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ABSTRACT

Supernova distance and primary cosmic microwave background (CMB) anisotropy measurements provide us
with powerful probes of the dark energy evolution in a flat universe, but they degrade substantially once curvature
is marginalized. We show that lensed CMB polarization power spectrum measurements, accessible to next gen-
eration ground-based surveys such as SPTpol or QUIET, can remove the curvature degeneracy at a level sufficient
for the SNAP and Planck surveys and allow a measurement of , jointly withj(w ) p 0.03 j(w ) p 0.3p a

. This expectation assumes that the sum of neutrino masses is independently known to betterj(Q ) p 0.0035K

than 0.1 eV. This assumption is valid if the lightest neutrino has negligible mass in a normal neutrino mass
hierarchy and is potentially testable with upcoming direct laboratory measurements.

Subject headings: gravitational lensing — large-scale structure of universe

Online material: color figures

1. INTRODUCTION

Currently, observations of the expansion history of the uni-
verse are remarkably consistent with cosmic acceleration driven
by a cosmological constant in a spatially flat universe. When
testing this hypothesis, one typically looks for evidence of spa-
tial curvature in the absence of dark energy evolutionor evo-
lution in the absence of spatial curvature. It is of course possible
that spatial curvature and dark energy evolution conspire to
mimic a cosmological constant in a flat universe. Nonetheless,
while the data remain consistent with the simpler hypothesis,
this approach is justified.

More worrying is the possibility that as measurements im-
prove, we find evidence for nonstandard dark energy in a flat
universe—a dark energy equation of state . Should wew ( �1
then believe that the universe is flat and dark energy varying
in time, or that it has a small curvature and the dark energy is
simply the cosmological constant? While the standard infla-
tionary theory predicts that the curvature of our Hubble volume
is below measurable limits ( ), models with larger�4Q � 10K

values do exist and are arguably on sounder footing than dy-
namical dark energy models.

Ideally, of course, we would like to measure both andQK

, but this is difficult because of degeneracies. Moderatelyw(z)
good constraints are obtained once Type Ia supernovae (SNe)
data and cosmic microwave background (CMB) data are com-
bined with high-precision Hubble constant measurements (Hu
2005; Linder 2005), weak gravitational lensing (Knox 2006;
Bernstein 2006), baryon oscillations (Knox et al. 2006; Ichi-
kawa et al. 2006), or cluster abundances (Albrecht et al. 2006).
However, these techniques are subject to systematic uncertain-
ties that have to be accounted for carefully.

Only two methods—SNe Ia and CMB—have proven so far
to be both powerful and robust probes of cosmology. Here we
show that the information required to break the degeneracy
between curvature and dark energy to a level sufficient for
future SN missions such asSNAP (Aldering et al. 2004) lies
within the reach of next-generation ground-based CMB polar-
ization power spectrum measurements. This information comes
from weak gravitational lensing of the CMB in the linear re-
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gime at redshifts (see Lewis & Challinor [2006] for az ∼ 1–3
recent review). Furthermore, this information is contained in
the lensed power spectra and is not subject to systematic errors
from non-Gaussian lensing reconstruction. Consequently, if the
primary science goal of limiting gravitational wave power is
achieved, then this information will also be recovered.

We employ a recently developed framework for CMB lens-
ing power spectra observables that includes the non-Gaussian
nature of the lensing signal (Smith et al. 2006). This method
is ideally suited for investigating the complementarity between
different cosmological probes in a wide range of dark energy
models.

2. METHODOLOGY

To describe the information content of the various cosmo-
logical probes, we model the observables and employ the usual
Fisher approach. For SNe Ia, we model the magnitudes ofmi

the SNe as

m p 5 log H d (z ) � M � e , (1)i 0 L i i

where i runs through the observed SNe. Here the luminosity
distance is given by

1
2�d (z) p (1 � z) sinh Q H D , (2)( )L K 02�Q HK 0

where is the curvature in units of the critical energy density,QK

is the Hubble constant, is the comovingH D(z) p dz/H(z)∫0

radial distance, is a nuisance parameter involving intrinsicM
SN luminosity, and represents the statistical and systematicei

errors.
We assume a survey similar to the plannedSNAP mission

(Albert et al. 2005) with 2800 SNe distributed in redshift out
to given by Aldering et al. (2004) (middle curve ofz p 1.7
their Fig. 9, reproduced here in the top panel of Fig. 1). We
combine the high-z data set with 300 local SNe uniformly
distributed in the range.z p 0.03–0.08

Following Albert et al. (2005) we model the error as a sum
of the statistical error and an irreducible, but unbiased, system-
atic error. The latter imposes a floor on the errors at a given
redshift that is uncorrelated across broad redshift ranges. Given
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Fig. 1.—Top: Redshift distribution of the high-z SNe and weights ofnSN

the lensing observables { } normalized to integrate to unity.Bottom:V ,V1 2

Derivatives of the luminosity distance and relative luminosity distancedL

with respect to curvature and the dark energy parameters and .H d Q w w0 L K 0 a

Here is adjusted to keep the angular diameter distance to recombinationQDE

fixed in each case. [See the electronic edition of the Journal for a color version
of this figure.]

a binning of SNe into some arbitrary bins inz denoted as
, we assume thatDzI

2¯ ¯A(m � m )(m � m )S ji i j j m 2p d � j , (3)� IJ sys( )N N Ni�I, j�J I J I

where is the number of SNe in . Following Tegmark etN DzI I

al. (1998) we can replace the sum over discrete SNe with an
integral over the redshift distribution, and con-N p n (z)DzI SN I

struct the Fisher matrix for a parameter set aspm

¯ ¯1 �m(z) �m(z)SNF p dzn (z) , (4)mn � SN 2j (z) �p �pe m n

where We take and2 2 2j p j � j n (z)Dz. j p 0.15e m sys SN m

, . When constructing thej p 0.02 (1� z)/2.7 Dz p 0.1sys

Fisher matrix in cosmological parameters, we marginalize over
.M
For the CMB, we quantify the information fromPlanck in

the absence of lensing with the Fisher matrix of thePlanckFmn

unlensed power spectra out to multipole (e.g., Zal-� p 2000
darriaga et al. 1997). We assume forPlanck 80% usable sky
and three usable channels for cosmology: FHWM 5�.0 with
temperature noise and polarization noise′D p 51 mK D pT P

; 7�.1 with , ; 9�.2 with′ ′ ′135 mK D p 43 mK D p 78 mKT P

, .′D p 51 mK D p �T P

For the additional information from lensing, we use the lens-
ing observables framework (see Smith et al. 2006 for details).
Here there are two lensing observables and that representV V1 2

the principal components of the convergence power spectrum
obtained from temperature/E-polarization andB-polarization,
respectively. They reflect fractional changes in the amplitude
of the convergence power spectrum around and� ∼ 1001

. The redshift sensitivities of and are plotted in� ∼ 500 V V2 1 2

Figure 1 (top); they extend to , which is why CMB lensingz k 1
has higher sensitivity to curvature than dark energy. The CMB
lensing Fisher matrix is given by

�V 1 �Vi iCMBlensF p . (5)�mn 2�p j �pip1, 2 m V ni

For the errors on the observables, we assume a deep CMB
survey that is comparable to the proposed SPTpol survey. Spe-
cifically, we take a deep temperature survey on 4000 deg2 and

and a deep polarization survey on 625 deg2′D p 11.5 mKT

with . We take a FWHM beam of 1�. With′�D p 2D p 4 mKP T

these specifications combined with sensitivity to fromV1

Planck, the two observables can be measured with an accuracy
of and . For reference, the latter rep-j p 0.041 j p 0.032V V1 2

resents a∼3% measurement of the overall power in lensingB-
modes and dominates the overall constraints. Moreover, the
deep temperature survey provides little weight in the con-V1

straint itself and would mainly serve as an internal cross-check
for foregrounds, systematics, and other secondaries. Likewise,
other planned surveys such as QUIET will have comparable
precision in with very different frequency bands.V2

Finally, we sum the Fisher matrices as usual

SN Planck CMBlensF p F � F � F (6)mn mn mn mn

and approximate the joint parameter covariance matrix as
.�1C p (F)mn mn

3. FORECASTS WITH CURVATURE

It is well known that CMB information from recombination
allows SNe to determine the dark energy equation of state,
parameterized by in a flat universe.w(a) p w � (1 � a)w ,0 a

In the three-dimensional space { (p0.76), (p�1),Q wDE 0

(p0)}, Planck CMB measurements limit the allowed regionwa

to a two-dimensional surface or plane in the Fisher approx-
imation (see Fig. 2). Values in parentheses represent those of
the fiducial model. Here we have marginalized over the
baryon density (p0.022), cold dark matter density2Q hb

(p0.106), tilt (p0.958), initial amplitude of curvature2Q h nc s

fluctuations (p ) at Mpc�1, and reion-�5d 4.52# 10 k p 0.05z

ization optical deptht(p0.092). These eight parameters rep-
resent the minimal cosmological set in the Fisher matrix anal-
ysis to which we add below the curvature (p0) and sumQK

of the neutrino masses (p0.06 eV).mn

SN measurements constrain a flat tube in this space that is
nearly orthogonal to thePlanck surface. Note that the pre-
marginalization of any one of the three parameters before com-
bining does not bring out this complementarity.

The marginalization of spatial curvature can be visualized
as the superposition of independent shifts in thePlanck plane
and SN tube. Given that even the unlensed CMB has distance-
independent, albeit weak, curvature information from both the
integrated Sachs-Wolfe effect and the acoustic peaks (see Hu &
White 1996, Fig. 11), thePlanck plane only widens marginally
(see Fig. 2). On the other hand, the SN tube widens substantially.
The net effect on the joint constraints in the plane mar-w -w0 a

ginalized over { , } is shown in Figure 3. It represents aQ QDE K

factor of 4.8 increase in the 68% CL area (Huterer & Turner
2001) as measured by . Here is the equationA p j(w )j(w ) ww p a p
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Fig. 2.—Constraints on dark energy parameters , , and , shown forQ w wDE 0 a

SNe and unlensed CMB (Planck) separately: (a) constraints assuming a flat
universe; (b) weakened constraints from curvature marginalization. [See the
electronic edition of the Journal for a color version of this figure.]

Fig. 3.—68% CL region in the plane with CMB lensing (CMBlens,w -w0 a

solid curves) information.Dashed ellipses: Planck�SN errors alone with cur-
vature marginalized (long dashed line) and in a flat universe (short dashed
line). Filled ellipses: SN statistical errors.Open ellipses: SN systematic and
statistical errors. [See the electronic edition of the Journal for a color version
of this figure.]

of state at the best constrained or pivot redshift, and its errors
are equal to those of at fixed (Hu & Jain 2004).w w0 a

This degeneracy is also illustrated in Figure 1 (bottom). Here
the fractional deviations in the SNe observable from theH d0 L

fiducial model are shown as parameter derivatives at a fixed
distance to recombination. Without spatial curvature, andw0

make distinguishable changes in the relative distance atwa

. With spatial curvature, the effects become largelyz ! 2
degenerate.

The effect of spatial curvature on observables persists to
high redshift whereas that of the dark energy parametersz k 1
flatten and depend only on , the difference between relativeH0

( ), and absolute distances . This degeneracy may there-H d d0 L L

fore be broken either by high-precision Hubble constant (Hu
2005; Linder 2005) or high-z distance measurements (Knox
2006; Bernstein 2006).

CMB lensing supplies the latter kind of information. Trans-
forming the sensitivity to distances and the matter powerdL

spectrum at the redshift range shown in Figure 1 into the cos-
mological parameters used in equation (5) yields

DV ≈ �1.01Q � 0.399Dw � 0.146Dw � 5.17DQ1 DE 0 a K

Dmn2� 12.3DQ h � 2D ln d � 0.33 ,c z 1 eV

DV ≈ �1.27Q � 0.446Dw � 0.154Dw � 5.30DQ2 DE 0 a K

Dmn2� 18.8DQ h � 2.09D ln d � 0.45 . (7)c z 1 eV

Here we have used the fact that other parameters in the latter
class such as are sufficiently well determined byPlanck.ns

The sum of the neutrino masses , however, is not well de-mn

termined and changes both the shape and growth rate of the
matter power spectrum.

First let us consider the impact of CMB lensing constraints
assuming that the sum of the neutrino masses is fixed. This ismn

a good assumption if the lightest neutrino has a mass!0.01 eV
and a normal mass hierarchy due to the measurement of the solar
and atmospheric neutrino mass squared differences. The same
assumption in an inverted hierarchy would also be sufficient in
that it only adds a second discrete possibility.

In this fixed neutrino case, the addition of the lensing con-
straint nearly fully restores the ability of the SN survey and
Planck to measure the dark energy (see Fig. 3). It allows a
measurement to and . This restoration�1j(w ) p 0.30 A p 137a w

of sensitivity occurs even if the SN survey is limited by only
statistical errors such that and .�1j(w ) p 0.19 A p 241a w

Figure 4 shows how depends on prior knowledge of�1Aw
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Fig. 4.—Improvement in the area statistic in the plane of as aA w -ww 0 a

function of the prior on the sum of the neutrino masses. The top line represents
the SN�Planck constraint alone in a flat universe, the bottom represents the
degradation once curvature is marginalized. CMB lensing can recover much
of this information if the sum of the neutrino masses is known toj(m ) !n

eV. SN systematic errors are included here but the relative effect for0.1
statistical errors only is similar. [See the electronic edition of the Journal for
a color version of this figure.]

the sum of the neutrino masses in the case that the lightest
neutrino does not have negligible mass. In this case all three
neutrinos could have degenerate masses. External constraints
on the sum of neutrino masses begin to help at the 0.2 eV
level and would be fully sufficient at a few# 10�2 eV. For
example, the KATRIN experiment is expected to reach

from tritium b decay (Aalseth et al.2 2j(m ) p (0.16 eV)ne

2004). Such a measurement would test the degenerate mass
scenario.

As an aside, it is interesting to note that even with spatial
curvature and dark energy marginalized, the combination of
data sets would allow a measurement of eV. Withj(m ) p 0.24n

curvature fixed, eV. Hubble constant measure-j(m ) p 0.14n

ments with 1%–7% precision would provide neutrino mea-
surements that interpolate between these two limits by fixing
the spatial curvature.

4. DISCUSSION

Constraints on the temporal evolution of dark energy benefit
particularly strongly from the addition of CMB lensing infor-
mation to that of SNe and the primary CMB at recombination.
The three methods probe very different epochs: SNe are sen-
sitive to distances at , and the primary CMB toz � 1 z ∼

, whereas CMB lensing probes . Given that spa-1089 1� z � 3
tial curvature affects distances and growth out to high redshift,
CMB lensing is ideally suited to breaking the degeneracy be-
tween curvature and the dark energy. It has the additional ad-
vantage of being nearly entirely in the linear regime and a
lensing test of curvature where the source distance can be con-
sidered fixed.

Furthermore, this degeneracy breaking requires only already
planned ground-based CMB polarization power spectrum mea-
surements. We have demonstrated that even if the SNe andPlanck
surveys are limited only by statistical errors, aground-basedsurvey
like SPTpol will be sufficient to extract the full information:

, and ; with some ac-j(w ) p 0.02 j(w ) p 0.2 j(Q ) p 0.0034p a K

counting for SN systematic errors these degrade to 0.025, 0.3, and
0.0035.

There are two critical assumptions that make this possible.
First, the ground-based CMB survey will be able to remove
foregrounds and systematics at a level sufficient to enable few
percent level measurements of the lensingB-mode polarization
power. Second, we assume that the neutrino masses are fixed
by oscillation measurements and a theoretical assumption about
the neutrino mass hierarchy. This assumption will be tested by
next-generation laboratory experiments. In the more general
context, the sum of the neutrino masses must be externally
determined to 0.1 eV or better.

The lensing observables approach we have taken here can
be easily extended to consider different combinations of probes.
Furthermore, we have only considered the simplest description
of the time-dependent dark energy density, and a more detailed
parameterizatoin may be even further assisted by CMB lensing.
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