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ABSTRACT

A goal of forthcoming imaging surveys is to use weak gravitational lensing shear measurements to constrain dark
energy. A challenge to this program is that redshifts to the lensed, source galaxies must be determined using pho-
tometric, rather than spectroscopic, information. We quantify the importance of uncalibrated photometric redshift
outliers to the dark energy goals of forthcoming imaging surveys in a manner that does not assume any particular
photometric redshift technique or template. In so doing, we provide an approximate blueprint for computing the
influence of specific outlier populations on dark energy constraints. We find that outlier populations whose photo-z
distributions are tightly localized about a significantly biased redshift must be controlled to a per-galaxy rate of
(1–3) × 10−3 to insure that systematic errors on dark energy parameters are rendered negligible. In the comple-
mentary limit, a subset of imaged galaxies with uncalibrated photometric redshifts distributed over a broad range
must be limited to fewer than a per-galaxy error rate of Fcat ! (2–4) × 10−4. Additionally, we explore the relative
importance of calibrating the photo-z’s of a core set of relatively well-understood galaxies as compared to the
need to identify potential catastrophic photo-z outliers. We discuss the degradation of the statistical constraints on
dark energy parameters induced by excising source galaxies at high- and low-photometric redshifts, concluding
that removing galaxies with photometric redshifts zph " 2.4 and zph ! 0.3 may mitigate damaging catastrophic
redshift outliers at a relatively small (!20%) cost in statistical error. In an Appendix, we show that forecasts for the
degradation in dark energy parameter constraints due to uncertain photometric redshifts depend sensitively on the
treatment of the nonlinear matter power spectrum. In particular, previous work using Peacock & Dodds may have
overestimated the photo-z calibration requirements of future surveys.
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1. INTRODUCTION

Weak gravitational lensing of galaxies by large-scale structure
is developing into a powerful cosmological probe (e.g., Hoekstra
et al. 2002; Pen et al. 2003; Jarvis et al. 2003, 2006; Van
Waerbeke et al. 2005; Semboloni et al. 2006; Kitching et al.
2007; Benjamin et al. 2007; Doré et al. 2007; Fu et al. 2008).
Forthcoming imaging surveys such as the Dark Energy Survey
(DES), the Large Synoptic Survey Telescope (LSST), the
European Space Agency’s Euclid, and the Joint Dark Energy
Mission (JDEM) expect to exploit measurements of weak
gravitational lensing of distant source galaxies as one of the
most effective means to constrain the properties of the dark
energy (e.g., Hu & Tegmark 1999; Hu 1999; Huterer 2002;
Heavens 2003; Refregier 2003; Refregier et al. 2004; Song
& Knox 2004; Takada & Jain 2004; Takada & White 2004;
Dodelson & Zhang 2005; Ishak 2005; Albrecht et al. 2006;
Zhan 2006; Munshi et al. 2008; Hoekstra & Jain 2008; Zentner
et al. 2008; Zhao et al. 2009). The most stringent dark energy
constraints can be achieved when source galaxies can be binned
according to their redshifts, yielding a tomographic view of the
lensing signal. Among the contributions to the dark energy error
budget will be the error induced by the need to use approximate
redshifts determined from photometric data (Bolzonella et al.
2000; Collister & Lahav 2004; Feldmann et al. 2006; Banerji
et al. 2008; Brammer et al. 2008; Oyaizu et al. 2008; Lima et al.

2008; Dahlen et al. 2008; Abdalla et al. 2008; Newman 2008;
Ilbert et al. 2009; Coupon et al. 2009; Cunha et al. 2009; Schulz
2009) because it is not possible to obtain spectroscopic redshifts
for the large numbers of source galaxies needed to trace cosmic
shear. Photometric redshifts are and will be calibrated by smaller
samples of galaxies with spectroscopic redshifts. In this paper,
we study the influence of poorly calibrated photometric redshifts
for small subsets of the galaxies within imaging samples on dark
energy constraints.

The influence of uncertain photometric redshifts (photo-z
hereafter) on the dark energy program has been studied by a
number of authors (Ma et al. 2006; Huterer et al. 2006; Lima &
Hu 2007; Kitching et al. 2008; Ma & Bernstein 2008; Sun et al.
2009; Zentner & Bhattacharya 2009; Bernstein & Huterer 2010;
Zhang et al. 2009). Studies of the requirements for photo-z ac-
curacy have assumed relatively simple forms for the relationship
between the inferred photo-z of a galaxy and its spectroscopic
redshift, in particular that this is a Gaussian distribution with a
redshift-dependent bias and scatter. The underlying assumption
is that this distribution can be calibrated with an appropriate
spectroscopic sample over the range of redshifts of interest.
These studies indicate that roughly Nspec ∼ 105 spectroscopic
redshifts are needed to render photo-z uncertainty a small con-
tributor to the dark energy error budget, but any particular num-
ber depends upon the many details of each study. Broadening
the description of the photo-z distribution to a multi-component
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Gaussian leads to slightly more demanding requirements on
the spectroscopic calibration sample (Ma & Bernstein 2008).
However, complexity or multi-modality of the photo-z distri-
bution will not induce large systematic errors on dark energy
parameters, provided that this complexity is known and that
we have some ability to calibrate complex photo-z features us-
ing spectroscopic galaxy samples (a non-trivial assumption).
That is not to say that dark energy constraints are insensitive
to such complexity. Broad or multi-modal photo-z distributions
will provide an effective limit to the redshift resolution of tomo-
graphic weak lensing and will degrade dark energy constraints.
If this complexity can be diagnosed in spectroscopic samples, it
may be treated by generalizing the modeling in Ma et al. (2006)
and Ma & Bernstein (2008). In approximate accordance with
the prevailing nomenclature, we refer to the galaxies for which
spectroscopic calibration of the photo-z distribution will be pos-
sible as the core photo-z distribution. Ma & Bernstein (2008)
studied multi-modal core photo-z distributions in some detail.

These studies assume that the spectroscopic samples that will
be obtained will suffice to calibrate the photo-z’s of all galaxies
utilized in the weak-lensing analysis. However, spectroscopic
calibration samples may well be deficient in spectra of some
subset of galaxies that otherwise may not be easily identified and
removed from the imaging sample (for example, see Newman
2008, for a discussion). Consequently, some fraction of galaxies
in forthcoming imaging samples may not have photo-z’s that
are well calibrated spectroscopically and may have photo-z’s
that differ markedly from their true redshifts. Including such
galaxies in weak-lensing analyses would lead one to infer biased
estimators of dark energy parameters. These systematic offsets
in dark energy parameters may be considerable compared to
statistical errors.

We refer to such subsets of galaxies that are not well calibrated
by spectroscopic samples and which have photo-z distributions
that differ markedly from the photo-z distributions of the core
galaxy samples as catastrophic photo-z outliers. Our chief aim
in this study is to estimate the biases induced on dark energy
estimators by catastrophic photo-z outliers for a variety of
possible manifestations of catastrophic outliers, and to estimate
the level at which such outliers must be controlled in order to
mitigate dark energy biases.

We consider two broad classes of catastrophic outliers,
differentiated by the breadth of their photo-z distributions. We
emphasize that our definition of a catastrophic outlier is more
inclusive than previous usage (compare to Bernstein & Huterer
2010). Outlier populations with photo-z’s that are confined to
a small range of highly biased redshifts make up the class
we refer to as localized catastrophes. As an example, such
outliers may correspond to galaxy populations in which spectral
features have been misidentified in broadband photometric
observations; the prevailing usage of the term catastrophic error
closely resembles our usage of the term localized catastrophe.
The second class of outliers we consider, which we refer to
as uniform catastrophes, has photometric redshifts that are
relatively unconstrained. This class may more naturally be
associated with a level of spectroscopic incompleteness yielding
a population of imaged galaxies with little information on the
reliability of their photometric redshifts.

We describe our modeling techniques in Section 2. We de-
tail our results on the potential importance of catastrophic
photo-z outliers in Section 3. This section includes a brief dis-
cussion of mitigation strategies in which we explore the possi-
bility of eliminating subsets of galaxies in order to reduce biases

at the cost of increased statistical errors. We discuss the impli-
cations of our results in Section 4 and summarize our work in
Section 5.

We include in this study an Appendix that may help in
comparing published results on photometric redshift calibration
requirements. All treatments of dark energy constraints from
weak lensing rely on some approximate treatment of the growth
of structure in the nonlinear regime. Several approaches are
in common use (Scherrer & Bertschinger 1991; Peacock &
Dodds 1996; Seljak 2000; Ma & Fry 2000; Scoccimarro
et al. 2001; Cooray & Sheth 2002; Smith et al. 2003) and
additional parameters have been introduced to model baryonic
processes (Rudd et al. 2007; Zentner et al. 2008; Guillet et al.
2009). In the main body of our paper, we use the fitting
form provided by Smith et al. (2003). We demonstrate in the
Appendix that estimates of photo-z calibration requirements
depends upon the modeling of nonlinear power. Implementing
the Smith et al. (2003) relation for nonlinear power results
in significantly reduced photo-z calibration requirements as
compared to previous results (e.g., Ma et al. 2006) that employed
the Peacock & Dodds (1996) approximation.

2. METHODS

In this section, we describe the methods used in our anal-
ysis. We begin in Section 2.1 with a discussion of our treat-
ment of photometric redshifts, including both the core photo-
metric redshift distributions as well as catastrophic outliers. In
Section 2.2, we describe our weak-lensing power spectrum ob-
servables. We describe cosmological parameter forecasting in
Section 2.3 and conclude with a description of our fiducial cos-
mology and representative surveys in Section 2.4.

2.1. Photometric Redshift Distributions of Source Galaxies

We characterize the distribution of photometric redshifts
through the probability of obtaining a photometric redshift
zph, given a galaxy with spectroscopic (or “true”) redshift z,
P (zph|z). The distribution of true redshifts of galaxies in a
photometric bin labeled with index i is

ni(z) = n(z)
∫ z

high
i

zlow
i

dzph P (zph|z), (1)

where n(z) is the number density of source galaxies per unit
redshift z, ni(z) is the number density of sources per unit
redshift that are assigned to the ith photo-z bin, and zlow

i and
z

high
i delineate the boundaries of the ith tomographic bin.

We model the overall galaxy distribution via

n(z) ∝ z2 exp[−(z/z0)1.2], (2)

where z0 is determined by specifying the median redshift of
the survey and the powers of redshift are representative of the
distributions of observed high-redshift galaxies (J. A. Newman
et al. 2010, in preparation). The normalization of the overall
galaxy distribution is determined by the total number of galaxies
per unit solid angle,

NA =
∫ ∞

0
d z n(z),

and we designate the number of galaxies per solid angle in any
photo-z bin as

NA
i =

∫ ∞

0
d z ni(z).
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2.1.1. The Core Photometric Redshift Distribution

For the purposes of our study, we consider the core galaxy
distribution to be comprised of galaxies with a photometric
redshift distribution that will be well characterized through
calibration with spectroscopically observed galaxy samples.
Studies using existing spectroscopic galaxy samples to predict
the photo-z distributions of galaxies in future large-scale image
surveys indicate that the core distributions may be complicated
(e.g., Jouvel et al. 2009; Ilbert et al. 2009; Coupon et al. 2009).
A common simplifying assumption in the literature is that the
photometric redshifts of galaxies in the core are distributed
according to a Gaussian distribution with a redshift-dependent
mean and variance (e.g., Ma et al. 2006; Ma & Bernstein 2008),

Pcore(zph|z) = 1√
2πσz

exp

[

− (z − zph − zbias)2

2σ 2
z

]

, (3)

where both σz(z) and zbias(z) are functions of true redshift, z.
The redshift-dependent mean and variance endow this form
with sufficient flexibility to treat a wide variety of redshift
distributions; however, this simple model does neglect complex
features that may be present in the realized photometric redshift
distributions of future surveys. We adopt this model because it is
a published standard against which our results can be compared,
and because the complexity of calibrating the core sample of
photometric redshifts is not the primary aim of our work.

We compute the functions σz(z) and zbias(z) by linear inter-
polation between values tabulated at 31 redshift points spaced
evenly between z = 0 and z = 3. This choice of binning al-
lows for maximal degradation in dark energy constraints absent
prior information about the photometric redshift distribution
of source galaxies. We treat the bias and dispersion at each
of these redshifts as free parameters in our forecasts, so that
there are 2 × 31 = 62 free parameters describing the core pho-
tometric redshift distribution. For our fiducial model, we take
σz(z) = 0.05(1 + z) and zbias(z) = 0.

2.1.2. Catastrophic Photometric Redshift Outliers

Forthcoming large imaging surveys will observe a tremen-
dous number of galaxies. It is unlikely that accurate calibration
of every class of photometric redshift distribution will be made,
at least in part due to the limitations of obtaining reliable spec-
troscopic redshifts (e.g., Newman 2008) and observations of
relatively rare objects. If either the uncalibrated objects follow
the redshift distributions of the sample of calibrated photomet-
ric redshifts, or the uncalibrated objects can be identified from
imaging data and removed from the sample, they will have a rel-
atively benign impact on the dark energy aims of these surveys.
In the former case, they present no systematic error because they
follow the redshift distribution of the majority of galaxies, and
in the latter case they can be removed from the imaging sample
at a small cost in statistical uncertainty. Conversely, if a sample
of uncalibrated source galaxies that does not follow the redshift
distribution of the calibrated sources remains in the imaging
data used for dark energy constraints, this could represent a sig-
nificant additional systematic error. In approximate accordance
with established nomenclature, we refer to subsets of galaxies
that do not follow calibrated photometric redshift distributions
and cannot be removed from imaging data as catastrophic pho-
tometric redshift outliers.

In practice, it is expected that catastrophic photometric red-
shift outliers will be present at some level in forthcoming
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Figure 1. Toy illustration of a multi-component photometric redshift distribu-
tion. The aim of this figure is to provide a convenient, schematic representation
of the photometric redshift distributions we explore. Black diamonds are galax-
ies in the primary peak of a Gaussian core population of photometric redshifts
specified by Equation (3). Black squares are galaxies in a secondary peak in a
multi-modal core distribution. These photometric redshifts are offset from the
line z = zph, but they are a known component of the photometric redshift dis-
tribution, and if they are represented adequately in spectroscopic data they can
be calibrated out. Red crosses are galaxies that reside in a catastrophic outlier
population with significantly biased, but relatively localized, photometric red-
shifts. In our nomenclature, this population is not represented in spectroscopic
calibration samples and contributes a systematic error to dark energy parame-
ters. The red triangles represent galaxies that comprise a uniform catastrophic
outlier population, where photometric redshifts are relatively unconstrained.
The labels zcat, ∆zcat, and z

ph
cat designate the parameters of our catastrophic

photometric redshift models.
(A color version of this figure is available in the online journal.)

imaging surveys. The prevalence of multi-modal features in
the photo-z distributions of existing calibration samples is a
clear illustration of the difficulty of determining galaxy redshifts
from photometric colors (Oyaizu et al. 2008; Cunha et al. 2009;
Ilbert et al. 2009; Coupon et al. 2009). When a population of
galaxies responsible for a non-trivial photometric redshift de-
termination appears sufficiently often in spectroscopic samples,
its associated photo-z error can be calibrated, perhaps leading
to multi-modal features in the core distribution. However, there
will inevitably be populations of galaxies with photo-z degen-
eracies that are sufficiently rare so as to evade spectroscopic
sampling, the spectroscopic calibration of a truly representa-
tive sample will not be complete, and the removal of galaxies
with troublesome redshifts from the imaging data will be im-
perfect. Each of these difficulties leads to a population of outlier
galaxies, with distributions not described by the core photomet-
ric redshift model, that contributes a systematic error to dark
energy parameter estimators.

To illustrate the distinction between catastrophic outliers
and multi-modal features in the core, consider the photo-z
distribution illustrated in Figure 1. The bulk of the galaxies
in this distribution (black diamonds) are scattered about the
line z = zph. This is a population of 400 galaxies drawn from
the Gaussian distribution of Equation (3). There are also two
“islands” in the distribution. The appearance of these island
contributions to the photo-z distribution is quite similar, but
they are intended to represent photo-z errors of a qualitatively
different nature, as discussed below. One island has (z, zph)
coordinates (0.3, 3.7) and the other has (2.0, 0.8). The island
at (z, zph) = (0.3, 3.7), consisting of black squares, is a
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schematic representation of some subset of galaxies that give a
known, calibrated, small probability of yielding a highly biased
photometric redshift. This is a component of a multi-modal core
distribution and may either be calibrated with spectroscopy or
removed from the sample. The island at (z, zph) = (2.0, 0.8),
consisting of the red crosses, is a schematic representation of
a catastrophic outlier population. These are a small subset of
galaxies with true redshifts near z ≈ 2 that yield strongly
biased, but localized, photometric redshifts. Moreover, this
is a population that is either not identified and calibrated
in spectroscopic samples, or is incompletely removed from
imaging data, so that this outlier contributes a systematic error
to the dark energy error budget. This is the type of error that
is our focus in this manuscript. Finally, there is a population of
galaxies that is localized near z ≈ 1 and spread uniformly across
zph. These galaxies represent another extreme of catastrophic
photo-z errors in that the redshifts may not be strongly biased,
but they are poorly constrained and will contribute systematic
errors for dark energy.

We emphasize the distinction between P (zph|zsp) and the
posterior redshift distribution for an individual galaxy resulting
from a photometric redshift estimation algorithm, often denoted
as p(zph). Often, a single redshift estimate is assigned to a galaxy.
In this case, each point in Figure 1 may correspond to the true
redshift and the estimated redshift of a galaxy or population
of galaxies. One may utilize more of the information in the
p(zph), in which case the local density of points in Figure 1 may
correspond to regions in which the posterior has non-negligible
support. Our aim is to outline a set of general impacts induced
by making large, uncalibrated photometric redshift errors. We
use P (zph|zsp) to quantify these effects because this allows for
a very general characterization of the influences of photometric
redshift errors (or equally, errors in compressing the information
contained in the posteriors). This is sensible because P (zph|zsp)
can be constructed from the posteriors of a calibration set in a
straightforward manner, but this relationship is not invertible so
that general statements are difficult or impossible to make.

2.1.3. Localized Catastrophic Outliers

One cause for localized catastrophic redshift errors (such as
the red crosses in Figure 1) is the misidentification of a spectral
feature in broadband photometric observations of galaxies over
some range of true redshift. A specific example of this occurs
when the Lyman break is confused with the 4000 Å break. The
effect on the photo-z distribution of a small portion of errors
due to Lyman–4000 Å confusion would look something like
the small island of squares at (z, zph) = (0.3, 3.7) in Figure 1
(Bernstein & Huterer 2010). Confusion between the Lyman and
4000 Å breaks may occur often enough in spectroscopic samples
to be calibrated and thus included as a secondary peak in the
core distribution, but it is possible that there will be other small
redshift windows where tertiary islands remain uncalibrated.

Throughout this paper, we adopt a simple model for the
photo-z distributions of localized catastrophes as Gaussians
with spreads σcat centered away from the core at z

ph
cat,

Pcat(zph|z) = 1√
2πσcat

exp

[

−
(
zph − z

ph
cat

)2

2σ 2
cat

]

. (4)

The parameter z
ph
cat specifies the location of the island in

photometric redshift, and σcat gives the spread of the catastrophe
in zph. In the presence of a localized catastrophe the total

photometric redshift distribution is

Ptot(zph|z) = [1 − Ξ(z)Fcat]Pcore(zph|z)
+ Ξ(z)FcatPcat(zph|z). (5)

The catastrophic error occurs over only a specified range of true
redshifts, zcat − ∆zcat/2 < z < zcat + ∆zcat/2, as enforced by the
function

Ξ(z) ≡ Θ
(

∆zcat

2
− |z − zcat|

)
, (6)

where Θ(x) is the Heaviside step function. The quantities z
ph
cat

(location of the local catastrophe in photometric redshift), zcat
(central value of the range of true redshifts over which the
catastrophe occurs), ∆zcat (width of the range of true redshifts
over which the catastrophic error is made), and σcat (spread
in zph of the catastrophe) are four of the five parameters that
specify the local catastrophe model. The fifth parameter, Fcat,
is the fraction of galaxies in the true redshift window set by zcat
and ∆zcat for which the catastrophic error occurs.

The term Ξ(z)Fcat removes the appropriate fraction
of galaxies from the core distribution and ensures that∫ ∞

0 dzph Ptot(zph|z) = 1. As a concrete example, the catas-
trophic outliers represented by the red crosses in Figure 1 are
galaxies drawn from our model with Fcat = 0.03, z

ph
cat = 0.8,

zcat = 2.0, σcat = 0.1, and ∆zcat = 0.1. For the sake of pragma-
tism, we present results for localized catastrophes in interesting
limits of this five-dimensional parameterization rather than an
exhaustive exploration of these parameters.

2.1.4. Uniform Catastrophic Outliers

Empirically, photometric redshift determination algorithms
applied to extant calibration samples yield photometric red-
shift estimates that are relatively unconstrained on some subsets
of galaxies. For example, the photo-z distribution of galaxies
in both the Canada–France–Hawaii Telescope Legacy Survey
(CFHTLS; Coupon et al. 2009) and the Cosmological Evolu-
tion Survey (COSMOS; Ilbert et al. 2009) possess such a feature
within the range of error rates we explore in this work. Uncon-
strained photometric redshifts represent a regime complemen-
tary to localized catastrophes. In this case, photometric redshifts
may be obtained with nearly equal probability over a significant
range of redshift. Such broad errors may occur when light from
one galaxy is contaminated by light from another source nearby
in angular separation but at a different redshift. It is natural to
expect that such errors will occur most frequently near the peak
of the observed galaxy number density n(z).

Motivated by the presence of such errors, we also treat the
extreme case of relatively unconstrained photometric redshifts
by using a uniform distribution for zph, over a symmetric
window in true redshift centered on zcat and spanning a width
of ∆zcat. We refer to this kind of error as a uniform catastrophe
for simplicity. In the presence of a uniform catastrophe, the total
photometric redshift distribution is

Ptot(zph|z) = [1 − Ξ(z)Fcat]Pcore(zph|z)
+ Ξ(z)Fcat/(zmax − zmin), (7)

where zmin and zmax delineate the photometric redshift range of
the survey. In analogy to localized catastrophes, the function
Ξ(z) restricts the true redshift range over which flat catastrophes
occur and Fcat specifies the fraction of galaxies in this true
redshift window whose redshifts are catastrophically in error.
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Therefore, three parameters specify this simple model, namely,
Fcat, zcat, and ∆zcat. The uniform catastrophe represented by the
red triangles in Figure 1 is drawn from a model with Fcat = 0.05,
zcat = 1.0, and ∆zcat = 0.2.

2.2. Cosmic Shear Tomography

In this study, we consider constraints from weak gravitational
lensing observables only. We split source galaxies into NTOM
photometric redshift bins and consider as our observables
the NTOM(NTOM + 1)/2 distinct number-weighted auto- and
cross-power spectra of convergence among the source redshift
bins. Unless otherwise stated, we bin source galaxies in equal
intervals of redshift between zph = 0 and zph = 3 and take
NTOM = 5, resulting in 15 distinct observables. For this redshift
range, five-bin tomography is a useful standard because this
binning scheme suffices to saturate dark energy constraints (Ma
et al. 2006; we have verified that this remains so within the
parameters of our study as well).

The galaxy number count in each tomographic bin NA
i , the

cross-spectra between bins i and j, P
ij
κ ($), and the number-

weighed spectra P ij
κ ($) are related by

P ij
κ ($) = NA

i NA
j P ij

κ ($) =
∫ ∞

0
dz

Wi(z)Wj (z)
H (z)D2

A(z)
Pδ(k = $/DA, z).

(8)
In Equation (8), $ is the multipole number, H (z) is the Hubble
expansion parameter, DA(z) is the angular diameter distance to
redshift z, and Pδ(k, z) is the three-dimensional matter power
spectrum. The lensing weight functions, Wi(z), weight the
cosmic shear signal according to the redshift distributions of
galaxies within each tomographic bin and are defined as

Wi(z) = 3
2

ΩMH 2
0 (1 + z)DA(z)

∫ ∞

z

dz′ DA(z, z′)
DA(z′)

ni(z′), (9)

where DA(z, z′) is the angular diameter distance between
redshifts z and z′.

2.3. Parameter Forecasting

We use the Fisher matrix formalism to study the constraining
power of our weak-lensing observables on dark energy param-
eters as well as to quantify the systematic errors on dark energy
parameters that result from catastrophic photometric redshift er-
rors. The Fisher matrix formalism is ubiquitous in cosmological
parameter forecasting (useful references related to the present
application include Jungman et al. 1996; Tegmark et al. 1997;
Seljak 1997; Kosowsky et al. 2002; Huterer & Takada 2005;
Albrecht et al. 2006; Bernstein & Huterer 2010), so we simply
quote relevant results here. The particular implementation we
use closely mirrors that in Zentner et al. (2008) and Hearin &
Zentner (2009), to which we refer the reader for details.

The Fisher matrix is given by a sum over the observables. In
the particular case of weak-lensing power spectra, the spectra at
different multipoles can be treated as independent and this sum
can be written as

Fαβ =
$max∑

$min

(2$ + 1)fsky

∑

A,B

∂PA

∂pα

[C−1]AB
∂PB

∂pβ

+ F P
αβ, (10)

where the PA are the set of observables indexed by a single
label, C−1 is the inverse covariance matrix of these observables
at fixed multipole, [C−1]AB are the components of the inverse of

the covariance matrix (we include the brackets for clarity), and
pα are the theoretical model parameters. We choose an indexing
scheme in which lowercase Greek letters designate model
parameters, upper-case Latin letters designate observables, and
lowercase Latin letters designate photometric redshift bins, and
take the mapping between observable number and tomographic
bin number to be A = i(i − 1)/2 + j . Throughout this paper, we
use $min = 2f

−1/2
sky , where fsky is the fractional sky coverage

of the weak-lensing survey, and $max = 3000 as a rough
indication of the scale beyond which a number of weak-lensing
approximations break down (White & Hu 2000; Cooray & Hu
2001; Vale & White 2003; Dodelson et al. 2006; Semboloni
et al. 2006; Rudd et al. 2007).

The covariance matrix of observables at each multipole is

CAB($) = P̄ ik
κ ($)P̄ jl

κ ($) + P̄ il
κ ($)P̄ jk

κ ($), (11)

where the indices i and j map onto A and k and l map onto
B. The observed number-weighted power spectra, P̄ ij

κ ($), have
contributions from signal and shot noise,

P̄ ij
κ ($) = P ij

κ ($) + NA
i δij

〈
γ 2

i

〉
, (12)

where the quantity 〈γ 2
i 〉 is the intrinsic source galaxy shape

noise. We conform to recent convention and fix
√

〈γ 2
i 〉 = 0.2,

so that all deviations from this noise level are incorporated into
an effective galaxy number density.

The Fisher matrix formalism provides an estimate of the
parameter covariance near a fiducial point in the parameter
space. One chooses fiducial values for the model parameters
and estimates the error on parameter α from the inverse of
the Fisher matrix at this point, σ (pα) = [F−1]αα. Within this
formalism, statistically independent prior information about the
parameters is easily incorporated by simple matrix addition.
The second term in Equation (10) is the prior matrix. In
our analysis, we assume independent prior constraints on
cosmological parameters, so that the prior matrix reduces to
a simple diagonal matrix, F P

αβ = δαβ/(σ P
α )2, where δαβ is the

Kronecker-δ symbol and σ P
α is the prior 1σ , Gaussian constraint

on parameter pα . We itemize our fiducial model and priors in
the following subsection.

Given a systematic error that induces a specific shift in the
observables, one can use the Fisher matrix to estimate the
ensuing systematic error in model parameters. Using ∆PA to
denote the difference between the fiducial observables and the
observables perturbed by the presence of the systematic error,
one will infer a set of parameters that is systematically offset
from the true parameters by

δpα =
∑

β

[F−1]αβ
∑

$

(2$+1)fsky

∑

A,B

∆PA[C−1]AB
∂PB

∂pβ

. (13)

The primary results of our work are estimates of the systematic
errors in dark energy parameters induced by catastrophic pho-
tometric redshift outliers. In related literature, the δpα are often
referred to as biases; however, we refer to them as systematic
errors in order to avoid potential confusion with the biases in
photometric redshifts.

2.4. Cosmological Model and Survey Characteristics

We assume a cosmological model specified by seven param-
eters. Three of these parameters describe the dark energy. These
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three parameters are the present energy density in units of the
critical density, ΩDE = 0.76, and two parameters, w0 = −1 and
wa = 0, that describe a linearly evolving dark energy equation
of state, w(a) = w0 + (1 − a)wa (e.g., Linder 2003; Chevallier
& Polarski 2001; Huterer & Turner 2001; Albrecht et al. 2006).
The values specified for these parameters are those in our fidu-
cial cosmological model. In models with a time-varying dark
energy equation of state, it is interesting to present results for
the constraint on w(a) at the scale factor at which it is most well
constrained. The scale factor at which w(a) can be best con-
strained is the pivot scale factor ap, and is related to the Fisher
matrix components as

ap = 1 +
[F−1]w0wa

[F−1]wawa

. (14)

The pivot equation of state parameter is

wp ≡ w(ap) = w0 + (1 − ap)wa (15)

and the error on wp is

σ 2(wp) = [F−1]w0w0 − ([F−1]w0wa )
2

[F−1]wawa

. (16)

The dark energy task force quantifies the constraining power
of forthcoming surveys according to a figure of merit that
reflects the areas of the confidence ellipses in the w0–wa plane.
In particular, the task force quotes values for the combination
F ≡ [σ (wa) × σ (wp)]−1 (Albrecht et al. 2006).

The other cosmological parameters we consider and the
fiducial values they assume in our modeling are the non-
relativistic matter density ωM ≡ ΩMh2 = 0.13, the baryon
density ωB = ΩBh2 = 0.0223, the amplitude of the primordial
curvature fluctuations ∆2

R = 2.1 × 10−9 (though in practice
we vary ln ∆2

R when computing derivatives of this parameter)
evaluated at the pivot scale kp = 0.05 Mpc−1, and the power-
law index of the spectrum of primordial density fluctuations
ns = 0.96. We adopt relatively conservative priors of σ P(ωM) =
0.007, σ P(ωB) = 10−3, σ P(ln ∆2

R) = 0.1, and σ P(ns) = 0.04,
each of which is comparable to contemporary, marginalized
constraints on these parameters (Komatsu et al. 2008). Using
marginalized, contemporary priors allows for somewhat more
parameter degeneracy than may be possible with Planck data
and leads to dark energy parameter forecasts that are relatively
conservative.

In principle, it is relatively straightforward to scale parameter
forecasts from one experiment to another (e.g., Ma et al. 2006;
Bernstein & Huterer 2010); however, in the interest of simplicity,
we present explicit results for three specific experimental
configurations that span the range of observations expected of
forthcoming instruments.

The DES is the most near-term survey that we consider.5
We model a DES-like survey by assuming a fractional sky
coverage of fsky = 0.12 and a surface density of imaged galaxies
of NA = 15 arcmin−2. Second, we consider a narrow, deep
imaging survey similar to a Supernova Acceleration Probe-
like implementation of a JDEM.6,7 We refer to this second
type of survey as DEEP and model it with fsky = 0.05 and

5 http://www.darkenergysurvey.org
6 http://jdem.gsfc.nasa.gov/
7 http://snap.lbl.gov/

Table 1
Representative Surveys and Baseline Constraints

Survey fsky NA (arcmin−2) zmed σ (w0) σ (wa) σ (wp) F
DES 0.12 15 0.7 0.25 0.77 0.07 18.6
WIDE 0.50 30 1.0 0.07 0.22 0.02 227.3
DEEP 0.05 100 1.0 0.10 0.33 0.04 75.6

Notes. Column 1 gives the survey that motivates the particular choice
of parameters. Column 2 is the fractional sky coverage of the survey.
Column 3 gives the effective galaxy number density NA, in arcmin−2. We have
followed current convention and adopted a fixed shape noise of

√
〈γ 2

int〉 = 0.2,
assuming deviations from this assumption to be encapsulated in the effective
galaxy number density. Column 4 gives the median redshift of galaxies in the
survey. Columns 5–8 give dark energy equation of state constraints in the limit
of perfect knowledge of the photometric redshift distribution of sources. These
include the uncertainty on the pivot equation of state σ (wp) and the product
F = [σ (wa) × σ (wp)]−1. Note that these constraints are from the weak-lensing
components of these surveys only and account for statistical errors only.

NA = 100 arcmin−2. Lastly, motivated by a future ground-
based imaging survey such as may be carried out by the LSST8

(Abell et al. 2009), or a space-based mission such as the
European Space Agency’s Euclid9 (Refregier et al. 2010), we
consider a survey with very wide sky coverage taking fsky = 0.5
and NA = 30 arcmin−2. We refer to this class of survey as
WIDE. We assume that the median galaxy redshift in the WIDE
and DEEP surveys is zmed = 1.0 and that the median galaxy
redshift in the DES-like survey is zmed = 0.7. In all cases,
we follow recent convention by taking the shape noise to be√

〈γ 2
int〉 = 0.2, subsuming additional noise contributions into

an effective galaxy number density. Table 1 summarizes our
assumed survey properties.

3. RESULTS: SYSTEMATIC ERRORS ON THE DARK
ENERGY EQUATION OF STATE

In this section, we present the results of our study of catas-
trophic photometric redshift outliers. We begin with the baseline
constraints on the dark energy equation of state parameters in
the limit of perfect knowledge of the source galaxy photometric
redshift distribution in Section 3.1. We continue in a sequence of
increasing complexity. We quantify the influence of catastrophic
photometric redshift errors in the limit of perfect knowledge of
the core photometric redshift distribution in Section 3.2. We
present results on the influence of catastrophic photometric red-
shift errors in the more realistic case of imperfect knowledge
of the core distribution in Section 3.3. We explore the prospect
of excising galaxies based on their photometric redshifts as a
simple, first-line defense against systematic errors induced by
catastrophic photometric redshift errors in Section 3.4.

3.1. Baseline Constraints

We begin our results section by stating our forecasts for
dark energy constraints in the limit of perfect knowledge of
the photometric redshift distribution. With little uncertainty
in photometric redshift distributions, the statistical limits of
forthcoming survey instruments would allow for constraints
on the dark energy equation of state at the level of a few
percent, as summarized in Table 1. We emphasize here that
the limit of perfect knowledge of the photo-z distributions

8 http://www.lsst.org
9 http://sci.esa.int/euclid

http://www.darkenergysurvey.org
http://jdem.gsfc.nasa.gov/
http://snap.lbl.gov/
http://www.lsst.org
http://sci.esa.int/euclid
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is not the assumption that photometric redshifts are precisely
equal to the true redshifts of the source galaxies. Rather, the
assumption is that there are no catastrophic errors, and that the
photometric redshift distribution is described by the Gaussian in
Section 2.1.1 such that all 62 parameters used to specify the
Gaussian distribution are known precisely.

3.2. Systematic Errors in The Limit of Perfect Core Knowledge

In this section, we present results for systematic photometric
redshift errors in the limit of perfect knowledge of the core
distribution of photometric redshifts. This amounts to the
assumption of prior knowledge of the 31 dispersion [σz(z)] and
31 bias [zbias(z)] parameters defined in Section 2.1.1 to a level of
!10−3, which could be achieved with a representative sample
of "4 × 105 spectroscopic redshifts distributed in redshift in
a manner similar to those in the imaging survey (see Ma et al.
2006; Ma & Bernstein 2008, and the discussion in the Appendix
of this manuscript). This is a simple case to begin with as
it allows exploration of the influence of catastrophic redshift
errors over a range of the catastrophic photo-z parameter space
without the additional complications associated with redshift-
dependent priors on the core photo-z distribution. This is the
limit explored by Bernstein & Huterer (2010).

3.2.1. Uniform Catastrophes

First, we address systematic errors induced on dark energy
parameters by a small population of uniform catastrophes.
Uniform catastrophes are cases in which some small population
of galaxies with true redshifts in the range (zcat − ∆zcat/2 <
z < zcat + ∆zcat/2) yield photometric redshift estimates that
are distributed broadly in zph. This class of error differs from
the conventional use of the term catastrophic error and may
more naturally be interpreted as a tolerance on spectroscopic
incompleteness.

For simplicity, we take the central redshift of the uniform
catastrophe to be zcat = zmed, and determine systematic errors
as a function of ∆zcat, the width of the range of redshifts over
which such errors occur, and Fcat, the fraction of galaxies
in this range of true redshift that correspond to this type of
catastrophic error. We refer the reader to Equations (6) and (7)
for the expressions that formally define these parameters. While
we vary these parameters independently, they are both related
to the total number density of sources with redshifts that are
catastrophically in error,

NA
cat = Fcat

∫ zcat+
∆zcat

2

zcat− ∆zcat
2

dz′ n(z′), (17)

where n(z) is the overall, true redshift distribution of galaxies.
We should expect systematic errors to increase with both Fcat and
∆zcat because higher values of either parameter result in a greater
total number of catastrophic errors in the outlier population.

In Figure 2, we have quantified the systematic errors induced
by uniform catastrophic errors as a function of the parameters
of our simple model. The curves in Figure 2 are contours of
constant systematic error on dark energy parameters (for exam-
ple, |δ(w0)| for w0) expressed in units of the statistical error
(σ (w0) for w0) at points in the ∆zcat–Fcat plane. For each of
the DES, Wide, and Deep surveys, the solid curves trace sys-
tematic errors in dark energy that are three times the statistical
errors, while the dashed curves trace systematic errors that are
1/3 of the statistical error. For each of the surveys depicted in
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Figure 2. Systematic errors on dark energy parameters in the case of a uniform
photometric redshift catastrophe. The horizontal axis is the width of the range
in true redshift over which the uniform catastrophe is realized, ∆zcat. This range
in true redshift is centered at zcat = zmed for each experiment (zmed = 0.7 for
DES and zmed = 1 for DEEP and WIDE). The vertical axis is the catastrophic
error rate per galaxy within this true redshift range, Fcat. The solid (dashed)
lines show contours of constant systematic error equal to three times (one third)
the statistical errors on each of the dark energy parameters. The top panel shows
contours for w0 and the bottom for wa. Chance cancellations in the biases
induced by high- and low-redshift galaxies cause the DES to be sensitive to
catastrophic errors at similar levels to the WIDE survey and more sensitive than
the DEEP survey.
(A color version of this figure is available in the online journal.)

Figure 2, the region of catastrophic parameter space that is
bracketed by the solid and dashed curves labeled with the cor-
responding survey name corresponds to outliers that produce
systematic errors which are comparable to statistical errors. Sys-
tematic errors are relatively small compared to statistical errors
in the regions below the dashed curves. Each curve plotted in
Figure 2 has been generated with a fixed value of zcat ≡ zmed.
For the Wide and Deep surveys zmed = 1, so when ∆zcat = 2
the uniform catastrophes are made over the true redshift range
0 < z < 2. For DES zmed = 0.7, so once ∆zcat > 1.4 the
true redshift window over which catastrophes are made only
increases at the high-redshift boundary.

For each of the contours of constant systematic error in
Figure 2, Fcat decreases with increasing ∆zcat. This is simply be-
cause increasing the redshift range over which the catastrophic
errors are being made (∆zcat) leads to an increased total num-
ber of catastrophic errors, resulting in a decreased tolerance to
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the error rate, (Fcat). Alternatively, the total number of catas-
trophic errors in an outlier population is given by the integral in
Equation (17), and the contours of constant systematic error
roughly trace constant values of NA

cat. The contours flatten con-
siderably for errors that occur over a redshift range ∆zcat " 0.4
because there will be comparably few imaged sources with true
redshifts near z ∼ 0 or with z " 1.5.

This treatment of a uniform zph catastrophe may appear
somewhat contrived but it gives insight into a few basic results
that are important to recognize. It is clear that the utility of
forthcoming shear surveys to constrain dark energy is sensitive
to a fractionally small population of galaxies that may yield
poorly determined photo-z estimates. If the error is only relevant
to galaxies that are relatively isolated in narrow regions of true
redshift, for example, with ∆zcat ! 0.1, then error rates as high
as Fcat ∼ 1% in this region of true redshift are tolerable. This is
simply because errors that occur with a fixed rate over a small
redshift range result in a small total number of catastrophic
outliers to corrupt the weak-lensing tomography. In contrast, if
such an error occurs for a subset of galaxies with true redshifts
in an interval of width ∆zcat " 0.1, then the error rate per galaxy
must be significantly lower than Fcat ! 0.01 in order to render
the systematic errors on dark energy equation of state parameters
small.

The limit of ∆zcat - 0.1 is interesting to consider. This
may correspond to the case of a small fraction of galaxies
that yield very poorly constrained photometric redshifts over
a broad range of true redshifts and that otherwise cannot be
identified and removed from the imaging survey. In this case,
the systematic error from catastrophic photometric redshifts
becomes a considerable portion of the dark energy error budget
at a rate of only Fcat ∼ 10−3. Reducing the systematic
error due to such an outlier population to a negligible level
requires reducing the occurrence of such an outlier population
to Fcat ! 4 × 10−4. Strictly speaking, Figure 2 corresponds to
errors that occur when the true redshift band over which the
uniform catastrophe occurs is centered on zcat = zmed, but for
the ∆zcat " 1 limit, similar results hold for a wide range of
zcat near unity, so this result is of some general relevance to
photometric redshift calibration studies.

We conclude this section with a discussion of cancellations
that may occur among systematic errors. It may seem somewhat
surprising that DES exhibits comparable sensitivity to uniform
errors as WIDE and is more sensitive than DEEP as shown in
Figure 2. In Section 3.2.2, we will discuss systematic errors
from local catastrophes. In particular, we will show that large
biases occur for low zcat and for higher zcat just over the median
redshifts of the surveys (see Figure 3). These biases have
opposite signs and partially cancel in our forecasts for both
the DEEP and WIDE surveys. DES is less sensitive to biases
from galaxies in the low-redshift range 0.4 < zcat < 0.6 that get
misplaced to higher redshifts because these shifts must compete
with the larger shot noise of DES. The degree of cancellation
depends upon modeling choices, such as fiducial model and
cosmological parameters, but the occurrence of this cancellation
is robust.

3.2.2. Localized Catastrophes: Details

Localized catastrophes correspond to the case where a small
fraction of galaxies near some true redshift zcat yield photometric
redshifts that are narrowly distributed about a biased value z

ph
cat

that is very different from the true redshift zcat. Such errors could
arise due to incomplete calibration by spectroscopic surveys

or from difficulty in removing troublesome galaxies from the
imaged galaxy sample. A known example of such an error
occurs when photo-z algorithms confuse the 4000 Å break with
the Lyman break, but other isolated islands of biased zph persist
in contemporary photo-z algorithms (see, e.g., Coupon et al.
2009, Ilbert et al. 2009) and may be relevant to forthcoming
imaging surveys.

The class of localized photo-z catastrophes is more complex
than the uniform case because there are more relevant parame-
ters needed to specify the manner in which a localized outlier
population is distributed in zph. Our toy model requires five
parameters (see Section 2.1.2 and Figure 1 for an illustration).
Two are the central value of the true redshift over which this
error is operative (zcat) and the width of the true redshift range
over which this error is operative (∆zcat). As in the uniform case,
some fraction Fcat of galaxies with true redshifts in the interval
zcat − ∆zcat/2 < z < zcat + ∆zcat/2 are catastrophically in er-
ror. The final two parameters specify the biased distribution of
photometric redshifts that these galaxies are assigned. These are
the (systematically erroneous) value of the photometric redshift
z

ph
cat, and the dispersion in the catastrophic photometric redshift

distribution σcat about z
ph
cat.

We make an effort to remain agnostic about the classes of
photo-z errors that may be realized in future imaging data.
However, a complete mapping of even the simple parameter
space we have specified for catastrophic photo-z’s would require
a lengthy discussion, so we explore useful limits of the model
parameters in order to distill our results into a small number
of points. We are particularly interested in the limit where the
source galaxies are placed in a narrow range of biased photo-z
(σcat . 0.3 or so) because the limit of large dispersion in the
catastrophic photometric redshift population is similar to the
uniform catastrophe of the previous section.

We first isolate the sinister regions in the space of zcat–z
ph
cat

that lead to the most destructive systematic errors in dark
energy parameters. At a set of points in the parameter space
of (zcat, z

ph
cat), we have calculated the systematic error induced

in w0 and wa by distributing some fraction Fcat of the galaxies
with true redshifts near zcat in photometric redshifts centered
around some z

ph
cat that is generally very different from zcat. We

sample a range of values of true redshifts from zcat = 0.05 to
zcat = 2.95, evenly spaced in redshift intervals of δz = 0.1
and likewise for the photometric redshifts, zph

cat. In the interest of
simplicity, we fix the remaining parameters of our catastrophic
photo-z model to Fcat = 0.05, ∆zcat = 0.05, and σcat = 0.01 to
isolate the dependence of the parameter bias upon the location
of the catastrophe.

It is important to note explicitly that we present results here
at a fixed error fraction Fcat, and a fixed true redshift window
width and ∆zcat. However, even with these parameters fixed
the absolute number of errors varies with zcat according to
Equation (17), which is roughly NA

cat ∼ n(zcat)∆zcatFcat for suf-
ficiently small ∆zcat, along the lines of the analogous discussion
for the uniform catastrophe in Section 3.2.1. The aim of this cal-
culation is to map out the relative importance of making errors at
a fixed rate per galaxy as a function of the true and photometric
redshifts of the outliers.

The results of this exercise are depicted in Figure 3. In
each column of Figure 3 there are two panels, corresponding
to the systematic errors in w0 and wa, for each representative
experiment. The horizontal axes show values of zcat and the
vertical axes show values of z

ph
cat. The systematic error is
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Figure 3. Severity of localized catastrophic errors as a function of the values of source zcat, and target z
ph
cat, of the catastrophic errors. Along the horizontal axes are

the values of zcat while the vertical axes show z
ph
cat, just as in Figure 1. Each point on this grid corresponds to a localized catastrophe with a fixed per-galaxy error

rate of Fcat = 0.05, and fixed values of both the photo-z spread σcat = 0.01 as well as the width of the true redshift range over which the catastrophic error is made,
∆zcat = 0.05. The effect of these catastrophes on w0 is shown in the top row of panels, while the systematic error on wa is shown in the bottom row. The absolute
value of the induced systematic error is color coded; the numerical values labeling the color table to the right of each panel indicate the systematic error in units of the
statistical uncertainty in the limit of perfect core calibration.
(A color version of this figure is available in the online journal.)
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represented on the grid of (zcat, z
ph
cat) by the color in each of

the cells. In discussing the results of this exercise, we find
the terminology of Bernstein & Huterer (2010) to be a useful,
descriptive shorthand. We will refer to the tomographic bin that
contains the zcat value of an outlier as the Source Bin of that
catastrophic photo-z population. We call the bin containing z

ph
cat

its Target Bin. This is because galaxies with true redshifts near
zcat are erroneously placed in the Target Bin containing the
redshift z

ph
cat. Our sampling guarantees that no localized outlier

straddles a tomographic bin boundary so there are always unique
Source and Target Bins. Outlier populations that straddle a
boundary dividing two tomographic bins can be substantially
more severe than those that do not because such an outlier
simultaneously contaminates multiple Target Bins. We have
chosen to ignore such outlier populations for simplicity, but such
outliers can be modeled by two catastrophic outlier populations,
one for each affected Target Bin. We will return to the issue of
tomographic binning and straddling outlier populations below.

The prominent block-like features in Figure 3 reflect the
tomographic redshift bins used in our analysis. The tomographic
bins of the source and target galaxies largely determine both the
magnitude and sign of the induced systematic error in dark
energy parameters. This gives rise to features that reflect the
structure of the photometric redshift binning in the (zcat,z

ph
cat)

plane. Indeed, for fixed Target and Source Bins, the specific
value of the target redshift, z

ph
cat, within the target photometric

redshift bin has little influence on the severity of the systematic
error. However, small steps in z

ph
cat can lead to large changes in

systematic error when the boundary dividing two tomographic
bins is crossed.

Varying the location in true redshift, zcat, leads to somewhat
more significant changes in dark energy systematic error.
Changing zcat within fixed Source and Target Bins can result
in up to a factor of 2 difference in systematic errors. Two factors
primarily determine the severity of the systematic error as a
function of the true redshift of the galaxies, zcat. The primary
factor stems from the fact that a fixed fractional error rate (Fcat)
corresponds to a different absolute number of errors NA

cat as a
function of redshift, zcat. This is reflected in Equation (17). The
number of errors NA

cat will be relatively large in a region near
the median redshift of the survey, where the number of source
galaxies per unit redshift, n(z), is largest. There are relatively
few galaxies at low and high redshifts, so for a fixed error rate,
outlier populations with low or high true redshifts contribute a
relatively small absolute number of galaxies with highly biased
redshifts.

Second, an outlier population naturally results in a more se-
vere systematic error the more the photometric redshift is bi-
ased away from the true galaxy redshift. Consider the region
of catastrophic parameter space near (zcat, z

ph
cat) = (1.5, 2.7) in

either color plot for DES. Catastrophes in this region of pa-
rameter space correspond to outlier populations whose Source
Bin is the third tomographic bin and Target Bin is the fifth to-
mographic bin. Outliers in this region of parameter space are
assigned photo-z’s that are significantly too high. Decreasing
the value of zcat (the “source” of the error) increases the dis-
tance between core and outlier populations, thereby increasing
the systematic error. This behavior contributes significantly to
the systematic error gradient near (zcat, z

ph
cat) = (1.5, 2.7) for

DES in Figure 3.

Each of the three representative experiments that we consider
has two distinct “hot spots” in Figure 3 that correspond to the
most severe types of error given a fixed error rate per galaxy,
Fcat. A common feature of all these hot spots is their zcat location.
Each of the hot spots lies at a zcat slightly beyond the median
survey redshift. This is sensible because for a fixed error rate,
the absolute number of catastrophic errors is greatest when they
are made at the peak in the overall galaxy distribution, that is
near zcat = zmed. The most damaging systematic errors occur
when the galaxies are shifted to either very low or very high
photometric redshifts, when the target redshift, z

ph
cat, is very

different from the source redshift, zcat, because the galaxies
in error are then placed at distances significantly different from
their true redshifts. For our WIDE and DEEP surveys, the largest
systematic errors tend to occur for galaxies shifted from a source
redshift zcat near zmed = 1 to very low photometric redshifts.

The pattern of the DES catastrophic photo-z “hot spots”
differs from that of the WIDE or DEEP surveys. Outliers with
large values of z

ph
cat, that is those with a target in the fourth or

fifth tomographic bin, are relatively more severe for DES. This
is driven by the (assumed) comparably low-redshift extent of
imaged sources for a DES-like survey (with median redshift
zmed = 0.7) This renders a contamination that extends to high
redshift more disruptive due to the small population of galaxies
with truly high redshifts. Though less striking, it is also evident
in Figure 3 that the DEEP survey is somewhat more sensitive
than the WIDE survey to contamination of its fourth and fifth
tomographic bins. The differences here are likewise driven
by different survey depths and sky coverages. A deeper, but
narrower survey (a JDEM perhaps) is relatively more sensitive to
small-scale fluctuations induced by structure at high redshift, so
disruptions to the higher tomographic bins are more statistically
significant for DEEP than for WIDE.

Finally, we return to the issue of tomographic binning with
respect to the systematic errors in Figure 3. We noted above
that systematic errors in dark energy parameters can become
markedly worse when the biased photometric redshifts (zph

cat)
distribute galaxies across the boundary of a photometric redshift
bin. The reason is because two sets of observables, namely,
the auto- and cross-spectra associated with the two target
photometric redshift bins, become corrupted by the catastrophic
photometric redshift error. The implication is that the level of
systematic error induced by a localized catastrophic error is
quite sensitive to photometric redshift binning. This is contrary
to the statistical errors, which are insensitive to binning more
finely than NTOM ≈ 5 over the range 0 < z < 3 (Ma et al.
2006).

Indeed this is the case. The general pattern shown in Figure 3
is physically quite sensible and is robust to binning. However,
in the case of localized catastrophes, binning more finely
may reduce the absolute amplitude of systematic errors if the
catastrophes do not occur near the edge of a photometric redshift
bin. This is because smaller tomographic bins result in a smaller
fraction of source galaxies that belong to a contaminated bin.
This may be useful because even in the absence of significant
prior indications of a localized catastrophe, re-analyzing the data
with different photometric redshift binning schemes may reveal
potential local catastrophes. At the least, it should be a useful
strategy to choose photometric redshift bins such that suspect
regions of zph, where localized catastrophes may be anticipated,
are contained in individual bins.
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Figure 4. Scaling of systematic error in dark energy parameters with the fractional number density of sources whose photometric redshifts are catastrophically in
error for our WIDE survey. On the vertical axes are the absolute value of the systematic error in w0 (left panel) and wa (right panel) in units of statistical uncertainty.
On the horizontal axis is NA

cat/N
A ≈ Fcatn(zcat)∆zcat, where n(zcat) is the overall redshift distribution of sources. For the dashed curves, ∆zcat ≡ 0.1 and we increase

NA
cat by increasing Fcat. These curves are all linear, as they should be. For the dotted curves Fcat ≡ 0.03 and we increase NA

cat by increasing ∆zcat. These curves grow
approximately as the linear, dashed curves. Three different catastrophic error localizations are color coded as (zcat, z

ph
cat) = (0.9, 0.3) in red, (0.9, 2.7) in blue, and

(1.5, 2.7) in green. The difference in intrinsic severity between these outlier populations is reflected by the slope of the corresponding curves, with the steeper lines
corresponding to the more severe systematic errors. The agreement between dashed and dotted lines for each outlier demonstrates that the systematic errors induced
by sufficiently well-localized catastrophes (∆zcat ! 0.3) scale approximately linearly with ∆zcat over an interesting range.
(A color version of this figure is available in the online journal.)

3.2.3. Localized Catastrophes: Summary

A succinct distillation of the dominant effects that determine
the structure of Figure 3 is as follows. The systematic error
induced by a localized catastrophe will be most severe when

1. zcat ≈ zmed, which maximizes the total number of outliers;
2. the distance between zcat and z

ph
cat is significant;

3. and when z
ph
cat is such that the photometric redshift bins

contain a fractionally large contaminant (in practice, high-
and low-redshift extremes).

The details governing the magnitude of systematic errors
generated by different regions of catastrophic error parameter
space can be complicated. In general, these details depend on
the relative statistical weights of the affected redshift bins, as
well as the characteristics of the survey.

In isolation, Figure 3 is useful in identifying the redshift
errors that most seriously compromise dark energy constraints.
A shortcoming of Figure 3 is that we have assumed catastrophic
errors that occur at a fixed rate of Fcat = 0.05 and are active
only over a range ∆zcat = 0.05. The systematic errors induced
on cosmological parameters scale approximately with the total
number of catastrophes, NA

cat, in Equation (17). In practice,
scaling the systematic errors to new values of ∆zcat can be
enacted over an interesting range of the parameter space by
approximating NA

cat ≈ Fcat n(zcat) ∆zcat.
Figure 4 demonstrates the validity of scaling systematic error

by the total number of errors, NA
cat, for three example localized

catastrophes. Together, Figures 3 and 4 provide a blueprint for
estimating the systematic error induced by a wide range of
localized catastrophes. One first reads off the systematic error
level from Figure 3 for the grid point of interest. For definiteness,
suppose this systematic error in either of w0 or wa is δ. Provided
that ∆zcat is small, one can approximate the systematic error
induced by a different effective value of ∆zcat or Fcat (call it δ′)

by scaling δ in proportion to NA
cat (Equation (17)),

δ′ ≈ δ × (F ′
cat/0.05) × (∆z′

cat/0.05). (18)

In Section 3.2, we presented results on the influence of
catastrophic, uncalibrated photometric redshift errors on the
systematic error budget for dark energy parameters w0 and
wa. In that section, we assumed that the bulk of photomet-
ric redshifts had been well characterized by spectroscopy. In
the nomenclature of this and other papers, we assumed the
limit in which the core of the photometric redshift distribu-
tion is calibrated so that its uncertainty does not contribute
to the dark energy error budget. We developed guidance on
how to optimally focus photo-z calibration efforts and identi-
fied the most severe types of catastrophes. In this section, we
drop the assumption of arbitrarily precise calibration of the
core populations of photometric redshifts. Our goal is to as-
sess the relative importance of calibrating the core photomet-
ric redshift distribution compared to eliminating catastrophic
errors.

We assume that the core photometric redshift distribution
is specified by a Gaussian with redshift-dependent mean and
dispersion. Following Ma et al. (2006), we specify the un-
known mean and dispersion at 31 points spaced evenly in
redshift from z = 0 to z = 3 and allow for uncertainty in
these parameters. In the interest of simplicity, we consider
a one-parameter family for the prior knowledge about the
core photometric redshifts that may be provided by a spec-
troscopic calibration sample. We do this by assuming a repre-
sentative population of Nspec galaxies with spectroscopic red-
shifts, distributed evenly in redshift from z = 0 to z = 3,
which can be used to calibrate the core photometric redshift
distribution.

We implement core calibration by introducing priors on the
values of the dispersion and bias at the ith point in redshift.
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Figure 5. Contours of constant w0 and wa bias from the worst-case catastrophe in units of the statistical uncertainty of the survey. Systematic errors in w0 appear in the
left panels and wa in the right panels. Results for the worst-case uniform catastrophe appear in the upper panels, and were generated with ∆zcat = 1.5 and zcat = 1.5.
Contours of systematic error produced by localized catastrophes appear in the bottom panels. Each of the localized contours have been calculated with ∆zcat = 0.1
and σcat = 0.03. For DEEP and WIDE zcat = 1.15. and z

ph
cat = 0.15, and for DES zcat = 0.85, and z

ph
cat = 0.15, in accordance with the results illustrated in Figure 3.

(A color version of this figure is available in the online journal.)

These priors are

∆σ i
z = σ i

z

√
1

2N i
spec

, (19)

∆zi
bias = σ i

z√
N i

spec
, (20)

where zi
bias is the bias at the ith point in the tabulated core

distribution, σ i
z is the dispersion at this redshift, and N i

spec
is the number of spectroscopic galaxies in each of the 31
bins of width δz = 0.1 used to calibrate the core photo-z
redshift distribution. This prior model is certainly simplistic.
For example, in our analysis we have chosen for the sake
of simplicity to set all of the N i

spec equal to each other, so
that our implementation assumes that calibrating spectra are
sampled equally in redshift, whereas in reality we will have
much looser constraints on sources at high redshift than those at
low redshift. Moreover, both core calibration and the ability to
identify catastrophic outliers improve with larger spectroscopic
samples. However, we consider these issues independently in the
interest of completeness because the details of how a realistic
calibration program may proceed remain uncertain.

3.3. Catastrophic Redshift Errors with Core Uncertainty

Figure 5 is a contour plot depicting the systematic errors
in w0 and wa induced by the worst-case-scenario catastrophes
determined in Section 3.2. The prior core knowledge is specified
by Nspec, which runs along the horizontal axis. The error rate,
Fcat, runs along the vertical axis. For uniform catastrophes the
worst-case outliers span the true redshift range of the survey. For
localized catastrophes the most sinister outliers lie at the points
of maximum systematic error in Figure 3. The dashed (solid)
curves are lines of constant systematic error at a level of one-
third (three times) the statistical error on each parameter. Clearly,
then, systematic errors are dominant above the solid curves
and become unimportant well below the dashed curves. In the
bottom panels, we have included dotted curves to emphasize
the region of parameter space where systematic errors are equal
to statistical errors. These 1σ contours are omitted in the upper
panels to avoid clutter, but the linear dependence of the induced
systematic error on the catastrophic error rate ensures that the
1σ can be estimated by scaling the 3σ or σ/3 contours by a
factor of 3.

Several aspects of Figure 5 are worthy of note. The contours
all become very flat at large Nspec. This is the limit in which
the core photo-z distribution is calibrated sufficiently well that
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it no longer contributes to the error budget of w0 and wa (e.g.,
Ma et al. 2006; Ma & Bernstein 2008). This corresponds to the
limit of perfect knowledge of the core photo-z distribution, and
accordingly, the systematic errors asymptote to those quoted in
Section 3.2 at large Nspec.

For a fixed level of systematic error, experiments generally
become less tolerant of catastrophic outliers as Nspec increases.
This behavior is reflected in the negative slope at the low Nspec-
end of the contours of constant systematic error in Figure 5.
This is an explicit manifestation of the competition between
calibration of the “core” population of photometric redshifts
and the ability to diagnose and eliminate a sub-dominant, poorly
understood “catastrophic” outlier population. The reason for this
is simply that systematic errors must be better understood for
samples with smaller statistical uncertainty. If the statistical
errors in the measurement are intrinsically large, as they would
be in the limit of poorly calibrated photo-z’s for the majority
of the imaging sample, then high rates of catastrophic outliers
are tolerable because the systematic they contribute is not large
compared to the statistical error induced by a poorly constrained
core distribution.

When the core distribution is very well calibrated, most ob-
viously at Nspec " 105 for uniform catastrophes in DES, the
contours of constant systematic error transition to slightly pos-
itive slope. This occurs when the core distribution has been
sufficiently well calibrated that degeneracies between the pho-
tometric redshift parameters of the core distribution and cosmo-
logical parameters are no longer significant. Calibrating beyond
the level required to break degeneracies between cosmology
and the core photo-z parameters results in a slight reduction in
systematic errors on cosmological parameters. This is a specific
manifestation of the general result that improving priors can
only lead to a net reduction in the systematic errors of inferred
parameters, a result discussed in considerable detail in Bernstein
& Huterer (2010). Clearly, the reduction in systematic error at
very large Nspec is not significant in the cases of interest here.

To illustrate the competition between core calibration and
the removal of outliers, consider some explicit examples. In
the case of the uniform catastrophe, our DEEP (WIDE) survey
can tolerate catastrophic errors at a rate Fcat > 1% if the core
calibration is worse than the statistical equivalent of Nspec !
3 × 104 (Nspec ! 6 × 104). For both surveys, even the worst-
case, localized catastrophes can occur at a rate of Fcat > 1%
if Nspec ! 104. Of course, the worst-case, localized systematic
errors are more subtle to interpret, as we have assumed they are
only actively affecting galaxies over a range of true redshifts
with width ∆zcat = 0.1; however, the magnitude of the induced
systematic errors produced by localized catastrophes active
over different redshift ranges scales in proportion to NA

cat ∼
n(zcat)∆zcatFcat, as illustrated in Figure 4. Detailed results are
complex, but two simple conclusions are clear.

1. Limiting uniform catastrophic error rates to Fcat ! 4×10−4

(Fcat ! 2 × 10−4) for DES and DEEP (WIDE) will render
them unimportant.

2. Limiting individual localized catastrophic error rates to
Fcat(∆zcat/0.1) ! 10−3 will render them unimportant for
each experiment.

In practice, some amount of uncertainty in the calibration of
the core distribution is inevitable, so error rates higher by a factor
of a few may be tolerable, but in detail this will depend upon
the nature of the error and the properties of the core sample of
well-calibrated photometric redshifts. Figures 3 and 5 contain

the information necessary to diagnose the systematic error for a
variety of idealized, but interesting cases.

3.4. Mitigating Systematic Errors by Sacrificing Statistics

In Sections 3.2 and 3.3, we estimated the systematic errors
that could be induced by two broad families of catastrophic
photometric redshift error, remaining relatively agnostic about
the source of the error. We found generally that error rates must
be kept to levels below Fcat ∼ 10−3, or one of a thousand
imaged galaxies with large, uncalibrated redshift errors in order
for systematic errors not to contribute to the dark energy error
budget (though specific tolerances depend upon several details).
This will be a relatively challenging goal for a photometric
redshift calibration program to attain. DES, JDEM, EUCLID,
and LSST will all require calibration of very faint galaxies,
where precise photo-z’s are difficult to obtain. Moreover, the
types of galaxies imaged, and for which spectra may be
available, varies as a function of redshift, so some understanding
of the details of galaxy evolution will be needed in order to
achieve calibration goals.

It is natural to explore simple methods to sacrifice some of the
statistical power of imaging surveys in order to mitigate larger
systematic errors. One of the simplest techniques we can employ
to limit the effect of catastrophic outliers is to place cuts on the
range of photometric redshifts utilized to infer cosmological
parameters (Bernstein & Huterer 2010 have explored such cuts
for a particular model of photo-z outliers).10 The most damaging
catastrophic errors are those that take galaxies near the median
redshift of the survey and scatter them to significantly lower
or higher redshifts, so it is sensible to explore the losses in
statistical power incurred by excising galaxies at the low- and
high-redshift ends of surveys.

We demonstrate the utility of photometric redshift excision in
this section by exploring a class of simple excision algorithms.
In particular, we cut out all galaxies with photometric redshifts
greater than some value, zcut

max, and smaller than some value zcut
min.

Figure 6 shows the statistical errors on w0 and wa as a function
of zcut

max and zcut
min for our Wide survey, whose characteristics are

similar to those expected from an LSST- or Euclid-like survey.
The relative costs depend mildly upon survey parameters.

Excising galaxies with photometric redshifts lower than
zph ∼ 0.3 results in only a ∼7% increase in the statistical
errors on dark energy parameters. Likewise, excising galaxies
with zph " 2.4 results in only a ∼10% degradation in w0 and
wa constraints. Excising both of these regions of photometric
redshift leads to a reduction in constraining power of !20%.
Figure 6 is a valuable itemization of the statistical losses incurred
by redshift cuts and indicates that excising low- and high-
redshift portions of the imaging surveys may be an effective
method to mitigate the influence of catastrophic photometric
redshift errors at little cost in statistical error.

While Figure 6 quantifies the cost of excising regions of
photometric redshift, the parametric complexity of catastrophic
photo-z errors makes specific statements about the benefit of
such cuts more difficult. In the case of a localized catastrophe
that places galaxies erroneously in the excised high- or low-
redshift ends of the survey, the induced bias can be nearly
completely removed at the cost of the statistical degradation in
Figure 6. We have begun a preliminary study of the benefits of

10 Nishizawa et al. (2010) also study the ability to employ photometric redshift
cuts to mitigate the effects of catastrophic outliers, which became available on
the arXiv while we were submitting this manuscript for publication.
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Figure 6. Statistical cost of excising low- and high-redshift shear information on constraints of w0 (left panels) and wa (right panels) for our WIDE survey. In the top
row, the value of the maximum photometric redshift of the survey appears along the horizontal axis while the different lines show different choices of the minimum
photometric redshift as indicated. Along the vertical axis is the fractional increase in dark energy parameter constraints relative to the constraints provided by a survey
with our standard tomography. In the bottom row, the value of the minimum photometric redshift of the survey runs along the horizontal axis while the different lines
show different choices of the maximum photometric redshift as indicated.
(A color version of this figure is available in the online journal.)

redshift excision, including the case of uniform catastrophes. In
the case of our WIDE survey, excision can considerably reduce
systematic errors induced even by the uniform catastrophe when
the core is not well calibrated (Nspec ! 105), but this strategy
is only of marginal value in the limit of a well-calibrated core.
We limit the present discussion to the itemization in Figure 6
and relegate further study of redshift cuts and possible self-
calibration of specific types of catastrophic error to a follow-up
study.

4. CONCLUSIONS AND DISCUSSION

We have studied the potential systematic errors that may be
induced in dark energy parameters inferred from forthcoming
weak-lensing surveys as a result of a population of source galax-
ies with photometric redshifts that deviate significantly from
their true redshifts. We used a particular operational definition
of catastrophic photo-z errors that is subtly distinct from the
use of this term in some of the existing literature. Through-
out this work, the term catastrophic photometric redshift error
refers to cases in which photo-z estimates differ significantly
from true redshifts, the nature of the error has not been identi-

fied or calibrated with an accompanying spectroscopic data set,
and the outlier population has not been removed reliably from
the imaging data prior to the construction of shear correlation
statistics. One way to interpret our results is as requirements for
spectroscopic calibration of outliers and the completeness with
which outlier galaxies must be culled from the data set in order
to render systematic errors in dark energy parameters small.

In order to provide relatively general guidelines on the fidelity
with which outlier photo-z’s must be understood, we have taken
an agnostic position on the nature of what types of catastrophic
photometric redshift outliers may be realized in forthcoming
imaging data. This eliminates the need to anticipate what types
of photo-z errors may occur at very small fractional rates in order
to assess their general influence on dark energy parameters. To
be sure, there are reasonable guesses that can be made regarding
the nature of photometric redshift errors and many algorithms
exist that estimate redshifts from photometric data and refine
estimates based upon comparisons with large, spectroscopic
data sets (e.g., Bolzonella et al. 2000; Collister & Lahav 2004;
Oyaizu et al. 2008; Feldmann et al. 2006; Brammer et al. 2008;
Margoniner & Wittman 2008; Cunha et al. 2009; Ilbert et al.
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2009; Coupon et al. 2009). However, we have not adopted any
particular template for photometric redshift outliers. Instead,
we have studied two extreme limiting cases of catastrophic
photometric redshift error.

In the first class of photometric redshift error, which we
dubbed the uniform catastrophe, photometric redshifts are
poorly constrained and scattered over a broad range (see, e.g.,
Ilbert et al. 2009; Coupon et al. 2009, for examples of such
features). Photo-z errors resembling our uniform type must be
well controlled. If such errors occur even for a relatively small
fraction of galaxies near the median redshift of a given survey,
the systematic errors induced on dark energy parameter estima-
tors will be significant. Roughly speaking, we find that the error
rate per galaxy must be maintained at Fcat ! a few × 10−4.
However, the uniform catastrophic error is a relatively sim-
ple variety so that self-calibration may well be feasible. One
could resign oneself to the fact that such an error will occur
and add the error rate Fcat (and perhaps other parameters such
as ∆zcat) to the set of nuisance parameters to be marginalized
over. This self-calibration could eliminate the systematic error,
but will broaden statistical errors. We explore self-calibration
of particular catastrophic photo-z errors in a forthcoming
paper.

The second class of errors, which we refer to as localized
catastrophes, takes source galaxies with particular true redshifts
and assigns them photometric redshifts with a large bias but
small scatter. Localized catastrophes have a broader range of
possibilities and are more difficult to deal with. Figures 3 and 5
and Equation (4) constitute a blueprint for estimating the severity
of a broad range of possible localized photometric redshift
catastrophes. Quite generally, we find that the systematic errors
they induce are sensitive to the scheme used to bin the source
galaxies in photometric redshift. This suggests that an iterative
scheme of re-binning may be an effective strategy for identifying
and mitigating the influence of localized catastrophic photo-z
errors.

In Section 3.4, we studied a simple strategy to limit the
systematics induced by catastrophic photo-z outliers. First,
we showed that the statistical leverage of the highest redshift
(z " 2.4) and lowest redshift (z ! 0.3) source galaxies on dark
energy constraints is minimal. Eliminating all such galaxies
from consideration in inferring dark energy parameters results
in only a small increase in the statistical errors of dark energy
equation of state constraints, but may eliminate some of the
most severe systematic errors induced by localized catastrophic
photo-z outliers. This implies that well-designed cuts on zph will
likely be a powerful and general means to mitigate systematics
associated with photo-z determination at a relatively small cost
in statistical error.

The published work that is most closely related to the present
work is Bernstein & Huterer (2010). Our work is an extension
and generalization of their study. Overall, we reach the same
broad conclusions where the two studies are commensurable.
In particular, we find that catastrophic errors of the localized
variety must be controlled such that the rate of errors per galaxy
is Fcat ! 10−3 if they are to induce tolerable systematic errors
on dark energy parameters.

Our work differs from and complements Bernstein & Huterer
(2010) in several important ways. First, we have relaxed the
assumption that the true redshift distribution of the outlier
population perfectly traces that of the core population within
individual source photometric redshift bins (see Equation (4)).
Our treatment of photometric redshift errors is independent

of the photometric redshift binning (as such errors would
be in practice), while the approach of Bernstein & Huterer
(2010) is limited to cases in which photometric errors both
trace the galaxy distributions within the Source Bin and span
the redshift range of the Source Bin. While contamination
of the target redshift bin is typically the larger source of
induced systematic error, our generalization illustrates that the
effects of modifications to the Source Bin are non-negligible
and in some cases these offsets contribute significantly to
the systematic errors on dark energy parameters. Second,
we have studied catastrophic errors in cases where the core
photometric redshift distribution is not perfectly calibrated.
Accounting for uncertainty in the core distribution turns out
to be quite important: for a fixed catastrophe the magnitude
of the induced systematic errors can vary by several orders
of magnitude over a reasonable range of priors on the core
distribution. Third, we have explored cases of correlated shifts
in photo-z errors that span multiple tomographic redshift bins
(which will occur in practice), the extreme example being the
uniform error.

We conclude our discussion section by referring to interesting,
tangential results given in the Appendix. In the Appendix, we
discuss the effect of different models of the nonlinear evolution
of cosmological density perturbations on photometric redshift
calibration requirements. Weak-lensing measurements take sig-
nificant advantage of measurements on nonlinear scales in or-
der to constrain cosmology. Previous work on the calibration of
photometric redshifts has utilized the Peacock & Dodds (1996)
formula (e.g., Ma et al. 2006; Ma & Bernstein 2008); however,
we find that using the more recent and more accurate fit of Smith
et al. (2003) significantly reduces the need for independent cal-
ibration of photometric redshifts. We have used the Smith et al.
(2003) formula in the main body of this paper. We refer the
reader to the Appendix for further details.

5. SUMMARY

We have adopted a simple, agnostic approach to estimate
the levels at which uncalibrated photometric redshift outliers
must be controlled to maximize the dark energy constraints
from the weak-lensing components of forthcoming imaging sur-
veys such as DES, LSST, EUCLID, and JDEM. We present
results for three fiducial imaging surveys: a relatively near-
term DES-like survey, a future survey with a high surface den-
sity of galaxies but a relatively small fractional sky coverage
(DEEP), and a future survey with half-sky coverage and a lower
galaxy surface density (WIDE). We considered two extreme
cases of large, uncalibrated errors. In the case of a uniform
photo-z catastrophe, we considered galaxies erroneously as-
signed photometric redshifts that are unrelated to their true red-
shifts. In the case of a localized photo-z catastrophe, we con-
sidered the erroneous placement of a small fraction of galaxies
in some range of true redshifts at significantly different photo-
metric redshifts. To be specific, we assigned galaxies in some
range of true redshifts of width ∆z centered on a true redshift
zcat to photometric redshifts near z

ph
cat that differ significantly

from zcat. For each type of error and survey, we assessed the
severity of the systematic errors on dark energy parameters that
would be induced by catastrophic photometric redshift errors.
Our primary results are as follows.

1. A photometric redshift error of the uniform variety that
is relevant for galaxies near the median redshift of the
imaging survey, must be limited to a fraction of galaxies
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Fcat ! 5 × 10−4 for DES or DEEP and Fcat ! 2 × 10−4 for
WIDE, in order to induce systematic errors that are small
compared to the statistical errors on w0 and wa.

2. Localized catastrophic errors are most severe when they
take some fraction of galaxies with true redshifts near
the median survey redshift and assign them significantly
higher or lower photo-z’s. For DES, assignments to higher
photo-z’s are more severe than assignments to lower
photo-z’s while the opposite is true for WIDE and DEEP.
However, the systematic errors induced by these two ex-
tremes differ by less than a factor of 2 in all cases.

3. Limiting the fraction of galaxies exhibiting localized catas-
trophes at all redshifts to Fcat ! 3 × 10−3 for DES or
Fcat ! 10−3 for WIDE or DEEP will render them unim-
portant. For localized catastrophes that occur over a range
of true redshifts of width ∆zcat near the median survey red-
shift, the fractional error rate must be controlled such that
Fcat(∆zcat/0.1) ! 1–3 × 10−3.

4. Imperfect knowledge of the photo-z distribution for the core
sample of galaxies loosens these requirements for uncali-
brated catastrophic outlier control as depicted in Figure 5.
Roughly speaking, core calibration with spectroscopic sam-
ples smaller than the statistical equivalent of Nspec ! 105

leads to significantly reduced catastrophic error control re-
quirements. Of course, in practice catastrophic error control
and core calibration will both improve as Nspec increases.

5. The statistical leverage of the highest redshift (z " 2.4) and
lowest redshift (z ! 0.3) source galaxies on dark energy
constraints is small. Eliminating all such galaxies from
consideration in inferring dark energy parameters results
in a !20% increase in the statistical errors on dark energy,
but may eliminate the most severe systematic errors induced
by localized catastrophic photo-z outliers.

6. In the Appendix, we show that dark energy parameter fore-
casts that include photometric redshift uncertainty vary sig-
nificantly depending upon the treatment of the nonlinearity
in the matter power spectrum. In particular, using the Smith
et al. (2003) fitting form (as we do in the main text) leads
to weaker photo-z calibration requirements than does the
Peacock & Dodds (1996) formula upon which the results
of Ma et al. (2006) are based. The Smith et al. (2003) for-
mula has been shown to be more accurate than Peacock &
Dodds (1996) suggesting that degradation due to photo-z
uncertainty may be less than Ma et al. (2006) forecast. Only
a rigorous numerical study can determine this definitively.

This level of photometric redshift outlier control is challeng-
ing in comparison to the yields of contemporary methods and
data. Existing spectroscopic samples are not representative of
the galaxy populations that will be utilized to constrain dark
energy in forthcoming imaging surveys. For example, the Deep
Extragalactic Evolutionary Probe (DEEP2) has a 70% success
rate for obtaining spectroscopic redshifts (Cooper et al. 2006),
where star-forming galaxies with z > 1.4 constitute roughly
half of the failed targets (Freeman et al. 2009). Moreover, spu-
rious photo-z outliers persist even with techniques developed in
conjunction with spectroscopic data that span the region of pa-
rameter space occupied by the photometric sample. As a nearly
contemporaneous example, Nishizawa et al. (2010) construct
galaxies using simple spectral templates assuming a number
of particular stellar populations based on the COSMOS galaxy
catalog. Applying LePhare11 to their mock spectra gives offset

11 http://www.cfht.hawaii.edu/∼arnouts/LEPHARE/cfht_lephare/lephare.html

islands in z − zph space containing more than 5% of the proba-
bility, which remains true even after refining their redshift esti-
mator. In the analysis of the COSMOS data, Ilbert et al. (2009)
achieve an outlier rate of 0.7% for a subsample of their bright-
est objects (17.5 < iAB < 22.5). However, their outlier rate
dramatically increases to 15.3% when they apply their photo-z
techniques to a subsample of faint objects (22.5 < iAB < 24).
An alternative approach to photo-z calibration is adopted in
Cunha et al. (2009), who applied their weighted training set
method to both simulated and actual SDSS data. Their methods
substantially improve upon the ability to directly reconstruct
the redshift distribution of a photometric sample, but errors in
the reconstructed N(z) remain at the percent level. Thus, while
contemporary photo-z codes do provide useful guidance, out-
lier fractions greater than ∼10−3 persist and can affect the dark
energy program. The ability to either limit, or understand, such
outlier populations significantly better than the current state-of-
the-art will be necessary to exploit fully the promise of cosmic
shear tomography.
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APPENDIX

THE NONLINEAR POWER SPECTRUM AND
PHOTOMETRIC REDSHIFT CALIBRATION

REQUIREMENTS

Much of the constraining power of weak-lensing surveys
arises from measurements on scales where the structures caus-
ing the deflections are undergoing nonlinear gravitational evo-
lution (e.g., Huterer & Takada 2005). Restricting consideration
to large scales significantly degrades cosmological constraints
(e.g., Huterer 2002; Huterer & Takada 2005; Zentner et al.
2008; Schmidt 2008; Hearin & Zentner 2009), so it is nec-
essary to model nonlinear evolution in order to utilize weak
lensing to constrain dark energy. At least three approximate and
related techniques are in common use: (1) the fitting formula
of Peacock & Dodds (1996), which is based on the HKLM
method (Hamilton et al. 1991), (2) the halo model (Scherrer &
Bertschinger 1991; Seljak 2000; Ma & Fry 2000; Scoccimarro
et al. 2001; Cooray & Sheth 2002), and (3) the fitting formula
of Smith et al. (2003). The works of Ma et al. (2006) and Ma &

http://www.cfht.hawaii.edu/~arnouts/LEPHARE/cfht_lephare/lephare.html
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Figure 7. Contour plots for the level of wa constraint degradation as a function of priors on the photometric redshift scatter σz and bias zbias. In this case, the priors
are applied uniformly to the photometric redshift parameters are each redshift. The contours demarcate equal parameter degradation defined as the error on wa after
marginalizing over photometric redshift uncertainties. We show constraints in units of the equivalent constraint in the limit of perfect knowledge of photometric
redshift parameters, Σ ≡ σ (wa)/σperf (wa). The upper, left panel was computed using the Peacock & Dodds (1996) fitting formula for the nonlinear power spectrum of
density fluctuations and amounts to a near reproduction of the right panel of Figure 7 in Ma et al. (2006). The upper, right panel was computed using the halo model
as described in Zentner et al. (2008). The bottom panel was computed using the Smith et al. (2003) relation for the nonlinear power spectrum of density fluctuations.
Significant differences between the levels of degradation are evident. Note that in this figure, we use a different set of cosmological and experimental parameters so
that this result is directly comparable to those in Figure 7 of Ma et al. (2006).
(A color version of this figure is available in the online journal.)

Bernstein (2008) specifying requirements for photometric red-
shift calibration employ the Peacock & Dodds (1996) relation.

In the course of our study, we have recomputed the photo-
metric redshift calibration requirements using each of the three
approximate techniques mentioned in the previous paragraph.
In the limit of perfect knowledge of the photometric redshift
distribution, each of these fitting formulas gives nearly identi-
cal dark energy constraints. However, we have found that the
photometric redshift calibration requirements have a strong de-

pendence upon the method used to model nonlinear structure.
We summarize this finding in Figure 7 where we display con-
tours of constant degradation in the statistical error on wa as
a function of both the prior on the bias ∆zbias and the prior on
the dispersion σz. In other words, we show contours of σ (wa)
in units of the statistical constraint on wa in the limit that the
photo-z distribution parameters are known perfectly prior to
the weak-lensing analysis, σperf(wa). We assume that the same
priors are applied to all of our 31 dispersion parameters and
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31 bias parameters at each redshift bin (see Section 2.1.1). We
summarize our findings in this way so that these results can
be compared directly to Figure 7 in Ma et al. (2006). To make
the comparison as direct as possible, we have computed these
forecasts using the fiducial cosmology and experimental setup
of Ma et al. (2006), which differs slightly from those considered
in the main text. In this Appendix only, our fiducial cosmology
is ωM = 0.14, ωB = 0.024, ns = 1.0, ∆2

R = 2.4 × 10−5 (giv-
ing σ8 / 0.91), and ΩDE = 0.73 combined with experimental
parameters of fsky = 0.1 and NA = 55 arcmin−2.

The upper left panel in Figure 7 shows photo-z calibration
requirements estimated using the Peacock & Dodds (1996)
treatment of nonlinear power. This panel shows nearly identical
results to those in Figure 7 of Ma et al. (2006) so that this
panel validates our methods and provides a useful baseline
to compare with the other panels. According to this result,
ensuring that constraints on wa are not degraded by more than
a factor of 2 requires knowing the photo-z dispersion and bias
to roughly ∼1% prior to undertaking the weak-lensing analysis.
The upper, right panel of Figure 7 shows the same requirements
constructed using the halo model for nonlinear clustering. In the
limit of restrictive prior knowledge of the photo-z distribution,
the Peacock & Dodds (1996) and halo model results yield
nearly the same constraints. When the photo-z distributions
have relatively unrestrictive priors, the two techniques yield
moderately different levels of projected degradation with, for
example, uncertainty in the photo-z dispersion of ∆(σz) ≈ 1
corresponding to a factor of 10 degradation in the Peacock &
Dodds (1996) case but a factor of 6 degradation in the halo
model calculation.

The largest differences among the forecasts comes from
comparing the requirements using Peacock & Dodds (1996) to
those computed using the Smith et al. (2003) fit. As with the halo
model comparison, the different techniques agree well when
prior knowledge of the photo-z distribution is very restrictive;
thus as long as degradations due to photo-z uncertainty are
!10%–20% then it does not matter which technique one uses
to predict the nonlinear evolution. It is interesting that the
constraints in the case of the halo model treatment degrade
significantly less rapidly as prior knowledge becomes less and
less restrictive. Turning to the Smith et al. (2003) fit, one would
conclude that ensuring less than a factor of 2 degradation on
the wa constraint requires ∼18% knowledge of the dispersion
and ∼40% knowledge of the bias as compared to the ∼1%
requirements that result from the Peacock & Dodds (1996)
analysis.

Clearly, at most one of these treatments can represent the
growth of cosmic structure faithfully. In the main text, we
presented results using the Smith et al. (2003) formula because
these authors perform a detailed numerical study that finds
the Peacock & Dodds (1996) and simple implementations of
the halo model to be imprecise on scales relevant for cosmic
shear cosmology. In the context of these fitting formulae,
we find that Smith et al. (2003) predicts greater power than
Peacock & Dodds (1996) on scales most relevant to lensing
(0.1 ! k/h Mpc−1 ! 10), particularly at high redshift. At
this point, it is not possible to make a firm statement as to
which approach is correct, but an exhaustive simulation program
similar to that being carried out by Heitmann et al. (2005, 2008,
2009) may be capable of providing a more definitive resolution
in the case of dissipationless evolution. Additional effort will
be needed to treat any modifications induced by the baryonic
component of the universe (White 2004; Zhan & Knox 2004;

Jing et al. 2006; Rudd et al. 2007; Zentner et al. 2008; Stanek
et al. 2009; Guillet et al. 2009).
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