
THE ASTROPHYSICAL JOURNAL, 555 :547È557, 2001 July 10
( 2001. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE ANGULAR POWER SPECTRUM OF EDINBURGH/DURHAM SOUTHERN GALAXY
CATALOGUE GALAXIES

DRAGAN HUTERER

Department of Physics, University of Chicago, Chicago, IL 60637 ; dhuterer=sealion.uchicago.edu

LLOYD KNOX1
Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 ; knox=Ñight.uchicago.edu

AND

ROBERT C. NICHOL

Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 ; nichol=cmu.edu
Received 2000 November 20 ; accepted 2001 February 13

ABSTRACT
We determine the angular power spectrum of the Edinburgh/Durham Southern Galaxy CatalogueC

l(EDSGC) and use this statistic to constrain cosmological parameters. Our methods for determining C
land the parameters that a†ect it are based on those developed for the analysis of cosmic microwave

background maps. We expect them to be useful for future surveys. Assuming Ñat cold dark matter
models with a cosmological constant (constrained by the COBE Di†erential Microwave Radiometer
experiment and local cluster abundances) and a scale-independent bias b, we Ðnd acceptable Ðts to the
EDSGC angular power spectrum with 1.11\ b \ 2.35 and at 95% conÐdence. These0.2\)

m
\ 0.55

results are not signiÐcantly a†ected by the ““ integral constraint ÏÏ or extinction by interstellar dust but
may be by our assumption of Gaussianity.
Subject headings : cosmological parameters È cosmology : observations È cosmology : theory

1. INTRODUCTION

Over the next decade, the quantity and quality of galaxy
survey data will improve greatly because of a variety of new
survey projects underway, including the Sloan Digital Sky
Survey (SDSS; see York et al. 2000). However, most of the
galaxies in such surveys will not have spectroscopically
determined redshifts ; therefore, the study of their angular
correlations will be highly proÐtable for our understanding
of the large-scale structure of the universe.

The primary purpose of this paper is to consider an
analysis approach that is likely to be useful for deriving
cosmological constraints from these larger surveys. In par-
ticular, we use methods that have become standard in the
analysis of cosmic microwave background (CMB) anisot-
ropy maps, such as those from BOOMERANG (de Ber-
nardis et al. 2000 ; Lange et al. 2001) and MAXIMA-I
(Hanany et al. 2000 ; Balbi et al. 2000).

Estimation of the two-point angular correlation function
w(h) from galaxy surveys without redshift information has a
long history. Early work (Peebles & Hauser 1974 ; Groth &
Peebles 1977) found the angular correlation function to
vary as w(h)\ h1~c with c\ 1.77 and a break at scales
larger than D9 h~1 Mpc. The advent of automated surveys,
such as the Automatic Plate Measuring Facility (APM)
galaxy survey (Maddox et. al. 1990) and Edinburgh/
Durham Southern Galaxy Catalogue (EDSGC; Collins,
Nichol, & Lumsden 1992) enabled a much more accurate
determination of w(h), since each survey contained angular
positions for over a million galaxies.

One way to compare the measured angular correlation
function with theoretical predictions is to invert w(h) to
obtain the three-dimensional power spectrum P(k). This
requires inverting LimberÏs equation (Limber 1953). Baugh
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& Efstathiou (1993, 1994) and & Baugh (1998)Gaztan8 aga
used LucyÏs algorithm (Lucy 1974) to do the inversion,
while Dodelson & (2000) used a Bayesian priorGaztan8 aga
constraining the smoothness of the power spectrum. Eisen-
stein & Zaldarriaga (2001) used a technique based on singu-
lar value decomposition to get P(k) from w(h). They point
out that once the correlations in the inverted power spectra
are included the uncertainties on cosmological parameters
from the APM are signiÐcantly weakened.

Our analysis is a three-step process, similar to what is
done with CMB data sets (Tegmark 1997 ; Bond, Ja†e, &
Knox 1998, 2000). The Ðrst step is the construction of a
pixelized map of galaxy counts, together with its noise
properties. The second step is the determination of the
angular power spectrum of the map using likelihoodC

lanalysis, together with window functions and a covariance
matrix. In the Ðnal step, we compare our observationally
determined to the predicted for a given set of parame-C

l
C

lters in order to get constraints on those parameters. We
assume that the errors in are lognormally distributed.C

lThe angular power spectrum is a useful intermediateC
lstep on this road from galaxy catalog to parameter con-

straints. Estimates of the angular power spectrum, together
with a description of the uncertainties, can be viewed as a
form of data compression. One has converted the D1
million EDSGC galaxies (for example) into a handful of
power spectrum constraints, together with window func-
tions and covariance matrices. Thus, if one wishes to make
other assumptions about bias and cosmological parameters
than we have done here and determine the resulting con-
straints, one can do so without having to return to the cum-
bersome galaxy catalog.

We use instead of its historically preferred LegendreC
ltransform w(h) for several reasons : First, the error matrix

structure is much simpler : is band diagonal andSdC
l
dC

l{
T

becomes diagonal in the limit of full-sky coverage, whereas
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Sdw(h) dw(h@)T is much more complicated and does not
become diagonal even in the full-sky limit. Second, the rela-
tion between and the corresponding three-dimensionalC

lstatistic P(k) is simpler than that between w(h) and P(k) [or
its Fourier transform m(r) ; Baugh & Efstathiou 1994].

We use likelihood analysis to determine because theC
llikelihood is a fundamental statistical quantity. The likeli-

hood is the probability of the data given which byC
l
,

BayesÏs theorem is proportional to the probability of C
lgiven the data. Another advantage of likelihood analysis is

that, as explained below, it allows for straightforward
control of systematic errors (due to, e.g., masking) via modi-
Ðcations of the noise matrix.

Only on sufficiently large scales do we expect the likeli-
hood function to be a Gaussian that depends only on C

land not on any higher order correlations. We therefore
restrict our analysis to l-values less than some critical value.
On small scales the likelihood function becomes much more
complicated and its form harder to predict a priori. Mode-
mode coupling due to nonlinear evolution leads to depar-
tures of the covariance matrix from band diagonal.C

lTherefore, some of the advantages of likelihood analysis
and the angular power spectrum are lost on smaller scales
where other techniques may be superior. The Gaussianity
assumption is perhaps the weakest point of the approach
outlined here. Below, we brieÑy discuss how the analysis
can be improved in this regard with future data sets.

The EDSGC, with over a million galaxies and covering
over 1000 deg2, o†ers us an excellent test bed for applying
our algorithms (Nichol, Collins, & Lumsden 2000). We
convert this catalog into a pixelized map and determine its
angular power spectrum together with window functions
and covariance matrix. As an illustrative application of the
angular power spectrum, we constrain a scale-independent
bias parameter b and the cosmological constant density
parameter in a COBE-normalized "CDM model with)"zero-mean spatial curvature. Our constraints on the bias
are improved by including constraints on the amplitude of
the power spectrum derived from number densities of low-
redshift massive clusters of galaxies (Viana & Liddle 1999,
hereafter VL99 ; also see Pierpaoli, Scott, & White 2001).
These number densities are sensitive to the amplitude of the
matter power spectrum calculated in linear perturbation
theory, near the range of length scales probed by the
EDSGC.

The angular power spectrum of the APM catalog was
previously estimated by Baugh & Efstathiou (1994) though
not via likelihood analysis. Very recently, Efstathiou &
Moody (2000) have applied the same techniques we use here
to estimating for the APM survey. Their approach di†ersC

lfrom ours in how they constrain cosmological parameters.
Instead of projecting the theoretical three-dimensional
power spectra P(k) into angular power spectra, they trans-
form their constraints into (highly correlated) constraintsC

lon P(k) and then compare to theoretical P(k).
We expect the analysis methods presented here to be

useful for other current and future data setsÈeven those
with large numbers of measured redshifts. For example, the
Sloan Digital Sky Survey will spectroscopically determine
the redshifts of a million galaxies, but there will be about
100 times as many galaxies in the photometric data, without
spectroscopic redshifts. One can generalize the methods
presented here to analyze sets of maps produced from gal-
axies in di†erent photometric redshift slices.

In ° 2 we review likelihood analysis and the use of the
quadratic estimator to iteratively Ðnd the maximum of the
likelihood function. In ° 3 we describe our calculation of
P(k) and its projection to In ° 4 we show how toC

l
.

compare the calculated to the measured in order toC
l

C
ldetermine parameters. In ° 5 we apply our methods to the

EDSGC, and we discuss some possible sources of system-
atic error in ° 6. This is followed by a discussion of our
results in ° 7 and a brief conclusion in ° 8. An appendix
outlines the derivation of the projection of P(k) to C

l
.

2. THE LIKELIHOOD FUNCTION AND

QUADRATIC ESTIMATION

The likelihood is a fundamental statistical quantity : the
probability of the data given some theory. According to
BayesÏs theorem, the probability of the parameters of the
assumed theory is proportional to the likelihood times any
prior probability distribution we care to give the param-
eters. Thus, determining the location of the likelihood
maximum and understanding the behavior of the likelihood
function in that neighborhood (i.e., understanding the
uncertainties) is of great interest.

Despite its fundamental importance, an exact likelihood
analysis is not always possible. Two things can stand in our
way : insufficient computer resources for evaluation of the
likelihood function (operation count scales as andNpix3 ,
memory use scales as and, even worse, the absence ofNpix2 )
an analytic expression for the likelihood function.

In this paper we assume that the pixelized map of galaxy
counts is a Gaussian random ÐeldÈan assumption that
provides us with the analytic expression for the likelihood
function. For models with Gaussian initial conditions
(which are the only models we consider here), we expect this
to be a good approximation on sufficiently large scales.
Since we restrict ourselves to studying large-scale Ñuctua-
tions, we can use large pixels, thereby reducing andNpixensuring that the likelihood analysis is tractable. We also
check the Gaussianity assumption with histograms of the
pixel distribution. On the large scales of interest here and
for a given three-dimensional length scale, Gaussianity is a
better approximation for a galaxy count survey than for a
redshift survey because of, in part, the redshift-space distor-
tions that a†ect the latter (Hivon et al. 1995). The projection
from three to two dimensions also tends to decrease non-
Gaussianity.

Where likelihood analysis is possible, it naturally handles
the problems of other estimators (such as edge e†ects).
Likelihood analysis also provides a convenient framework
for taking into account various sources of systematic error,
such as spatially varying reddening and the ““ integral
constraint ÏÏ discussed in ° 6.

To begin our likelihood analysis, we assume that the data
are simply the angular position of each galaxy observedÈ
though it is possible to generalize the following analysis and
use either magnitude information or color redshifts. We
pixelize the sky and count the number of galaxies in each
pixel Then we calculate the fractional deviation of thatG

i
.

number from the ensemble average :

*
i
4

G
i
[ G1 )

i
G1 )

i
, (1)

where is the ensemble average number of galaxies per unitG1
solid angle and is the pixel solid angle. We do not)

i
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actually know the ensemble mean. In practice, we approx-
imate it with the survey average We discuss this approx-G3 .
imation in ° 6 and demonstrate that it has negligible impact
on our results.

We model the fractional deviation in each pixel from the
mean as having a contribution from ““ signal ÏÏ and from
““ noise,ÏÏ so that

*
i
\ s

i
] n

i
. (2)

The covariance matrix, for the fractional deviation inC
ij
,

each pixel from the mean is given by

C
ij
4 S*

i
*

j
T \ S

ij
] N

ij
, (3)

where and are the signal and noiseS
ij
4 Ss

i
s
j
T N

ij
4 Sn

i
n
j
T

covariance matrices. Roughly speaking, signal is the part of
the data that is due to mass Ñuctuations along the line of
sight (see the Appendix), and noise is those Ñuctuations due
to anything else.

The signal covariance matrix depends on the parame-S
ijters of interest (the angular power spectrum viaC

l
)

S
ij

\ w(h
ij
)\ ;

l

2l] 1
4n

C
l
P

l
(cos h

ij
)e~l2pb2 , (4)

where is the angular distance between pixels i and j andh
ijwe have assumed a Gaussian smoothing of the pixelized

galaxy map with In practice, we doFWHM\J8 ln 2p
b
.

not estimate each individually but binned with binC
l

C
l
s

widths greater than Dn/h, where h is a typical angular
dimension for the survey.

The noise contribution to the Ñuctuations n is due to the
fact that two regions of space with the same mass density
can have di†erent numbers of galaxies. We model this addi-
tional source of Ñuctuations as a Gaussian random process
with variance equal to so that1/G1 ,

N
ij
4 Sn

i
n
j
T \ 1/(G1 )

i
)d

ij
. (5)

More sophisticated modeling of the noise is not necessary
because at all l-values of interest the variance in due toC

lthe noise is much smaller than the sample variance.
To Ðnd the maximum of the likelihood function, we iter-

atively apply the following equation :

dC
l
\ 12F

ll{
~1Tr [(**T [ C)(C~1LC/LC

l{
C~1)] , (6)

where F is the Fisher matrix given by

F
ll{

\ 1
2

Tr
A
C~1 LC

LC
l
C~1 LC

LC
l{

B
, (7)

and for later convenience we are using C
l
4 l(l] 1)C

l
/(2n)

instead of That is, start with an initial guess ofC
l
. C

l
,

update this to and repeat. We have found that thisC
l
] dC

l
,

iterative procedure converges to well within the size of the
error bars quite rapidly.

The small-sky coverage prevents us from determining
each multipole moment individually ; thus, we determine
the power spectrum in bands of l instead, call them ““ band
powers,ÏÏ and denote them by whereC

B
,

C
l
4

l(l] 1)C
l

2n
\ ;

B
s
B(l)CB

(8)

and is unity for where ands
B(l) l

:
(B)\ l\ l

;
(B) l

:
(B) l

;
(B)

delimit band B.

Although we view equation (6) as a means of Ðnding the
maximum of the likelihood function, one can also treat

(with no iteration) as an estimator in its own rightC
l
] dC

l(Tegmark 1997 ; Bond et al. 1998). It is referred to as a
quadratic estimator since it is a quadratic function of the
data. One can view equation (6) as a weighted sum over
**T [ C, with the weights chosen to optimally change C

lso that C is closer to **T in an average sense.
Various sources of systematic error can be taken into

account by including extra terms in the modeling of the
data (eq. [2]) and working out the e†ect on the data covari-
ance matrix, C. Below we see speciÐc examples as we take
into account the integral constraint and pixel masking. The
reader may also wish to see the Appendix of Bond et al.
(1998), Tegmark et al. (1998), and Knox et al. (1998) for
more general discussions.

3. CALCULATION OF C
l

We need to be able to calculate for a given theory inC
lorder to compare it with estimated from the data. ThisC

lcalculation is a three-step process. Step 1 is to calculate the
matter power spectrum P(k) in linear perturbation theory.
Step 2 is to then use some biasing prescription to convert
this to the galaxy number count power spectrum StepP

G
(k).

3 is to project this P(k) to We further discuss these stepsC
l
.

in the following subsections.

3.1. T he T hree-dimensional Matter Power Spectrum, P(k)
We take the primordial matter power spectrum to be a

power law with power spectral index n and amplitude atd
H
2

the Hubble radius. We write the matter power spectrum
today (calculated using linear perturbation theory) asP0(k)
a product of the primordial spectrum and a transfer func-
tion T (k) :

P0(k) 4
k3P0(k)

2n2 \ d
H
2
A k
H0

B3`n
T 2(k) , (9)

where h km s~1 Mpc~1 is the Hubble parameterH0\ 100
today. The transfer function, T (k), goes to unity at large
scales since causality prevents microphysical processes from
altering the spectrum at large scales. At higher k it depends
on h, and To calculate the transfer function, we)

m
h, )

b
h2.

use the semianalytic approximation of Eisenstein & Hu
(1999). It is also available as an output from the publicly
available CMBfast Boltzmann code (Seljak & Zaldarriaga
1996).

Our power spectrum is now parametrized by Ðve param-
eters : n, h, and In the following analysis, wed

H
, )

m
h, )

b
h2.

eliminate two of these parameters by simply Ðxing h \ 0.7
and The dependence of our results on varia-)

b
h2\ 0.019.

tions in h can be derived analytically, which we do in ° 7.
Measurements of deuterium abundances in the Lya forest,
combined with the dependence of primordial abundances
on the baryon density, lead to the constraint )

b
h2\ 0.019

^ 0.002 at 95% conÐdence (Burles & Tytler 1998 ; Burles,
Nollett, & Turner 2001).

Of the remaining parameters, two more, and n, can bed
HÐxed by insisting on agreement with both the amplitude of

CMB anisotropy on large angular scales as measured by the
COBE Di†erential Microwave Radiometer experiment
(COBE/DMR) and the number density of massive clusters
at low redshifts. The COBE constraint can be expressed
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with the Ðtting formula

d
H

\ 1.94] 10~5)
m
~0.785~0.05 ln )m

]exp [[0.95(n [ 1)[ 0.170(n [ 1)2] , (10)

which is valid for the Ñat "CDM models that we are con-
sidering (Bunn & White 1997).

The cluster abundance constraint can be expressed as a
constraint on which is the rms Ñuctuation of mass inp8,
spheres of radius r \ 8 h~1 Mpc, calculated in linear
theory :

p82 \
P dk

k
C3j1(kr)

(kr)
D2

P0(k) , (11)

where VL99 Ðnd the mostj1(x)\ [x cos (x)[ sin (x)]/x2.
likely value of to bep8 p8\ 0.56 )

m
~0.47.

The reason for the choice of the scale of 8 h~1 Mpc is that
a sphere of this size has a mass of about 1015 which isM

_
,

the mass of a large galaxy cluster. Most of the depen-)
mdence of comes from the fact that the precollapse lengthp8scale corresponding to a given mass depends on the matter

density. Thus, in a low-density universe the precollapse
scale is larger, and since there is less Ñuctuation power on
larger scales, the normalization has to be higher for Ðxedp8cluster abundance.

The shift in precollapse length scale with changing is)
mvery slow, scaling as Thus, although the parameters)

m
1@3.

that govern the shape of the power spectrum a†ect the nor-
malization, their inÑuence is quite small. For example, the
scale shift for changing by a factor of 3 is 31@3\ 1.44,)

mand over this range an uncertainty in n of 0.2 translates into
an uncertainty in power of 8%.

Of course, there are uncertainties in both the constraint
from COBE and the constraint from cluster abundances.
More signiÐcant of the two is the uncertainty in cluster
abundance constraint. Consequently, we extend our grid of
models to cover a range of values of wherep8c , p8\

VL99 Ðnd that the probability of is lognor-p8c )
m
~0.47. p8cmally distributed with a maximum at and ap8c \ 0.56

variance of of Theln p8c 0.25 ln2 (1] 0.20)
m
0.2 log10 )m).

COBE uncertainty is only 7%. We ignore this source of
uncertainty and do not expect it to a†ect our results since
such a small departure from the nominal large-scale nor-
malization can be easily mimicked, over the range of scales
probed by EDSGC, by a very small change in the tilt n.

In Figure 1 we plot (dashed lines) for several modelsP0(k)
that satisfy the COBE/DMR and VL99 constraints. Chang-
ing and also satisfying the and constraints forces)

m
h d

H
p8n to change as well. For 0.3, 0.35, 0.4, and 1,)

m
\ 0.15,

n \ 1.55, 1.00, 0.91, 0.84, and 0.47, respectively. One can
understand this by considering the simpler case of andd

Hheld constant without and n dependence. Then thep8 )
monly e†ect of changing is to change the transfer func-)

m
h

tion. For Ðxed increasing in this case leads tod
H
, )

m
h

increased power on small scales. One therefore needs to
decrease the tilt in order to keep unchanged. Now, thep8fact that our two amplitude constraints do depend on )

malso has an e†ect on how n changes with changing )
m
.

However, this is a subdominant e†ect because these depen-
dences are quite similar.

3.2. T he Biasing Prescription
Although biasing in general is stochastic, nonlinear, and

redshift and scale dependent, we adopt the simplest possible

FIG. 1.ÈMatter power spectra and derivatives. From bottom to topC
lat low l are the COBE and cluster consistent predictions for 0.3,)

m
\ 0.15,

and 1, all with b \ 1 (dashed lines : linear theory predictions). The l \ 20
and l\ 80 curves show for these two multipole momentskLC

l
/LP

k(arbitrary normalization).

model here in which the galaxy number density Ñuctuations
are directly proportional to the matter density Ñuctuations.
Then we can write where is the matterb 4 d

G
/d, d \ do/o6

density contrast, is the galaxy number density contrast,d
Gand b is the bias factor.

With this description, where P(k) is theP
G
(k) \ b2P(k),

matter power spectrum. Note that above we have only cal-
culated the linear theory matter power spectrum. Nonlinear
corrections are important over the EDSGC range of length
scales, and we must incorporate these e†ects. We derive P(k)
from the linear theory power spectra by use of a ÐttingP0(k)
formula (Peacock & Dodds 1996) that provides a good Ðt to
the results of n-body calculations. The resulting power
spectra are shown by the solid lines in Figure 1.

We have assumed that the galaxy number density Ñuc-
tuations are completely determined by the local density
contrast. The number density of galaxies must also have
some nonlocal dependence on the density contrast. More
complicated modeling of the relationship, or ““ biasing
schemes ÏÏ (e.g., Cen & Ostriker 1992 ; Mann, Peacock, &
Heavens 1998 ; Dekel & Lahav 1999), are beyond the scope
of this paper. In the applications that follow, we assume the
bias to be independent of time or scale, although our for-
malism allows inclusion of both of these possibilities.

From analytic theory (e.g., Seljak 2000), we expect the
bias to be scale-independent on scales that are larger than
any collapsed dark matter halos. Numerical simulations
show this to be the case as well (see Blanton et al. 2000 ;
Narayanan, Berlind, & Weinberg 2000) on scales larger
than 10 h~1 Mpc. Moreover, recent observations by Miller,
Nichol, & Batuski (2001) show that a scale-independent,
linear, biasing model works well when scaling cluster and
galaxy data over the range of 200È40 h~1 Mpc. Our results
are determined mostly by information from these large
scales. Since we Ðnd acceptable Ðts to the data using our
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constant bias model, we have no evidence for a scale-
dependent bias.

3.3. T he Projection to Two Dimensions
As described in the Appendix, can be calculated fromC

land the selection function asP0(k)

C
l
\ 4n

P
P0(k) f

l
(k)2 dk/k , (12)

where

f
l
(k)4

1
G1
P

dz
dr
dz

j
l
(kr)r2g6 (z)D(z)bTnl(k, z) , (13)

where r is the comoving distance along our past light cone,
is the mean comoving number density of observableg6 (z)

galaxies, D(z) is the growth of perturbations in linear theory
relative to z\ 0, and is the correction factor forTnl(k, z)
nonlinear evolution (Peacock & Dodds 1996).

Equations (12) and (13) are valid for all angular scales. It
becomes time consuming to evaluate the Bessel function on
smaller angular scales. Although we always used equations
(12) and (13), the reader should know that there is a much
more rapid approximation that works well at lZ 30 :

C
l
\ 1

G1 2
P

dz
dr
dz

r2P
A
k \ l

r
, z
BC

g6 (z)D(z)bTnl
A
k \ l

r
, z
BD2

.

(14)

In order to calculate we need to know SinceC
l
, g6 (z).

(Baugh & Efstathiou 1993, 1994 ; ourr2g6 (z)dr/dz\ dG1 /dz
Appendix), it is sufficient to know whose measure-dG1 /dz,
ment is described in ° 5.

To give an idea of how depends on P(k), we plotC
lin Figure 1 for l\ 20 and l\ 80. This quantityk LC

l
/LP(k)

is the contribution to from each logarithmic interval in k.C
lNote that it is the breadth of these derivatives that explains

the correlations that appear in any attempt to reconstruct
P(k) from angular correlation data. The derivatives have
some dependence on cosmology ; those plotted are for the

case.)
m

\ 0.3
The angular power spectrum is sensitive not only to the

power spectrum today but to the power spectrum in the
past as well. In linear theory, the evolution of the power
spectrum is separable in k and z : one can write P(k, z) \
P(k, 0)D2(z), where D(z) is the growth factor well-described
by the Ðtting formula of Carroll, Press, & Turner (1992). We
also assume that this relation holds for the nonlinear power
spectra. In truth, nonlinear evolution is more rapid at
higher k than at lower k. We expect our approximations to
therefore be overestimates of but since we do not useC

l
,

data that reach very far into the nonlinear regime, we do
not expect these errors to be signiÐcant.

4. EXTRACTION OF PARAMETERS

To Ðnd the maximum likelihood power spectrum, we
have iteratively applied the binned version of equation (6).
Although equation (6) is used as an iterative means of
Ðnding the maximum of the likelihood, it is also convenient
to write it as the equivalent equation for instead of theC

B
,

correction dC
B
:

C
B
\ 1

2
;
B@

F
BB{~1Tr

C
(**T [ N)C~1 LC

LC
B{

C~1
D

, (15)

where the right-hand side is evaluated at the previous iter-
ation value of and is theC

B
, C

B
RHS, C

B
\C

B
RHS ] dC

Bupdated power spectrum.
We have shown how to calculate from the theoreticalC

lparameters. We now need to calculate what we expectC
Bfor this One can show that the expectation value forC

l
. C

B
,

given that the data are realized from a power spectrum isC
l
,

SC
B
T \;

l
;
B{

F
BB{~1 ;

l{ | B{
F

ll{
C

l

\;
l

W
l
B

l
C

l
, (16)

where the Fisher matrices on the right-hand side are evalu-
ated at and the last line serves to deÐne the bandC

B
RHS

power window function Note that the sum over l@ isW
l
B.

only from to This equation reduces tol
:
(B@) l

;
(B@).

equation (8) of Knox (1999) in the limit of diagonal ItF
BB{.

is this expectation value that should be compared to the
measured C

B
.

As shown by Bond et al. (2000), the probability distribu-
tion of is well approximated by an o†set lognormal form.C

lIn the sample variance limit, which applies for our analysis
of EDSGC, this reduces to a lognormal distribution. There-
fore, we take the uncertainty in each to be lognormallyC

Bdistributed and evaluate the following s2 :

sEDSGC2 ()
m
, b, p8c ) \ ;

BB{
(lnC

B
[ lnC

B
t )

]C
B
F

BB{CB{(lnC
B{ [ lnC

B{t ) , (17)

C
B
t 4;

l

W
l
B

l
C

l
()

m
, b, p8c ) , (18)

where p8\p8c )
m
~0.47.

Our total includes the contributions2\ sEDSGC2 ] sVL2
from the cluster abundance constraint, which is also lognor-
mal :

sVL2 \ (ln p8c [ ln 0.56)2/p2 , (19)

where (Viana & Liddle 1996,p \ 12 ln (1 ] 0.32)
m
0.24 log10 )m)

hereafter VL96). Note that here and throughout we have
adopted the more conservative uncertainty in VL96, as
opposed to the VL99 uncertainty.

5. APPLICATION TO THE EDINBURGH/DURHAM

SOUTHERN GALAXY CATALOGUE

The Edinburgh/Durham Southern Galaxy Catalogue
(EDSGC) is a sample of nearly 1.5 million galaxies covering
over 1000 deg2 centered on the South Galactic Pole. The
reader is referred to Nichol et al. (2000) for a full description
of the construction of this galaxy catalog as well as a review
of the science derived from this survey.2

For the analysis discussed in this paper, we consider
only the contiguous region of the EDSGC deÐned in
Nichol et al. (2000) and Collins et al. (1992 ; right
ascensions 23h \ a \ 3h, through 0h, and declinations
[42¡ \ d \[23¡). We also restrict the analysis to the
magnitude range The faint end of this range10 \ bJ\ 19.4.
is nearly 1 mag brighter than the completeness limit of the
EDSGC (see Nichol et al. 2000) but corresponds to the
limiting magnitude of the ESO Slice Project (ESP) of Vet-

2 For the EDSGC data, the reader is referred to http ://www.edsgc.org.



0 0.1 0.2 0.3 0.4 0.5
Redshift

0

20000

40000

60000

80000

N
um

be
r 

of
 g

al
ax

ie
s

552 HUTERER, KNOX, & NICHOL Vol. 555

tolani et al. (1998), which was originally based on the
EDSGC. The ESP survey is 85% complete to this limiting
magnitude and consists of 3342 galaxies with(bJ \ 19.4)
redshift determination. This allows us to compute the selec-
tion function of the whole EDSGC survey, which is shown
in Figure 2. The data shown in this Ðgure has been cor-
rected for the 15% incompleteness in galaxies brighter than

with no measured redshifts as well as the meanbJ\ 19.4
stellar contamination of 12% found by Zucca et al. (1997) in
the EDSGC. These corrections are not strong functions of
magnitude ; therefore, we apply them as constant values
across the whole magnitude range of the survey.

As mentioned above, we need to correct our power spec-
trum estimates for stellar contamination in the EDSGC
map. If the stars are uncorrelated (which we assume), then
their presence will suppress the Ñuctuation power as we
now explain. Let be the total count in pixel i, consisting ofT

igalaxies and stars : (for simplicity, we considerT
i
\G

i
] S

iequal-area pixels). Let a \ 0.12 be the fraction of the total
that are stars, so that Then, deÐningG1 \ (1[ a)T1 . *

i
G \

and we have(G
i
[ G1 )/G1 *

i
S \ (S

i
[ S1 )/S1 ,

*
i
4

T
i
[ T1
T1

(20)

\ (1[ a)*
i
G ] a*

i
S . (21)

The term is what we are after : density contrast in the*
i
G

absence of stellar contamination. The second term amounts
to a small additional source of noise. Since, as mentioned in
° 2, the noise is completely unimportant on the scales of
interest, we neglect this term. Therefore,

S*
i
G*

j
GT \ (1[ a)~2S*

i
*
j
T . (22)

We have accordingly corrected all our estimates andC
Btheir error bars upward by (1 [ a)~2B 1.29.

By selection function we mean where is thedG1 /dz, G1
mean number of EDSGC galaxies per steradian. The
smooth curve in Figure 2 was chosen to Ðt the histogram
and is given by

dG1
dz

\ 4 ] 105 exp
C
[
A z
0.06
B3@2DA z

0.1
B3

. (23)

FIG. 2.ÈSelection function for the EDSGC, i.e., the mean number of
galaxies per steradian per redshift interval.

Restricting ourselves to leaves around 200,000bJ \ 19.4
galaxies. Although this is only D15% of the total number of
galaxies in the EDSGC, the resulting shot noise is still less
than the Ñuctuation power, even at the smallest scales that
we consider.

We binned the map into 5700 pixels with extent in0¡.5
declination and in right ascension (R.A.). The pixels are0¡.5
slightly rectangular with varying solid angles : the R.A.
widths correspond to angular distances ranging from 0¡.46
at d \ [23¡ to at d \ [42¡. This pixelization is Ðne0¡.37
enough so as not to a†ect our interpretation of the large-
scale Ñuctuations : it causes a D4% suppression of the Ñuc-
tuation power at l \ 80. We have varied the pixelization
scale to test this and Ðnd that with 1¡ ] 1¡ pixels the esti-
mated change by less than half an error bar for l\ 80.C

l
s

We also took into account the ““ drill holes,ÏÏ locations in
the map that were obstructed (e.g., by bright stars). In the
case of pixelization, about 75 pixels were cor-0¡.5 ] 0¡.5
rupted by drill holes. Those pixels were assigned large
diagonal values in the noise matrix (e.g., Bond et al. 1998)
and thus had negligible weight in the subsequent analysis.
The pixelized map is shown in Figure 3.0¡.5 ] 0¡.5

In Figure 4 we plot the estimated angular power spec-
trum from the EDSGC data. Also shown in Figure 4 are
our predicted For each of these, we can calculate theC

l
s.

expected values of by summing over the window func-C
Btions, shown in the bottom panel for the six lowest l-bands.

The jaggedness results from our practice of calculating the
Fisher matrix not for every l but for Ðne bins of l labeled by
b. We then assume F

ll{
\ F

bb{
/[dl(b)dl(b@)].

We apply equation (17) with the sum restricted to the six
at lowest l. First we keep Ðxed to the preferred valueC

B
s p8cof 0.56 (VL99) resulting in a s2 whose contours are shown

as the dashed lines in Figure 5. The minimum of this s2 is
8.1 for 6 [ 2 \ 4 degrees of freedom at and)

m
\ 0.35

b \ 1.3, where n \ 0.91. This is an acceptable s2 : the prob-
ability of a larger s2 is 9%. Moving toward higher )

mdecreases the VL99 preferred value of and thus the pre-p8ferred value of b increases. Increasing also changes the)
mtransfer function, requiring a decrease in n in order to agree

with both COBE/DMR and cluster abundances. This
change in the shape of the angular power spectrum leads to
an increase in Moving toward lower generates asEDSGC2 . )

mbluer tilt to the shape in two di†erent ways. It leads toC
lhigher n for consistency with COBE/DMR and cluster

abundances, and it also increases the importance of nonlin-
ear corrections. These combined e†ects lead to a rapidly
increasing forsEDSGC2 )

m
\ 0.2.

The uncertainties on from cluster abundances (as wep8cinterpret them) are signiÐcantly larger than the EDSGC
constraints on b for Ðxed If we take them into account,p8c .we must include additional prior information in order to
obtain an interesting constraint on the bias. Since (at Ðxed

changing changes n, prior constraints on n will)
m
) p8chelp to constrain Therefore, we work with the totalp8c . From a combined analysis ofs2\ sEDSGC2 ] sVL2 ] s

n
2.

BOOMERANG-98, MAXIMA-I, and COBE/DMR data,
Ja†e et al. (2001) Ðnd n \ 1 ^ 0.1 ; hence, we adopt s

n
2 \

(n [ 1)2/0.12. We marginalize the likelihood, which is pro-
portional to overe~s2@2, p8c .Marginalizing over the amplitude constraint from cluster
abundances, we Ðnd 1.07\ b \ 2.33 at the best-Ðt value of

and 1.11\ b \ 2.35 after marginalizing over)
m

\ 0.35, )
m(both ranges 95% conÐdence). These constraints corre-
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FIG. 3.ÈMap of the EDSGC that we used in our analysis (23h \ a \ 3h, [42¡ \ d \[23¡, and Five of the largest masks are indicated withbJ\ 19.4).
squares.

spond to the solid and dashed contours, respectively, in
Figure 5. Figure 6 shows the likelihood of bias, when mar-
ginalized over either (solid line) or (dashed line). Mar-p8 )

mginalizing over the bias leads to weak constraints on )
m
,

unless one insists on allowing only small departures from
scale invariance. With the assumption that the primordial
power spectral index is n \ 1 ^ 0.1, we Ðnd 0.2\)

m
\ 0.55

at 95% conÐdence. Furthermore, it is interesting that not
only do ““ concordance-type ÏÏ models with scale-inde-
pendent biases provide the best Ðts to the EDSGC data but
also they provide acceptable Ðts.

6. SYSTEMATIC ERRORS

In this section we discuss three sources of systematic
error : spatially varying extinction by interstellar dust, devi-

FIG. 4.ÈAngular power spectra estimated from the data and predicted
for various models. From bottom to top at low l are the COBE- and
cluster-consistent predictions for 0.3, and 1 and b \ 1 (dashed)

m
\ 0.15,

lines : linear theory predictions). The lower panel shows the window func-
tions for the Ðrst six bands.

FIG. 5.ÈContours of constant s2 in the vs. bias plane. The dashed)
mlines are for chosen to be at Viana & Liddle maximum likelihood value.p8The solid line is the result of marginalizing over with the VL99 priorp8,and a prior in n of 1 ^ 0.1. The contour levels show the minimum as well as

2.3 and 6.17 above the minimum, corresponding to 68% and 95.4% con-
Ðdence levels if the distribution were Gaussian.

FIG. 6.ÈL eft panel : Likelihood of b marginalized over (withp8n \ 1 ^ 0.1 prior) at (solid line) and additionally marginalized)
m

\ 0.35
over (dashed line). Right panel : Likelihood of with no priors (dotted)

m
)

mline), n prior (dashed line), and n and our VL priors (solid line).
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ation of the survey mean from the ensemble mean, and
deviation from Gaussianity. Above we have assumed their
impact on the data to be negligible. In the following we use
maps with three di†erent pixelizations : BIGPIX (1¡.5 ] 1¡.5
pixels, a total of N \ 650 of them), MEDPIX (1¡.0 ] 1¡.0,
N \ 1425) and FINEPIX N \ 5700). Note that(0¡.5 ] 0¡.5,
FINEPIX was ultimately used to obtain the cosmological
parameter constraints. Coarser pixelizations, however, are
easier to work with because of a much smaller number of
pixels (in particular, N ] N matrices have to be repeatedly
inverted in the quadratic estimator).

6.1. Interstellar Dust
The Ðrst possible source of systematic error, interstellar

dust, we can dispense with quickly because of the work of
Nichol & Collins (1993) and, more recently, Efstathiou &
Moody (2000). The former investigated the e†ects of inter-
stellar dust (using H I and IRAS maps as tracers of the dust)
on the observed angular correlation function of EDSGC
galaxies (see Collins et al. 1992) and found no signiÐcant
e†ect on the angular correlations of these galaxies to bJ \19.5. We note that Nichol & Collins (1993) also investigated
plate-to-plate photometric errors and concluded they were
also unlikely to severely e†ect the angular correlations of
EDSGC galaxies. Efstathiou & Moody (2000) used the
latest dust maps from Schlegel, Finkbeiner, & Davis (1998)
to make extinction corrections to the APM catalog and
found that for galactic latitudes of o b o[ 20¡, the correc-
tions have no signiÐcant impact on the angular power spec-
trum. Since all the EDSGC survey area resides at galactic
latitudes of o b o[ 20¡ and has been thoroughly checked for
extinction-induced correlations, we conclude that spatially
varying dust extinction has not signiÐcantly a†ected our
power spectrum determinations either.

6.2. Integral Constraint
We are interested in the statistical properties of devi-

ations from the mean surface density of galaxies. This e†ort
is complicated by our uncertain knowledge of the mean.
Our best estimate of the ensemble mean is the survey mean.
But assuming that the survey mean is equal to the ensemble
mean leads to artiÐcially suppressed estimates of the Ñuc-
tuation power on the largest scales of the survey. This
assumption is often referred to as ““ neglecting the integral
constraint ÏÏ (for discussions, see, e.g., Peacock & Nicholson
1991 ; Collins et al. 1992).

Let be the ensemble average number of galaxies in aG1
pixel. Let us denote the survey average as

G3 \ 1
npix

;
i

G
i
. (24)

Since we do not know the ensemble average, in practice we
use the survey average to create the contrast map:

*3
i
\G

i
[ G3
G3

\ 1
1 ] v

(*
i
[ v) , (25)

where

*
i
4

G
i
[ G1
G1

(26)

is the contrast map made with the ensemble average and

v4
G3 [ G1

G3
(27)

is the fractional di†erence between the two averages (for
simplicity of notation we are assuming equal area pixels).

Our likelihood function should not have the covariance
matrix for but instead for These are related by*

i
*3
i
.

S*3
i
*3

j
T \ S*

i
*

j
T [ Sv(*

i
] *

j
)T ] Sv2T (28)

plus higher order terms.3 The extra terms of the above
equation are easily calculated with the following expres-
sions :

Sv*
i
T \ 1

Npix
;
j

S*
i
*

j
T ,

Sv2T \ 1
Npix2 ;

ij
S*

i
*

j
T . (29)

Each correction term typically contributes 10%È20% to
the corresponding terms of the covariance matrix (they do
not cancel, since there are two linear correction terms ; see
eq. [28]). The main contribution comes from the lowest
multipoles, corresponding to largest angles h. Indeed, the
correction terms come almost entirely from our lowest
multipole bin. Dropping this bin (or using a "CDM C

l
)

reduces the correction terms to 2% or less.
The amplitude of the correction terms can be understood

from the weakness of the signal correlations on scales
approaching the smaller survey dimension of 19¡. In that
case, we can write

1
Npix

;
j

S*
i
*

j
T B 2n

P
S(h)h

dh
)

, (30)

where ) is the area of the survey and S(h) is the signal
covariance, given by the right-hand side of equation (4) (we
have neglected pixel noise). We plot the integrand in Figure
7 in units of S(0).

Fortunately, even though the correction terms are not
entirely negligible, their inclusion makes the estimated C

lchange very little. This is shown in Figure 8. The most
signiÐcant change is a D20% broadening of the error bar of
the lowest multipole. Including this e†ect has a negligible
consequence on our cosmological parameter constraints.

6.3. Gaussianity
On large enough scales, we expect the maps to be Gauss-

ian distributed. Figure 9 shows histograms of the data for
the three pixelizations that we examined. The histograms
are overplotted with the Gaussians with zero mean and
variance equal to the pixel variance. One can see the
improved consistency with Gaussianity as the pixel size
increases.

We applied a Kolmogorov-Smirnov test (e.g., Press et al.
1992) to check for consistency of the above histograms with
their corresponding zero-mean Gaussians. We Ðnd prob-
abilities that these Gaussians are the parent distributions of
\10~10%, 0.001%, and 4.5% for FINEPIX, MEDPIX,
and BIGPIX, respectively, indicating that Gaussianity is a
better approximation on large scales than it is on small
scales, as expected. We also determined the skewness of the

3 An exact expression to all orders is given by eq. (20) of Hui &
(1999).Gaztan8 aga
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FIG. 7.ÈArea under the curve is approximately equal to the integral
constraint correction terms of equation (28) in units of S(0)(see equation
[30]). The assumed model is with VL99 and COBE/DMR nor-)

M
\ 0.3

malization. (The oscillations are due to the fact that only the contributions
from multipole moments at l\ 180 were included.)

maps in units of the variance to the 1.5 power and Ðnd the
same trend of decreasing non-Gaussianity with scale : 1.21,
0.85, and 0.79.

The trend with increasing angular scale and the weakness
of the D2 p discrepancy for the BIGPIX map are reassuring
for our analysis that considered only moments l\ 80. Note
that a spherical harmonic with l\ 80 has 3 BIGPIX pixels
in a wavelength. However, a normalized skewness near
unity is worrisomeÈand this skewness is not decreasing
rapidly with increasing angular scale. We discuss possible
ways of dealing with this non-Gaussianity in the next
section.

7. DISCUSSION

We reduced our sensitivity to the non-Gaussianity of the
data by restricting our cosmological parameter analysis to
l\ 80. However, the map may still be signiÐcantly non-

FIG. 8.ÈThe term determined with and without the integral con-C
lstraint correction. The MEDPIX case is shown, and abscissae of points

were slightly o†set for easier viewing.

FIG. 9.ÈHistograms of the data, overplotted with Gaussians centered
at zero with variances equal to the pixel variances, for maps made with
three di†erent pixel sizes. From top to bottom they are BIGPIX,
MEDPIX, and FINEPIX.

Gaussian even on these large scales. Future analyses of
more powerful data sets that result in smaller statistical
errors will have to quantify the e†ects of the Gaussianity
assumption, which we have not done here.

The non-Gaussianity may force us toward a Monte-
Carlo approach. An analysis procedure similar to the one
utilized here may have to be repeated many times on simu-
lated dataÈwhere the simulations include the nonlinear
evolution that presumably is the source of the Gaussianity.
The distribution of the recovered parameters can then be
used to correct biases and characterize uncertainties.

Monte-Carlo approaches may be necessary for other
reasons as well. Recently, Szapudi et al. (2001) have tested a
quadratic estimator for with a simpler (suboptimal)C

lweighting scheme that requires only on the order of N2
operations (or operations using the new algorithmsNJN
of Moore et al. 2001) instead of N3. A drawback is that
evaluation of analytic expressions for the uncertainties
requires on the order of N4 operations. Fortunately, the
estimation of is rapid enough to permit a Monte-CarloC

ldetermination of the uncertainties in a reasonable amount
of time.

Note, though, that Bayesian approaches may still be
viable, if it can be shown that non-Gaussian analytic
expressions for the likelihood provide an adequate descrip-
tion of the statistical properties of the data. See Rocha et al.
(2000) and Contaldi et al. (2000).

To get our constraints on cosmological parameters, we
Ðxed the Hubble constant at 70 km s~1 Mpc~1, or h \ 0.7.
We now explain how our bias results and results scale)

mfor di†erent values of the Hubble constant.
The transfer function depends on the size of the horizon

at matter-radiation equality which is proportional tojEQ,
or, in convenient distance units of h~1 Mpc,1/()

m
h2),

The latter quantity is the relevant one since all1/()
m

h).
distances come from redshifts and the application of
HubbleÏs law (in this case the redshifts taken for our selec-
tion function), with the result that distances are known only
in units of h~1 Mpc. Thus, there is a degeneracy between
models with the same value of and di†erent values of h.)

m
h

This degeneracy is broken by the dependence of the)
mCOBE normalization of and the cluster normalization ofd

H
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Increasing h at Ðxed values of means decreases,p8. )
m

h )
mraising both and Ignoring nonlinear e†ects, this cand

H
p8.be mimicked by an increase in the bias and only a very

slight reddening of the tilt (since has risen only slightlyd
Hmore than and there is a long baseline to exploit).p8The end result is that our constraints on b are actually

constraints on b(h/0.7)~0.5, and our constraints on (at)
mleast when marginalized over bias) are actually constraints

on )
m
(h/0.7).

8. CONCLUSIONS

We have presented a general formalism to analyze galaxy
surveys without redshift information. We pixelize the galaxy
counts on the sky and then, using the quadratic estimator
algorithm, extract the angular power spectrumÈa pro-
cedure already in use in CMB data analysis. Just like in the
CMB case, one e†ectively converts complex information
contained in the experiment (in this case, locations of
several hundred thousand galaxies) into a handful of
numbersÈthe angular power spectrum. One can then use
the angular power spectrum for all subsequent analyses.

We apply this method to the EDSGC survey. We
compute the angular power spectrum of EDSGC and

combine it with COBE/DMR and cluster constraints to
obtain constraints on cosmological parameters. Assuming
Ñat "CDM models with constant bias between galaxies and
dark matter, we get 1.11 \ b \ 2.35 and at0.2\)

m
\ 0.55

95% conÐdence.
One advantage of our formalism is that it does not

require galaxy redshifts but only their positions in the sky.
This should make it useful for surveys with very large
number of galaxies, only a fraction of which will have red-
shift information. For example, the ongoing SDSS is
expected to collect about 1 million galaxies with redshift
information, but also a staggering 100 million galaxies with
photometric information only. Using the techniques pre-
sented in this paper, one will be able to convert that infor-
mation into the angular power spectrum, which can then be
used for various further analyses.
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J. Borrill for use of the MADCAP software package. D. H.
is supported by the DOE. L. K. is supported by the DOE,
NASA grant NAG5-7986, and NSF grant OPP-8920223.
R. N. thanks NASA LTSA grant NAG5-6548.

APPENDIX A

LIMBERÏS EQUATION

In order to derive the equation giving as a function of P(k), we must understand the dependence of the data on theC
lthree-dimensional matter density contrast d 4 do/o as a function of time and space. First, we relate the number of galaxies per

unit solid angle G observed from location r in a beam with centered on the direction to the comovingFWHM\ J8 ln 2p cü
number density of detectable galaxies g, via

G(r, cü )\
P

d3r@
e~@x9 ~c9 @2@2p2

2np2 g(r@, q0[ x) , (A1)

where x 4 r@[ r, x is the magnitude of x, and is the conformal distance to the horizon today. To relate g to d, we simplyq0assume that the galaxies are a biased tracer of the mass, so that Therefore,g \ g6 (1 ] bd).

*(r, cü )4
G[ G1

G1

\ 1
G1
P

d3r@
e~@x9 ~c9 @2@2p2

2np2 g6 (x)b(x)d(r@, q0[ x) , (A2)

where we have allowed for a time-dependent (and therefore x-dependent) bias. If we further assume that the density contrast
grows uniformly with time, with growth factor D(x), then we can write

*(r, cü )\ 1
G1
P

d3r@
e~@x9 ~c9 @2@2p2

2np2 g6 (x)b(x)d(r@, q0)D(x) . (A3)

Calculating and then taking its Legendre transform yields (after a fair amount of algebra)w(h12)\ S*(r, cü 1)*(r, cü 2)T

C
l
\ 2

n
P

k2 dkP(k) f
l
(k)2 , (A4)

where

f
l
(k)4

1
G1
P dx

F(x)
j
l
(kx)x2g6 (x)D(x)b(x) (A5)

and F(x) enters the metric via

ds2\ a2[dq2[ dx2/F(x) ] x2 dh2] x2 sin2 h d/2] . (A6)

For zero-mean curvature, F(x)\ 1 ; expressions valid for general values of the curvature are given by Peebles (1980,
eq. [50.16]).
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Note that

G1 \
P r2

F(r)
g6 (r)dr

\
P

dz
dG1
dz

, (A7)

and therefore

r2
F(r)

g6 (r)
dr
dz

\ dG1
dz

. (A8)

One can use equations (A4) and (A5) to calculate the expected value of for any theory. The only information one needsC
lfrom the survey to do this is or The latter is preferable, and what we use in our application, because it is directlyg6 (r) dG1 /dz.

observable as long as redshifts in some region are available.
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