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Abstract. We investigate how the use of higher wavenumbers (smaller scales) in the galaxy
clustering power spectrum influences cosmological constraints. We take into account un-
certainties from nonlinear density fluctuations, (scale dependent) galaxy bias, and baryonic
effects. Allowing for substantially model independent uncertainties through separate fit pa-
rameters in each wavenumber bin that also allow for the redshift evolution, we quantify strong
gains in dark energy and neutrino mass leverage with increasing maximum wavenumber, de-
spite marginalizing over numerous (up to 125) extra fit parameters. The leverage is due
to not only an increased number of modes but, more significantly, breaking of degeneracies
beyond the linear regime.
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1 Introduction

The statistical pattern of large scale structure in the universe contains a wealth of informa-
tion on the cosmological parameters, including the nature of dark energy and the sum of
neutrino masses. While the linear density perturbation power spectrum of dark matter can
be related to the cosmological model in a straightforward manner, the observational data
involves several complicating effects. We would like to use not only fully linear modes but
the more numerous higher wavenumber modes where nonlinear effects appear; indeed the
nonlinear regime contains not just more modes but distinct cosmological leverage.

On these smaller scales, our understanding of the cosmological dependence is imperfect,
while the statistical precision of large volume surveys can reach the subpercent level. More-
over, since we observe the light from galaxies, the mapping from dark matter predictions
to data involves the galaxy bias factor, expected to be scale dependent beyond the linear
regime. Finally, since galaxies contain dissipative baryons, various dynamical and feedback
mechanisms not present for pure dark matter will alter the power spectrum.

These nonlinearity, bias, and baryon effects can be addressed in a number of ways, such
as perturbation theory, the halo model formalism, and advanced N-body and hydrodynamic
computational simulations, with varying levels of success. Considerable literature exists on
these issues; for a selection see [1-10]. For some recent work, especially regarding baryonic
effects on the weak lensing shear power spectrum, see [11-14]. The further we extend to
higher wavenumbers, the less certain we are of having captured all the necessary physics
inputs, especially for the range of cosmologies to be examined. One approach is simply to
cut out the scales beyond the (quasi)linear regime, using only wavenumbers up to some low
kmax. This severely restricts the information used to a small fraction of the data provided by



the survey. An alternate approach is to focus on the cosmological information and marginalize
over the uncertain effects. This uses more of the data, but the key danger here is assuming
an improper functional form for the unknown influences and so causing a systematic bias in
the cosmological conclusions.

We follow the marginalization approach but in a substantially model independent way,
allowing the nonlinearity, galaxy bias, and baryon effects to float freely in bins of wavenumber
without imposing a functional form for their scale dependence. This effectively removes the
danger of distorting the cosmology results. The question then is whether the degradation
in cosmological constraints due to the additional bin fit parameters outweighs the gain from
including the further data. We focus on the real space matter power spectrum, for clarity in
assessing the cosmological information content as a function of ky.x and because it is central
to a variety of different cosmological probes; it is given by the substantially transverse modes
of a spectroscopic galaxy redshift survey, and enters in the angular galaxy power spectrum
of photometric surveys and in the weak lensing shear power spectrum.

In section 2 we describe our method of accounting for the scale and redshift dependence
of the uncertain physics beyond the linear regime. We lay out the Fisher analysis approach
and galaxy redshift survey characteristics in section 3, then examine the behavior of the
derived cosmological constraints as a function of knax in section 4. To test the robustness of
the model independence, in section 5 we consider alternative fiducials for the scale and redshift
dependence. Appendix A further tests the approach by varying the binning properties. We
discuss and summarize the results in section 6.

2 Power spectrum effects

In the linear density perturbation regime, the real space dark matter power spectrum is
readily given by Boltzmann codes such as CAMB [15] or CLASS [16]. This can be extended
beyond the linear regime through simulations or emulators built on simulations, e.g. [17, 18],
or through nonlinear mapping of the linear power spectrum in algorithms such as Halofit [19]
and its variants. Considerable work has recently gone into substantially extending pertur-
bation theory and general wavenumber expansions to higher Fourier wavenumbers &, such
as through the effective theory of large scale structure (see [20] and references therein) or
the halo model (e.g. [21]). The status of these in accounting accurately for galaxy bias and
baryon effects, over a range of cosmologies, is not yet clear though interesting progress is
being made.

Here we consider a phenomenological approach that does not rely on understanding
fully the cosmological dependence of internal halo distributions or baryonic feedback. We
write the power spectrum as

Px(k‘, Z) = b%((kv Z) Pmodel(k;’ Z) Mbaryon(ka Z) s (2‘1)

where Ppodel s some model for the (nonlinear) power spectrum whose cosmological depen-
dence is well defined. This is multiplied by a factor b§( describing the possibly scale dependent
galaxy bias for some galaxy population X, and another function Mparyon dealing with bary-
onic effects. The separability of the factors is not essential, only for illustrative purposes.
Uncertainties in the bias factor will be degenerate with those in the baryonic factor
(unless specific functional forms are assumed), so we can absorb these both into the same
factor, writing
Px(k,z) = bg(,ﬁd(z) Poodel(k, z) M(k, z) . (2.2)



Thus the uncertainties due to galaxy bias, nonlinearities, and baryonic effects are repre-
sented by the function M (k, z). For compactness, we call M the BNB factor, referring to all
three sources of uncertainty. We will then marginalize over this and study the effect on the
cosmological information extracted from the data.

Our best guess, baseline dark matter power spectrum is Ppodel and this includes all the
cosmological parameter dependence we will use. While M may have further cosmological
dependence, this will be lost in the marginalization, reducing the statistical leverage but
guarding against systematic bias. We adopt for Pyoger the revised Halofit form of [22],
updating the original [19]. Note that in the CAMB and CLASS versions from March 2014
and later this also includes the neutrino mass effects from [30].

To keep explicit the galaxy population dependence we retain a fiducial galaxy bias factor

Dgq(z = 0)
Dga(2)

where Dgq is the growth factor for some fiducial cosmology. All deviations in the galaxy bias
from this form, including scale dependence, enter in M (as do deviations from the Halofit
prescription for nonlinearity, and baryonic effects, i.e. the BNB effects).

To keep M (k, z) as general as possible to account for these uncertainties, we allow it
to float freely in bins of wavenumber k, so that the data determines its form and amplitude.
This approach worked well in exploration of the anisotropic, redshift space power spectrum
uncertainties (without baryon or scale dependent bias effects) and its cosmological leverage
in [23]. The redshift dependence of M should be reasonably smooth as galaxy bias, excess
nonlinearity, and baryonic effects develop on a roughly Hubble time scale.

Our prescription is therefore

bx £a(2) = b g (2.3)

M(k,2) = (14 ¢y 2 + cax2%) B, (2.4)

where By, is an orthogonal bin basis with width Ak = 0.025 hMpc™', and cik are free pa-
rameters. (See appendix A for tests of varying the bin width, and section 5.1 for extending
the redshift dependence.) This gives 3 free parameters per bin; as we extend the max-
imum wavenumber k.. used from the data, we include more modes but also add more
fit parameters to account for the further uncertainty. For example, assuming the uncer-
tainty starts beyond the linear regime kjow = 0.052Mpc~!, then including modes out to
Emax = 0.5 hMpc™! would add 54 fit parameters (plus bg( for each galaxy population, plus
cosmological parameters).

This choice of M(k, z) leaves the most room for possible deviations from models derived
from simulations, or future surprises. A functional form for M (k, z), while smoother and
with fewer parameters, would require assumptions about poorly understood baryonic and
other effects at high wavenumbers. We therefore choose M(k,z) as in eq. (2.4), each bin
contribution a top hat between k — Ak/2 and k + Ak/2. In appendix A we decrease the
binning to Ak = 0.01, effectively rendering the function smooth, and find little effect.

3 Parameters and information

3.1 Clustering information

We perform a Fisher matrix analysis to compute the uncertainties and covariances of the
various cosmological and astrophysical parameters of our model eq. (2.2). This allows us to
project the expected constraints from upcoming survey data as a function of kyax.
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Table 1. Fiducial parameter values. The neutrino density corresponds to masses Y m, = 0.06€V.

The full set of parameters {6;} includes cosmological parameters, fiducial galaxy biases,
and the BNB parameters that enter through eq. (2.4). Each k bin introduces three parameters

fNB = {Bg,cir,cok} - (3.1)

In our analysis we will derive constraints for survey samples of emission line galaxies (ELG)
and luminous red galaxies (LRG), which add an extra two fiducial bias parameters

Ovias = {b%rcr b re) (3.2)

through eq. (2.3) [recall that galaxy bias scale and redshift dependence beyond the fiducial
is absorbed into M (k, z)]. Finally, the cosmological model itself involves nine parameters:

Ocosmo = {SWh?, Qopnh?, b2, Qe by wo, wa, As, ns}, (3.3)

the physical baryon, cold dark matter, and neutrino energy densities, the spatial curvature
effective density, the reduced Hubble constant, the dark energy equation of state parameters,
and the amplitude and tilt of the primordial density power spectrum. We call these three
sets the BNB, bias, and cosmological parameters; the full parameter space is the union of
the three. The fiducial values for these parameters are summarized in table 1.

Galaxy clustering information in the form of the galaxy power spectrum contains cos-
mological information as prescribed in, e.g., [24-26]. The error covariance matrix is assumed
to be diagonal and only contains contributions from the sample variance and shot noise. The
statistical error per Fourier mode is 0pmode = P + 1/n from these two effects where P is the
power spectrum and n the shot noise. Upon division by the number of modes one obtains
the error variance in the power spectrum

1+nP\?2 {72
2 2

=P 34
7 ( npP > Vinen(2) k2dkdu’ (3.4)

taking the k-modes as independent. This feeds into the Fisher matrix [27]

e L 9Px(k,2) 1 0Py (k,
zj—zzz X.Z% géjZ) (3:5)

z k XY

where the z and k sums are over shells in the two variables, and the sum over p is implicit.
Note that the factors P from the error op combine with the derivatives to form logarithmic
Fisher derivatives 01n P(k, z)/06;. This is useful in numerically treating multiplicative fac-
tors; for example the numerous bin parameters for the BNB effects do not require additional
calls to CAMB.

The information is summed over £ modes out to some kpax. One of our main aims is
to investigate how the cosmological constraints coming from this added information — but
also with added free parameters in each k bin — behave as a function of k.. Note that



the power spectrum can float freely in each k bin (above kjow = 0.05h/Mpc), though with
constrained redshift dependence given by eq. (2.4). In section 5 we explore both enlarging this
freedom and changing the fiducial model. While a change in the parameters { By, c1 5, c21}
in one bin has no effect on the power spectrum in another bin (i.e. no model dependence is
forced; the bins can float freely), the Fisher analysis will quantify the covariance between
these variations given the data. All parameter uncertainties quoted have been marginalized
over all other parameters.

3.2 Survey observables

The Fisher sum also extends over redshift shells z, with the survey shell volume and galaxy
number densities n(z) in each population X or Y changing with redshift. We consider a
next generation, “Stage IV” galaxy redshift survey of the quality planned from DESI [28] or
Euclid [29], specifically adopting the n(z) from [23], covering z = 0.1-1.8 over 14000 deg?.

One caveat is that our focus is a theoretical study of the information content in the
real space galaxy power spectrum. While this is a key ingredient in many observations —
the redshift space power spectrum, the angular power spectrum, the weak lensing power
spectrum, etc. — it is not directly observable. One should therefore view the results as a
theoretical analysis of the innate information. Alternately, one might expect that the relative
behavior of the cosmological constraints with kpnay, if not their absolute values, still holds
for, e.g., projection to an observable angular power spectrum. Another view is to say that
redshift surveys do indeed measure the real space power spectrum for Fourier modes nearly
transverse to the line of sight, and one could include only |g| < 0.1 [since corrections between
real and redshift space go as (ku)? for small kpu, this cutoff should give < 1% accuracy] in
the mode sum of eq. (3.4); such an ansatz would reduce the information content used here
uniformly by a factor 10, and all quoted cosmology constraints would increase by v/10 ~ 3.2.
In general, using a subset of the information in P(k, p1), or the presence of other systematic
errors not studied here (e.g. errors in the measurements of shapes of weakly lensed galaxies),
will weaken the overall cosmological constraints — and therefore correspondingly weaken the
requirements on the selfcalibration of the BNB errors studied in this work.

4 Results

As we include power spectrum information from higher k bins, three effects enter: more
modes are included, lowering the statistical uncertainty, more fit parameters are included
(e.g. 54 more for kpmax = 0.5h/Mpc), increasing the cosmological parameter uncertainty,
and a longer lever arm on the Fisher derivatives is created, potentially breaking parameter
degeneracies and decreasing the parameter uncertainty. To investigate which wins out, we
compute the constraints for kynax = 0.1, 0.2, 0.3, 0.5, 0.75, and 1 h/Mpc.

First, note that in the linear regime, the cosmic growth of structure is scale indepen-
dent and so late time cosmological parameters such as the dark energy parameters have
Fisher derivatives 01n P/06 independent of k. This means that these £ modes cannot break
degeneracies between such parameters (only redshift dependence can) and so marginalized
uncertainties are quite high compared to unmarginalized ones. As we add higher k informa-
tion, however, beyond the linear regime, the derivatives gain different k-dependent shapes,
breaking degeneracies and potentially allowing rapid improvement in parameter estimation.
Of course if the BNB effects were incorrectly modeled, then the parameter estimation will be
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Figure 1. The derivatives 91n P(k)/00 are plotted vs k for 8 = {wq, w,, Uk }, at z = 0.75 (top) and

z = 1.25 (bottom). For clearer comparison of shapes, the w, and Qg curves are normalized to the
value of the wg curve at k = 0.05 h/Mpc.

biased — hence we employ the (substantially) model independent binned approach to avoid
this, albeit at the price of adding more free parameters.

Figure 1 plots the Fisher derivatives for several parameters as a function of k£, normalized
to k = 0.05h/Mpc to highlight the shapes. We see that beyond k ~ 0.1 h/Mpc the curves
for the late time parameters such as the dark energy equation of state and curvature begin
to diverge, lowering their covariance with each other. Interestingly, at redshifts z ~ 1.2—
1.6 substantial covariance extends to higher k for w, and Q, suggesting that high-redshift
galaxy clustering surveys would benefit from combination with lower redshift surveys, or that
a survey should span both low and high redshift for best results.

The final parameter constraints are convolutions of all the Fisher derivatives and their
interplay. To illustrate the role of higher k£ modes in breaking covariances, we plot the absolute
value of the correlation matrix, |r;;| = |Ci;|//CiiCj;, where C = F~! is the parameter
covariance matrix. We focus on the high correlation coefficients (note diagonal entries are 1
by definition). Figure 2 shows these for various kmax. For clarity the matrix is divided into



blocks, with the lower left containing the cosmological parameters, the next (small) block
the fiducial bias parameters {bOELG, b%RG}, and the upper right block the BNB parameters
{Bp,c1,k,c2r}. The offdiagonal blocks contain the cross terms.

Note that the cosmology parameters become progressively less correlated with each
panel at higher ki .x, with the cosmology block becoming both sparser and lighter colored.
The BNB parameters, however, retain their correlation (the dotted lines show the size of the
matrix from the previous kpax step, making it clearer to compare the k bins). Thus, going
to higher k.« delivers two significant effects in favor of improving cosmology constraints —
mode statistics and degeneracy breaking — while the model independent binning approach
removes the worry of misestimating the nonlinear or baryonic behavior.

A more compact illustration of the reduction in covariance among cosmological pa-
rameters with increasing kmax appears in figure 3. Here we consider the volumes of the
parameter-space ellipsoids in two subspaces: the 9-parameter cosmology space, and the BNB
parameter space. In each case, we compare how much the volume (square root of the de-
terminant of the covariance matrix) increases in the hypothetical case that the parameters
are completely uncorrelated, versus the actual correlated case. This is a generalized measure
of how much correlation there is in the subspace. Because this ratio strongly increases with
increasing dimensionality of the subspace, Ngubspace, We also take the Ngypspace-th root of
the ratio, making it a “one-parameter equivalent” increase in volume. The ratio is therefore

defined as

3 1/(2Nsubspace)
Rcorr — (det (dlag Csubspace) > ) (41)

det (Csubspace)

When Rcor is near unity, the parameter subspace is substantially decorrelated; when it
is much larger than unity then covariances play an important role. We see from figure 3
that indeed the cosmological parameters become increasingly uncorrelated as kp,ax increases,
potentially allowing rapid improvement in their constraints.

Finally, we must assess whether the numerous extra fit parameters for the power spec-
trum at high k£ degrade the cosmology estimation. By looking at the cross terms in the
cosmo-BNB bands, we see that there is little covariance (the main, though mild, correla-
tion is with Q). Thus we expect that the cosmology estimation precision should improve
significantly by using these higher & modes, within this marginalized bin approach.

Figure 4 demonstrates this result. The cosmology parameter estimation improves dra-
matically when going beyond the linear regime, despite the addition of 30, 54, and 114 extra
parameters for kyax = 0.3, 0.5, 1 h/Mpc. As expected, due to the lingering covariances, Qx is
the parameter that improves most slowly at higher k, while the clear scale dependence of neu-
trino mass means that it improves most rapidly. Table 2 summarizes the results (again, this
should be interpreted predominantly in terms of information content, not actual constraints
since the real space power spectrum is not truly an observable quantity in a survey).

Besides the cosmological parameters, the galaxy linear bias parameters become well de-
termined for kmax 2 0.2 h/Mpc, reaching the ~ 1% level. Interestingly, the k-bin parameters
— representing the effects of baryons, nonlinearity, and (scale dependent) galaxy bias on the
galaxy power spectrum, not already captured by the Halofit and linear bias models — self
calibrate to a large degree. The fractional uncertainties on the bin amplitudes By tend to
be 0.8-1.6%, while the redshift-dependence parameters ¢, j and ¢y ), are determined to about
0.01-0.02, for kpmax = 0.2 h/Mpc.
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Figure 2. The absolute value of the correlation coefficients are shown for k.. = 0.1, 0.2 (top
row), 0.3, 0.5 (middle), 0.75, 1h/Mpc (bottom row). White space indicates that the correlation
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4 T T
r BNB parameters b
3.5

) / det(Cov)] P
=

diag
(3]
I

cosmological parameters

[det(Cov .
T

| | |
o 02 04 0.6 038 1

k  (hMpc)

max

Figure 3. The decreasing correlation among cosmological parameters as information is included from
beyond the linear regime, to higher ky,.x, is demonstrated by taking the volume of their N-dimensional
ellipsoid including covariances relative to the volume defined by only the product of their variances (see
eq. (4.1)). Baryonic/nonlinear/scale dependent bias parameters, however, are significantly correlated.

0.3

e
N
I

ok, .. J/0[K,ex=0-1 h/Mpc]
o)
‘ T

k..., [h/Mpc]

Figure 4. The ratio of the parameter uncertainty when using information out to kpyax, relative to
using kmax = 0.1 h/Mpc (so all curves go to 1 at kpax = 0.1 h/Mpe), is plotted vs kpmax for several
cosmology parameters. The constraints rapidly improve, despite the extra parameters in each k bin
for the baryonic/nonlinear/scale dependent bias effects.



kmax | 10302 103Qcpyh? 104Q,0%2  Qx 100k wo  we 104, ny 0o Wpe
01 | 40 16.0 42 021 48 023 114 053 0063 017 0.33
02 | 055 3.2 0.53  0.030 070 0.059 0.16 0.082 0.019 0.023 0.045
03 | 023 1.8 020  0.017 0.33 0.026 0.065 0.037 0.013 0.013 0.026
05 | 012 1.1 0.079  0.013 0.19 0.011 0.028 0.016 0.0097 0.0094 0.020
0.75 | 0.082 0.74 0.043 0.0098 0.14 0.0060 0.017 0.0095 0.0075 0.0075 0.016
1.0 | 0.070 0.58 0.031  0.0082 0.12 0.0044 0.013 0.0071 0.0063 0.0063 0.013

Table 2. The 1o cosmology and fiducial bias parameter uncertainties are given for the baseline survey
using information out to various Apax.

5 Testing alternatives

The approach of fitting for binned deviations from the Halofit power spectrum gives suc-
cessful results. Arbitrary deviations, however, could mock up a change in any cosmological
parameter, so we should test that the constraints we imposed — on the redshift dependence
of the nonlinear deviations and assuming small deviations from Halofit (so the Fisher analysis
is in its region of validity) — yield reasonably generic results.

We therefore investigate the effect of altering our baseline approach in three different
ways: loosening the redshift dependence, adopting a different fiducial scale dependence, and
allowing a mixing between the scale and redshift dependence.

5.1 Redshift dependence

Although a second order polynomial in redshift seems a reasonable treatment for the influence
of BNB effects on the power spectrum at z < 2, we here test its influence by extending the
freedom further with a cubic term. That is, eq. (2.4) now becomes

M(k,z) = (14 c1pz+ 027kz2 + 037;323) By . (5.1)

This adds one parameter per k bin, giving a total of 83 fit parameters for kpax = 0.5 h/Mpc
say. The fiducial remains By, = 1, ¢;, = 0.

We find that most of the cosmology results are affected little, with less than 10% change
in the parameter estimation uncertainties. The main exception is the neutrino energy density
constraint, as seen in figure 5. Since the neutrino free streaming scale is dependent on both
scale and redshift, the extra redshift dependence in the scale dependent BNB factor allows
greater covariance, weakening the constraint by less than a factor of 2. The BNB parameters
themselves are also less well determined, by factors of up to 1.7 for By (so uncertainties of
1.3-2%); uncertainties on the three ¢; ;, become up to ~0.07, 0.09, 0.03.

5.2 Scale dependence

To treat the BNB effects in as model independent a manner as possible, we allowed free
floating bins in k to describe deviations from the (dark matter plus neutrino plus linear bias)
Halofit prescription. Since Fisher analysis is only accurate for small deviations around the
fiducial, then we may not have accurately captured the effect of large baryonic deviations.
Therefore we now adopt a fiducial power spectrum that attempts to include the baryonic
effects to high k using the recent work of [21]. This adds corrections as a polynomial in

~10 -
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Figure 5. The ratio of the parameter uncertainty when allowing for an extra, cubic redshift fit
parameter c3 j in the scale dependence, relative to our baseline fiducial, is plotted vs kmax for several
cosmology parameters. Only the neutrino energy density shows a significant effect.

k, whose form is motivated by the Taylor expansion of the 1-halo term in wavenumber k.
Specifically, rather than take a fiducial of By = 1 in each bin, we here use

By =1+ (1.33+5.96k* — 4.63k*) G(k), (5.2)

based on the simulation results of [21], where in this formula & is in dimensions of h/Mpc,
G(k) = F(k)/Puovary(k), and F(k) is given by their eq. (30).

We find that this change in fiducial has minimal effect on our results. The maximum
fractional change in a parameter uncertainty is 2.7%, with most alterations below 1%. Thus,
our results appear robust to this modification.

5.3 Mixing redshift and scale dependence

Some physical effects on the power spectrum may not be well treated by multiplicative factors
of scale dependence times redshift dependence (e.g. redshift dependent physical scales such
as from baryonic feedback or neutrino free streaming). While our BNB approach does allow
mixing of scale and redshift dependence, the fiducial values ¢;; = 0 mean this only enters
through the Fisher derivatives, because the fiducial Mgq(k,2) in eq. (2.4) then becomes
independent of z. As a simplistic exploration of the possible impact of such an effect, we
adopt a fiducial model that makes the redshift dependence vary with scale. Specifically,

Cik = Cioo <1 — e*k/k*> , (5.3)
and rather than the baseline fiducial ¢;;;, = 0 we set ¢100 = 2, c200 = 1, kv = 0.3 h/Mpc.

Thus the fiducial redshift dependence of the BNB effects on the power spectrum stays at
the baseline at low k, but transitions to (1 + 2)? at high k. This is intended purely as a toy
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model, with the characteristic that the fiducial deviations are stronger at higher redshift, to
test the baseline Fisher analysis.

We find that this mixed fiducial increases correlations among the BNB parameters but
has no deleterious effect on estimation of cosmological parameters. Indeed, since for k 2 k,
the fiducial power spectrum is boosted by a factor (1+ 2)?, this enhances nPgq at high k and
reduces shot noise, improving most cosmology parameter estimates by ~ 25%.

5.4 Independent populations

We can also consider the different galaxy populations, i.e. ELGs and LRGs, to have com-
pletely different power spectra due to distinct BNB effects. In this case, each type has
independent {By,c1k,cor} as well as different linear biases. We find that the cosmologi-
cal parameters still exhibit degeneracy breaking for high K.y, but in a somewhat reduced
manner. The dark energy equation of state parameters are not strongly affected, with wq
degraded by 31% (52%), and w, by only 0% (6%), for kmax = 0.3 (0.5), relative to their
estimation in the baseline treatment. Neutrino mass constraints, since they involve scale
dependence, are more sensitive, being loosened by 50% (240%). However, the overall trend
that cosmology estimation improves with higher k.« due to degeneracy breaking does hold,
despite now having twice the number of BNB parameters.

6 Conclusions

Large scale structure surveys provide a rich array of information on cosmology and astro-
physics on scales from the survey size down to small scales, or high wavenumbers. Using
this data beyond the linear regime, where we do not fully comprehend all the important
physics, is a challenge but one with rich rewards for cosmological understanding. Here we
have analyzed how uncertainties in the theoretical prediction for the galaxy power spectrum
out to a maximum wavenumber k., impact cosmological parameter constraints, and how
we can mitigate the uncertainties without biasing the results.

We included three physical effects: baryonic modifications, nonlinearities, and scale-
dependent bias — referred to jointly as the BNB effects. To guard against bias from
improperly assuming specific functional forms, we employed a very flexible, nearly model-
independent description of the BNB effects that allows scale- and redshift-dependence, de-
scribed by between 6 and 114 additional fit parameters, depending on kpax.

Despite the addition of these BNB parameters we could still obtain excellent constraints
on cosmology. In fact, the cosmological constraints improve rapidly with increasing kmax,
despite the growing number of extra astrophysical parameters to marginalize over. We traced
this improvement to two mutually reinforcing effects: a well-known fact that the information
content increases sharply with k.« due to more modes, but also the key property that the
cosmological parameter correlations weaken as smaller-scale information provides leverage to
break degeneracies. We tested this conclusion against different assumptions for the form of
the BNB sector, altering the fiducial redshift-, scale-, and mixing of redshift-scale dependence,
and found it to be quite robust.

These results agrees qualitatively with other, previous work which shows that cosmo-
logical data, and particularly the two-point correlation function, can be remarkably robust
with respect to self-calibrating nuisance parameters. In other words, one can add a number
of judiciously chosen nuisance parameters that describe the systematic uncertainties, and
these parameters, together with cosmological ones, can be internally determined from the
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data. For example, [31] showed that the three-dimensional galaxy clustering can be used
to self-calibrate the parameters describing how galaxies occupy halos (the Halo Occupation
Distribution), leading to improvements on small scales despite the rather aggressive modeling
of the systematics.

Measuring a large number of nuisance parameters will likely not be feasible due to
practical considerations — even if one were able to constrain of order 100 nuisance param-
eters, doing so might not be robust or convenient in the presence of purely observational
and instrument-related systematics which require special care and computational resources
in their own right. Fortunately, simpler approaches may bear fruit in the near future. For
example, a careful investigation of the effects of baryonic systematics based on a suite of nu-
merical simulations seems to indicate that the systematics span a subspace in the observable
(say, the weak lensing angular power spectrum) that is rather orthogonal to that spanned
by the cosmological parameters [12]. Therefore, provided one has successfully modeled the
systematics, one can reasonably expect to self-calibrate them or marginalize over their pa-
rameters and still be able to constrain the cosmology with excellent accuracy. Again a key
issue is guarding against biased results by enhancing both the model independence and the
flexibility of the treatment of the BNB effects.

The information content of cosmological data well beyond the linear scale is high. This
provides strong motivation to push to large kmax while dealing robustly with the bary-
onic/nonlinearity /scale dependent bias effects masking this signal. The substantially model
independent, marginalization approach we present could be a harbinger of rich rewards in
cosmological knowledge, without problematic biasing of results, from robust analysis of next
generation large-scale-structure measurements.
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A Binning robustness test

The approach taken to treat the BNB uncertainty in the power spectrum is to allow model
independent, free floating bin parameters in k, with redshift dependence given by a second
order polynomial with free coefficients. In section 5.1 we tested the impact of allowing further
redshift dependence. We would now also like to test the influence of the binning. We chose our
fiducial value of Ak = 0.025h/Mpc to avoid interaction with the baryon acoustic harmonic
of k ~ 0.06 h/Mpc. Here we examine the effect on the cosmological parameter estimation by
using Ak = 0.01 h/Mpc. For kpax = 0.5 h/Mpc this implies 146 total fit parameters.

We find that the cosmological parameter uncertainty estimation remains quite robust.
The greatest change is an increase in the ng uncertainty by 50% at kmax = 0.3 h/Mpc (addi-
tion of CMB data would constrain ng, decreasing the dependence of its estimation on kpax).
For the BNB parameters, constraints weaken due to increased covariance. However our main
goals are the estimation of dark energy and neutrino parameters. Figure 6 shows that these
uncertainties change by less than 10% with the change in binning, so the results we have
presented appear robust.
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Figure 6. The ratio of the parameter uncertainty when allowing for a finer binning, Ak = 0.01 h/Mpc,
relative to our baseline fiducial Ak = 0.025 h/Mpc, is plotted vs kmax for several cosmology parame-
ters. The cosmology estimation remains robust.
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