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Abstract. Strong lensing time-delay systems constrain cosmological parameters via the so-
called time-delay distance and the angular diameter distance to the lens. In previous studies,
only the former information was used in forecasting cosmographic constraints. In this paper,
we show that the cosmological constraints improve significantly when the latter information
is also included. Specifically, the angular diameter distance plays a crucial role in breaking
the degeneracy between the curvature of the Universe and the time-varying equation of
state of dark energy. Using a mock sample of 55 bright quadruple lens systems based on
expectations for ongoing/future imaging surveys, we find that adding the angular diameter
distance information to the time-delay distance information and the Planck’s measurements
of the cosmic microwave background anisotropies improves the constraint on the constant
equation of state by 30%, on the time variation in the equation of state by a factor of two,
and on the Hubble constant in the flat ΛCDM model by a factor of two. Therefore, previous
forecasts for the statistical power of time-delay systems were overly pessimistic, i.e., time-
delay systems are more powerful than previously appreciated.
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1 Introduction

The redshift-distance relation constrains cosmological parameters. The use of strong grav-
itational lens systems with time-delay measurements as a cosmological distance probe was
suggested by Refsdal in 1964 [1], and has been extensively studied to measure the present
value of the Hubble parameter, H0 (see, e.g. [2]). The physical quantity of interest here is the
so-called time-delay distance D∆t. This is a distance-like quantity, given by a combination
of three angular diameter distances in a strong lens system:

D∆t ≡ (1 + zL)
DA(EL)DA(ES)

DA(LS)
, (1.1)

where zL is the redshift of the lens, while DA(EL), DA(ES) and DA(LS) are the angular
diameter distances from the Earth to the lens, from the Earth to the source, and from the
lens to the source, respectively. As each of the distance is proportional to the inverse of
H0, D∆t is proportional to 1/H0. Ref. [3] has shown that a precise measurement of H0 is
important for constraining the equation-of-state parameter of dark energy, w. This motivated
the measurement of time-delay distances in the recent years. However, the constraints weaken
significantly when w is allowed to vary with time.

It is, in fact, possible to extract the angular diameter distance to the lens, DA(EL), by
combining time-delay measurements with the lens stellar velocity dispersion measurements [4,
5]. The physics is simple: the time-delay measurement is the mass estimate of the lens galaxy,
while the velocity dispersion measurement is the potential estimate. By knowing the mass
and the potential, we can calculate the physical size of the system, thus the system can be
used as the “ruler”. Comparing the observed separation of lensed images with the length
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of the ruler, we can estimate DA(EL). In ref. [4], Paraficz and Hjorth demonstrated this
for a singular isothermal sphere (SIS) lens without mass external to the lens along the line
of sight. In ref. [5], we have extended the analysis by including the external convergence,
allowing the mass profile of the lens to follow an arbitrary power-law, and allowing the
velocity dispersion to be anisotropic. We have found that the main source of uncertainty for
DA is the unknown (anisotropic) velocity structure, which affects the normalization of the
potential of the lens galaxy. We have also found that the mass external to the lens along the
line of sight (external convergence) has no effect on the inferred DA(EL). In this paper, we
show that the constraints on the cosmological parameters, especially on a time-varying w,
improve significantly by including DA(EL).

The structure of the paper is as follows. In section 2, we introduce the mock catalog of
the strong lens systems we use, and describe the cosmological model along with the fiducial
cosmological parameters we use. In section 3, we compare the cosmological constraints we
expect from lenses to those from the other cosmological distance probes, specifically, Type
Ia Supernovae (SNe) and Baryon Acoustic Oscillation (BAO). In section 4 we introduce the
pivot redshift and wp-wa parametrization, and show how lensing distances improve the figure
of merit for the dark energy equation of state. We combine cosmological information from
different probes to show the constraining power of strong lenses in practice, and conclude in
section 5. In appendix A, we show the constraint on the Hubble constant H0 using the two
lensing distances. In appendix B, we show the dark energy constraints assuming that the
universe is spatially flat.

2 Method

Each well-modeled time-delay lens system yields two distance(-like) quantities, DA(EL) and
D∆t. The uncertainties of DA(EL) and D∆t are dominated by the velocity dispersion and
the external convergence, respectively. In this work, we make an optimistic assumption
that we can measure both distances with 5% uncertainties, which requires a few per cent
measurement of the spatially resolved velocity dispersion of the lens galaxy, as well as a
good understanding of the mass distribution along the line-of-sight, that is obtainable by
simulations and observations of the lens environment [5, 6]. Regarding the lens mass model,
the power-law density profile in ref. [5] is widely used due to its ability to fit the imaging
data near the image positions. The local density profile is well reconstructed with the model
if the images are spatially extended such that information from thousands of intensity pixels
can be used. However, ref. [7, 8] have pointed out that the information obtained by the
lensed images cannot uniquely determine the shape of lens mass profile due to the so-called
Source-Position Transformation (SPT). Specifically, they focused on the degeneracy between
composite density profiles and a power-law mass profile, and have shown that fixing the shape
of the lens mass profile as a power law can break the SPT. However, they have also mentioned
that these models can be distinguished if more information is available: for example, if more
than three images with time delays are observed, the degeneracy can be broken as the general
SPT does not conserve the time delay ratios. In ref. [6], the robustness of the measured time-
delay distance is tested with power law and composite model under the presence of lens
kinematics data and shown to be nearly independent of the choice of the model. Ref. [9] has
shown that the so-called Mass-Sheet Transformation (MST), which is a special case of the
SPT, scales the time delays by the same factor, and thus conserves the time-delay ratio, can
bias the mass modeling. However, ref. [10] has empirically shown using the Illustris simulation
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that most of the early-type galaxies with high (σ > 200kms−1) velocity dispersion, which
most of the lens galaxies are, show nearly power-law behavior. The MST degeneracy can also
be broken if additional information on the lens galaxy (e.g. velocity dispersion) is obtained.
Ref. [11] has shown that the existence of substructures in the lens galaxy perturbs the time
delay: however, the effect of perturbation on the time delays (<1 day) is typically smaller
than the currently available time-delay measurement uncertainties, and thus both distances
are mainly determined by the global mass distribution rather than the substructures. Thus
we claim that these precision measurements on both distances are possible, but only when
good quality imaging / kinematics data as well as time-delay measurements are available.
The correlation between the two distances is negligible, because the uncertainties in the
velocity dispersion and the external convergence are uncorrelated. For completeness, and to
study the case in which 5% measurements are not achievable, we also quote the constraints
assuming the 10% measurements in the parentheses.

To study the expected cosmological constraints from lenses, we need to specify the
distribution of lens and source redshifts. We use the catalog of mock lenses in ref. [12]
to obtain the redshift distribution of time-delay lenses with double and quadruple images
expected for the Large Synoptic Survey Telescope (LSST) [13, 14]. Although LSST itself is
expected to find around ten thousand lensed quasars, there are only about 400 systems that
would have good time delay measurements [15]. To obtain distances from a lens system with
a reasonable accuracy, a good mass model of the lens galaxy is also required, as both the
time-delay distance and the angular diameter distance are sensitive to the mass distribution
of the lens. Ancillary data both in terms of high-resolution imaging and spectroscopy of the
lens systems are needed for accurate lens mass modeling. Therefore, we select lens systems
from the mock catalog with the following criteria for acquiring ancillary data with relative
ease: (1) the quasar image separation is > 1′′, (2) the third brightest quasar image has an
i-band magnitude mi < 21, and (3) the lens galaxy has mi < 22. The criteria on the quasar
image separation and brightness make it easier to measure the time delays with high precision
(uncertainty of a few percent). Furthermore, a sufficiently wide quasar image separation is
required for extracting the Einstein ring of the quasar host galaxy and measuring the lens
velocity dispersion for mass modeling. The lens galaxy also needs to be of sufficient brightness
for measuring the lens velocity dispersion. In this work, we focus on quadruply imaged lens
systems as they provide more information than doubly imaged systems. After applying these
criteria to the LSST mock lens sample, we obtain 55 quadruple lens systems as the best cases
of obtaining ancillary data.

Figure 1 shows the source and the lens redshift distribution of quadruple lenses in
our mock catalog. For the visualization purpose, only in this figure, the total number of
detectable lenses is oversampled by a factor of 5 (based on the catalog from ref. [12]) to
populate the histogram. The expected constraints reported in this paper are derived from
the actual distribution of the 55 lenses.

Since these are the bright lens systems, a fraction of these systems will already be
discovered in the current imaging surveys. In particular, we expect that ∼25% of these
systems will be discovered in the Dark Energy Survey (DES)1 and the Hyper Suprime-Cam
(HSC; [16])2 Survey. Furthermore, we expect a few more quadruple lens systems from the
northern areas of the HSC Survey that are not covered in DES and LSST. Therefore, even
though we focus here on the LSST sample, our cosmographic predictions are also relevant for

1http://www.darkenergysurvey.org/index.shtml.
2http://www.naoj.org/Projects/HSC/surveyplan.html.
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Figure 1. The distribution of source (zS) and lens (zL) redshifts of quadruply imaged time-delay
lenses expected for LSST [12]. These lens systems are the best ones to obtain ancillary data and
measure distances with required precision. For visualization purposes, the number of the lenses is
oversampled by a factor of five only in this figure (thus each pixel does not necessarily have a multiple-
of-5 value).

the upcoming years before the LSST era as new lens systems in the current imaging surveys
are discovered and monitored.

We explore constraints on two variations of ΛCDM model. Both assume a curved
universe (Ωk 6= 0) and an unknown equation of state of dark energy (w 6= −1). The first
model assumes that w is a constant (owCDM) with the following cosmological parameters:

~θ ∈ {Ωm,Ωk, w, h} (owCDM model). (2.1)

The second model further assumes that w varies in time with w = w0 + (1 − a)wa [17]
(owzCDM):

~θ ∈ {Ωm,Ωk, w0, wa, h} (owzCDM model). (2.2)

We choose the fiducial cosmology following Planck 2015 (Ωm = 0.308, Ωk = 0, w0 = −1,
wa = 0, and h = 0.678) [18].

We use the Fisher information matrix (hereafter the Fisher matrix) to calculate the
constraining power of the cosmological probes. For a data vector ~d(~θ) with a set of parameters
~θ, the Fisher matrix F is given by

Fij =
∑
αβ

∂dα
∂θi

Cov−1
αβ

∂dβ
∂θj

, (2.3)

where indices α and β run over the observables, and Cov(~d) is the data covariance matrix.
For lenses, Covαβ = δαβσ

−2
α , where δαβ is the Kronecker delta as we assume no correlation
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between the different lens systems and between the two measured lensing distances DA and
D∆t of each lens system. The uncertainty in each distance σα is σα = 0.05dα (σα = 0.1dα)
as we assume 5% (10%) precision measurements of both distances. The inverse of the Fisher
matrix, F−1, gives the covariance matrix of the parameters, and the marginalized uncertainty

on the i -th parameter is calculated as (F−1)
1/2
ii . If the normalization of F increases by a factor

of n, then the normalization of the parameter covariance matrix decreases by a factor of n,
thus the error bar on each parameter tightens by a factor of

√
n.

3 Single-probe constraints combined with the Planck distance prior

In this section we investigate the constraining power of the time-delay lenses expected from
LSST in section 3.1, and compare the constraints to that of two other cosmological distance
probes, the BAO data from Baryon Oscillation Spectroscopic Survey (BOSS) data release
(DR) 11 in section 3.2, and the SNe data from Joint Light-curve Analysis (JLA) in section 3.3.
We examine the future prospects of constraints from BAO and SNe using LSST data in
section 3.4. We combine each probe with the CMB distance prior calculated from the Planck
2015 result [19]. The distance prior is calculated using the shift parameter, Rshift, and the
multipole corresponding to the sound horizon at the moment of last scattering, l∗. The
definitions of these parameters are

Rshift ≡
√

ΩmH2
0DA(z∗)/c,

l∗ ≡ π
DA(z∗)

rs(z∗)
,

(3.1)

where z∗ = 1089.94 is the redshift of the last scattering surface, and rs(z∗) = 144.89 Mpc is
the size of the sound horizon at redshift z∗. The distance prior compresses information in
the CMB power spectrum relevant for dark energy to two numbers.

3.1 Time-delay lenses

We first show how sensitive D∆t and DA(EL) are to w0 and wa as a function of zL and zS .
In figure 2, we show ∂lnT/∂p (where T = (DA,D∆t) and p = (w0,wa) ). The larger

the absolute value of ∂ lnT/∂p is, the bigger the unmarginalized sensitivity of the distance T
becomes to the parameter p, with all the other cosmological parameters fixed at the fiducial
values. Also, equation (2.3) shows that the information is proportional to ∂T/∂p. The higher
zL is, the more sensitive D∆t becomes to both w0 and wa for a given zS , and vice versa. We
find that DA is always more sensitive to wa, when all the other parameters are fixed at the
fiducial values.

In figure 3, we show the expected 1-σ uncertainties in w for the owCDM model and w0

for the owzCDM model (combined with the Planck distance priors), with all the other pa-
rameters marginalized over. As the Fisher matrix is proportional to nquads, the marginalized
uncertainty in DA(EL) + D∆t scales as ∝ 1/

√
nquads. For owCDM (left panel of figure 3),

the Planck distance priors combined with either DA (blue dashed line) or D∆t (red dotted)
from lenses improve the constraint on w significantly compared to the lens-only case (black
dash-dot). Combining all improves the constraint further by 30%, in comparison to that of
the D∆t + Planck. For owzCDM (right panel of figure 3), we find that the lens-only (DA +
D∆t) breaks the degeneracy between w0 and the other parameters more efficiently than either
combination of Planck + DA or Planck + D∆t, yielding a tighter constraint. Combining all
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Figure 2. Logarithmic derivatives of distances T =(DA,D∆t) with respect to the cosmological pa-
rameters p =(w0,wa), as a function of redshift. Left panel: the solid lines show T = DA, while the
dashed lines show T =D∆t, with various combinations of the lens and the source redshift. Each dashed
line corresponds to one zL in range [0.2,1.0] in increments of 0.2, and shows −∂ lnD∆t/∂p/0.01 as
a function of zS . We only show zS which is higher than the highest zL in this range. Right panel:
the solid lines show −∂ lnDA/∂p/0.01 as a function of zL. Each dashed line corresponds to one zS
in range [1.0,3.0] in increments of 0.5, and shows −∂ lnD∆t/∂p/0.01 as a function of zL. We only
show zL which is lower than the lowest zS in this range. Both panels show that DA is always more
informative than D∆t for constraining wa (i.e., |∂ lnDA/∂wa| > |∂ lnD∆t/∂wa|), and DA is often
more informative than D∆t on w0.

Figure 3. The 1-σ uncertainty in w, denoted as σ(w), and that in w0, denoted as σ(w0), from
time-delay lenses as a function of the number of lenses for the left and the right panel, respectively.
The black dash-dot line is the lens-only data, while the other lines use the Planck distance priors
combined with DA (blue dashed), D∆t (red dotted), or both (green) from lenses. (Left) owCDM
model. (Right) owzCDM model marginalized over wa, as well as all the other parameters.
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Figure 4. (Left) The 68 per cent CL in the w0-wa plane constrained from 55 lenses for the owzCDM
model. The blue line is the marginalized constraint fromDA, the red line is the marginalized constraint
from D∆t, and the green line is the marginalized constraint from the combination of the DA and D∆t.
The black line is the unmarginalized constraint from Planck only. The horizontal and vertical dashed
lines correspond to the fiducial values of w0 = −1 and wa = 0, respectively. (Right) Zoom in of the
left panel, with degeneracy directions plotted as arrows. The arrows show the response of w0 and wa

to the shift ∆Ωk = 0.02. The blue arrow is the response for DA(EL), the red arrow is for D∆t, and
the green arrow is for the combination of two. The larger the arrow is relative to the contour, the
more sensitive the distance is to Ωk. The alignment between the arrows and the major axis of the
contours indicate that the constraints from DA (the red arrow and the red contour) and D∆t (the blue
arrow and the blue contour) are individually dominated by Ωk. However, the degeneracy between Ωk

and w is shown to be broken when DA and D∆t are combined. For visualization purposes, the sizes
of the arrows are inflated by a factor of 100.

improves the constraint further by a factor of 2 in comparison to D∆t + Planck. In case of
10% uncertainties on both distances, the fractional improvement due to the addition of DA

to Planck + D∆t is the same as that for 5% uncertainties, but the overall constraints become
weaker by a factor of 2. In other words, the marginalized uncertainties in w0 and wa are
proportional to the uncertainties in the lensing distance measurements, as the Planck data
alone are unable to constrain w0 and wa.

The left panel of figure 4 is useful for understanding these results. The marginalized
uncertainties in wa from either DA or D∆t individually are similar. The Planck distance prior
(the black line) provides a degenerate combination of w0 and wa, thus cannot be marginalized.
However, it is nicely orthogonal to the ones from DA (the blue contour) and D∆t (the red
contour). Thus, including the combination of DA and Planck with the previous lensing
constraints from D∆t reduces the uncertainty in wa significantly. We also note that the
constraint on wa from DA + D∆t (the green contour) is significantly tighter than the naive
addition of the blue and the red contour, which indicates that this combination of distances
effectively breaks the degeneracy between the equation of state of dark energy and the other
parameters over which we marginalize.

Next, we study the degeneracy structure of parameters constrained from lensing dis-
tances, by shifting a parameter and calculating the response of the other parameters to the
shift in order for the likelihood to be maximized. Specifically, we describe the degeneracy
between the curvature density Ωk and the equation of state parameters w0 and wa. When Ωk

is shifted by an amount ∆Ωk, to maximize the likelihood at the new fiducial value Ωk+∆Ωk,

– 7 –
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Figure 5. The marginalized 68 per cent CL constraints from 55 lenses in the (left) Ωm-w plane for
the owCDM model, and (right) w0-wa plane for the owzCDM model. The black dash-dot lines show
the lens-only constraints from DA + D∆t, the blue dashed lines the constraints from DA + Planck,
the red dotted lines the constraints from D∆t +Planck, and the green solid lines the combination of
the two distances + Planck.

all the other parameters have to be shifted accordingly. The general expression for the shift
in an arbitrary parameter ∆θi due to a shift in a fixed, single parameter ∆θk that maximizes
the likelihood can be calculated as

∆θi =
∑
k

∆θk
(F−1)ik
(F−1)kk

, (3.2)

where F−1 is the inverse of the Fisher matrix. In figure 4, the right panel shows the projection
of the shift vectors to w0-wa plane as arrows, along with the marginalized constraint contour
at the fiducial parameter to display it quantitatively. For each of DA and D∆t, the degeneracy
directions are parallel to the major axes of the contours, which indicates that the degeneracies
with Ωk dominate the dependences of w0 and wa to other parameters. However, when the
two distances are combined, the curvature degeneracy breaks and the alignment between
the error contour and the shift disappears (the green arrow and the green contour are not
aligned). The relative size of the arrow to the contour shows the sensitivity of the probe
to Ωk: the bigger the vector is with respect to the contour, the more sensitive the probe is
to the change in Ωk. By comparing the relative size of the red and the blue arrows to the
red and the blue contours, we show that DA and D∆t are comparably sensitive to ∆Ωk, but
the combination of two increases the sensitivity significantly (the green arrow and the green
contour).

The left panel of figure 5 shows the joint constraints on Ωm and w for owCDM. We find
that the Planck distance prior plays an important role in constraining Ωm, while using both
DA and D∆t combined with Planck distance prior improves the constraint on w by about
30% compared to the case of D∆t combined with Planck distance prior. The right panel of
figure 5 shows the same for w0 and wa for owzCDM. We also show the lensing distances +
Planck constraint on H0 in appendix A.

Next, we compare these constraints with those from Planck + BAO and Planck + SNe.
We calculate the constraints from BAO and SNe using currently available data (BOSS DR11
for BAO, JLA sample for SNe).

– 8 –
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3.2 BAO

BOSS DR11 provides the volume-averaged distance, DV ≡
(
cz(1 + z)2D2

A/H
)1/3

, at two ef-
fective redshifts (0.32, 0.57) obtained from the BAO peak position in the spherically averaged
two-point functions. The lower redshift is the LOWZ sample, and the higher redshift is the
CMASS sample. Also, by separately measuring the two point functions along the line of sight
and the direction perpendicular to it, the DR11 CMASS sample separately constrains the
angular diameter distance DA and the Hubble parameter H at z = 0.57 [20, 21]. To account
for the correlation among DV , DA and H, we use the full likelihood of the CMASS sample
for the analysis provided by the BOSS collaboration [20].

In our analysis we assume that the sound horizon scale at the baryon drag epoch, rs,drag,
is fixed as rs,drag = 149.28 Mpc [20]. We then combine the cosmological constraints from DV

at z = 0.32, and DA and H at z = 0.57 with the Planck distance prior. We calculate the
Fisher matrix by taking the derivatives of the log likelihood at the fiducial cosmology. The
results are shown in figure 6. The precision of the BAO data yields the narrowest contours
on the Ωm-w (for owCDM) and w0-wa (for owzCDM) planes. However, due to the limited
number of redshifts (z = 0.35 and z = 0.57), the degeneracy is not broken efficiently; thus,
the expected Planck + lens from 55 lenses can improve the constraints significantly, even
though the precision of lensing data per redshift is not as precise as BAO.

3.3 SNe

We now study the constraints from Planck + SNe. We use the JLA data [22] to calculate the
constraints from SNe. JLA uses Supernovae Legacy Survey (SNLS), Sloan Digital Sky Suvey-
II (SDSS-II) Supernova survey and a few low-redshift samples. The redshift of subsamples
are: the low-redshift sample (z < 0.1), SDSS-II (0.05 < z < 0.4), and SNLS (0.2 < z < 1).
There are 740 spectroscopically confirmed type Ia SNe in JLA. SDSS-II is used for anchoring
the distances, and also an empirical relation between the host galaxies and the supernovae
brightness is used as an extra calibration for the absolute magnitude of the SNe. For the
calibration, there are 4 additional nuisance parameters that are taken into account in JLA:
α, which scales the stretch of the light curve in time-domain; β, which scales the color at the
peak of the light curve; M , which is the absolute B band magnitude of the SNe at the peak
of the light curve; and ∆M , which characterizes the peak absolute magnitude change due to
the stellar mass of the host galaxy.

We use Montepython [23] to sample the JLA likelihood. Specifically, we run Markov
Chain Monte Carlo to sample the likelihood surface, and compute the covariance matrix in
the cosmological parameters. We then use its inverse as the JLA Fisher matrix. The results
are shown in figure 6. While the absolute distances, such as those from BAO and lenses, are
effective at measuring Ωk when combined with CMB [24], the relative distances from SNe are
not. Thus, when Ωk is set free, the constraints on Ωm for owCDM from 55 lenses combined
with Planck are significantly better than those from 740 SNe combined with Planck.

3.4 Comparison to future BAO and SNe predictions

With several billion galaxies expected to be detected with LSST, BAO will allow measure-
ments of distances with ∼2% precision in the redshift range 1 < z < 3 [25]. Combined with
Planck, BAO will constrain w0 with uncertainty ∼0.4 and wa with ∼1 [26]. Also, 500,000 SNe
are expected to be detected in 10 years of LSST operation in the redshift range 0.1 < z < 1.2.
With a subsample of 50,000 SNe only, the data will constrain w0 with uncertainty ∼0.05,

– 9 –
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Figure 6. The marginalized 68 per cent CL constraints from strong lenses, SNe, and BAO, each
combined with the Planck distance prior, in the (left) Ωm-w plane for the owCDM model, and (right)
w0-wa for the owzCDM model. The green lines show the constraints from Planck + lens, the red lines
Planck + JLA, and the black lines Planck + BOSS.

and wa to order unity, assuming a flat universe [13]; in combination with Planck, the full
sample of SNe constraints will be ∼0.25 for w0 and ∼1.2 for wa for the owzCDM model [26].
We note that a modest sample of 55 lenses combined with the Planck distance prior con-
strains w0 and wa to ∼0.4 (∼0.7 for the case of 10% uncertainties on the lensing distances)
and ∼1.2 (∼2.5), respectively (see, e.g., figure 6), which is comparable in precision to those
expected from future BAO or SNe samples in the LSST era, when each is combined with
Planck. Therefore, strong lenses provide an independent and competitive probe of dark en-
ergy. Needless to say, lensing, SNe, and BAO are affected by different systematic errors, and
thus cross-checking the results using these three low-redshift probes of the expansion of the
universe will be powerful.

4 Pivot redshift

The equation of state of dark energy, w(z), can be re-written as

w = w0 + (1− a)wa = wp + (ap − a)wa, (4.1)

where wp ≡ w0 + (1 − ap)wa [27]. In this parameterization, the pivot redshift zp = 1
ap
− 1

is defined as the redshift where the uncertainty in w is minimized. The uncertainty in wp
shows how well a probe can measure the equation of state w, as wp is orthogonal to wa by
construction, and thus is not coupled to the time variation of w [27, 28]. zp shows at which
redshift the main constraint on w is coming from: this pivot redshift varies depending on the
probes, their redshift distributions and the measurement uncertainties, and can be negative.
Figure 7 shows the constraints on (wp,wa) using the lens distances alone in wp-wa plane. The
constraint on wp from DA alone is much weaker than that from D∆t, while the constraints on
wa from both distances are comparable. However, by combining the two distance measures,
the constraint on wp improves by a factor of 2, and that on wa improves by a factor of 24,
due to complementary degeneracy directions as shown in figure 4.

The pivot redshift, zp, and the uncertainties in wp and wa for two combinations of
probes (Planck + BOSS + JLA, and 55 lenses (denoted by “Lens”) + Planck + BOSS +
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Figure 7. Same as figure 4, but in wp-wa plane. zp is calculated separately for each probe: zp(DA) =
−0.226, zp(D∆t) = 0.0251, and zp(DA +D∆t) = 0.0759.

Cosmological model Probe zp σ(wp) σ(wa) FoM

Flat, fixed Ωm
CMB+BAO+SNe 0.288 0.0375 0.364 73.3

Lens+CMB+BAO+SNe 0.487 0.0296 0.166 204

Flat, marginalized over Ωm
CMB+BAO+SNe 0.358 0.0487 0.413 49.7

Lens+CMB+BAO+SNe 0.386 0.0310 0.363 88.9

Marginalized over Ωm and Ωk

(owzCDM)

CMB+BAO+SNe 0.215 0.0625 1.03 15.5

Lens+CMB+BAO+SNe 0.245 0.0479 0.621 33.6

Table 1. Pivot redshift, zp, uncertainties in wp and wa, and the figure of Merit (FoM) for Planck +
BOSS + JLA and Lens + Planck + BOSS + JLA. We test three cases: (1) Ωk = 0 and Ωm = 0.309,
(2) Ωk = 0 and marginalized over Ωm, and (3) marginalized over both Ωk and Ωm. As there is no
correlation between wp and wa, FoM = 1/(σ(wp)σ(wa)).

JLA) for three different cosmological cases ((1) Ωk = 0 and Ωm = 0.309, (2) Ωk = 0 and
marginalized over Ωm, and (3) marginalized over both Ωk and Ωm) are summarized in table 1.
In comparison to Planck + BOSS + JLA, adding 55 lenses tightens the FoM by a factor of
2.78 (1.62), 1.79 (1.45) and 2.17 (1.41) for the three models, respectively, given 5% (10%)
distance measurements. In particular, when Ωk is allowed to vary, the uncertainty in wa is
reduced by almost a factor of 2 by including the lenses, which shows that the combination
of DA and D∆t is powerful in breaking the Ωk-w degeneracy. This is consistent with our
argument in section 3.1. Also zp becomes higher as we include the lens distances in every
case, which is typically beneficial when combining these probes of geometry with probes of
the growth of cosmic structure.
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Figure 8. The marginalized 68 per cent CL from strong lenses, combined with Planck, BAO and
SNe in the (left) Ωm-w plane for the owCDM model, (right) w0-wa for the owzCDM model.

5 Conclusion

There is more valuable cosmological information in the strongly lensed systems than mea-
surements of the Hubble constant from time delays. In this paper, we have demonstrated
that the addition of the angular diameter distance measurements to the quantity (D∆t) that
captures the cosmological information from time delays in the same sample of lenses provides
crucial help in breaking cosmological parameter degeneracies. This improvement is most sig-
nificant in some of the most interesting parameterizations that are currently being studied,
such as when curvature of the universe and the time-variation in the equation of state of
dark energy are allowed to be nonzero.

We have calculated the lensing constraints based on the predictions for the LSST survey,
adopting a catalog of 55 quadruply imaged lenses (out of a much larger total number) that
should have sufficiently good information that all observable quantities of interest in the
lenses can be accurately measured. We have combined the forecasted lensing information
from both the angular diameter distance and the time-delay distance. We then compared
this lensing constraints with that from the BOSS DR11 and from the JLA type Ia supernova
sample — each combined with the Planck 2015 distance prior.

We find that the combined lensing information significantly helps constrain the cosmo-
logical parameters, particularly when curvature is allowed to vary and when the equation
of state of dark energy is allowed to be time-dependent. For example, 5% (10%) precision
measurement of lensing distances would improve the current BAO+CMB+SN constraints on
wa by a factor of two (20%), and those on the overall figure of merit of dark energy by about
a factor of two (50%) relative to the case with no lensing (see table 1 and figure 8). Key to
this significant improvement is lensing’s ability to break the degeneracy between curvature
and the equation of state parameters; see figure 4.

We are therefore very optimistic about the prospects of a select, accurately observed
subsample of strong gravitational lenses to improve our constraints on dark energy. Fortu-
nately, the lensing samples are a guaranteed product of the current and upcoming wide-field,
deep surveys such as HSC, DES and LSST.
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Figure 9. The 1-σ uncertainty in h = H0/100 km/s/Mpc from time-delay lenses as a function of the
number of quadruply imaged lenses for the (left) owCDM model, and (right) owzCDM model.
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A Lensing constraints on H0

A.1 H0 in owCDM and owzCDM models

We show the constraints on H0 from DA and D∆t combined with the Planck distance prior.
Figure 9 shows the expected 1-σ uncertainties in h from strong lenses combined with the
Planck distance priors. As D∆t is mostly sensitive to H0, the constraining power of D∆t +
Planck (red dotted line) is more powerful than that of DA + Planck (blue dashed line). When
w is fixed as a constant (owCDM model, left panel), D∆t + Planck are more powerful than
D∆t + DA (black dot-dashed line). When w is allowed to vary (owzCDM model, right panel),
however, D∆t + DA is more powerful than D∆t + Planck. This is due to the degeneracies
between H0, Ωk and w from the linear CMB constraints alone [29], which cannot be broken
by D∆t. However, ref. [3] has shown that the main degeneracy from CMB constraints is
between w and H0, and as shown in section 3.1, the combination of lensing distances is
powerful in breaking the degeneracy between Ωk and w. Thus, the combination of Planck
and the lensing distances shows 30% improvement in constraining h.

A.2 H0 in flat ΛCDM model

We show the constraints on H0 for the ΛCDM model in figure 10. Assuming that 5% (10%)
precision measurements in individual distance (both DA and D∆t) are achievable from lens
systems, 10 (34) lenses are enough to measure the Hubble constant to the same precision
as Planck. The number of required lenses to achieve the same precision increases to 25 if
constraints are from D∆t only. For the 10% uncertainty case, however, D∆t alone cannot
reach the Planck precision constraint in H0 with the LSST lens subsample we used.
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Figure 10. Same as figure 9, but for the flat ΛCDM model. Here the blue dashed, red dotted and
black dash-dot lines are from the lensing distances alone, not combined with Planck. We show the
constraints from Planck as the horizontal magenta solid line and Planck + lensing distances as the
green solid line. Planck-precision constraint in h is achievable with 10 lenses when we use both DA

and D∆t, while we need 25 lenses to achieve the same constraint from D∆t alone.

Figure 11. Same as figure 5, but for the flat (left) wCDM and (right) wzCDM model.

B Constraints assuming the flat universe

In section 3.1, we have shown that the lensing distances are powerful probes for the curvature
of the universe. Specifically, DA and D∆t respond to curvature differently in w0-wa plane,
thus the combination of two gives a strong constraint on Ωk. We repeat the same analysis
for the flat universe model (Ωk ≡ 0). The model parameters are summarized as

~θ ∈ {Ωm, w, h} (flat wCDM model), (B.1)

and
~θ ∈ {Ωm, w0, wa, h} (flat wzCDM model). (B.2)

The constraining contours for these models are shown in figures 11 and 12.
Figure 11 shows that under the flatness assumption, the constraints from D∆t + Planck

are already as tight as those from DA + D∆t + Planck, i.e., the constraining power from

– 14 –



J
C
A
P
0
4
(
2
0
1
6
)
0
3
1

Figure 12. Same as figure 6, but for the flat (left) wCDM and (right) wzCDM model.

DA in flat universe is minor. Figure 12 shows that the 55 lenses combined with Planck still
constrain the equation of state better as compared to Planck + JLA and Planck + BOSS
for the flat wCDM model (left panel), and comparably well as Planck + BOSS for the flat
wzCDM model (right panel).
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