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The integrated Sachs-Wolfe (ISW) effect is a large-angle modulation of the cosmic microwave
background (CMB), generated when CMB photons traverse evolving potential wells associated with large
scale structure (LSS). Recent efforts have been made to reconstruct maps of the ISW signal using
information from surveys of galaxies and other LSS tracers, but investigation into how survey systematics
affect their reliability has so far been limited. Using simulated ISW and LSS maps, we study the impact of
galaxy survey properties and systematic errors on the accuracy of a reconstructed ISW signal. We find that
systematics that affect the observed distribution of galaxies along the line of sight, such as photo-z and bias-
evolution related errors, have a relatively minor impact on reconstruction quality. In contrast, however, we
find that direction-dependent calibration errors can be very harmful. Specifically, we find that, in order to
avoid significant degradation of our reconstruction quality statistics, direction-dependent number density
fluctuations due to systematics must be controlled so that their variance is smaller than 10−6 (which
corresponds to a 0.1% calibration). Additionally, we explore the implications of our results for attempts to
use reconstructed ISW maps to shed light on the origin of large-angle CMB alignments. We find that there
is only a weak correlation between the true and reconstructed angular momentum dispersion, which
quantifies alignment, even for reconstructed ISW maps which are fairly accurate overall.

DOI: 10.1103/PhysRevD.94.043503

I. INTRODUCTION

As cosmic microwave background (CMB) photons
travel from the last scattering surface to our detectors,
they can experience a frequency shift beyond that which is
guaranteed by the expansion of the universe. This addi-
tional effect is a result of the fact that gravitational potential
fluctuations associated with large-scale structure (LSS)
decay with time when the universe is not fully matter
dominated. Consequently, the CMB photons are subject to
a direction-dependent temperature modulation which is
proportional to twice the rate of change in the potential
integrated along the line of sight. This modulation is known
as the integrated Sachs-Wolfe (ISW) effect [1]. Its magni-
tude in direction n̂ on the sky was worked out in the classic
Sachs-Wolfe paper [2] to be

ΔT
T̄

����
ISW

ðn̂Þ ¼ 2

c2

Z
t0

t�
dt

∂Φðr; tÞ
∂t ; ð1Þ

where t0 is the present time. t⋆ is that of recombination, c is
the speed of light, r is the position in comoving coordi-
nates, and Φ is the gravitational potential.
The ISW effect introduces a weak additional signal at

very large scales (low multipoles) in the CMB angular
power spectrum. It carries important information about
dark energy [3,4], particularly its clustering properties that
are often parametrized by the dark energy speed of sound. It
also potentially offers useful information about the nature
of dark energy, as modified gravity theories have unique

ISW signatures [5]. However, the fact that the largest CMB
multipoles are subject to cosmic variance severely limits
how much information can be gleaned from the ISW given
the CMB temperature measurements alone.
We are able to observe the ISW effect because the

dependence of the ISW signal on the time derivative of the
potential results in a large-angle cross-correlation between
LSS tracers and CMB temperature. This was first pointed
out by Crittenden and Turok [6], who further suggested
cross-correlation between CMB temperature anisotropy
ðδT=TÞISWðn̂Þ and galaxy positions, ðδN=NÞðn̂0Þ, as a
statistic through which to detect the ISW effect. This
cross-correlation signal was detected shortly thereafter
[7] and was later confirmed by many teams who found
cumulative evidence of about 4σ using a number of
different LSS tracers [8–22]. Comprehensive surveys of
recent results can be found in Refs. [20,22,23]. While the
detection of the ISW effect itself provides independent
evidence for dark energy at high statistical significance,
prospects for using it to constrain the cosmological param-
eters are somewhat limited [24].
The ISW map, ðδT=TÞISWðn̂Þ, is also of interest in its

own right. By assuming a cosmological model, one can
construct an estimator using theoretical cross-correlations
in combination with LSS data. Because the ISW signal
represents a late-universe contribution to the CMB
anisotropy, measuring and subtracting it from observed
temperature fluctuations would allow us to isolate the
(dominant) early-universe contributions to the CMB. If
this procedure could be done reliably, it would have
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immediate implications for our understanding of the
cosmological model.
For example, the ISW signal has been identified as a

potential contributor to large-angle CMB features which
have been reported to be in tension with the predictions of
ΛCDM [25]. A reconstructed ISW map would clarify
whether some component of the CMB anomalies (dis-
cussed further below in Sec. V) become stronger or weaker
when evaluated on the early-universe-only contribution to
the CMB. A few studies [26,27] have already explored this.
To study the impact of ISW contributions on CMB
anomalies, Ref. [27] uses WMAP data with 2MASS and
NVSS, while Ref. [26] uses 2MASS alone.
The late-time ISW also provides a contaminant to the

measurement of primordial non-Gaussianity from CMB
maps. Because both the ISW effect and gravitational
lensing trace LSS, they couple large- and small-scale
modes of the CMB, resulting in a nonprimordial contri-
bution to the bispectrum. Recent analyses [28] have
corrected for this by including a theoretical template for
the ISW-lensing bispectrum in primordial fNL analyses.
Reconstructing and subtracting the ISW contribution from
the CMB temperature maps could provide an alternative
method for removing ISW-lensing bias when studying
primordial non-Gaussianity [29].
More generally, understanding how reliably the ISW

map can be reconstructed from large-scale structure infor-
mation impacts our understanding of how the late universe
affects our view of the primordial CMB sky.
Before reconstruction can be done reliably, however, we

must understand how systematics associated with the input
data impact the ISW estimator’s accuracy. Previous works
have explored this to some extent, looking at how
reconstruction quality is affected by the inclusion of
different input data sets [22,30,31], masks [22,31], and,
to a limited degree, the influence of uncertainties in
cosmological and bias models [31]. Additionally,
Ref. [32] studied how systematics like redshift uncertainties
and photometric calibration change the signal to noise of
the ISW effect’s detection. That being said, there remain a
number of systematics inherent to galaxy survey data which
have not yet been subject to detailed analysis in the context
of ISW map reconstruction. We aim to address this.
In this paper, we use simulated ISW and LSS maps to

identify which survey properties are important for ISW
reconstruction and to quantify their effects on the recon-
structed maps. We begin by studying how survey depth,
redshift binning strategy, and the minimum measured
multipole lmin influence reconstruction quality in the
absence of systematics. Using these results as a baseline,
we then explore two broad classes of systematics: ways one
can mismodel the redshift distribution of LSS sources and
direction-dependent photometric calibration errors that can
result from, for example, contamination by stars. We also
briefly discuss the implications of our results for analysis of

whether the ISW signal contributes to the observed align-
ments between large-angle multipoles of the CMB temper-
ature map.
The paper is organized as follows. In Sec. II, we discuss

our general procedure for the ISW map reconstruction and
assessment of the accuracy in this procedure. In Sec. III, we
describe the properties of the surveys that we will consider,
while in Sec. IV, we discuss the effect of various systematic
errors on the ISW map reconstruction. We conclude
in Sec. VI.

II. METHODS

We perform a number of studies examining how survey
properties and systematics affect the accuracy of recon-
structed ISW maps. These studies all follow this general
pipeline, which is illustrated in Fig. 1:

(i) Select a fiducial cosmological model and specifica-
tions of the LSS survey.

(ii) Compute the “true” angular cross-power CXY
l for

ISW and LSS maps, assuming the fiducial cosmol-
ogy and survey specifications.

(iii) Use the true CXY
l to generate correlated Gaussian

realizations of the true ISW signal and correspond-
ing LSS maps.

(iv) If applicable, postprocess the galaxy maps to model
direction-dependent systematic effects.

(v) Construct an estimator for the ISW signal using the
simulated galaxy maps and a set of “model” CXY

l
which may or may not match those used to generate
the simulations.

(vi) Compare the reconstructed ISW signal to the true
ISW map and evaluate the accuracy of the
reconstruction.

This section will introduce some of the theoretical tools
needed for this analysis.

A. Theoretical cross correlations

The angular cross-power between ISW and galaxy maps
serves as input for both the simulation and reconstruction
processes used in the following sections. Given maps
X and Y, the expression for the angular cross-power
between them is

CXY
l ¼ 2

π

Z
dkk2PðkÞIXl ðkÞIYlðkÞ; ð2Þ

where PðkÞ is the matter power spectrum at z ¼ 0 and the
transfer function IXl ðkÞ is written

IXl ðkÞ≡
Z

∞

0

dzDðzÞWXðz; kÞjlðkrÞ: ð3Þ

Here, r≡ rðzÞ represents comoving radius; jlðxÞ is a
spherical Bessel function; and DðzÞ, which is normalized
to one at z ¼ 0, describes the linear growth of matter
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fluctuations. The function WXðk; zÞ is a tracer-specific
window function that encapsulates the relationship between
the tracer X and underlying dark matter fluctuations δ. The
tracers relevant to our studies are the ISW signal and galaxy
number density.
The ISW window function is

WISWðz; kÞ ¼ ½Θðzmax − zÞ�
�
3H2

0Ωm

c2k2

�
ð1 − fðzÞÞ; ð4Þ

where Θ is the Heaviside step function. In this expression,
the term in square brackets comes from when the Poisson
equation is used to relate potential fluctuations to dark
matter density, Ωm is the matter density in units of the
critical density, and H0 is the present-day Hubble
parameter. The appearance of the growth rate fðzÞ≡
d lnD=d ln a comes from the time derivative in Eq. (1).
To compute the full ISW contribution, one would integrate
to the redshift of recombination, zmax ¼ z⋆. In this work,
though, we are interested only in the late ISW effect, so we
can set zmax ¼ 15 without a loss in accuracy.
Each survey (and each redshift bin within a given survey)

will have its own window function. For a map of galaxy
number density fluctuations, it is

Wgalðz; kÞ ¼ bðzÞ dn
dz

: ð5Þ

In this expression, bðzÞ represents the linear bias, which we
assume is scale independent. The function dn=dz describes
the redshift distribution the observed sources, encapsulat-
ing information about how their physical density varies
with redshift as well as survey volume and selection effects.
It is normalized, so it integrates to 1. Galaxy shot noise is
included by adding a contribution to its autopower spec-
trum,

Cgal−gal
l → Cgal−gal

l þ n̄−1; ð6Þ

where n̄ is the average number density of sources per
steradian. In summary, to simulate a given galaxy survey,
we need bðzÞ, describing how clustered its sources are
relative to dark matter; dn=dz, describing how the observed
sources are distributed along the line of sight; and n̄, the
average number density of sources per steradian.
For l > 20, we use the Limber approximation to

compute CXY
l . This dramatically reduces the computation

time and gives results that are accurate to within about 1%
[33]. In this approximation, the cross correlations become

CXY
l ¼

Z
dz

HðzÞD2ðzÞ
cr2ðzÞ ½PðkÞWXðk;zÞWYðk;zÞ�k¼kl ; ð7Þ

where kl ¼ ðlþ 1
2
Þ=rðzÞ and HðzÞ is the Hubble

parameter.

We developed an independent code to calculate the
cross-power spectra CXY

l and have extensively tested its
accuracy for various survey redshift ranges against the
publicly available CLASS code [34].

B. Simulating LSS maps

As we care only about large-angle (l≲ 100) features, we
model the ISW signal and galaxy number density fluctua-
tions as correlated Gaussian fields. To simulate them, we
compute the relevant angular auto- and cross-power Cl’s
and then use the synalm function from Healpy [35] to
generate appropriately correlated sets of spherical harmonic
coefficients glm. These components are defined via the
spherical harmonic expansion of the number density of
sources in the ith LSS map,�

δN
N

�
i
ðn̂Þ ¼

X
lm

gilmYlmðn̂Þ: ð8Þ

For each study using simulated maps, we generate 10,000
map realizations. We use Healpix with NSIDE=32 and
compute Cl up to lmax ¼ 95, guided by the relation
lmax ¼ 3ðNSIDEÞ − 1. Unless we state otherwise, our
ISW reconstructions include multipole information down
to lmin ¼ 2.
All of our analyses are for full-sky data, and our fiducial

cosmological model is ΛCDM, with parameter values from
best-fit Planck 2015, fΩch2;Ωbh2;Ωνh2; h; nsg ¼
f0.1188; 0.0223; 0; 0.6774; 0.9667g.

1. Fiducial survey

Wemodel our fiducial galaxy survey on what is expected
for Euclid [36]. With its large sky coverage and deep
redshift distribution, the Euclid survey has been identified
as a promising tool for ISW detection [32,37], and it is
reasonable to assume that these properties will also make it
a good data set to use for ISW reconstruction. We therefore
adopt the redshift distribution used in Ref. [38],

dn
dz

¼ 3

2z20
z2 exp ½−ðz=z0Þ−1.5�; ð9Þ

which has a maximum at zpeak ≃ 1.21z0. We adopt z0 ¼ 0.7
and n̄ ¼ 1 × 109. For binning studies (see Sec. III B), we
assume a photo-z redshift uncertainty of σðzÞ ¼
0.05ð1þ zÞ. Our fiducial bias is bðzÞ ¼ 1. We explicitly
state below whenever these fiducial values are varied for
our tests.

C. ISW estimation

We use the optimal estimator derived in Ref. [30] to
reconstruct the ISW signal from LSS maps. Because we are
interested in quantifying the impact of galaxy survey
systematics, in this work, we focus on the case where
only galaxy maps are used as input. We thus neglect the
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part of the estimator that includes CMB temperature
information and write

âISWlm ¼
Xn
i

Ri
lg

i
lm: ð10Þ

Here, âlm is the optimal estimator for the ISW map
component, gilm is the observed spherical component of
LSS tracer i, and n is the number of LSS tracers considered.
The operator

Ri
l ≡ −Nl½D−1

l �ISW−i ð11Þ
is the reconstruction filter applied to the ith LSS map. It is
constructed from the covariance matrix Dl between ISW
and LSS tracers,

Dl ¼

0
BBBBBB@

CISW;ISW
l CLSS1;ISW

l � � � CLSSn;ISW
l

CLSS1;ISW
l CLSS1;LSS1

l � � � CLSS1;LSSn
l

..

. ..
. . .

. ..
.

CLSSn;ISW
l CLSS1;LSSn

l � � � CLSSn;LSSn
l

1
CCCCCCA
: ð12Þ

The term N−1
l ≡ ðD−1

l Þ11 estimates the reconstruction
variance.
Note that for reconstruction using a single LSS map this

reduces to a Wiener filter,

âISWlm ⟶
singleLSS CISW−gal

l

Cgal−gal
l

glm: ð13Þ

In the subsequent discussion, we will refer to the
correlations appearing in Dl (and thus the reconstruction
filters Ri

l) as C
model
l . This is to distinguish them from the

correlations used to generate the simulations, which wewill
call Ctrue

l . We adopt this convention because if we were
reconstructing the ISW signal based on real data Ctrue

l
would be the correlations determined by the true under-
lying physics of the Universe, while Cmodel

l would be
computed theoretically based on our best knowledge of
cosmological parameters and the properties of the input
LSS tracers.
Setting Cmodel

l ¼ Ctrue
l represents a best-case scenario

where we have perfect knowledge of the physics going into
the calculations outlined in Sec. II A. Incorrect modeling
will break that equality, causing the estimator in Eq. (10) to
become suboptimal. Our analysis of LSS in Sec. IV
systematics will fundamentally be an examination of
how different manifestations of this kind of Cmodel

l ≠
Ctrue
l mismatch impact reconstruction.

D. Fitting for effective galaxy bias

Our pipeline actually contains an additional step, which,
as we will see in later sections, helps protect against some

systematics; before constructing the ISW estimator, we fit
the galaxy maps for a constant bias.
When performing this procedure, the first step of our

reconstruction process is to measure the galaxy autopower

spectrum from the observed galaxy map, CgalðobsÞ
l . This will

be subject to cosmic variance scatter about Cgal ðtrueÞ
l and so

will be realization dependent. We then perform a linear fit
for a constant b̄ satisfying

CgalðobsÞ
l ¼ b̄2CgalðmodelÞ

l : ð14Þ

We then scale the model power spectra:

Cgal
l → b̄2Cgal

l ;

Cgal−ISW
l → b̄Cgal−ISW

l ;

C
gali−galj
l → b̄ib̄jC

gali−galj
l : ð15Þ

If there are no systematics affecting our measurements,

CgalðtrueÞ
l ¼ CgalðmodelÞ

l , so b̄ will be close to 1. When a
galaxy bias is modeled as a constant, b0, for each galaxy
map, this scaling will exactly correct for any mismatch
between the value used in the simulations and that in the
model used to construct the ISW estimator:

b̄ ¼ btrue0 =bmodel
0 : ð16Þ

Outside the case of constant bias, there is not a direct
correspondence between b̄ and the paramters of the bias
model. [It corresponds to the ratio between weighted
averages of bðzÞtrue and bðzÞmodel.] However, the procedure
for fitting for and scaling by b̄ is well defined and makes
our estimator robust against systematics which shift Cl’s
by a multiplicative constant, including mismodeled bðzÞ
and dn=dz. We will demonstrate this in Sec. IVA.

E. Evaluating reconstruction accuracy

We will use two statistics to quantify the accuracy of
reconstructed ISW maps. Primarily, we will use the
correlation coefficient between the true ISW signal
TISWðn̂Þ and the reconstructed ISW map Trecðn̂Þ. For a
given realization, we compute this as

ρ ¼ hTISWTrecipix
σISWσrec

; ð17Þ

where hipix indicates an average over pixels and σX is the
variance of map X.
We can approximate the theoretical expectation value for

ρ using the cross-power between maps,

hρi ¼
P

lið2lþ 1ÞRi
lC

ISW−i
l

hσrecihσISWi
; ð18Þ
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where the indices i and j label LSS maps and

hσISWi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
l

ð2lþ 1ÞCISW
l

r
ð19Þ

hσreci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
lij

ð2lþ 1ÞRi
lR

j
lC

ij
l

s
ð20Þ

are the standard deviations of the temperature maps. In
deriving this expression, we assumed hσ−1i ¼ hσi−1 and
that the various factors in this expression are uncorrelated.
We will see later that this is a reasonably accurate
approximation to make, as it gives values which are in
good agreement with simulation results.
One can see by examining Eqs. (17) and (18) that ρ is

sensitive to the reconstruction of phases but insensitive to
changes in the overall amplitude of the reconstructed ISW
map. Because of this, though ρ → 1 is generally indicative
of a more accurate reconstruction, this quantity does not
capture all important information about reconstruction
quality. We therefore also consider a complementary
statistic which is sensitive to amplitude, defined

s ¼ hðTISW − TrecÞ2i1=2pix

σISW
: ð21Þ

The quantity s measures how the average size of errors in
the reconstructed signal compares to that of fluctuations in
the true ISW map. As with ρ, we can compute its expect-
ation value,

hsi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσreci2 þ hσISWi2 − 2

P
lið2lþ 1ÞRi

lC
ISW−i
l

q
hσISWi

:

ð22Þ
Because the bias-fitting procedure discussed in Sec. II D

corrects for amplitude differences, for most of the scenarios
we study, ρ and s effectively contain the same information.
For this reason, we will primarily use ρ as our quality
statistic and will only show results for s when it contributes
new insight.
Throughout this paper, we will use angled brackets to

indicate the theoretical expectation values for these sta-
tistics and an overbar to indicate averages computed from
simulations.

III. RESULTS I: THE EFFECT OF SURVEY
PROPERTIES

Before studying the effects of systematics, it is instruc-
tive to explore how LSS survey properties impact ISW
signal reconstruction in the ideal, Cmodel

l ¼ Ctrue
l , scenario.

This has already been done to some extent in Refs. [22,30],
and [31].

Our studies in this section will serve two primary
purposes. First, they will provide a straightforward dem-
onstration of our pipeline and the reconstruction quality
statistics introduced in Sec. II E. More importantly, they
will serve as a baseline for our analysis of systematics in
Sec. IV. Our goal is not to find optimized survey properties
for ISW signal reconstruction, though our results might
serve as a rough guide for doing so. Rather, we want to
study how shifting, for example, survey depth or redshift
binning strategy affects ISW reconstruction in the best-case
scenario (with no systematic errors) so that we can better
understand the impact of what happens when those errors
are introduced.

A. Varying survey depth

The first property we examine is survey depth. We model
this by changing the value of z0 in our fiducial dn=dz
[Eq. (9)] while holding all other survey properties fixed. We
look at values Δz ¼ �0.1 on either side of our fiducial
z0 ¼ 0.7, plus a redshift distribution comparable to DES
[39] with z0 ¼ 0.5 and the even-shallower z0 ¼ 0.3.
Figure 2 shows a pixel-by-pixel comparison between the

reconstructed and true ISW signal for a single representa-
tive realization. We can see that the deeper surveys have
data points more tightly clustered around the TISW

rec ¼ TISW
true

diagonal and correspondingly higher values of ρ.
We find that this pattern holds, if noisily, in the full

ensemble of simulatedmaps. Figure 3 shows histograms of ρ
for the same surveys, with their dn=dz distributions shown
in an inset. In it, the sample average ρ̄ and theoretical
expectation value hρi are plotted as dashed and solid vertical
lines, respectively.We find that, though hρi tends to be lower
than ρ̄, the difference between them is much smaller than the
scatter in the data and that the ordering of hρi values for the

FIG. 1. Flowchart of reconstruction pipeline.
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different surveys is consistent with the results from simu-
lations. We take this to mean that the more computationally
efficient hρi is a slightly biased but reasonably reliable
indicator of the ISW reconstruction quality.
Looking at the data, we also note that the scatter in the

individual ρ distributions is large compared to the differ-
ence between their mean values. This tells us that, while hρi
(or ρ̄) values succeed in predicting how ISW reconstruction
quality from different surveys will compare on average,
they are a relatively poor predictor of how surveys will
compare for any individual realization.
For illustrative purposes, in Fig. 3, we also show a

histogram for the values of statistic s—which, recall, is

mainly sensitive to the amplitude accuracy in the map
reconstruction—measured from the same simulations. We
see that (as expected) surveys with larger ρ̄ have smaller s̄
and that the surveys with ρ̄ ∼ 0.9 correspond to s̄ ∼ 0.4.
This tells us that, even in the best maps that we study here,
errors in the reconstructed ISW temperature are a little over
one-third of the amplitude of true ISW signal fluctuations.
We keep the mean source number density n̄ fixed for

this analysis, so that any differences we observe in
reconstruction quality are due only to how the redshift
distributions are sampled, not to the fact that a deeper
survey will observe a larger number of sources. We argue
that this is well motivated because the only way n̄ enters our
calculations is via shot noise, and we have set it to a large
enough value so that its contributions are negligible on
large, ISW-relevant scales.

B. Redshift binning strategy

Here, we study how different strategies for binning
galaxy data affect the reconstruction. For each bin with
zi ≤ z < ziþ1, we model the redshift distribution by
weighting the survey’s overall distribution dntot=dz with
a window function FiðzÞ and scale the total number density
accordingly:

dni

dz
¼

dntot
dz FiðzÞR∞

0
dntot
dz FiðzÞdz

; ð23Þ

n̄i ¼ n̄tot ×

�Z
∞

0

dntot

dz
FiðzÞdz

�
: ð24Þ

Wecan then computeCXY
l using the expressions in Sec. II A,

treating each redshift bin as an individual map (X or Y).

FIG. 2. Scatter plot comparing the true (simulated) ISW signal,
on the horizontal axis, to the reconstructed ISW signal, on the
vertical axis, for a single realization assuming each of five
different depths of the survey. Each data point corresponds to
one pixel on an NSIDE ¼ 32 map. If there was a perfect
reconstruction, all points would fall on the dotted gray line.

FIG. 3. Histograms of the correlation between true and reconstructed ISW maps ρ (left panel) and the typical size of residuals relative
to that of the true ISW map fluctuations s (right panel). These plots show the results of 10,000 simulations for surveys of various depths,
with their dn=dz distributions shown in arbitrary units as an inset in the left plot. The solid and dashed vertical lines show the theoretical
expectation value and measured average, respectively, for the statistic in question.
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Photometric redshift uncertainties will cause sharp divi-
sions in observed redshift to be smoothed when translated
to spectroscopic redshift. As in Ref. [30], we therefore
model the effect of photometric uncertainties
σðzÞ via

FiðzÞ ¼
1

2

�
erfc

�
zi − z

σðzÞ ffiffiffi
2

p
�
− erfc

�
ziþ1 − z

σðzÞ ffiffiffi
2

p
��

; ð25Þ

which effectively acts as a smoothed top-hat window in z.
We use the standard form for photometric-redshift uncer-
tainty,

σðzÞ ¼ σz0 × ð1þ zÞ: ð26Þ

For reference, Euclid forecasts consider σz0 ¼ 0.05 a
requirement and give σz0 ¼ 0.03 as a reach goal [36,40].
In order to understand how binning affects ISW

reconstruction, we split our fiducial redshift distribution
into the six bins shown in Fig. 4 and compute all possible
auto- and cross-correlations between them. We then use the
relations from Ref. [41] to compute CXY

l for cases where
two or more adjacent bins are merged.
To check that our understanding of reconstruction sta-

tistics holds for surveys with multiple redshift bins, we
simulated 10,000 map realizations for three configurations:
the one-bin fiducial case, the six-bin case, and a three-bin
case with edges at z ∈ ½0; 0.8; 1.6; 3.5�. For all of these, we
used σz0 ¼ 0.05. The results, shown in Fig. 5, reveal that,
though binning slightly improves the reconstruction quality,
it does not dramatically change the shape of the ρ distribu-
tion nor the relationship between hρi and ρ̄.
We see that splitting data into redshift bins improves our

ISW reconstruction, if only slightly; the correlation
between the reconstructed and true map shifts by
Δρ≲ 0.03. This change is smaller than the observed scatter
in ρ and is comparable to that produced in the previous
section by shifting the survey depth by Δz ¼ �0.1 about
z0 ¼ 0.7. This improvement could be due to gains in

three-dimensional information or to the fact that we are
now using multiple LSS maps with uncorrelated noise.
Reassured that hρi is still a reliable statistic, we compute

it for all 32 possible combinations of the six bins from
Fig. 4. The results are shown in Fig. 6. In this figure, the
bars labeling the y-axis schematically illustrate the binning
configurations, with different colors corresponding to
different numbers of bins. The data points show hρi for
various values of σz0, while the X-shaped points with error
bars show the mean and standard deviations extracted from
the histograms in Fig. 4.
We note a couple of patterns in the results. First, for a

fixed number of bins, the reconstruction tends to be better if
we place finer divisions at high redshift. Also, having a
smaller photometric-redshift uncertainty actually slightly
degrades the reconstruction rather than improving it. This
implies that combining maps with redshift distributions
which overlap more tend to lead to better reconstructions.
This could be due a multitracer effect, in that overlap
between bins means that we are sampling the same
potential fluctuations with multiple source populations.
However, it is also possible this is due to how our model of
σðzÞ affects the shapes of the redshift distributions. Given
the small size of these effects, one should be cautious about
assigning them much physical significance.
Last, we observe a shift Δρ due to changes in binning that

is smaller than what is found in the work by Manzotti and
Dodelson [30] by about a factor of 3. Because their
simulated DES-like survey is shallower than our fiducial
survey and the relationship between Δρ and ρ̄ is nonlinear
(e.g., a shift from 0.98 to 0.99 is more significant than
one from 0.28 to 0.29), this does not necessarily mean that
our results are incompatible. As a cross-check, we per-
formed additional simulations similar to those analyzed in
Ref. [30]. Our results, discussed in Appendix A, support this.

FIG. 4. Un-normalized redshift distributions for the six redshift
bins studied, with photometric-redshift uncertainty σðzÞ ¼
0.05ð1þ zÞ. Because these distributions are not yet normalized
[they neglect the denominator of Eq. (23)], the area under the
curves gives an idea of the relative number of galaxies in each
bin. The dotted line shows the ISW kernel in arbitrary units.

FIG. 5. Histogram of ρ values measured from 10,000 map
realizations for selected binning strategies. The inset shows the
un-normalized dn=dz distributions for the sets of redshift bins
considered.
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C. Varying lmin of reconstruction

For most of the studies presented in this paper, we
reconstruct and assess the accuracy of ISW maps using all
multipoles with 2 ≤ l ≤ 95. This range is chosen because
l ¼ 2 is the lowest multipole typically considered for CMB
analysis and l ¼ 95 is the maximum multipole retaining
information in NSIDE ¼ 32 Healpix maps. In this section,
we study the effect of changing lmin.
When we perform ISW map reconstruction, we enforce

l-range requirements in three ways. First, when we
construct the ISW estimator shown in Eq. (10), we set
all Ri

l not satisfying lmin ≤ l ≤ lmax to be zero, so the
reconstructed map contains no information from multipoles
outside that range. Second, when analyzing simulations, we
remove the same l values from maps before computing ρ.
Likewise, when we analytically compute hρi as shown in
Eq. (18), we restrict the sum over multipole to
lmin ≤ l ≤ lmax. In other words, when we show ρl≥lmin

,
we are showing the result for an ISWmap reconstructed for
a limited range of l values, evaluated by considering only
those multipoles.
The results of this analysis are shown in Fig. 7. Here, we

show the correlation coefficient between true and recon-
structed maps ρ½l≥lmin� as a function of the minimum
multipole used in the reconstruction. The solid line is

the theoretical expectation value, while the data points with
error bars show results from simulations. We find that ρ
increases with the minimum multipole out to lmin ∼ 5, after
which it begins to very gradually decrease with lmin.
Increasing lmin also decreases the scatter in ρ measured
across realizations.

FIG. 6. Theoretical expectation value for ρ computed for different redshift binning strategies and levels of photometric-redshift
uncertainties. The colored bars and corresponding numbers on the left side of the plot are schematic labels for how the galaxies are
divided into redshift bins. Different colored points show the effect of different photo-z uncertainties. The X points with blue horizontal
error bars show the mean and standard deviation of ρ extracted from the histograms in Fig. 5.

FIG. 7. How filtering out angular scales with l > lmin affects
reconstruction of ISW map. The data points show the mean and
standard deviation of ρ, the correlation coefficient between true
and reconstructed ISW maps, observed in 10,000 realizations,
while the line shows the value of hρi computed analytically.
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We interpret these trends to be the result of a competition
between cosmic variance and the fact that most ISW
information (power and cross-power) is at small multipoles.
That is, removing the lowest few multipoles (out to l≃ 4)
from the analysis largely removes noise due to cosmic
variance, while removing further multipoles largely
removes ISW information. This has implications for efforts
to reconstruct ISW maps from data; if we only care about
small-angle features, it can be worth ignoring a few low-l
modes in order to get a more accurate reconstruction.
Conversely, if we want to study how the ISW signal
contributes to the CMB quadrupole and octupole, we must
recognize that reconstruction quality will be necessarily
less predictable.
Because cosmic variance of the ISW Cl has a nontrivial

relationship with the value and scatter of ρ, one cannot
make a direct connection between lmin and how fsky affects
reconstruction, as is done in the ISW signal-to-noise
detection studies (e.g., Ref. [37]). To understand how
sky coverage affects reconstruction, one should perform
simulations using the mask appropriate for a given survey.
We refer the reader to Ref. [31] for an analysis of how ISW
signal reconstruction is affected by survey masks.
We also looked at the impact of varying lmax but found

that the correlation coefficient ρ is insensitive to it, and
therefore do not show it.

D. Varying n̄

Additionally, we studied how the level of galaxy shot
noise affects reconstruction. For this test, we varied the
number density of sources, n̄, for our fiducial survey and
introduced it to both Ctrue

l and Cmodel
l according to Eq. (6).

Our results are shown in Fig. 8.
We find that as long as n̄≳ 1 arcmin−2 ≈ 107 sr−1, shot

noise will have a negligible impact on reconstruction. Note

that this requirement is easily satisfied by essentially all
photometric surveys [e.g., for DES or Euclid,
n≃ ð10–30Þ arcmin−2]. However, the quality of the
reconstruction degrades rapidly for lower values of
number density; once n̄≲ 10−3 arcmin−2 ≈ 104 sr−1, the
reconstruction contains effectively no information about
the true ISW map. Therefore, ISW reconstruction from
spectroscopic galaxy surveys, as well as galaxy cluster
samples, may be subject to degradations due to high
shot noise.

IV. RESULTS II: THE EFFECT OF SURVEY
SYSTEMATICS

Large-scale structure surveys are subject to a variety of
systematic errors that limit the extent to which LSS tracers
can be used to probe dark matter, dark energy, and
primordial physics. These systematics can be astrophysical,
instrumental, or theoretical in origin. Concretely, in this
work, they include anything that makes Cmodel

l ≠ Ctrue
l ,

which will cause the estimator given in Eq. (10) to become
suboptimal. Our goal is to study these LSS systematics
generally, without requiring specific information about a
LSS survey (e.g., wavelengths at which it observes the sky).
We do this by considering two broad classes of LSS
systematics:
(1) Mismodeling of the distribution of LSS sources

along the line of sight.
(2) Direction-dependent calibration errors.

Our studies will give us some insight into which, and how
much, systematics need to be controlled if one wishes to
use LSS data to reconstruct a map of the ISW signal.

A. Modeling redshift distribution of sources

In the context of ISW map reconstruction, it would be
reasonable to guess that accurate knowledge of galaxy
redshifts is important for our ability to correctly associate
the observed number density fluctuations on the sky with
the three-dimensional gravitational potential fluctuations
which source the ISW signal. Uncertainties about redshift
distributions are a pervasive class of systematics affecting
LSS surveys, which have already been studied by numer-
ous authors (e.g., Refs. [42,43]) in the context of cosmo-
logical parameter measurements from photometric surveys.
Here, we study how redshift modeling errors affect the ISW
reconstruction accuracy.
For the purposes of this discussion, we define redshift

uncertainties broadly as anything that makes the galaxy
window function [Eq. (5)] used in our ISW estimator
different from that which describes the true line-of-sight
distribution of objects we observe on the sky. We study
three specific cases of this: the mismodeling of a survey’s
median redshift, redshift-dependent bias, and the fraction
of catastrophic photometric-redshift errors. In each case,
we identify a parameter which controls the survey

FIG. 8. How changing n̄ affects the reconstruction of the ISW
map. The data points show the mean and standard deviation of ρ,
the correlation coefficient between true and reconstructed ISW
maps, observed in 10,000 realizations. The line shows the value
of hρi computed analytically.
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characteristic in question. Then, choosing a true (simula-
tion) value for that parameter, we perform reconstructions
using several mismodeled values as input to the ISW
estimator. This allows us to study how the quality statistics
respond when the estimator becomes non-optimal.
Let us place these shifts in context by referring to

previous sections. In an ideal scenario with no systematic
errors, changing the survey depth parameter (see Sec. III A)
from the fiducial z0 ¼ 0.7 to 0.6 (0.8) causes hρi to change
by 3% (1.5%) and hsi by 20% (10%). Also, splitting our
fiducial survey into six redshift bins (in Sec. III B)
improves hρi by 3% relative to the one-bin case.

1. Median redshift

We begin by studying how reconstruction accuracy
responds when we construct the ISW estimator using the
wrong median LSS source redshift. Though the parameter
z0 in the dn=dz distribution given in Eq. (9) is lower than
zmedian, raising or lowering it will have a similar effect as
shifting the median of the distribution. We thus use z0 as a
proxy for median redshift. We compute Ctrue

l with z0 fixed
at its fiducial value of 0.7 and vary the z0 values used to
compute Cmodel

l .
Figure 9 shows the fractional change in our

reconstruction statistics when the value of z0 used for
reconstruction is shifted from its true value by �1%,
�10%, �20%, �30%, and �50%. We see that, even for
large shifts in z0 (with correspondingly dramatic mis-
matches between the true and model dn=dz), the fractional
change in ρ is less than Oð10−3Þ. The effect on s is also
small; for all but the most extreme points, the fractional
change in the size of residuals hsi is less than 10%.
To understand this lack of sensitivity of z0, it is

instructive to note that varying z0 changes Cl by a nearly
scale-independent amplitude. (See Appendix B for plots
demonstrating this.) As we observed in Sec. II E, ρ, the
correlation coefficient between true and reconstructed ISW

maps is insensitive to overall shifts in the map amplitude.
The fact that it does not respond strongly to these changes
in z0 is thus not surprising. The statistic hsi, which
measures the size of residuals, is sensitive to changes in
amplitude, however. The fact that it also displays small
fractional changes illustrates the importance of the bias-
fitting procedure described in Sec. II D. Because the effects
of mismodeling z0 are degenerate with shifts in constant
bias, fitting for b̄ protects our reconstruction against this
kind of systematic.
For comparison, we compute hρi and hsi while neglect-

ing the bias-fitting step and show the results as gray points
in Fig. 9. We see no change in the ρ plot (the gray points are
directly behind the blue ones), reflecting the fact that ρ is
insensitive to constant multipliers. In the s plot, we see that
the bias-fitting procedure suppresses the size of the
reconstruction errors by about an order of magnitude.
To summarize, we find that the quality of the ISW

reconstruction is much less dependent on our knowledge of
the survey’s median redshift than naively expected. The
median redshift mostly changes the normalization of the
Cl, but so does the galaxy bias (which, recall, is to a good
approximation scale independent at the large scales we are
studying). By fitting for the bias parameter in the angular
power spectrum—something that is typically done in LSS
surveys regardless of their application—one effectively
also fits for z0. As a result, the combination of the galaxy
bias and survey depth that enters the amplitude of the Cl is
fit to the correct value.

2. Redshift-dependent bias

Here, we study what happens if the redshift dependence
of the galaxy bias is modeled incorrectly. Using the
functional forms given in Ref. [22] for guidance, we
parametrize the redshift dependence of the bias via

bðzÞ ¼ b0ð1þ b2ð1þ zÞ2Þ: ð27Þ

FIG. 9. Impact of mismodeling survey depth on the expected correlation between the true and reconstructed ISW maps hρi (left panel)
and the ratio of the average size of residuals to that of ISW map features hsi (right panel). The true value of the parameter z0, which
controls the depth of the survey, is fixed at 0.7, while the values used for reconstruction are shown on the x-axis. The blue circular points
show results from our standard reconstruction pipeline, while the gray diamond-shaped points (directly behind the blue points in the ρ
plot) show results when we skip the b̄-fitting step. The y-axis is linear within one tick mark of zero; otherwise, it has logarithmic scaling.
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For this study, we set b0 ¼ 1 and vary b2, noting that
Ref. [22] uses b2 ∼ 0.5 for sources in NVSS and
WISE-AGN.
In the expression for Cl, bðzÞ appears inside the same

integrand as dn=dz, so changes to bðzÞ have an effect
similar to altering the LSS source redshift distribution. The
results here, shown in Fig. 10, are thus similar to what was
seen in the previous section. Increasing b2 mostly just
increases the overall amplitude of the galaxy Cl’s, so the
reconstruction is not very sensitive to b2 once we fit for
b̄. For example, if the true value of b2 is 0.5 and we
reconstruct the ISW signal assuming no redshift depend-
ence (b2 ¼ 0), the fractional change in hρi is Oð10−4Þ, and
the fractional change in hsi is Oð10−2Þ. The reason the
b̄-fitting step has a larger effect here than in the z0 study
above is probably because the normalization requirements
of dn=dz somewhat limit the size of Cl amplitude shifts,
whereas bðzÞ has no such normalization scaling.

3. Catastrophic photo-z error rate

Galaxies in photometric-redshift surveys are also subject
to so-called catastrophic photometric-redshift errors—
cases where the true redshift is misestimated by a signifi-
cant amount [43,44]. This is a distinct effect from the
photo-z uncertainty modeled in the binning tests in
Sec. III B, which causes a redshift bin selected using sharp
cuts in photo-z to occupy a smoothed distribution in the
spectroscopic redshift. Rather, for galaxies suffering cata-
strophic photo-z errors, the photometric-redshift finding
algorithms have failed, and the spectroscopic redshift
corresponding to a given photo-z is effectively randomized.
The reasons for this are not fully understood, but, like the
conventional photo-z error case, the rate and outcome of
catastrophic errors depend strongly on the number of
photometric filters and their relation to the spectral features
that carry principal information about the redshift.
In the absence of detailed, survey-specific information

about the photometric pipeline, we model catastrophic

redshift errors by randomly assigning the true redshift of
a fraction x of the galaxies in our sample (e.g., x ¼ 0.01
means that one in a hundred galaxies has a catastrophic
photo-z error.) We implement this by modifying the redshift
distribution of each bin i to

d ~ni

dz
¼ ð1 − xÞ dn

i

dz
þ xn̄i½Θðz − zminÞ − Θðzmax − zÞ�; ð28Þ

where x is the fraction of galaxies suffering catastrophic
errors, dni=dz is the redshift distribution of bin i without
catastrophic errors, and Θ is the Heaviside step function.
The added term on the right models the fact that, of the n̄i

galaxies assigned to that photometric-redshift bin, xn̄i of
them have spectroscopic redshifts which are randomized
across the full range of the survey. For our analysis, we
choose the range of these randomized redshifts to be
z ∈ ½zmin; zmax� ¼ ½0.01; 2.5�. In practice, we significantly
smooth the edges of the step function to avoid numerical
artifacts in our Cl calculations.
For this study, we use two different true (simulation)

catastrophic photo-z fractions: x ¼ 0.01 and 0.1; these
value roughly bracket the currently achieved levels of
catastrophic outliers in current surveys (e.g., CFHTLens
[45]). Figure 11 shows the fractional change in hρi and hsi
when the ISW estimator is constructed assuming various
values of x, with true x ¼ 0.01 and x ¼ 0.1 shown in blue
and brown lines, respectively.
Our results show us two things. First, though mismod-

eling x results in more significant changes than what was
seen for the survey depth and redshift-dependent bias, the
shifts are still relatively small; in the worst-case scenarios,
hρi shifts by less than 10%, and hsi shifts by about 20%.
Second, the constant-bias-fitting step of our pipeline does
not provide protection against mismodeled catastrophic
photo-z error rates. This is because the dn=dz modification
in Eq. (28) alters Cl in a scale-dependent way, as can be
seen in the plots in Appendix B.

FIG. 10. Impact of mismodeling redshift-dependent bias on the expected correlation between the true and reconstructed ISWmaps hρi
(left panel) and the typical size of residuals relative to that of ISW map features hsi (right panel). The bias is modeled as bðzÞ ¼
1þ b2ð1þ zÞ2 with the true value fixed at b2 ¼ 0.5 and the values used in the ISW estimator shown on the x-axis. Both axes have
logarithmic scaling except in regions within one tick mark of zero, where they are linear. The blue circular points show results from our
standard reconstruction pipeline, while the gray diamond-shaped points (directly behind the blue points in the ρ plot) show results when
we skip the b̄-fitting step.
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To check whether catastrophic photo-z errors are more
damaging when LSS data are binned in redshift, we ran a
similar analysis for a case where the fiducial dn=dz was
split into three redshift bins. We observed fractional
changes in the quality statistics similar to those seen for
the one-bin case, so we conclude that our results are
roughly independent of the binning strategy.
In summary, we find that properly modeling a survey’s

catastrophic photo-z error fraction is more important for
preserving ISW reconstruction quality than either its depth
or redshift-dependent bias but that, overall, reconstruction
is relatively robust against these kinds of errors.

B. Photometric calibration errors

Photometric calibration errors are a very general class of
systematics that cause themagnitude limit of a survey to vary
across the sky. This introduces direction-dependent number
density variationswhich do not correspond to fluctuations in
physical matter density, thus biasing the observed galaxy
power spectrum. Examples of photometric calibration errors
include atmospheric blurring, unaccounted-for Galactic
dust, and imperfect star-galaxy separation, among other
things. A number of recent LSS observations have found
a significant excess of power at large scales [46–51],
suggesting the presence of this kind of error.
We adopt a parametrization of calibration errors from

Huterer et al. [52], who presented a systematic study of the
effects of calibration errors and requirements on their
control for cosmological parameter estimates. See also
Refs. [53–55] for other approaches. We model photometric
calibration errors in terms of a calibration error field cðn̂Þ
which modifies the observed number density Nobs via

Nobsðn̂Þ ¼ ð1þ cðn̂ÞÞNðn̂Þ: ð29Þ

This kind of direction-dependent “screen” is straightfor-
ward to implement on the level of maps but complicates the
process of computing the theoretical expectation value for
our statistics, hρi and hsi. Because multiplicative effects

introduce mixing between spherical components of the
galaxy maps, there is a nontrivial relationship between the
power spectra for the true galaxy distribution, the observed
galaxy distribution, and the calibration error field cðn̂Þ.
(See, for example, Refs. [52,55].) To make calculations
tractable, we use the fact that calibration error effects will
be dominated by additive contributions at large angular
scales and estimate

½CXY
l �obs ≈ CXY

l þ CcalXY
l − δl0cX00c

Y
00

ð1þ cX00=
ffiffiffiffiffiffi
4π

p Þð1þ cY00=
ffiffiffiffiffiffi
4π

p Þ : ð30Þ

Here, CcalXY
l is the cross-power between calibration error

fields affecting maps X and Y. The cX00 ≡ ðCcalX
l¼0Þ1=2 terms

are their monopoles, which contribute by shifting n̄X. We
derive this expression in Appendix C.
Note that this modification is only applied to Ctrue

l . We
wish to study the impact of uncorrected calibration errors,
so we will always (when analyzing simulations or calcu-
lating quality statistic expectation values) compute Cmodel

l
without including calibration error effects.
For this analysis, we adopt a functional form for the

calibration error field power spectrum,

Ccal
l ¼

�
αcal exp ½−ðl=10Þ2� if l ≤ 30

0 otherwise;
ð31Þ

where αcal is a normalization constant set to fix the variance
of cðn̂Þ to a desired value. The variance is given by

var½c�≡ hc2ðn̂Þi ¼ ð4πÞ−1
X
l

ð2lþ 1ÞCcal
l : ð32Þ

The form of Eq. (31) is inspired by power spectrum
estimates for maps of dust extinction corrections and
magnitude limit variations in existing surveys. (See
Figs. 5 and 6 in Ref. [52]) Using this power spectrum,
we generate independent Gaussian realizations of cðn̂Þ

FIG. 11. Impact of mismodeling the fraction x of galaxies subject to catastrophic photo-z errors on the expected correlation between
the true and reconstructed ISW maps hρi (left panel) and the typical size of residuals relative to that of ISW map features hsi (right
panel). Both axes have logarithmic scaling except in regions within one tick mark of zero, where they are linear. The blue and brown
circular points show results from our standard reconstruction pipeline when the true value of x is 0.1 and 0.01, respectively. The gray
diamond-shaped points (directly behind the other points in the ρ plot and the blue points in the s plot) show results when we skip the
barb-fitting step.
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which are then combined with our simulated galaxy maps
according to Eq. (29). These postprocessed maps are then
used as input for ISW reconstruction.

1. Context: Current and future levels of calibration error

To put our results in context, it is useful to identify what
values of variance in the calibration field var½c� are
expected from current and future surveys. Here, we
emphasize that we are talking about residual calibration
errors—that is, calibration errors which are not properly
corrected for and thus can cause biases in cosmological
inferences.
Above, we defined these errors in terms of variations in

the number of observed galaxies. To relate this to variations
in a survey’s limiting magnitude, we must multiply the
magnitude variations by a factor of lnð10ÞsðzÞ, where
sðzÞ≡ dlog10N=dmjmlim is the survey-dependent faint-
end slope of the luminosity function; see Eq. (30) in
Ref. [52]. We adopt sðzÞ≃ 0.3 estimated from the simu-
lations of Ref. [56], assuming a median galaxy redshift
z ∼ 0.75. This means that the conversion factor is
lnð10ÞsðzÞ ∼ 1, and variance in calibration is roughly
equal to that in the limiting magnitude, cðn̂Þ≡
ðδN=NÞðn̂Þ≃ ðδmÞlim.
With these assumptions, the smallest currently achiev-

able variance of the calibration error cðn̂Þ is of order
var½c� ∼ 10−3 (e.g., Fig. 14 in Ref. [53]). For example,
residual limiting magnitude variations in the SDSS DR8
survey are at the level of 0.03 mag [57], again implying that
var½c�≃ 10−3. Note that, while the impressive SDSS “uber
calibration” to 1% [58] would imply an order of magnitude
smaller variance, this might be difficult to achieve in
practice because there are sources of calibration error that
come from the analysis of the survey and are not addressed
in the original survey calibration. We show the current
levels of residual calibration errors value as a blue vertical
band in Fig. 12, spanning a range between the optimistic

level associated with the SDSS uber calibration to the more
conservative var½c� ¼ 10−3.
In the same figure, we also show the future control of

calibration errors required to ensure that they do not
contribute appreciably to cosmological parameter errors
—e.g., those in dark energy and primordial non-
Gaussianity. This range, forecasted assuming final DES
data and adopted from Ref. [52], is shown as a green band
spanning var½c� ∼ 10−6 − 10−5. The lower bound is set by
the requirement that the bias to cosmological parameter
estimates be smaller than their projected errors, while 10−5

is chosen as an intermediate value between that and
var½c� ¼ 10−4, which introduces unacceptable levels of
bias. (See Fig. 4 of Ref. [52].) These should be viewed
as only rough projections, as the precise requirements
depend on the faint-end slope sðzÞ of the source luminosity
function, the cosmological parameters in question, and the
shape of the calibration field’s power spectrum Ccal

l .

2. Results for ISW reconstruction

We find that even small levels of calibration error can
have a significant impact on ISW reconstruction quality.
Figure 12 shows how the correlation between true and
reconstructed maps, ρ, and the reconstructed map residuals,
s, respond to different levels of calibration error.
Reconstruction quality starts to degrade when

var½c� ∼ 10−6, which roughly corresponds to the same
0.1% magnitude calibration required to achieve cosmic-
variance-limited ISW detection [32]. At this level, we see ρ
begin to move away from its best-case (no calibration error)
value, and the s plot shows that residuals are comparable in
amplitude to fluctuations due the true ISW signal.
Once the calibration error power starts to dominate over

the galaxy autopower, occurring around var½c� ∼ 10−4, the
reconstruction contains little information about the true
ISW signal. Here, the scatter in ρ overlaps with zero, and
we see that the reconstructed map residuals approach a

FIG. 12. The effect of photometric calibration errors on reconstruction quality. We show results for the correlation coefficient between
true and reconstructed ISW maps (left panel) and for the typical size of map residuals relative to the variance of the true ISW map (right
panel). The lines show the expectation from theory, considering only additive contributions from calibration errors, while the data points
show the mean and standard deviation from 10,000 simulated map realizations. The shaded regions show the current and projected levels
of control over residual calibration errors discussed in Sec. IV B 1.
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constant value. See Appendix D for an explanation of why
we expect this to occur.
Comparing these numbers to the shaded bands, we see

that, with current levels of calibration error control, we have
little hope of accurately reconstructing the ISW signal with
galaxy survey data alone. Encouragingly, though, the levels
of control required to obtained unbiased cosmological
parameter estimates from next-generation surveys [52] are
precisely the levels needed for accurate ISW reconstruction.
We note that the additive-error-only theory calculations

show good agreement with our results from simulations,
and so can be useful as a computationally efficient indicator
of when calibration errors become important. In light of
this, we also computed hρi and hsi using a power law
spectrum, Ccal

l ∝ l−2, in order to check how sensitive our
results are to the shape of the calibration error field’s power
spectrum. This more sharply peaked spectrum caused
reconstruction quality to start degrading at a slightly
smaller var½c� compared to the Gaussian model, but
otherwise showed similar results. This can likely be
explained by the fact that the power law Ccal

l reaches
higher values at low l for a given field variance, which
means it can start dominating over true galaxy power at
those multipoles earlier.

3. Mitigation by raising lmin

Because calibration error fields tend to have the most
power on large scales, we looked at whether raising lmin
can mitigate their impact. Our results, shown in Fig. 13,

show that raising lmin from 2 to 3 or 5 causes the error bars
denoting the scatter in ρ to cross zero at a higher value of
var½c�. However, this effect is small, and we conclude that
raising lmin provides only limited protection against
calibration errors.

V. IMPLICATIONS FOR COSMIC ALIGNMENTS

Over the past 15 years, as the full-sky CMB maps
provided by the WMAP and Planck experiments became
available, increasing evidence has been found for anoma-
lies at large angular scales. In particular, angular correla-
tions at scales above 60 deg on the sky seem to be missing,
while the quadrupole and octupole moment of the CMB
anisotropy are aligned both mutually and with the geometry
and the direction of motion of Solar System. The origin for
the anomalies is not well understood at this time; they could
be caused by astrophysical systematic errors or foregrounds
or cosmological causes (like departures from simple infla-
tionary scenarios), or they could be a statistical fluctuation,
albeit a very unlikely one. The anomalies have most
recently been reviewed in Ref. [25].
Some authors [26,27] have commented on the fact that

current efforts to “peel off” the ISW contribution from the
CMB maps indicate that the significance of some CMB
anomalies is “significantly reduced” once the ISW con-
tribution is subtracted. If true, this statement implies that
the observed anomalies are either due to features in the ISW
map or caused by an accidental alignment of the early- and
late-time CMB anisotropy [59]. In any case, statements on
how the primordial and late CMB combine to produce the
anomalies clearly depend on the fidelity of the recon-
structed ISW contribution to the CMB, which is the subject
of our work.
Our goal here is not to carry out a full investigation of the

ISW map reconstruction’s effect on the anomalies’ signifi-
cance. Instead, we would like to simply build intuition on
how much imperfect reconstruction affects inferences
about the anomalies.
To that end, we pose the following question: if we

assume for the moment that an ISW map reconstructed
using available LSS data happens to show a significant
quadrupole-octupole alignment, what is the likelihood that
the true ISW map is actually aligned? Note that we in no
way imply that the ISW-only alignment scenario is a
favored model for the observed CMB anomalies. We
simply want to study how robust certain properties of
the ISW map, particularly the phase structure of the
anisotropies in the map, are to the reconstruction process.
To study the alignments, we adopt the (normalized)

angular momentum dispersion maximized over directions
on the sky, defined as [60,61]

ðΔLÞ22þ3; true ≡max
n̂

�Pl
m¼−l m

2jalmðn̂Þj2
l2

P
l
m¼−l jalmðn̂Þj2

�
; ð33Þ

FIG. 13. Exploration of whether raising lmin can mitigate the
impact of photometric calibration errors on ISW signal
reconstruction. The top panel shows the mean and standard
deviation of ρ, the correlation between the true and reconstructed
ISW maps, measured from 10,000 simulations. The bottom panel
shows the fractional change in ρ relative to the case with no
calibration errors. Points for different values of lmin are staggered
so that the errors bars are legible; each cluster of three points
shares the same value of var½c�.
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where almðn̂Þ are expansion coefficients of the map in a
coordinate system where the z-axis is in the n̂ direction.
Hence, the maximization is performed over all directions n̂;
note that only the numerator of the expression in angular
parentheses depends on the direction, and see Sec. V. 6 of
Ref. [61] for the algorithm to efficiently compute the
maximization. Intuitively, high values of the angular
momentum indicate significant planarity of the l ¼ 2
and l ¼ 3 modes as well as their mutual alignment.
We set up the following pipeline:
(i) Start with 10,000 random realizations of the true

ISW map and the corresponding LSS maps (so that
each LSS map contains gravitational potential field
that produces the corresponding ISW map).

(ii) For each true ISW map, measure the angular mo-
mentum dispersion ðΔLÞ22þ3;true defined in Eq. (33).

(iii) Reconstruct each map assuming a fiducial LSS
survey and repeat the calculation to get a set
of ðΔLÞ22þ3; rec.

(iv) Make a scatter plot of ðΔLÞ22þ3; rec vs ðΔLÞ22þ3; true,
which will show how much and in which direction
reconstruction biases the alignment information.

The results are summarized in Fig. 14. There, we show
how the inferred angular momentum dispersion of the
combined quadrupole and octupole is affected by
reconstruction for 10,000 randomly generated ISW maps.
The x-axis shows the value for the is the true ISW map,
while the y-axis shows values reconstructed from our
fiducial LSS survey at two alternate depths, z0 ¼ 0.7

(red points) and 0.3 (black points). We find that the true
and reconstructed angular momentum dispersions are not
very correlated, having a correlation coefficient of only
0.58 for z0 ¼ 0.7 and 0.11 for z0 ¼ 0.3.
We also denote the value for the angular momentum

dispersion of the WMAP/Planck full map, which includes
both primordial and late-time ISW contributions, at
ðΔLÞ22þ3 ≃ 0.95. (The precise value varies slightly depend-
ing on the map. [25,61].) Of the z0 ¼ 0.7 (0.3) recon-
structed maps which have ðΔLÞ22þ3 as high as or higher
than the WMAP and Planck CMB maps (points falling in
the shaded gray region), only 10% (2%) have correspond-
ing true maps which satisfy the same high angular
momentum dispersion criterion.
Investigating the implications of the ISW reconstruction

on the inferences about the alignments of primordial-only
and ISW-only maps in depth is beyond the scope of this
paper. Nevertheless, our simple test indicates that at least
the quadrupole-octupole alignment in the ISW-only maps is
not very robust under ISW reconstruction using realistic
LSS maps, even without taking into account calibration and
other systematic errors.

VI. CONCLUSION

In this work, we use simulated ISW and LSS maps to
study the accuracy of ISW signal reconstructions per-
formed using LSS data as input. In particular, we study
how systematics associated with galaxy surveys affect the
ISW map reconstruction. We measure reconstruction accu-
racy using two quality statistics: ρ, the correlation coef-
ficient between the true and reconstructed ISW maps, and
s, the rms error in the reconstructed map relative to the rms
of true ISW map features.
In the absence of systematics, we find that increasing

survey depth improves these statistics (brings ρ closer to 1
and lowers s), though the shifts in their average values are
small compared to their scatter. Similarly, splitting the
survey data into redshift bins leads to moderate improve-
ment. The reconstruction quality improvement due to
increasing survey depth by Δz ¼ 0.1 is comparable to that
gained by splitting into three redshift bins: both lead to
improvement Δρ̄ ∼ 0.02, or Δρ̄=ρ̄ ∼ 2%. We also find that
reconstruction can be slightly improved if we are willing to
neglect the reconstruction of very low-lmultipoles; increas-
ing our fiducial lmin ¼ 2 to 5 results in Δρ̄ ∼ 0.01 and a
reduction in the scatter of ρ by about a factor of 2. Last, we
find that galaxy shot noise has a negligible impact as long as
n̄≳ 1 arcmin−2 ≈ 107 sr−1. These results provided a base-
line comparison for our studies of systematics.
The first class of systematics we study are those

associated with mismodeling the line-of-sight distribution
of LSS sources. By examining what happens to
reconstruction quality when different galaxy window
functions are used for the ISW-estimator input Cmodel

l than
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FIG. 14. The relationship between the true (x-axis) and re-
constructed (y-axis) angular momentum dispersion ðΔLÞ22þ3,
defined in the text, for the combined quadrupole and octupole
in 10,000 randomly generated ISW maps. Results are shown for
two alternate survey depths: our fiducial LSS survey with z0 ¼
0.7 (red points) and z0 ¼ 0.3 (black points), which have corre-
lation coefficients 0.58 and 0.11, respectively. The gray region
denotes ðΔLÞ22þ3 as high or higher than measured in WMAP and
Planck CMB maps, while the diagonal line is points where the
true and reconstructed values match. See the text for details.
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for the simulation-generating Ctrue
l , we find that ISW signal

reconstruction is robust against these kinds of errors. We
study the mismodeling of survey depth and redshift-
dependent bias and find that fractional shifts in hρi are
less than Oð10−4Þ for all but the most extreme cases.
Inaccurately estimating the fraction of catastrophic photo-z
errors results in a larger shift, which depends on the true
fraction, but at worst this degrades hρi by about a percent.
Reconstruction quality is likely to be similarly insensitive
to other direction-independent modeling uncertainties, for
example, the choice of cosmological parameter values and
maybe models of modified gravity.
The fact that we fit data for a constant galaxy bias is the

key to this robustness. This is because the modeling errors
discussed above change the galaxy spectrum by a mostly
scale-independent amplitude, which is degenerate with a
shift in constant bias b̄. Thus, the more a given systematic
changes the shape (rather than amplitude) of galaxy Cl,
the more of an impact it will have on ISW signal
reconstruction.
We find that photometric calibration errors are by far the

most important systematic to control if one wants to
construct a map of the ISW signal from LSS data. For
the reconstructed ISW map to contain accurate information
about the true ISW signal, calibration-based variations in
number density must be controlled so that the calibration
error field c, defined via Nobsðn̂Þ ¼ ð1þ cðn̂ÞÞNðn̂Þ, has a
variance less than 10−4. Even at that level, which is
optimistic for current surveys, the reconstruction quality
is significantly degraded compared to the case with no
systematics. For the model we studied, in order to keep that
degradation smaller than Oð10%Þ, calibration errors must
be controlled so that var½c� ≲ 10−6. This is a similar level to
what is required to avoid biasing cosmological parameter
estimates made with future survey data. Prospects for the
mitigation of these effects by neglecting low-l multipoles
are limited.
We also briefly explore the viability of using recon-

structed ISW maps to comment on the significance and
origins of observed large-angle CMB anomalies. We do
this by comparing the level of alignment, parametrized in
terms of angular momentum dispersion, observed for the
l ¼ 2, 3 modes of true and reconstructed ISW maps. We
find that, even in the absence of systematics, the amount of
alignment was only weakly correlated between these maps.
For example, the values of true and reconstructed angular
momentum dispersion had a correlation coefficient of only
0.58 for our fiducial survey. Therefore, recovering precise
alignments of structures in the ISW map, using only LSS
data as input, seems like a very challenging prospect.
These results have implications for current and future

attempts to reconstruct the ISW signal. Most significantly,
they tell us that understanding the level and properties of
residual calibration errors in LSS maps is vital to assessing
the accuracy of reconstructions made using those maps as

input. Given the current levels of calibration error control, at
face value, our results would seem to imply that
reconstruction using existing data is hopeless. Thus, a
productive avenue for future work would be to modify
the ISW reconstruction pipeline to make it more robust
against calibration errors, by including them in the ISW
estimator’s noise modeling or by some other method. Since
the presence of uncorrected calibration errors will cause one
to underestimate galaxy-galaxy noise, it would also beworth
turning a critical eye toward how calibration uncertainties
affect the evaluation of ISW detections’ signal to noise.
We note that using multiple cross-correlated LSS data

sets—which map the same potential fluctuations but are
presumably subject to different systematics—will mitigate
the impact of calibration errors, as will combining LSS
maps with CMB temperature and polarization data. The
results of the binning test in Sec. III B provide provisionary
evidence for this, though for that study it is not possible to
disentangle the effects of noise mitigation from those of
adding tomographic information. An interesting extension
to this work would thus be to explore in more detail
whether and to what extent using multiple LSS maps
protects ISW reconstruction against calibration errors.
Studying the combination of multiple surveys introduces
a number of new questions: one might study, for example,
how the strength of correlation between galaxy maps
influences the improvement in reconstruction due to their
combination or what happens when calibration errors for
multiple maps are correlated. In order to give these
questions their due attention, and for the same of concise-
ness, we defer this study to a followup paper.
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APPENDIX A: CROSS-CHECK WITH MANZOTTI
AND DODELSON [30]

Here, we perform a crosscheck of our reconstruction
procedure against Manzotti and Dodelson [30] (MD). In
their paper, MD perform simulations for an NVSS-like
survey and a DES-like survey in two- and three-binned
configurations. We attempt to simulate ISW reconstruction
for similar surveys.
For the NVSS-like survey, we use the analytic

dn=dz distribution given by MD, integrating between
0.01 ≤ z ≤ 6 when computing its Cl. The redshift distri-
butions used for these simulations are shown in the left
panel of Fig. 15. For the DES-like survey, we adjusted the
parameters in our fiducial dn=dz model by eye so that the
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three-binned case is similar to that shown in MD’s relevant
figure. For the three-binned case, we place bin edges at
z ∈ ½0.1; 0.5; 1.0; 1.6�. Because MD do not describe how
the two-binned case is divided, we somewhat arbitrarily
place the bin edges at z ∈ ½0.1; 0.5; 1.6�. Like MD, we
include multipoles 3 ≤ l ≤ 80 in our analysis. We leave n̄
at our fiducial value of 109 for all of these surveys. This
value was selected based on an assumption that shot noise
contributions would be negligible, but we note below that
this is likely not the case.
The right panel of Fig. 15 shows a histogram of the ρ

values for 10,000 map realizations in our study, with
the values from MD shown with arrows. We find that
our ρ̄ values are systematically higher than, but not wildly
incompatible with, those in MD. It is hard to specifically
identify a cause for this without more information, but the
discrepancy is most likely due to differences in the amount
of Poisson noise we add to our galaxy maps. We note, for
example, that we can get our hρi for the NVSS-like survey
to roughly match the MD value if we reduce our

simulation’s n̄ to ∼5 × 105. If we set n̄ to the value reported
for NVSS by MD, n̄ ¼ 5 × 104 sr−1 ≈ 16 deg−2, we get a
lower value of hρi ¼ 0.22.
The shift between the two- and three-bin DES surveys in

our simulations is larger than the Δρ ∼ 0.03 seen in the
binning study of Sec. III B. This supports our hypothesis
that ρ̄ shifts more easily at lower ρ values. The fact that our
observed shift is still only about half the size of that by MD
is probably also due to the fact that we are finding larger ρ̄
values than they do.

APPENDIX B: Cl PLOTS FOR SEC. IVA

Figure 16 shows how galaxy-galaxy and galaxy-ISW
power spectra respond to changes in the parameters
discussed in Sec. IVA. We study the effect of survey
depth by shifting the parameter z0 in Eq. (9), redshift
dependence of bias by changing b2 in Eq. (27), and the
fraction of galaxies x subject to catastrophic photometric-
redshift errors via Eq. (28).

FIG. 15. Left panel: Redshift distributions of surveys, chosen to match the LSS surveys studied in Ref. [30]. Right panel: Histogram of
ρ found for 10,000 simulations of surveys with redshift distributions shown in the left panel. Values of ρ̄ from Ref. [30] are shown by the
arrows along the top of the plot. The observed discrepancies are likely due to different amounts of simulated galaxy shot noise.

FIG. 16. The change in the galaxy angular power spectrum Cl ≡ Cgal−gal
l in response to (left to right) changes in survey depth,

characterized via z0 in Eq. (9); the redshift dependence of bias, modeled by varying the b2 parameter in bðzÞ ¼ 1þ b2ð1þ zÞ2; and the
fraction x of galaxies subject to catastrophic photo-z errors. These plots show the ratio of galaxy autopower relative to that of a reference
survey.
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We see that changing z0 and b2 shifts Cl by a mostly
scale-independent factor. As noted in Sec. IVA, this is why
systematics related to mismodeling depth and bias redshift
dependence have only a small effect on ISW reconstruction
quality. It is alsowhy fitting for scale-independent bias b̄ via

CgalðobsÞ
l ¼ b̄2CgalðmodelÞ

l ; ðB1Þ
as is discussed in Sec. II D, protects against these
systematics.
In contrast, changing the catastrophic photo-z fraction x

by more than about 0.01 significantly changes the low-l
shape of Cl. This explains why mismodeling x has a
relatively larger (though still small) impact on ISW
reconstruction quality and why constant bias fitting does
not mitigate this effect as much.

APPENDIX C: CALIBRATION ERROR
FORMALISM

In Sec. IV B, we study the impact of photometric
calibration errors on ISW signal reconstruction. We model
them using a direction-dependent calibration error field
cðn̂Þ via

Nobsðn̂Þ ¼ ð1þ cðn̂ÞÞNðn̂Þ; ðC1Þ
where n̂ is the direction on the sky, Nobs is the observed
number of galaxies, and N is the true number of galaxies.
Here, we present the calculations necessary to describe how
this modifies the galaxy Cl and which we used above to
predict how calibration errors will impact our reconstruc-
tions quality statistics. Our notation follows that by Huterer
et al. [52].
We will define fluctuations in the true and observed

number density as δ and δobs, respectively, and write them
in terms of spherical components,

δðn̂Þ ¼ Nðn̂Þ
n̄

− 1≡X
lm

glmYlmðn̂Þ ðC2Þ

δobsðn̂Þ ¼ Nobsðn̂Þ
n̄obs

− 1≡X
lm

tlmYlm: ðC3Þ

Additionally, we will define a parameter ϵ to relate the true
and observed average number densities,

n̄obs ¼ n̄ð1þ ϵÞ; ðC4Þ
and use clm to denote the spherical components of the
calibration error field cðn̂Þ. Each galaxy map can have its
own calibration error field, and so we will use superscripts
(e.g., gilm, c

i
lm, and tilm) to denote components associated

with LSS map i.
Our goal is to find a relation between the observed

galaxy power Tij
l , the true power C

ij
l , and the properties of

the calibration error field Ccal;ij
l . To do this, we start by

relating the spherical components of the fields. We note that
observed number density fluctuations are

δobsðn̂Þ ¼ δþ cþ δc − ϵ

ð1þ ϵÞ ; ðC5Þ

where we suppress the n̂ arguments to simplify notation.
After some algebra, we can write

tilm ¼ð1þ ϵiÞ−1
�
−

ffiffiffiffiffiffi
4π

p
δl0ϵ

i þ gilm þ cilm ðC6Þ

þ
X

l1l2m1m2

cil2m2
gil1m1

Rll1l2
mm1m2

�
: ðC7Þ

In this expression, δl0 is a Kronecker delta, and the
multiplicative term

Rll1l2
mm1m2

≡
Z

dΩY�
lmðn̂ÞYl2m2

ðn̂ÞYl1m1
ðn̂Þ ðC8Þ

is related to Wigner-3j symbols.
We define the cross-power between two observed maps

via

Tij
l ≡X

m

htilmtj�lmi
2lþ 1

ðC9Þ

and that of the calibration error fields as

Ccal;ij
l ≡X

m

cilmc
j�
lm

2lþ 1
: ðC10Þ

Note that these definitions do not preclude the possibility
that the clm could introduce correlations between different
(l; m) modes. The fact that we only show correlations
between modes with matching l and m reflects the
(potentially biased) measurement that would be made even
if one assumes that they do not.
The expression for Tij

l in terms of glm, clm is fairly
involved, though it can be simplified to some extent
using Wigner-3j symbol identities. For the purposes of
this paper, we approximate it by only including additive
components—that is, neglecting all terms containing
Rll1l2
mm1m2

. Doing this, and using the fact that

hϵii ¼ ci00ffiffiffiffiffiffi
4π

p ¼
ffiffiffiffiffiffiffiffiffiffi
Ccal;i
l¼0

4π

s
; ðC11Þ

we write

Tij
l ¼ Cgij

l þ Ccij
l − δl0ci00c

j
00

ð1þ ci00=
ffiffiffiffiffiffi
4π

p Þð1þ cj00=
ffiffiffiffiffiffi
4π

p Þ : ðC12Þ

This is the expression given in Eq. (30) and is what is used
to compute expectations values of ISW reconstruction
quality statistics in Sec. IV B.
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APPENDIX D: LARGE-NOISE LIMIT
OF s STATISTIC

In Sec. IV B 2, and particularly in Fig. 12, we saw that as
the amplitude of calibration error fluctuations gets large the
ratio between the rms of reconstructed map residuals and
the rms of the true ISW map, s, approaches a constant
value. Here, we outline why this occurs.
Recall from Eq. (22) that our theoretical estimator hsi is

written

hsi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσreci2 þ hσISWi2 − 2

P
lið2lþ 1ÞRi

l
~CISW−i
l

q
hσISWi

;

ðD1Þ

where

hσISWi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
l

ð2lþ 1Þ ~CISW
l

r
; and

hσreci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
lij

ð2lþ 1ÞRi
lR

j
l
~Cij
l

s
: ðD2Þ

In the case with a single LSS map, which we focus on here
for simplicity, the reconstruction filter is

Ri
l ¼ Cgal−ISW

l

Cgal
l

: ðD3Þ

For clarity, and in contrast with the notation in the main
text, here we use tildes (as in ~Cl) to denote the Ctrue

l which
are associated with observed or simulated maps. The Cl

with no tilde will be the Cmodel
l used to construct the ISW

estimator.
Let us examine how the various terms scale as we

increase the amplitude of calibration errors. As the level of
calibration errors—or any form of noise—gets large,

~Cgal
l ⟶

largeA
Cnoise
l ∝ A; ðD4Þ

whereCnoise
l is the noise power spectrum and A is a measure

of its amplitude. The observed ISW power ~CISW
l and ISW-

galaxy cross-power ~Cgal−ISW
l will not depend on A.

For the calibration error studies in Sec. IV B, we focused
on the case of residual calibration errors, which are not
accounted for in the ISW estimator. In this scenario, any
excess in observed power will be interpreted as a bias and
fit for via

b̄2Cgal
l ¼ ~Cgal

l ; ðD5Þ

according to the procedure described in Sec. II D. Because
Cgal
l is independent of A, the resulting best fit value will be

b̄fit ∝
ffiffiffiffi
A

p
. The model Clðb̄fitÞ scales accordingly,

Cgal
l ðb̄fitÞ ∝ A; ðD6Þ

Cgal−ISW
l ðb̄fitÞ ∝

ffiffiffiffi
A

p
; ðD7Þ

Rl ∝
1ffiffiffiffi
A

p : ðD8Þ

Examining the terms in Eq. (D1), we see that hσreci and
hσISWi will approach constants as A grows, while the cross-
term will go to zero like A−1=2. Thus, in the case of
unmodeled noise contributions to the galaxy maps, in the
limit of large noise,

hsi⟶largeA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσreci2 þ hσISWi2

p
hσISWi

: ðD9Þ

This is a constant greater than 1, in agreement with our
results in the right panel of Fig. 12.
In contrast, if the Cl used in the ISW estimator correctly

model the level of galaxy noise—as occurs in the shot noise
tests in Sec. III D—the best fit bias parameter b̄fit will
remain close to 1. In that case, the fact that noise is properly
accounted for means that

Cgal
l ¼ ~Cgal

ell ∝ A ðD10Þ

while all other Cl and ~Cl are independent of A. In this case,
as the noise power dominates over that of galaxies, the
estimator operator goes to zero according to

Rl ∝
1

A
: ðD11Þ

This means that for large levels of properly modeled noise,
the reconstructed map amplitude goes to zero. This causes
hσreci and the cross-term in hsi to go to zero and so the
reconstruction residuals are just a measure of the true ISW
map:

hsi⟶largeA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσISWi2

p
hσISWi

¼ 1: ðD12Þ
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