MAP) points from
the four chains produced during the MCMC sampling,
and make use of the IMINUIT [91] minimizer. Thus, the

TABLE I. Parameters and priors used in the analysis. In
addition to the flat priors on w0 and wa listed in the table, we
also impose the requirement w0 þ wa < 0 in order to enforce a
period of high-redshift matter domination.

Parametrization Parameter Default Prior

Baseline ωcdm � � � U½0.001; 0.99�
ωb � � � U½0.005; 0.1�
100θMC � � � U½0.5; 10�
lnð1010AsÞ � � � U½1.61; 3.91�
ns � � � U½0.8; 1.2�
τ � � � U½0.01; 0.8�

In absence of θMC H0 � � � U½20; 100�
Alt. parametrization w0 −1 U½−3; 1�

wa 0 U½−3; 2�
Crossing C0 1 N ½1; 12�

Ci 0 N ½0; 12�
Binning wi −1 U½−3; 1�

fDE;i 1 U½−5; 5�
Gaussian processes lf � � � Eq. (C3)

wðzlÞ −1 N ½−1; 12�
Dark energy classes
Calib. Thawing w0 � � � U½−3; 1�
Algebraic Thawing w0 � � � U½−1; 1�

p � � � U½0; 30�
Emergent Δ � � � U½−3; 10�
Mirage w0 � � � U½−3; 1�

1Note that, as pointed out in our discussion about neutrinos,
they do not contribute to the matter content of the Universe
during recombination, and therefore we use ωbc explicitly
instead of ωm.

K. LODHA et al. PHYS. REV. D 112, 083511 (2025)

083511-6



quantity used in model comparisons is more precisely2

Δχ2MAP ≡ −2Δ lnL, which is the difference in the log
posterior values at the calculated maximum posterior
points, scaled by −2. Since the posterior depends on the
product of the likelihood and priors, we also take into
account the ratios of different model priors to ensure that
there is no additional penalty in the Δχ2MAP from comparing
two models.

III. OVERVIEW OF THE w0waCDM RESULTS

We begin by summarizing the dark energy main findings
of the DESI DR2 BAO key paper [47], assuming the w0wa
parametrization given in Eq. (3). As an example, the
marginalized constraints in the w0wa plane are shown in
Fig. 1 for the DESIþ CMBþ Union3 data combination,
together with the constraints from DESI DR1 BAO with
those obtained with DESI DR2 BAO, corresponding to one
and three years worth of data, respectively. The combined
data favor the region w0 > −1 and wa < 0, away from a
cosmological constant, implying that the equation of state
was phantomlike (wðzÞ < −1) in the distant past and has
since evolved to wðzÞ > −1 at present, as shown in the top
panel of Fig. 2. This preference was observed in previous
DESI analyses [40–44] and persists even when allowing
for variations in the spatial curvature (ΩK) [40], modified
gravity [92], or modifications to the prerecombination
physics [93].

DESI DR2 BAO data show that the mean posterior
distributions have shifted slightly toward the ΛCDM-
expected values, while the reduced uncertainties have
marginally increased the statistical significance of the
deviations from ΛCDM to 2.8–4.2σ (with improvements
in fit ranging from −21.0 ≤ Δχ2 ≤ −10.7), compared
to 2.5–3.9σ from DR1 [40,47]. Similar conclusions
follow when using the weighted posterior average of log-
likelihood, the Bayesian counterpart of Δχ2. For a detailed
Bayesian model comparison, see Appendix A. Interestingly,
with the increased precision, the combined DESIþ CMB
data already suggest a ≃3σ deviation from ΛCDM, inde-
pendent of any SNe Ia compilation, with similar conclusions
drawn from the DESIþ DESY3 (3 × 2 pt) combination,
though exhibiting a lower tension; see Fig. 14 in Ref. [47].
Physically, a phantom equation of state (wðzÞ < −1)

translates into an energy density that increases with the
expansion (dρDE=da > 0), before reaching its maximum
(at zc ≃ 0.45, in our case), when the equation of state
crosses the phantom line (wðzcÞ ¼ −1), and ρDE starts
diluting again as the Universe expands. The mean redshift
at which this transition occurs in the w0wa parametrization is
indicated by a solid vertical line in Fig. 2. We should note at
this stage that the exact redshift atwhich this crossing happens
depends on the dataset combination under consideration.
These results may naively suggest a “phantom crossing”

[94] at high redshifts. From a theoretical perspective,

FIG. 1. Constraints on the parameters w0wa from DESI BAO
DR2, CMB, and Union3 are illustrated in blue, while the
corresponding combination with DESI BAO DR1 is shown in
orange. The green line indicates the degeneracy direction asso-
ciated with calibrated thawing (see Sec. VI A), while the purple
line denotes the “mirage” direction (discussed in Sec. VI C), which
closely follows the degeneracy direction of the w0wa contours.

FIG. 2. Equation of state parameter, wðzÞ ¼ P=ρc2, and cor-
responding normalized dark energy density, fDEðzÞ≡
ρDEðzÞ=ρDE;0, as a function of redshift using the w0wa para-
metrization. The solid and dashed-dotted vertical lines indicate
the phantom-crossing (zc) and dark energy-matter equality (zeq)
redshifts, respectively. The horizontal dashed line represents
ΛCDM.

2In the text, χ2 is used in place of χ2MAP, for convenience.
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this so-called phantom crossing is challenging to accom-
modate within standard scalar-field models of dark energy
that are minimally coupled to gravity, as these are con-
strained to satisfy −1 ≤ w ≤ 1. In particular, within general
relativity, a single-field dark energy component with
w < −1 would necessarily violate the null energy con-
dition, given by ρc2 þ P ≥ 0 [95]. If confirmed, the
phantom crossing would have profound implications for
fundamental physics, as it would indicate a significantly
more complex dark sector than traditionally assumed.
However, it is important to emphasize at this stage that
the w0 − wa parametrization is particularly effective at
capturing the impact of various, possibly more fundamen-
tal, dark energy models on observables such as distances
and the expansion history within ∼0.1% accuracy [54] and
may fail to accurately approximate the true behavior of
wðzÞ itself, potentially leading to a spurious indication of
phantom crossing. Thus, restricting our analyses to models
satisfying w > −1 might artificially bias our inference. For
more discussion on phantom crossing, see Sec. VI E.
Before extending our analysis beyond w0waCDM, we

introduce two key quantities that will be useful throughout
this work. Figure 3 presents the OmðzÞ diagnostic [96]
and the deceleration parameter qðzÞ for the w0waCDM
model, where

OmðzÞ≡ h2ðzÞ − 1

ð1þ zÞ3 − 1
; ð9Þ

and the deceleration parameter is given by

qðzÞ≡ −
äa
ȧ2

¼ d lnH
d lnð1þ zÞ − 1: ð10Þ

These two functions constitute a sensitive probe of new
physics, as they are only sensitive to the “shape” of the
(normalized) expansion history hðzÞ ¼ HðzÞ=H0. Thus,
they are unaffected by the degeneracies that may exist
between the dark energy and matter densities at the back-
ground level [97–99]. Indeed, one can readily see from
Eq. (9) that the quantity OmðzÞ is strictly constant and
equal to present matter density (OmðzÞ≡Ωm) if dark
energy is in the form of a cosmological constant. Thus,
OmðzÞ serves as a null test of ΛCDM, and any significant
deviation from a constant value would indicate dynamics in
the dark energy density. The reconstructed OmðzÞ in Fig. 3
shows a clear (> 2σ) deviation from constancy in the range
0≲ z≲ 0.5, where the black dashed line represents the
best-fit ΛCDM value of Ωm ¼ 0.302. On the other hand,
qðzÞ tracks the logarithmic derivative of hðzÞ, rather than its
shape, approaching a value of 0.5 during matter domina-
tion. The reconstructed qðzÞ suggests that the Universe’s
acceleration (q < 0) began earlier in cosmic history
(zacc ≃ 0.8) than predicted by ΛCDM (zacc ≃ 0.65), with
a slowing down of cosmic acceleration at recent times.
These trends in OmðzÞ and qðzÞ were previously observed
with DESI DR1 data and persist with slightly more
statistical significance in DESI DR2.

IV. PARAMETRIZING DARK ENERGY

To more closely explore the possible dynamical nature
of dark energy, we now turn to parametrizations of either
the equation of state wðzÞ, or energy density ρDEðzÞ. Since
different parametrizations can lead to differences in the
inferred evolution of dark energy, it is crucial to explore
multiple forms to assess the robustness of any detected
deviation from a cosmological constant. We examine
various two-parameter functional forms as alternatives to
w0waCDM. In addition, we increase the degrees of freedom
available to wðzÞ, to probe the trends present in the data.
While the parametrizations investigated here are not nec-
essarily tied to a specific physical model, they cover distinct
functional spaces, helping to ensure the results are not
driven by the choice of parametrization.

A. Alternative wðzÞ parametrizations

In this section, we explore four alternative parametriza-
tions from the literature (see Refs. [100,101] for the
equivalent DR1 results) that, like w0waCDM, introduce
two additional parameters: the present-day equation of
state w0 and an evolution parameter wa, but with different
functional forms.

FIG. 3. Evolution of the OmðzÞ diagnostic and deceleration
parameter, qðzÞ, as a function of redshift in the w0waCDM model.
The solid blue lines correspond to the median, 68%, and 95% con-
fidence levels obtained from the DESIþ CMBþ Union3 combi-
nation. The black dashed line depicts the best-fit ΛCDM for the
same data combination. The gray vertical line shows the redshift
(zacc) corresponding to the onset of cosmic acceleration (ä > 0).
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Figure 4 presents constraints on these alternative
models as defined in Table II, i.e.: Barboza-Alcaniz
(BA) [102,103], exponential (EXP)3 [104,105], logarithmic
(LOG) [103] and Jassal-Bagla-Padmanabhan (JBP) [106],
alongside the Chevallier-Polarski-Linder (CPL) in blue for
comparison. The shaded bands, representing 1σ uncertain-
ties, are derived from a combination of DESI, CMB, and
Union3. With the exception of JBP, all models exhibit
similar low-redshift behavior, including a phantom crossing
near z ∼ 0.5. In Table II, we present the alternative func-
tional forms of wðaÞ and Δχ2 values relative to ΛCDM,
showing that BA, CPL, LOG, and EXP provide statistically
comparable fits to the data. The functional form of the
JBP parametrization, which forces it to assume identical
early- and late-time behavior, results in a slightly poorer fit.
These findings confirm that constraints from CPL are
broadly representative of the alternative w0wa models
considered, with no significant improvement observed
for any alternative form. This suggests that current data
lack the sensitivity to distinguish between these paramet-
rizations at z > 2, a conclusion that remains unchanged
across different SNe Ia datasets.

B. Crossing statistics

Rather than exploring different redshift evolutions for
wðzÞ, one can instead gauge the impact of introducing
additional degrees of freedom in the DE characteristics.
Following the methodology detailed in Ref. [43], we
expand the equation of state of dark energy wðzÞ in terms
of Chebyshev polynomials (see also Refs. [107–110]),

wðzÞ ¼ −
XN
i¼0

CiTiðxÞ; ð11Þ

where Ci are free coefficients, and TiðxÞ4 are Chebyshev
polynomials of the first kind, forming a complete basis for
continuous functions in the large-N limit, althoughN ≃ 3 is
generally sufficient to capture smooth functions. We note
that ΛCDM is recovered for C0 ¼ 1 and Ci>0 ¼ 0.
Alternatively, one may want to work with the normalized
dark energy density fDEðzÞ instead, as follows:

fDEðzÞ ¼
XN
i¼0

CiTiðxÞ: ð12Þ

Expanding in fDEðzÞ offers the advantage of allowing the
(effective) energy density ρDEðzÞ to change sign, thereby
encompassing a broader class of models [111–114],
including modified gravity scenarios [115–118] and com-
plex dark sector interactions that are difficult to capture
with a parametrized wðaÞ.5 We note that the expansion in
Eq. (12) has 1 less degree of freedom relative to that of
Eq. (11), as all samples must satisfy fDEðz ¼ 0Þ ¼ 1.
The top panel of Fig. 5 shows the reconstructed wðzÞ for

the DESIþ ðθ�;ωb;ωbcÞCMB combination, with (blue) and
without (orange) SNe Ia data from the Union3 compilation.
The bottom panels show the reconstructed fDEðzÞ. It is
noteworthy that not only do the expansions in wðzÞ and
fDEðzÞ yield similar behaviors independently of SNe Ia
data, but they also agree with the main results obtained
using the w0waCDM parametrization [47], as shown in
Fig. 2. This consistency further strengthens the robustness
of the results.
While these results perfectly align with the w0waCDM

results, the expansions in Eqs. (11) and (12) offer greater
flexibility, enabling it to capture features in the evolution of
dark energy beyond the linear parametrization given by
Eq. (3). Despite this additional flexibility—and also

TABLE II. Δχ2MAP values relative to ΛCDM for alternative
w0wa parametrization using DESIþ CMBþ Union3.

Param. Functional form Δχ2

BA w0 þ wa
1−a

a2þð1−aÞ2 −17.3
EXP ðw0 − waÞ þ wa expð1 − aÞ −17.5
LOG w0 − wa ln a −17.6
JBP w0 þ waað1 − aÞ −13.6
CPL w0 þ wað1 − aÞ −17.4

FIG. 4. Dark energy equation of state wðzÞ for alternative w0wa
parametrizations—BA, EXP, JBP, and LOG—is illustrated
alongside the standard CPL form (shown in blue). The constraints
integrate data from DESI, Union3 SNe, and CMB observations,
with shaded regions representing 1σ uncertainty bands. All
parametrizations except JBP exhibit consistent phantom crossing
near z ∼ 0.5 and provide a similarly good fit to the data.

3In the numerical implementation we truncate at third order in
Taylor expansion.

4Note that the redshift interval relevant for observa-
tions z∈ ½0; 3.5� is mapped to x∈ ½−1; 1�, where the
Chebyshev polynomials are defined.

5In principle, a pole in the wðzÞ may allow the effective energy
density to alter its sign. However, such divergences do not
necessarily indicate that the ρDEðzÞ crosses zero. [119].

EXTENDED DARK ENERGY ANALYSIS USING DESI DR2 BAO … PHYS. REV. D 112, 083511 (2025)

083511-9



confirmed by our independent analyses—the combined
data favor a smooth evolution, well described by
w0waCDM within the probed low-redshift range. The
improvement in fit, quantified by Δχ2, is shown as a
function of the number of free parameters in Fig. 6. A two-
parameter expansion in fDEðzÞ=wðzÞ captures the main
trends in the data, as already noted in Ref. [120].
Introducing additional degrees of freedom does not sig-
nificantly improve the fit to the combined data and would
be disfavored from a model comparison perspective, as the
added complexity is not justified by the data. We note that
due to the complications that can arise in the treatment of
perturbations when allowing for ρDE < 0, this part of the
analysis is restricted to the “compressed” CMB information,
denoted as ðθ�;ωb;ωbcÞCMB, rather than the full Planck
likelihood. We have verified that ðθ�;ωb;ωbcÞCMB, as
described in Sec. II, yields almost identical constraints as
those using the primary CMB anisotropies.
While all the parametric models we tested above suggest

a phantom crossing, the exact redshift at which this
happens depends on the chosen parametrization, as
seen from Fig. 5, which suggests a slightly higher value
for zc ≃ 0.5 than w0waCDM. This variation—although not
statistically significant—is expected due to the inherent

limitations of parametric fitting, as each functional form
has a restricted degree of flexibility.

V. NONPARAMETRIC METHODS

In contrast to the techniques explored in Sec. IV,
nonparametric techniques focus on determining the true
function of quantities such as hðzÞ, fDEðzÞ, and wðzÞ from
observational data, rather than merely estimating the
parameters of a prespecified form for wðzÞ. We are not
interested in model comparison here per se, but rather the
robustness of the observed trends in the data under different
nonparametric reconstruction techniques.
We explore two techniques: binning and Gaussian

process (GP) regression. We have also tested the cosmo-
graphic expansion up to Oððt − t0Þ5Þ where t is the look-
back time, and t0 denotes the current epoch [121,122].
However, we do not present those results here, since they
did not pass validation tests with the full DESI data and
require a redshift cutoff to make unbiased inference.

A. Binning

Binning is a technique widely used in cosmology that
allows for comparison of different redshift intervals, with-
out the assumption of a specific functional form; see
Refs. [49,54,123–132] for some examples. Here, we focus
on binning the equation of state of dark energy, wðzÞ and
the dark energy density, fDEðzÞ, permitting localized
analyses of the behavior motivated by the data. The
additional degrees of freedom introduced make it possible
to probe for potential variations or trends in wðzÞ across
redshifts, which may help to identify deviations from the
standard ΛCDM model.
In this section, we supplement the three uniform redshift

bin scheme for the dark energy equation of state parameter
from Ref. [47] (see Fig. 12 there) in order to assess the
impact of different choices for the implementation. The
binned function takes the general form

FIG. 6. Improvement in fit with respect toΛCDM, as quantified
by Δχ2 ¼ χ2 − χ2ΛCDM, as a function of the number of free
parameters introduced in the expansion, for the DESIþ
ðθ�;ωb;ωbcÞCMB þ Union3 combination.

FIG. 5. Reconstructions of wðzÞ and fDEðzÞ using Eqs. (11)
and (12) with N ¼ 3 for the DESIþ ðθ�;ωb;ωbcÞCMB data
combination, with and without the inclusion of Union3. The
solid lines correspond to the median, 68%, and 95% confidence
levels around it. The main reconstructed behavior of DE is in
excellent agreement with the different model-agnostic ap-
proaches explored in this paper. This confirms that the trend is
not driven by the choice of parametrization, and adds to the
robustness of the w0waCDM results presented in the main key
paper [47]. The horizontal dashed line represents ΛCDM.
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wðzÞ ¼ w0 þ
XN
i¼1

ðwi − wi−1Þ
2

�
1þ tanh

�
z − zi
s

��
; ð13Þ

where wi are the bin amplitude parameters, N the number
of bins, and s the smoothing scale,6 which controls the
sharpness of the transitions around the edges zi between
bins. We assume no prior correlation between bins.
Several different additional schemes for wðzÞ were

tested, including logarithmic binning, binning aligned with
the redshifts of the tracer types, and various uneven binning
approaches across the constrained redshift interval.
However, for clarity, we present results only for schemes
with uniform redshift bins between z ¼ 0 and z ¼ 2.1, as
results do not change qualitatively across the different
binning schemes. We consider the combination of DESI,
Union3 SNe Ia, and CMB. In the case of fDEðzÞ, the
compressed CMB is used to avoid the computational
complexity associated with correctly modifying the behav-
ior of dark energy in a Boltzmann solver to account for
fDE < 0, while also constraining the parameters exclu-
sively with early CMB information.
Figure 7 (upper panel) shows the median values of wi,

with 1σ and 2σ error bars, positioned at the center of their
respective bins’ redshift intervals. These intervals are
shown in the same colors in between the panels. The
highest redshift interval effectively extends to high red-
shifts, with the corresponding amplitude positioned at
z ¼ 2.8 merely for convenience. The constrained ampli-
tudes for overlapping bins between different schemes are
all within ∼1σ of one another. Superimposing with the
median (dashed gray line) and 1σ, 2σ confidence levels
of the corresponding w0waCDM result, we see that the
behavior recovered by each different scheme is in good
general agreement, with median points on either side of the
line wðzÞ ¼ −1. The data provide the tightest constraints in
the lowest redshift bin, where they prefer a wðzÞ that is
more than 3σ away from ΛCDM value of −1, whereas the
higher redshift bin amplitudes remain, at most, within 2σ of
ΛCDM. The question of an actual crossing is more subtle,
since it would have to occur at the edge between two
adjacent bins, meaning that it would depend nontrivially on
the number of bins and their chosen centers, and not make
for a very robust “measurement.”
To allow explicit exploration of the region of parameter

space with negative fDEðzÞ, which is excluded when
binning with the amplitude of wðzÞ, we also test additional
binning schemes where the bin variables are instead
associated with the amplitude of fDEðzÞ. Figure 7 (lower
panel) shows the same effective behavior between individ-
ual binning schemes, with good agreement to the w0wa
curves, indicating a turnover somewhere in the region of

0.5 < z < 1.0 and fDEðzÞ > 0 at around 2σ for most of the
bins. The uncertainties increase with redshift, becoming
progressively less Gaussian, with longer tails extending
towards more negative w values. Lastly, we note that the
amplitudes in adjacent bins exhibit mild correlations,
weakening with increasing redshift.
To decorrelate the bins and get additional insights into

the contributions from different redshift intervals, we also
perform a principal component analysis (PCA). Principal
component analysis is effectively a transformation that
provides a new basis in which the new coefficients qi,
corresponding to the bin amplitude parameters, are decor-
related. There are, in general, infinitely many such decor-
related bases, but only one that is orthogonal. We may
obtain it simply by finding the eigenvector basis that
diagonalizes C−1, the inverse covariance matrix of the
bin amplitude parameters wi, calculated by MCMC sam-
pling [52]. See Appendix B for additional details.
We divide the equation of state parameter into 10

uniform bins of fixed amplitude between z ¼ 0.1 and
z ¼ 2.1, with two additional free parameters, one each
for the amplitude on either side. The covariance matrix of
the resulting bin parameters wi; i ¼ 0; 1;…; 11 with
DESIþ CMBþ Union3 is used to determine the eigen-
vector basis. The basis functions, or principal components,

FIG. 7. Median bin amplitudes with 1σ and 2σ error bars for
wðzÞ (upper panel), using DESI þ CMBþ Union3, and fDEðzÞ
(lower panel), using DESIþ ðθ�;ωb;ωbcÞCMB þ Union3. Results
are shown for three schemes, with an increasing number of
uniform bins in the range 0 < z < 2.1. The redshift intervals of
the bins in these different schemes are shown in the correspond-
ing colored bars between the two panels. For comparison, the
median, 1σ, and 2σ contours of the w0waCDM parametrization
are plotted on the same axes, along with ΛCDM expectation in
dashed lines. The fDE ¼ 0 line is plotted as a dotted line.

6For this analysis, s ¼ 0.02 is chosen, corresponding to less
than 1% variation in the bin amplitude over the range Δz ¼ 0.01
on either side of the redshift bin edge.
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corresponding to the 4 largest eigenvalues are presented in
Fig. 8, along with the corresponding errors (obtained as
square roots of inverse eigenvalues).
The largest principal component is well localized in z,

peaking in the range 0.1 < z ≤ 0.3, while the second-
largest component is mostly positive and peaks in the
interval 0.3 < z ≤ 0.5. The remaining components show
increasingly more pronounced oscillatory behavior, with at
least 20× the uncertainty of the first bin, σ0.
Overall, the binning results from different schemes are in

good general agreement. The crossing of phantom divide
line by wðzÞ, and turnover in fDEðzÞ followed by a
decreasing trend towards higher redshifts, found in the
other analyses [40,43,133,134] are consistent with these
results. Even so, the approach has its limitations. While it is
well suited to testing deviation from a constant function,
capturing more complicated behaviors requires additional
degrees of freedom, which increases the level of uncertainty
[52,54,125,126,129]. In particular, though the data seem to
be consistent with a phantom crossing, it is difficult to draw
strong conclusions about the specific redshift where a
phantom crossing of wðzÞ, or turnover in fDEðzÞ, might
occur. The limitations present in this approach make it
important to understand what kind of biases may be intro-
duced by the implementation. In Appendix E, we perform
some tests on simulated data in an attempt to address this.

B. Gaussian process regression

In this section, we discuss Gaussian processes, which
can be thought of as a generalization of binning where the
amplitudes at every redshift are sampled but are subject to
some constraints (prior assumptions) on the form of the
resulting functions. This allows for a complementary

analysis with the possibility of improving the trade-off
between flexibility and constraining power.
Gaussian process regression [135] is a powerful, non-

parametric statistical tool widely used in various fields,
including cosmology [136–138], to reconstruct smooth
functions from noisy data without assuming a specific
functional form (see, e.g., Refs. [62,139–148] for a non-
exhaustive list). For the purpose of this work, GP can be
thought of as a way of sampling the space of continuous
functions in a nonparametric manner. This allows data-
driven reconstructions of the quantities of interest for
dark energy, namely wðzÞ or fDEðzÞ with minimal assump-
tions [62,136,149,150]. More specifically, at each point
in parameter space, we draw a sample (realization) of w
from a multivariate Gaussian distribution, e.g., wðzÞ ∼
GPðmðzÞ ¼ −1; KÞ where K is a given covariance
function—known as kernel—encoding our prior assump-
tions about the smoothness of the reconstructed function.
We further impose wðz ≥ zmaxÞ ¼ −1 to recover a standard
(ΛCDM-like) expansion history at early times. We have
chosen zmax ¼ 10, after checking that this choice does not
significantly alter our conclusions. This is implemented in a
modified version of the Boltzmann solver CAMB, with more
details on GP given in Appendix C.
Figure 9 illustrates the reconstructed dark energy proper-

ties using GP with various datasets: DESIþ CMB (left),
DESIþ Union3 (middle), and DESIþ Union3þ CMB
(right). The top row presents the reconstructed wðzÞ,
indicating deviations from ΛCDM at low redshift and
hints of wðzÞ crossing into the phantom regime around
z ≈ 0.5. The inclusion of CMB data (left and right panels)
results in tighter constraints on Ωm, which strengthen the
significance of deviations from w ¼ −1, whereas the
DESIþ Union3 combination allows for lower values of
Ωm and a broader range of variations wðzÞ. The second row
demonstrates a notable bump in the evolution of the dark
energy density, while constraints derived without CMB
allow for a wider variety of wðzÞ. The third row displays the
normalized Hubble parameter hðzÞ=hΛCDMðzÞ. The fourth
row presents the Om diagnostic, clearly showing the
evolution as a function of z, indicating a deviation from
Λ. Lastly, the final row depicts the reconstructed deceler-
ation parameter qðzÞ, which slightly exceeds the expect-
ations of the ΛCDM model, suggesting a slowdown in the
acceleration rate.
In Fig. 10, we present a comparison of results obtained

from GP reconstruction utilizing the w0wa parametrization
derived from DESI, CMB, and Union3 data. The GP
reconstruction, illustrated in blue, aligns very well with
the 1σ posterior predictions of the w0waCDM model. We
would like to remind readers that the GP approach imposes
a Gaussian prior distribution on wðzÞ, centered at the mean
function which we explicitly choose to be w ¼ −1, as
represented by the black dotted line. This effectively places
more prior weight on Λ and any observed deviations from

FIG. 8. Four principal components with the largest eigenvalues,
from a scheme comprising 10 uniform bins between z ¼ 0.1 and
z ¼ 2.1, constrained using DESIþ CMBþ Union3. The first
component has an uncertainty (inverse eigenvalue), σ0, at least
20× smaller than any of the others, and the first two components
are seen to be relatively well localized at low redshift.
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wðzÞ ¼ −1 are largely driven by data. Finally, we would
like to emphasize that although GP regression offers
advantages over parametric methods, it is important to
interpret the reconstructed wðzÞ with caution. While
flexible, the method may not fully capture certain
behaviors of wðzÞ, as illustrated in Appendix E using
simulated data. Nevertheless, GP remains a valuable tool
for assessing the dynamical nature of dark energy in a
nonparametric manner.

VI. IMPLICATIONS FOR DARK ENERGY

The various methods explored in Secs. IVand V provide
a flexible way to test deviations from ΛCDM and ensure
robust results without committing to a specific dark energy
model. However, interpreting the deviations from a cos-
mological constant and understanding its implications for

fundamental physics necessitates a deeper exploration of
physically motivated dark energy models. Rather than
constraining specific models, we focus on different classes,
characterized by their dynamics [152–154] and inspired by
theoretical considerations.

A. Thawing dark energy

The first class of models we consider is known as
thawing dark energy [152]. This class characterizes
quintessence models [155–158], in which a minimally
coupled scalar field remains frozen at early times due to
Hubble friction, effectively behaving like a cosmological
constant with w ¼ −1. Only when the scalar field’s mass
becomes comparable to the Hubble rate, mφ ∼H, does the
field begin to evolve dynamically, causing its equation of
state to “thaw” away from w ¼ −1 into the quintessence

FIG. 9. GP reconstructions of wðzÞ for the DESIþ CMB (green), DESIþ Union3 (orange), and DESIþ CMBþ Union3 (blue)
combinations. The rows depict the redshift evolution of cosmological quantities: equation of state wðzÞ, normalized dark energy density
fDEðzÞ, hðzÞ=hΛCDMðzÞ, OmðzÞ diagnostic, and deceleration parameter qðzÞ. The shaded bands obtained using FGIVENX [151] illustrate
confidence intervals at various levels. The black dashed lines represent predictions from the ΛCDM model.
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regime, w > −1. Note that there exists a second class of DE
dynamics, referred to as the “freezing” class, where the
field evolves towards a de Sitter state (w ¼ −1) in the
asymptotic future. Such dynamics are characterized by
wa > 0 and are not favored by observations. For a review
on quintessence models, see, e.g., Refs. [159,160].
This behavior is typical of pseudo-Nambu-Goldstone

boson (PNGB) quintessence models [161] and simple
potentials such as V ∝ m2φ2 and V ∝ λφ4, both of which
are ubiquitous in high-energy physics [24]. Interestingly,
Ref. [54] demonstrated that the phase-space dynamics of
these models can be well approximated using the w0wa
parametrization. Many thawing potentials map onto a
narrow region in the w0wa plane, approximately following
the relation

wa ≈ −1.58ð1þ w0Þ: ð14Þ

This “calibrated thawing” relation provides a form that
acts as a good approximation for the thawing dynamics.
However, it also allows the equation of state to cross the
phantom line (w ¼ −1), which is unphysical for quintes-
sence models [94,162,163]. This occurs because Eq. (14) is
designed to approximate the expansion rate HðzÞ and
distance measures DðzÞ at subpercent precision—precisely
the quantities probed by cosmological observations—but
does not necessarily approximate wðzÞ itself [54].
Nevertheless, it is possible to describe thawing dynamics

while ensuring that w > −1 at all times. Following
Refs. [164,165] (see also Ref. [166]), the evolution of
the thawing equation of state can be parametrized by the
algebraic expression

1þ wðaÞ ¼ ð1þ w0Þap
�

1þ b
1þ ba−3

�
1−p=3

; ð15Þ

where p and w0 are free parameters, and b ¼ 0.5 [165].
Notably, this formulation, referred to as “algebraic thaw-
ing,” is more general, where the case p ¼ 1 and Eq. (14)
were found to yield nearly identical late-time constraints,
as shown in Appendix A of Ref. [44].
The reconstructed posterior distribution of wðzÞ for the

thawing class is shown in the top panel of Fig. 11 for the
DESIþ CMBþ Union3 data combination. This assumes
the algebraic form, which enforces w ≥ −1, and where we
have marginalized over the parameter p. However, mild
degeneracies with w0 leave the posteriors for p largely
unconstrained. In particular, it is seen that large values of p
are allowed by the data, resulting in our posterior hitting
the prior bound p ¼ 30, as shown in the bottom panel of
Fig. 11. However, we do not extend our analysis to larger
values of p, as numerical complications can arise when
dealing with DE models with very rapidly varying wðaÞ,
particularly in the treatment of perturbations and CMB
lensing.
The calibrated thawing relation Eq. (14) yields no

significant improvement in fit, as seen from the Δχ2 values
in Table III and from the posteriors in Fig. 13 being

FIG. 10. Comparison of GP reconstruction of dark energy
equation of state wðzÞ with the w0wa parametrization, utilizing
data from DESI, CMB, and Union3. The GP reconstruction is
shown in blue, accompanied by shaded 68% and 95% confidence
intervals. This is contrasted with the posterior predictions for the
w0waCDM model, depicted in orange along with 1σ uncertainty.
The black dashed line represents the standard ΛCDM prediction.

FIG. 11. Constraints on the algebraic thawing functional form,
as described in Eq. (15), that restricts wðzÞ ≥ −1. The top panel
shows the reconstructed evolution of wðzÞ, with shaded regions
representing the confidence contours at 68% and 95%, demon-
strating the deviation from ΛCDM at low redshifts. The bottom
panel illustrates the posterior distributions of w0 and p for
different SNe combinations.
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consistent with w0 ¼ −1, except for DESY5. The algebraic
thawing parametrization in Eq. (15) can improve the fit
with respect to the standard model (ΛCDM), achieving a
Δχ2 ¼ −2.9 for the DESIþ CMBþ Union3 data combi-
nation. Substituting the PantheonPlus data with Union3
or DESY5 yields a Δχ2 ¼ −6.9 and −13.2, respectively.
However, this improvement in fit comes at the cost of
including 2 additional degrees of freedom.
To illustrate that Eq. (15) correctly captures the phe-

nomenology of thawing fields, and better quantify how the
constraints would translate into constraints on the physical
parameters of the theory, we consider one physically
motivated, axionlike potential [161,167,168], as follows:

VðφÞ ¼ m2
af2a½1þ cosðφ=faÞ�; ð16Þ

where ma denotes the mass of the boson particles related
to the scalar field, and fa is regarded as the effective
energy. Depending on the initial conditions, the axion
cosine potential exhibits two distinct behaviors: the stan-
dard quadratic regime, the effective mass is positive
(m2

eff > 0), and the potential can be approximated by a
quadratic form near its minimum, where the effective mass
is defined as m2

eff ¼ d2V
dφ2. Whereas, the hilltop regime [169]

is characterized by a negative effective mass (m2
eff < 0),

when the field begins its evolution near the maximum of
the potential (i.e., at φ ¼ 0) and rolls down toward the
minimum at φ ¼ πfa. We refer the reader to Appendix D
for more details on the model and its implementation
in CLASS.
In Fig. 12, we report the marginalized posterior distri-

bution for the equation of state parameter associated with
the scalar field potential in Eq. (16), obtained using DESI,
CMB, and three SNe compilations, and obtain the follow-
ing constraints for the physical mass: log10ðmac2=eVÞ ¼
−32.67þ0.23

−0.25 (PantheonPlus), −32.50þ0.28
−0.30 (Union3), and

−32.63þ0.26
−0.30 (DESY5), and effective energy scale:

log10ðfa=MPlÞ ¼ −0.13þ0.33
−0.29 (PantheonPlus), −0.29þ0.63

−0.35

(Union3), and −0.09þ0.66
−0.40 (DESY5). The constraints indi-

cate that the field starts in the hilltop regime, with initial
conditions of φi=fa ∼ 0.7–1.0, rolls down the potential,
and reaches the present value of φ0=fa ∼ 1.1–1.4, travers-
ing approximately Δφ ∼ ð0.2–0.4ÞMPl.

B. Emergent dark energy

The second family of DE models that we consider is the
emergent class, where dark energy had a vanishing pres-
ence during most of cosmic history, and only “emerges” in
recent times. Following Refs. [170,171], we parametrize
the equation of state as

wðzÞ ¼ −1 −
Δ

3 lnð10Þ
�
1þ tanh

�
Δlog10

�
1þ z
1þ zt

���
:

ð17Þ

The parameter Δ determines the steepness of the transition
in wðzÞ and the transition redshift parameter zt is deter-
mined by the equality ρDEðztÞ ¼ ρmðztÞ. The phenomenol-
ogy we are trying to capture is that of abrupt changes in the
equation of state, wðzÞ, driven by physical mechanisms,
such as second-order phase transitions [172–174].
Despite hints of the sharp emergence of dark energy

in recent times from nonparametric reconstructions, the
DESIþ CMBþ SNe constraints on Δ, as shown in the
middle panel of Fig. 13, indicate that such an emergent
behavior is not statistically favored over ΛCDM, given the
assumed wðzÞ. Note that while Eq. (17) can mimic the
emergence of dark energy, it is limited by its inability to
cross w ¼ −1 or, equivalently, introduce a bump in fDEðzÞ;
a feature that seems to be favored by the data. In principle,
one can formulate an emergent dark energy model char-
acterized by an effective equation of state that can cross
wðzÞ ¼ −1. Such behavior may be realized through the

TABLE III. Δχ2MAP ≡ χ2model − χ2ΛCDM and ΔDIC≡ DICmodel −
DICΛCDM values for various data combinations, including DESI,
CMB with each different SNe Ia, and DE classes, namely:
Thawing [Calibrated and Algebraic: “Thaw. (Cal.)” and “Thaw.
(Alg.),” respectively], Emergent, and Mirage. The minimum χ2

values were obtained using the IMINUIT [91] minimizer.

DESIþ CMB: þPantheonPlus þUnion3 þDESY5

DE classes ΔDIC (Δχ2)

Thaw. (Cal.) þ0.4 (−1.6) −0.6 (−2.5) −5.8 (−7.1)
Thaw. (Alg.) −1.0 (−2.9) −4.6 (−6.9) −10.1 (−13.2)
Emergent þ2.1 (−0.05) þ1.8 (−0.1) þ0.2 (−1.5)
Mirage −9.1 (−10.5) −13.8 (−16.2) −18.7 (−20.7)
w0wa −6.8 (−10.7) −13.5 (−17.4) −17.2 (−21.0) FIG. 12. Marginalized constraints on the equation of state

parameter, wðzÞ ¼ P=ρ, for the axionlike potential given by
Eq. (16).
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coupling of emergent dark energy with the dark matter
sector [175–177].

C. Mirage dark energy

The last and more phenomenological class of models
which we consider is that ofmirage dark energy [178]. This

refers to models in the w0wa plane (see Fig. 1) approx-
imately living along the line

wa ≈ −3.66ð1þ w0Þ: ð18Þ

The mirage class is designed to describe a subset of
dynamical dark energy models that preserve the distance
to the surface of the last scattering as predicted byΛCDM, a
parameter tightly constrained by the CMB [178]. The name
“mirage” stems from the fact that these models would
mimic Λ, yielding hwi ∼ −1 when fitting a constant w to
observations, as it could be seen in Table V [47] in DR2 and
Table III in Ref. [40] for DR1 comparison. The mirage
direction fully captures the DE phenomenology suggested
by the data, with merely 1 degree of freedom w0 that
quantifies the strength of the mirage, with w0 ¼ −1
corresponds to ΛCDM where the mirage is real. This
mirage effect is also expected to persist in the growth of
cosmic structures, provided that general relativity remains
unmodified [178–180]. As noted in Ref. [44], by reducing
the late-time dark energy density (i.e., increasing Ωm), one
can make w0 even less negative—and correspondingly wa
more negative—enhancing the mirage effect. For compari-
son, DESIþ CMBþ Union3 prefers Ωm ≈ 0.304 in
ΛCDM which increases to Ωm ≈ 0.327 in w0wa which
essentially lies along the mirage direction. From the data
viewpoint, the mirage line in Fig. 1 can be seen as the
“principal component,” or “axis” in the w0wa plane carry-
ing the most meaningful information, i.e., the eigenvector
with the highest eigenvalue. Despite effectively reducing
the dimensionality of the DE phenomenology, the exact
physical mechanism for such rapid emergence of dark
energy (wðaÞ ≪ −1) remains unclear (see Ref. [181] for
more discussion).

D. Model comparison

In Fig. 13, we show the constraints on the single
additional parameters of the three DE classes. In the
calibrated thawing (top panel), there is a mild deviation
observed with the DESY5 dataset, but the other two SNe
Ia datasets indicate overall consistency with ΛCDM. The
emergent (middle panel) exhibits a similar trend, with
constraints on Δ reflecting no significant departures from
the standard cosmological framework (Δ ¼ 0). In con-
trast, the mirage class (bottom panel) demonstrates
deviations from the value of w0 ¼ −1 across all three
SNe Ia datasets.
We also make a quantitative comparison, examining

the deviance information criterion (DIC) [182,183], as
defined below, along with the Δχ2. The former comple-
ments the Δχ2 by accounting for model complexity,
which does not take into account the number of additional
degrees of freedom in a particular model and could be
made arbitrarily low if sufficient parameters were added.
The DIC is defined as

FIG. 13. Constraints on three dark energy model classes:
calibrated thawing, emergent, and mirage, each with 1 addi-
tional degree of freedom compared to ΛCDM. The contours
represent 68% and 95% confidence regions for different SNe
combinations: PantheonPlus (blue), Union3 (orange), and
DESY5 (green).
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DIC≡Dðθ̄Þ þ 2pD ¼ DðθÞ þ pD; ð19Þ

where pD ¼ DðθÞ −Dðθ̄Þ is a penalty term, and Dðθ̄Þ ¼
−2 lnLþ C is the “deviance” of the likelihood, with
constant C vanishing in pD. In practice, we use

pD ¼ χ2ðθÞ − χ2ðθÞ; ð20Þ

and pD becomes effectively equivalent to the number of
extra parameters in the limit of parameters that are well
constrained with respect to their prior. We consider the
DE classes in this section and the w0wa parametrization,
for the data combinations DESIþ CMBþ SNe Ia. The
comparisons are made between each model class and the
ΛCDM model, and the key metric for each comparison
being the DIC. The ΔDIC (and Δχ2) values are reported
in Table III, with a preference for the more complex
model indicated by negative values, and for the simpler
model, in this case ΛCDM, by positive values. For nested
models, a decrease (ΔDIC < 0) of at least 2 is required
for a not “insignificant” improvement, and up to 5
constitutes a “positive” preference over ΛCDM. A
decrease of up to 10 is considered a “strong” preference,
and beyond this, the preference is “decisive” [184].
However, for classes that are not nested within each
other, there is no absolute scale for comparison and they
can only be quantitatively compared against ΛCDM.
The w0wa parametrization achieves −Δχ2 ∼ 10.7–21.0

and −ΔDIC ∼ 6.8–17.2, indicating that it is strongly to
decisively preferred over the standard ΛCDM. We direct
readers to Sec. VII B of Ref. [47] for a comprehensive
discussion regarding the data features that seem to be
driving the preference for the w0waCDM model.
Comparatively, the calibrated thawing performs poorly.
The algebraic thawing class improves the fit slightly more,
and since the ΔDIC is consistently larger than for calibrated
thawing, the improvement inχ2must be sufficient to reconcile
the former’s second additional degree of freedom. The
emergent dark energy class shows no significant improve-
ment in fit, faring evenworse than the thawing class. The final
mirage class attains −Δχ2 ∼ 10.5–20.7, comparable to the
w0wa parametrization, as well as−ΔDIC ∼ 9.1–18.7. This is
perhaps unsurprising, given how closely the mirage direction
aligns the w0waCDM constraints.
The advantage of the thawing and emergent classes is

their connection to a physical interpretation, which is fairly
straightforward, while for the mirage class less so. It is also
important to note that the model comparison metrics used
in this section serve both to quantify the data’s preference
for each model—providing an absolute scale in the case of
nested models—and to facilitate a relative ranking among
non-nested models, such as the algebraic thawing and w0wa
parametrizations.

E. Is there evidence for phantom crossing?

Both the parametric and nonparametric methods dis-
cussed in Secs. IV and V indicate a possible crossing of
the phantom divide line; however, as illustrated in Fig. 16,
this does not guarantee that the crossing is genuine.
Specifically, the apparent crossing in the w0wa parametri-
zation may be spurious to match observables, raising the
question of whether wðaÞ truly crosses−1 or if the behavior
is simply an artifact of the parametrization.
To address this, we analyze the behavior of thawing

quintessence using the algebraic model described by
Eq. (15), which enforces wðzÞ ≥ −1. Although the alge-
braic thawing model, restricted by our prior p < 30, yields
a better fit to the data than ΛCDM by 3≲ −Δχ2 ≲ 13 and
−1 < −ΔDIC < 10, it is considerably less favored than the
w0wa model. This overall preference for w0waCDM over
the algebraic thawing model, however, cannot be straight-
forwardly converted into p-values or n-sigma levels
because algebraic thawing and w0waCDM models are
not nested.
To achieve −Δχ2 comparable to w0wa with thawing

models would require an exceptionally fine-tuned potential
VðφÞ [185], precise initial field settings [186], or “data-
informed” prior choices [187], resulting in wðz≳ 0.3Þ ¼
−1 followed by a rapid increase to wðz≲ 0.3Þ > −1. This
suggests that a sharp increase followed by a decrease in
dark energy density may be a necessary feature, since
models that do not cross the phantom divide tend to
underperform compared to those that do. The specific
behavior of wðzÞ suggested by the data—a phantom
crossing from wðz≳ 0.5Þ < −1 to wðz≲ 0.5Þ > −1—is
not predicted by any of the simplest and most studied
extensions of ΛCDM (see also the recent discussion in
Ref. [181]).
While the phantom crossing can be seen as theoretically

challenging due to stability issues, for example, within the
framework of minimally coupled scalar fields, obtaining
such behavior is not difficult in extended theoretical
frameworks. For example, phantom crossing can arise in
models where dark energy possesses multiple internal
degrees of freedom, such as multifield scenarios [188–193],
nonstandard vacuum models [172,173], frameworks where
dark energy interacts with dark matter [194–199], and
modified theories of gravity [200–210]. Because of the
aforementioned multiple internal degrees of freedom in
these models, the effective, observable equation of state
wðzÞ can cross the phantom divide even though the null-
energy condition is not violated. Whether a compelling
theoretical mechanism—one that does not require many
extra degrees of freedom or exotic assumptions—can be
constructed to cross the phantom divide in the way
suggested by data remains an open question, although
some models have recently been put forward as viable in
this regard [207,208].
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VII. CONCLUSIONS

This work presents constraints on dark energy from DR2
BAO, in combination with cosmic microwave background,
and type Ia supernova data. We began our study by
summarizing and expanding upon the w0waCDM analysis
presented in Ref. [47]. Under the assumption of a linearly
evolving wðaÞ ¼ w0 þ wað1 − aÞ, the latest DESIþ CMB
results indicate a ≃3σ deviation from ΛCDM. The data
shows a clear preference for the (w0 > −1, wa < 0)
quadrant, and in particular w0 þ wa < −1, implying a past
phantomlike equation of state transitioning to wðzÞ > −1
today. The reconstructed OmðzÞ and deceleration param-
eter qðzÞ also show clear deviations from ΛCDM, reinforc-
ing the case for evolving dark energy.
To assess the robustness of our findings, we conducted a

series of analyses: (i) varying the redshift dependence of
wðzÞ, by considering various parametrizations (Sec. IVA),
and (ii) studying the improvement in fit as more freedom is
given to the dark energy characteristics (Sec. IV B). As in
DR1, the results are rather stable under changes in the
assumed form for wðzÞ, and the data do not seem to require
more degrees of freedom in wðzÞ, beyond w0wa, as shown
in Fig. 6 (see also Ref. [43]).
Next, we implemented two nonparametric reconstruction

techniques and applied them to the redshift-dependent
equation of state wðzÞ and dark energy density fDEðzÞ,
in order to allow more flexibility than that available in the
parametric methods. Overall, the constraints support the
evolution indicated by the w0wa parametrization, giving
the tightest constraints at low redshifts, where they display
a preference for a deviation with wðzÞ > −1, while sug-
gesting a crossover to the phantom regime at higher
redshift. The low redshift deviation is evidently indepen-
dent of the chosen binning variable, although the con-
straints remain within 2σ of ΛCDM at higher redshifts.
Gaussian process regression is better able to localize the
redshift where the crossing should occur, around z ∼ 0.5.
In order to provide possible interpretations for the

physical origin of the observed deviation, three model
classes were considered, each endowed with a different
dynamical behavior and motivated to various degrees by
physical theory. The emergent and both thawing are the less
well supported, indicating that the data might not favor dark
energy evolution that arises from, respectively, either
minimally coupled scalar field models or emergent behav-
ior in energy density. In contrast, the mirage class performs
remarkably well, capturing DE phenomenology with just 1
additional degree of freedom, which warrants an inquiry
into whether any underlying physics or systematic effects
could explain this mirage.
In summary, irrespective of the parametric/nonparamet-

ric methods used, the evidence of deviation from ΛCDM is
significant. Our findings suggest that the canonical w0wa
parametrization effectively captures the essence of dark
energy evolution in our study. Decisive tests of dark energy

and its possible deviations from the ΛCDM model will
require a combination of complementary probes. The
forthcoming DESI data releases, including constraints from
redshift space distortions and peculiar velocities, will offer
crucial insights into the nature of dark energy and gravity.
The upcoming SNe measurements from the Zwicky
Transient Facility (ZTF) survey [211,212], the Vera C.
Rubin Observatory [213,214], and the Nancy Grace Roman
Space Telescope [215] will extend the Hubble diagram
probed by DESI to very low redshifts, improving con-
straints on w0. Meanwhile, data from Euclid [216] and
Rubin will serve as an important cross-check of DESI’s
findings, helping to assess the impact of potential system-
atics. Finally, next-generation CMB experiments will
further tighten constraints on early-Universe parameters,
breaking degeneracies with late-time observables. With
these advancements, the next decade promises to determine
if we are entering a new era in modern cosmology that
necessitates a paradigm shift.
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APPENDIX A: BAYESIAN MODEL COMPARISON

Here we discuss the Bayesian model comparison and
compute Bayes factor between the w0wa and Λ models,
which is given by the corresponding ratio of their evidence
Z under a given data set: Bw0waΛ ¼ Zw0wa

=ZΛ. In practice,
we compute Bayes factors using the nested sampler

PolyChord [220], employing the same priors7 and the
Boltzmann solver (CAMB) as in the posterior analysis
discussed in the main text. The evidence is then estimated
using the ANESTHETIC package [221].
The logarithm of the evidence (logZ) can be expressed

as the contribution from two terms in the form [222]

logZ ¼ hlnLiP − hlnðP=πÞiP; ðA1Þ

where, L is the likelihood, P is the posterior, π represents
the prior distribution, and hiP is the posterior weighted
average. The posterior average of the log-likelihood
hlnLiP , removes the prior-dependent Occam’s penalty,
hlnðP=πÞiP , contribution from the log-evidence to provide
a quantitative assessment of how well the model fits the
data and can be considered the Bayesian equivalent of χ2.
In Table IV, we report the differences between the

w0waCDM and ΛCDM models, for values of lnB
(¼ Δ lnZ), ΔhlnLiP , and ΔhlnðP=πÞiP for each data
combination. The Bayesian evidence ratio indicates that
the support for the w0wa model increases with the latest
DR2 release. On Jeffreys’ scale [223,224], the DESY5
combination indicates almost a strong preference (≤ 5) for
the w0waCDM model when combined with DR2, com-
pared to a moderate preference (≤ 2.5) with the DR1
dataset, while Union3 shows a moderate preference for
w0wa compared to the weak preference observed when
combined with the DR1 dataset. In contrast, PantheonPlus
provides inconclusive evidence, showing a preference for
Λ, though this preference diminishes in the change from
DR1 to DR2. In all three cases, we observe that the trends

TABLE IV. Bayesian evidence lnBw0waΛ, posterior average
of log-likelihood hlnLiP , and Occam’s penalty hlnðP=πÞiP
for different supernova datasets (PantheonPlus, Union3, and
DESY5) in combination with CMB and DESI BAO measure-
ments. We report results for DESI DR2 BAOþ CMB and DESI
DR1 BAOþ CMB with associated uncertainties for comparison.
All reported values correspond to the difference between the
w0waCDM and the ΛCDM.

þPantheonPlus þUnion3 þDESY5

DESI DR2 BAO þ CMB
lnBw0waΛ −0.66� 0.44 3.03� 0.44 4.88� 0.44
ΔhlnLiP 4.53� 0.17 7.78� 0.16 9.42� 0.16
ΔhlnðP=πÞiP 5.18� 0.43 4.75� 0.43 4.54� 0.44

DESI DR1 BAO þ CMB
lnBw0waΛ −1.54� 0.44 1.62� 0.44 2.35� 0.44
ΔhlnLiP 3.34� 0.17 6.03� 0.16 7.67� 0.16
ΔhlnðP=πÞiP 4.87� 0.43 4.41� 0.43 5.32� 0.43

7We substitute θMC with H0 to avoid numerical issues arising
from the shooting method.
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in ΔhlnLiP remain consistent with the frequentist Δχ2
results presented in Table III, with a clear improvement in
the likelihood of the fit when switching from the DR1 to the
DR2 dataset. We note that since the Bayesian evidence
value includes likelihood contributions across a range of
possible parameter values, it is less susceptible to random
fluctuations in the data, leading to a better fit at a specific
point in parameter space by chance. Therefore, lnB or
ΔhlnLiP comparisons should be less noisy and more
robust than Δχ2.
A larger Occam’s penalty (i.e., a greater compression

from prior to posterior) is typically expected with more
informative data. However, this is not the case for the
DESY5 dataset, although it is a better fit for the data. Even
so, all of the Occam penalty factors for DESIþ CMBþ
SNe Ia data are roughly consistent with each other, given
the estimated error on these values.
Please note that Ref. [40] used the Boltzmann solver

CLASS with a different set of priors and CMB likelihood.
For a better comparison, we recomputed evidence for DESI
DR1 BAO using consistent priors and methodology as
described in Sec. II.
We remind readers that Bayesianmodel comparison relies

on the prior; this is especially important in the case of testing
phenomenological models like w0waCDM, as the prior
chosen for the extra parameters is only phenomenologically
justified. Occam’s penalty can be adjusted by choosing
different priors. Generally, a wider prior tends to favor the
simpler model, in this case is the ΛCDM. However, the
priors chosen in Table I are broad enough for w0wa, and the
posterior of these parameters is well constrained inside this
prior when the datasets are combined. A different choice of
prior on these parameters could change the ranking, such
that ΛCDM would be favored over w0waCDM for all data
combinations, but to do this in the most extreme case (DESI
DR2 BAOþ CMB þ DESY5) the prior range would need
to be expanded by a factor of more than 10 times for both w
parameters, leading to a greater than 100 times expansion in
prior volume. Such a prior would not doubt be considered
unphysical and unreasonable by most.

APPENDIX B: DETAILS OF BINNING PCA

Principal component analysis is a commonly used
strategy that leverages the number of bins, or additional
free parameters, against the uncertainties in the constrained
amplitudes, in an attempt to analyse how most efficiently to
segment the data [52,54,124,125,129], though the inter-
pretation is not necessarily straightforward, and it remains
subject to various caveats [54].
In this appendix, we lay out the full mathematical

expressions for the PCA performed on the binning results.
We start by writing the equation of state in terms of the
binning amplitude parameters and an initial basis, as
follows:

wðzÞ ¼
XN
j¼0

wjej; ðB1Þ

where wi are the bin amplitude parameters, defined as
previously, and ej is simply the tanh smoothed top-hat
function

ej ≡ eðz; zj; zj−1Þ

¼ 1

2

�
tanh

�
z − zj
s

�
− tanh

�
z − zj−1

s

��
; ðB2Þ

which has value one in the interval zj−1 ≲ z≲ zj and zero
elsewhere, allowing us to recover the expression in Eq. (13).
If we diagonalize the covariance matrix of these coef-

ficients to obtain

C−1 ¼ OTΛO; ðB3Þ

then the orthogonal matrix O contains the eigenvectors of
C−1 and the diagonal matrix Λ contains the corresponding
eigenvalues [52,54]. For convenience, we normalize O to
have a determinant of one.
To obtain the new coefficients, we use the rows of O as

weights on the originals

qi ¼
XN
j¼0

Oijwj: ðB4Þ

Since O is orthogonal, i.e., O−1 ¼ OT , the coefficients
and basis will transform in the same way. As such, the new
basis functions (see Fig. 8) may be obtained in a similar
fashion using [52,54]

e0i ¼
XN
j¼0

Oijej: ðB5Þ

The uncertainty in the new parameters is given by the
inverse of the eigenvalues [52], as follows:

σi ≡ σ½qi� ¼ Λ−1
ii : ðB6Þ

While PCA is no doubt a useful approach, it must be noted
that, in general, eigenvectors are formally not well defined
for the inverse covariance matrix, and that the set of
eigenvectors found will themselves depend on the binning
parametrization and variable. Finally, there is no clear
a priori interpretation of the size of σ½qi� without making
further assumptions about the form of the equation of
state [54].
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APPENDIX C: DETAILS ON GAUSSIAN
PROCESS REGRESSION

In this appendix, we discuss the details of the method-
ology and implementation of the Gaussian process regres-
sion results presented in Sec. V B. We adopt a flexible and
nonparametric approach to model the dark energy equation
of state wðzÞ utilizing a Gaussian process with a squared
exponential kernel given by

wðzÞ ∼ GPðmðzÞ ¼ −1; K ¼ kðσf;lfÞÞ; ðC1Þ

kðxi; xj; σf;lfÞ ¼ σ2f exp

�
−
ðxi − xjÞ2

2l2
f

�
; ðC2Þ

where σf denotes the typical deviations of w from the mean
function, which we consider to be the ΛCDM value
wðzÞ ¼ −1. The parameter lf controls the correlation
length of samples. We draw samples from a joint Gaussian
distribution across a dense uniform grid ranging from z ¼ 0
to z ¼ 10 that smoothly go back to wðzÞ → −1 at high
redshifts to maintain numerical stability. We fix σf ¼ 1 for
accommodating a broad spectrum of dark energy behaviors
and impose a generalized inverse Gaussian prior on lf:

fðxjp; bÞ ¼ ðbÞp=2
2Kpð

ffiffiffi
b

p Þ x
p−1e−ðxþb=xÞ=2; x > 0; ðC3Þ

where Kpð
ffiffiffi
b

p Þ denotes the modified Bessel function of the
second kind. We select p ¼ 3 and b ¼ 2 to penalize low lf

values, thus preventing excessive freedom in wðzÞ, while
also constraining high lf values to avoid oversampling
nearly linear functions. To improve the efficiency of our
sampling procedure, we introduce a latent variable that
directly samples wðzlÞ at zl (we fix zl ¼ 0.4) from a
Gaussian prior with width σf. These sampled values are
subsequently employed to generate samples of wðzÞ from a
conditional distribution, facilitating significantly quicker
convergence. We have assessed the impact of varying zl
(over the range z∈ ½0.2; 1.5�) and marginalizing σf with a
uniform prior (πðσfÞ ¼ U½0; 2�), finding our results and
conclusions to be reasonably robust.

APPENDIX D: QUINTESSENCE

We discuss the constraints on a quintessence model with
a scalar field φ minimally coupled to gravity, with action
given by (e.g., Ref. [225])

Sφ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
gμν∂μφ∂νφ − VðφÞ

�
; ðD1Þ

where g is the determinant of the metric gμν. For our
purposes, the scalar field potential has a periodic depend-
ence on the field φ in the form

VðφÞ ¼ m2
af2a½1þ cosðφ=faÞ�; ðD2Þ

where ma denotes the mass of the boson particles related to
the scalar field, and fa is regarded as the effective energy
scale of the theory. This model, also referred to as PNGB in
Ref. [161], has since been a recurrent feature in cosmo-
logical analyses [54,226–233]. The Klein-Gordon equation
derived from the action in Eq. (D1), in a standard
cosmological setting, is

φ̈þ 3Hφ̇ −m2
afa sinðφ=faÞ ¼ 0; ðD3Þ

with H being the Hubble parameter. We then perform the
following polar transformation on the field variables ðφ; φ̇Þ
(see Refs. [234,235] and references therein), as follows:

ffiffiffi
2

3

r
mafa cosðφ=2faÞ

MPlH
¼ Ω1=2

φ cosðθ=2Þ; ðD4aÞ

φ̇ffiffiffi
6

p
MPlH

¼ Ω1=2
φ sinðθ=2Þ: ðD4bÞ

Here, MPl is the reduced Planck mass, Ωφ is the
density parameter of the scalar field, and θ is an angular
variable directly related to the scalar field equation of
state wφ, as follows:

wφ ¼ φ̇2 − 2m2
af2a½1þ cosðφ=faÞ�

φ̇2 þ 2m2
af2a½1þ cosðφ=faÞ�

¼ − cos θ: ðD5Þ

Equation (D5) directly shows that, for quintessence models,
the equation of state only varies in the range −1 ≤ wφ ≤ 1.
As a result, the Klein-Gordon equation of motion can

be rewritten as a dynamical system in the new variables,
namely

θ0 ¼ −3 sin θ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − αΩφð1þ cos θÞ

q
; ðD6aÞ

y0 ¼ 3

2
ð1þ wtotÞy; ðD6bÞ

Ω0
φ ¼ 3ðwtot þ cos θÞΩφ; ðD6cÞ

where a prime denotes a derivative with respect to
N ¼ ln a, and wtot is the total equation of state of the
matter budget of the Universe. The boson mass ma
appears implicitly in the definition of the new dynamical
variable y ¼ 2ma=H, which directly measures the ratio of
the boson mass to the Hubble parameter. Likewise, the
effective energy scale fa appears implicitly in the new
parameter α ¼ 3=ðfa=MPlÞ2 and adopts following prior
ma ∈U½0.1; 10� and α∈U½10−6; 100� to sample mass and
effective scale.
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To solve the dynamical system Eq. (D6), we follow the
prescription in Ref. [235]. The initial value of y is
determined by choosing a value of the boson mass ma,
that is, yi ¼ 2ma=Hi, while the initial angular variable is
given by θi ¼ ð1=5Þyi, which is an attractor solution at
early times. As we will assume that ma ∼H0 ≪ Hi, the
initial value of the equation of state is wφi ≃ −1, which
means that the field φ starts its evolution close to a slow-roll
regime. Finally, once a value of α is chosen, the initial value
Ωφi is adjusted using a numerical shooting routine inside
the Boltzmann solver CLASS until the desired value ofΩφ at
the present time is obtained. Using the polar transforma-
tions (D4b), the physical parameters ðma; faÞ, and the
initial values ðHi;ΩφiÞ, one can calculate the initial values
of the original field variables ðφi; φ̇iÞ corresponding to the
attractor solution at early times.

APPENDIX E: VALIDATION ON MOCKS

Nonparametric approaches offer significant advantages
by minimizing assumptions about the underlying physical
properties of dark energy, allowing for a more flexible and
unbiased reconstruction of cosmic expansion and structure
growth. However, their power comes with the challenge of
ensuring robustness, as the lack of an explicit model can
introduce degeneracies and reconstruction artifacts. Careful
validation using mock datasets is essential to assess the
reliability of these techniques and identify potential biases
that may arise due to the methodology itself, ensuring that
the inferred constraints are driven by true cosmological
signals and not systematic effects.
In this appendix, we assess the robustness of the non-

parametric methodologies used in the main text with a set
of two mock datasets, each generated from a distinct dark
energy model and comprising a combination of simulated
DESI, PantheonPlus SNe Ia, and CMB data. The first
synthetic dataset assumes a ΛCDM cosmology ðw0 ¼ −1;
wa ¼ 0Þ, with the cosmological parameters set to their
bestfit Planck values. The second one is a w0waCDM
realization, with w0 ¼ −0.75 and wa ¼ −0.85. We refer to
these as the ΛCDM mock and the w0waCDM mock,
respectively. While admittedly not an exhaustive sample
of possible dark energy models, these different mocks span
a range of physical behaviors that allow us to quantify the
statistical uncertainties and possible biases introduced by
the methods themselves.
Figure 14 shows the binned wðzÞ reconstruction in the

case of three uniform bins between z ¼ 0 and z ¼ 2.1. The
median values with 68% and 95% confidence levels for the
two mock datasets are shown. The true wðzÞ for both
mocks, plotted with a black dashed line, lies mostly within
the 1σ contours, sometimes straying into the 2σ range near
the edges of each bin where, as expected, the three uniform
bin scheme is not necessarily flexible enough to capture the
precise behavior. The deviation from ΛCDM (shown in

gray dashed line) is correctly detected at more than 2σ in
the two lowest redshift bins in the case of the w0waCDM
mock. Figure 15 shows that Gaussian process reconstruc-
tions of wðzÞ for the two mock datasets. The figure includes

FIG. 14. Validation of wðzÞ binned in three uniform bins, for
the two mock datasets. The circular data points show the median
values of the reconstruction, with 1σ and 2σ vertical error bars, as
well as posterior distributions of the bin amplitude parameters. In
both cases, the true evolution of w, shown in a black dashed line,
is well recovered.

FIG. 15. Validation of wðzÞ reconstructed using GP, for two
mock datasets. In both of the mocks, the true wðzÞ function, used
to generate them and shown in a black dashed line, is recovered
well within the 1σ contour.
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the median values as well as 68% and 95% confidence
levels for both of the mock datasets. The true expected
function lies well within the 1σ contours in each case.
In the interest of completeness, we also test an extreme

case, falling in the thawing class of models, by preparing a
third mock following Eq. (15) with w0 ¼ −0.5 and p ¼ 20.
As shown in Fig. 16, this demonstrates the possibility of
limitations in the nonparametric implementation used here
to pick up some extreme behaviors. We simply note that our
implementation does have some limitations, and further
improvements, such as investigating the impact of priors on
hyperparameters and the choice of kernel, are left to
future work.
Aside from the extreme case, the two approaches

investigated here are seen to recover the simulated mock
data well, without any significant bias detected in the
mocks tested. Though not shown here, the same tests are
performed for direct fDEðzÞ reconstruction, with compa-
rable analogous results. These nonparametric implementa-
tions are then applied without modification to the real data
for the actual analysis.

APPENDIX F: COMPARISON WITH DESI DR1

Figure 17 compares the results of a Chebyshev expan-
sion of wðzÞ and fDEðzÞ using DR1 BAO vs DR2 BAO

data, in combination with ðθ�;ωb;ωbcÞCMB and Union3
measurements. Figure 18 presents a similar comparison for
the GP reconstruction of wðzÞ using DESI in combination
with CMB and Union3. It is seen that while the main trends
in the DE remain unchanged between the two data releases,
the uncertainties in the reconstructions have significantly
decreased with DR2.

FIG. 17. Comparison of the constraints obtained using DESI
DR1 vs DR2 data, in combination with ðθ�;ωb;ωbcÞCMB and
Union3 measurements. The top panel shows a Chebyshev
expansion of wðzÞ as in Eq. (11), while the bottom panel shows
an expansion of fDEðzÞ as in Eq. (12) with N ¼ 3.

FIG. 18. Comparison of GP reconstruction obtained using
DESI DR1 vs DR2 data, in combination with CMB and Union3
measurements.

FIG. 16. Reconstructions of wðzÞ using binning and GP, for a
selected extreme thawing case. In both reconstructions, the
particular behavior used to generate the mock (shown in black
dashed line) cannot be recovered well, given the implementa-
tion used.
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