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Abstract

Cosmological inflation predicts that the scalar spectral index “runs” with scale. Constraints on the values of the
spectral runnings, a º dn d klns s and b aº d d klns s , therefore provide a fundamental test of the physics of
inflation. Here, we study the feasibility of measuring the runnings when information from upcoming large-volume
galaxy surveys is used to supplement the information provided by a cosmic microwave background (CMB)-S4
experiment, particularly focusing on the effect of including high-k, nonlinear scales. Since these measurements will
be sensitive to modeling uncertainties for the nonlinear power spectrum, we examine how three different ways of
parameterizing those systematics—introducing zero, two, or several hundred nuisance parameters—affect
constraints and protect against parameter biases. Considering statistical errors alone, we find that including strongly
nonlinear scales can substantially tighten constraints. However, these constraints weaken to levels not much better
than those from a CMB-S4 experiment alone when we limit our analysis to scales where estimates are not strongly
affected by systematic biases. Given these considerations, near-future large-scale structure (LSS) surveys are
unlikely to add much information to the CMB-S4 measurement of the first running αs. There is more potential for
improvement for the second running, βs, for which LSS information will allow constraints to be improved by a
factor of 3–4 relative to using the CMB alone. Though these constraints are still above the value predicted by slow-
roll inflation, they do probe regions of parameter space relevant to nonstandard inflationary models with large
runnings, for example, those that can generate an appreciable abundance of primordial black holes.
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1. Introduction

Cosmological inflation(Guth 1981; Albrecht & Steinhardt
1982; Linde 1982) has passed observational tests with flying
colors: the combination of the cosmic microwave background
(CMB) with measurements of large-scale structure (LSS)
confirms that the geometry of the universe is nearly flat and
that the spectrum of density fluctuations is almost scale
invariant(Bardeen et al. 1983). The super-horizon fluctuations
observed in the temperature-polarization cross-correlation in
the CMB behave in precisely the way that inflation
predicts(Dodelson 2003). Beyond these successes, the most
important upcoming test of inflation is the search for the
signature of primordial gravitational waves, which inflation
generically predicts, in the CMB polarization. In this paper, we
study the prospects of another important test of inflation: the
search for the running of the scalar spectral index.

The primordial power spectrum of curvature fluctuations can
be parameterized by Taylor expanding about a pivot scale k*
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where As is the scalar amplitude, ns is the spectral index, and αs

and βs are its first and second derivatives, respectively,
evaluated at the pivot scale k*. Single-field slow-roll inflation
models predict the power spectrum to be nearly scale invariant,
i.e., ns≈1, a prediction borne out through measurements of
the CMB. The Planck experiment(Ade et al. 2016a) has
constrained these parameters for the ΛCDM+αs model,
measuring ns=0.968±0.006 and αs=−0.003±0.007 at
the pivot * =k 0.05 Mpc−1. Expanded to include the second

running, the Planck constraints become ns=0.959±0.006,
αs=0.009±0.010, and βs=0.025±0.013 (see also
Cabass et al. 2016).
In single-field slow-roll inflationary models, the runnings are

of the order of a ~ - ~ -( )n1 10s s
2 3 and b ~ - ~( )n1s s

3

´ -4 10 5 (Kosowsky & Turner 1995; see also Garcia-Bellido
& Roest 2014; Escudero et al. 2016), levels far below the
sensitivity of the Planck satellite mission, but potentially
reachable with new generations of CMB and LSS surveys.
Detection of the runnings with magnitudes larger than these
values would indicate that the mechanism that generated the
primordial fluctuations cannot just be described by a single-
field slow-roll model(Easther & Peiris 2006; Vieira et al.
2018). It is possible, for example, for large runnings to be
generated by modulations to the inflationary potential
(Kobayashi & Takahashi 2011; Czerny et al. 2014). It has
also been proposed that modulations resulting in a large value
of βs∼10−3 could produce an appreciable number of
primordial black holes (PBHs; Drees & Erfani 2012); at
βs≈0.03, these PBHs would be large enough to be a dark
matter candidate(Carr et al. 2016; Muñoz et al. 2017). Thus,
even bounds on inflationary spectral runnings that are above
the level needed to test single-field slow-roll inflation can
provide valuable information.
Muñoz et al. (2017) investigated how well future surveys

will be able to measure αs and bs, using a CMB Stage 4 (CMB-
S4) experiment in combination with various LSS surveys. They
find that even with the combination of a billion-object survey
such as SKA, the runnings will only be measured to
s = ´a

-9.3 10 4 and s = ´b
-2 10 3, which are levels that

are insufficient for a significant detection if the values are near
those predicted by single-field slow-roll inflation (see Huang
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et al. 2012; Amendola et al. 2013; Basse et al. 2015 for other
forecasts on spectral runnings constraints using CMB and
future LSS surveys). It is worth noting, however, that these
forecasts only make use of LSS data that are comfortably
within the linear regime (  -k h0.1 Mpc 1). LSS surveys
measure tracers of the matter power spectrum ( )P k z,m , and in
principle can access information deep in the nonlinear regime,
up to -k h1 Mpc 1 and beyond. The combination of large
scales accessed by the CMB and small scales accessed by the
LSS is particularly important for constraining the spectral index
and its running, as the long lever arm in wavenumber helps to
break degeneracies with other cosmological parameters.

Using information from small scales (large k) introduces
significant challenges, however. Fluctuations in matter density
become large at small scales, so at some scale linear
perturbation theory becomes insufficient to describe their
evolution. There is a significant ongoing effort to improve
our understanding of structure growth in this nonlinear
regime(Bernardeau et al. 2002; Smith et al. 2003; Heitmann
et al. 2009, 2010; Lawrence et al. 2010). Baryonic effects also
become important at these scales and affect the power spectrum
of LSS tracers(Rudd et al. 2008; van Daalen et al. 2011;
Chisari et al. 2018). In addition, nonlinearities at small scales
induce correlations between wavenumbers(Scoccimarro et al.
1999), so that the covariance of power spectra evaluated at two
wavenumbers depends on the nontrivial matter trispectrum.

It is therefore of fundamental importance to understand to
what extent the small-scale systematics in the LSS can be
parameterized and self-calibrated in order to utilize those scales
in the search for αs and βs. The main goal of this paper is to
assess how constraints on the runnings improve as LSS
information at higher wavenumbers is added to the analysis.
We investigate how the results are biased when the nonlinear
regime is mismodeled, and how well this bias can be mitigated
through the inclusion of nuisance parameters at small scales.

The paper is organized as follows. In Section 2, we describe
our methodology in detail: our fiducial cosmological model, the
CMB and LSS surveys considered, and the Fisher matrix
formalism we use for forecasting constraints. In Section 3, we
present and discuss our forecast for the spectral running αs

constraints using future galaxy surveys alone and in combina-
tion with CMB-S4. We then introduce the Fisher bias
formalism for modeling systematic bias in cosmological
parameters, and discuss the corresponding results for αs in
Section 4. In Section 5, we present our constraints and
systematic bias results for the second spectral running, βs. We
summarize our findings and conclude in Section 6.

2. Methods

In this section, we describe our fiducial model for CMB and
LSS observations and describe our forecasting methodology,
which makes use of the Fisher matrix formalism to forecast the
precision of measurements of the runnings.

2.1. Fiducial Model

We assume a flat ΛCDM cosmology with six parameters in
addition to the spectral runnings: the physical baryon and CDM
densities W hb

2 and W hc
2, the reionization optical depth τ, the

Hubble constant H0, the scalar spectral index ns, and the
primordial power spectrum amplitude As. The values of these
parameters in our fiducial model are listed in Table 1.

2.2. Modeling the CMB

The CMB fluctuations have a wealth of information about
the early universe, providing some of the tightest constraints
for cosmology to date(Ade et al. 2016b). The observed CMB
angular power spectrum can be related to the primordial power
spectrum Ps(k) that sourced those fluctuations via

òp
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Labels X and Y can refer to temperature (T), polarization modes
(E, B), or lensing potential (d), and Dℓ

X is the transfer function
that encompasses both source and projection terms integrated
over the line of sight.
Taking T and E as our observables, the observed angular

power spectra can be represented as a vector ( )C C C, ,ℓ
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where the auto power spectra include contributions from noise:
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We adopt the same noise properties for a CMB-S4
experiment used by Muñoz et al. (2017):
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where the temperature sensitivity is ΔT=1 μK arcmin and the
beam full-width-half-maximum is q = ´ -8.7 10FWHM

4 radians
(Abazajian et al. 2016). We assume a sky coverage of fsky=0.4

Table 1
Cosmological Parameters, Their Fiducial Values, and Numerical Derivative

Step Sizes Used for the Fisher Matrix Calculation

Parameter (pi) Fiducial Value Step Size (Dpi)

W hb
2 0.02222 ±1%

W hc
2 0.1197 ±1%

τ 0.06 ±1%
H0 67.5 ±1%
ns 0.9655 ±1%

A10 s
10 21.96 ±1%

αs 0  ´ -1 10 3

bs 0  ´ -1 10 3

Abary 3.13 ±5%

h0 0.6044 ±5%

Note.The last two parameters correspond to the Mead model for describing
nonlinear effects.

2
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and that the usable range of multipoles is ℓä[30, 3000] forCℓ
TT

and Cℓ
TE, and ℓä[30, 5000] for Cℓ

EE . To represent additional
constraints coming from low-ℓ polarization (e.g., from the
Planck High Frequency Instrument) that break the degeneracy
between τ and As(Aghanim et al. 2016), we include a Gaussian
prior on τ with width σ(τ)=0.01.

The nonlinearity of matter fluctuations affects the CMB
power spectrum at small scales mainly through lensing. While
the effect on the CMB lensing power spectrum from the large-
scale structure bispectrum can be significant (Böhm
et al. 2016), the corresponding changes in the TT, EE, and
TE angular power spectra are negligible (Lewis & Pratten
2016). We therefore do not consider the modeling uncertainties
from nonlinear lensing effects on the CMB power spectra in
this work.

2.3. Modeling Large-scale Structure Surveys

LSS surveys utilize a variety of tracers in order to probe the
growth of structure in the universe as a function of cosmic time,
such as galaxies, quasars, and the Lyα forest. These
measurements, in turn, enable strong constraints to be placed
on both early- and late-universe parameters (Tegmark
et al. 2004; Samushia et al. 2012; Alam et al. 2017).

In the linear regime, the matter power spectrum can be
computed for a given cosmology using Boltzmann codes such
as CAMB(Lewis et al. 2000) or CLASS(Blas et al. 2011). On
smaller scales, where linear perturbation theory breaks down,
one must resort to other methods. These may include N-body or
hydrodynamical simulations, or else semi-analytic prescrip-
tions, for example, ones based on the halo model of
LSS(Peacock & Smith 2000; Seljak 2000; Cooray &
Sheth 2002). However, these methods are not guaranteed to
capture all the relevant physics. The presence of redshift-space
distortions (RSDs), which render the power spectrum observed
in redshift-space anisotropic, further complicates matters.

Because we aim to investigate the impact of systematic
errors on constraints from LSS, and those are mainly due to
modeling uncertainties at small scales, we parameterize the
observed galaxy power spectrum in a way that allows us to
generically encapsulate modifications to our fiducial power
spectrum due to nonlinear effects. Following Seo & Eisenstein
(2007), we write the redshift-space power spectrum of tracer
X as

m m

m s
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where ( )P k z,m is the matter power spectrum from CAMB with
nonlinear corrections from HMcode(Mead et al. 2015), μ is
the cosine of the angle between the line connecting galaxy pairs
and the line of sight and =( )f z d D d aln ln is the
logarithmic derivative of the linear growth factor. The
exponential term, featuring the velocity dispersion σv, models
the power suppression along the line of sight at small scales
due to RSDs (the so-called Figures-of-God effect). Here σv is
calculated using the virial scaling relation from Evrard et al.
(2008), evaluated at the characteristic mass of collapsed halos

(M*). We find that the effect only has a minor impact, slightly
increasing the forecasted errors at > -k h1 Mpcmax

1. The
impact of baryons and other effects on nonlinear scales
(henceforth nonlinear effects) are accounted for by the as-yet
undefined function ( )M k z,nl . The term bX

2 describes the linear
galaxy bias for galaxy population X, which we define to have
the redshift dependence of = +( ) ( )b z b z12

0
2 . We marginalize

over the amplitude b0 when determining cosmological para-
meter constraints, and absorb any scale-dependent bias effects
into ( )M k z,nl .
We now turn to the “nonlinear” function ( )M k z,nl . We

consider three treatments, in order of increasing complexity:

1. No Nuisance model: The simplest case is the trivial one
where the nonlinear power is assumed to be modeled
perfectly by the modified halo model prescription in
HMCode and there is no scale-dependent bias. This
corresponds to =( )M k z, 1nl , with no additional nuisance
parameters. We refer to this as the No Nuisance model.

2. Mead model: The next model for ( )M k z,nl is the one
presented by Mead et al. (2015), in which the modifica-
tions to nonlinear power due to baryonic feedback effects
are parameterized using two parameters [Ab and η0]
(Mead parameters). In this case,

h
=( )

( )
( )

( )M k z
P k z A

P k z
,

, , ,

,
, 8b

nl
Mead 0

Mead,DMonly

where “DMonly” refers to the default Mead parameter
values of Ab=3.13 and η0=0.6044.

3. Many Free Parameter (MFP) model: The final model for
the nonlinearities is a much more agnostic prescription
similar to Bielefeld et al. (2015), in which ( )M k z,nl is
allowed to float freely in bins of wavenumber k and
smoothly, as a low-order power law, in redshift. Since at
low k the power spectrum is well determined theoreti-
cally, we allow ( )M k z,nl to vary only for k at the quasi-
linear regime and above, setting it to unity at large scales.

We therefore have

= + + >⎧⎨⎩( ) ( ) ( )M k z
c z c z B k

k
,

1 if 0.1
1 if 0.1

, 9k k k
nl

1, 2,
2

where k has units -h Mpc 1, and Bk, c k1, , and c k2, are free
parameters. One set of {Bk, c k1, , c k2, } is specified in each
wavenumber bin of width D = -k hln 0.05 Mpc 1. This
bin width is fixed, so as the maximum wavenumber kmax

is raised, the number of k bins increases, and conse-
quently so does the number of nuisance parameters. The
total number of nuisance parameters in ( )M k z,nl thus
ranges from 0 to 279 as kmax is varied from 0.1 to

-h10 Mpc 1, and hence we refer to this as the MFP
model.

The covariance between the observed power spectrum at
wavenumbers ak and kβ is given as the sum of the
“unconnected” part, which is diagonal in the two wavenum-
bers, and the connected contribution given by the full
trispectrum:

p m
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The effective volume of the survey varies with redshift and is
given by
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m
m
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where n(z) is the galaxy number density of each redshift bin
and ( )V z survey is the volume in -[ ]h Mpc1 3,
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Here, r(z) is the comoving distance, H(z) is the Hubble
parameter, and Ωsurvey is the sky coverage of the survey in
steradians. The term a bTk k, is the contribution from the
trispectrum due to the non-Gaussian nature of the matter field,
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We obtain a bTk k, with the same calculation method described by
Wu & Huterer (2013), who use the halo model to calculate the
trispectrum, showing that it is dominated by the one-halo term.
We refer the interested reader to that work for details.

In their spectral running constraint forecasts, Muñoz et al.
(2017) consider a wide survey like the Dark Energy Spectro-
scopic Instrument (DESI; Aghamousa et al. 2016) as well as a
deep and narrow survey similar to the Wide Field Infrared
Survey Telescope(Spergel et al. 2015), finding that they
improve constraints on the runnings by ∼20% and 30%,
respectively, when added to data from a CMB-S4 experiment.
Here we take a Euclid-like survey to be our fiducial survey, and
we include a DESI-like survey for comparison.

Euclid. Euclid(Laureijs et al. 2011) is a proposed space-
based LSS survey with large sky coverage and a deep redshift
distribution, which should provide excellent constraints on the
evolution of dark energy. We use the spectroscopic sample
defined in Laureijs et al. (2011), assuming 15,000 deg2

( fsky≈0.36) and a total of 50 million galaxies. We use
the redshift bins given in Table 6 of Font-Ribera et al.
(2014), with thickness Δz=0.1 in the range zä[0.6, 2.1].
We infer the effective number density in each bin as

m= = =-( ) ¯ ( ) ( )n z nP z P k h z0.14 Mpc , 0.6,0.14,0.6 obs
1 , where

¯ ( )nP z0.14,0.6 is a quantity reported by Font-Ribera et al. (2014)
and Pobs is calculated via Equation (7). The resulting n(z) is
shown in Figure 1.

DESI. The DESI (Aghamousa et al. 2016) is a Stage-IV
ground-based spectroscopy experiment at the Mayall telescope
in Arizona, which will target multiple tracer populations over
14,000 deg2 ( fsky≈0.34) with good signal-to-noise out to
z1.5. Here too we adopt the distribution given in Font-
Ribera et al. (2014), which combines projections for the
populations of Luminous Red Galaxies, Emission Line
Galaxies, and quasars (QSOs) into estimates of ¯ ( )nP z0.14,0.6 in
redshift bins of Δz=0.1 in the range zä[0.1, 1.9]. We
calculate an effective n(z) for each bin in the same way as with
the Euclid-like projections, and show them in Figure 1. We
assume that the Euclid-like and DESI-like experiments do not
overlap, and we combine their information by summing the
Fisher matrices, as we describe below.

2.4. Forecasting

We forecast uncertainties of cosmological parameters as a
function of kmax using a Fisher matrix analysis. The Fisher
matrix formalism is an extremely simple and efficient method
to estimate the errors on model parameters given a set of data
(Tegmark et al. 1997; Albrecht et al. 2009). If one
approximates the likelihood as a multi-variate Gaussian in the
parameters around its peak, the resulting Hessian (matrix of
second derivatives) can be used to calculate the forecasted
uncertainties in the cosmological parameters. The better the
actual constraints on the parameters are, the closer the
likelihood function is to a Gaussian distribution, and the more
accurate the Fisher matrix approximation is. To the extent that
we are assuming powerful future surveys with small errors on
most parameters, the Fisher matrix approximation should be
excellent. More importantly, given that our MFP systematics
case contains up to ∼300 parameters, a Fisher forecast is the
only reasonably straightforward way to estimate the errors.
Under the assumption of Gaussian perturbations and

Gaussian noise, the Fisher Matrix for CMB temperature and
polarization anisotropies(Seljak 1997; Zaldarriaga & Seljak
1997; Eisenstein et al. 1999) can be written as
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and the covariance is given by Equation (3). The Fisher matrix
for the observed LSS power spectrum is
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where the sums are over all bins in z, μ, and k, and pi runs
over the cosmological parameters tW W{ h h H, , , ,b c

2 2
0

a b }n A, , ,s s s s as well as the linear bias parameter b0 and the
nuisance parameters in every k-bin, { }B c c, ,k k k1, 2, . We define k
bins logarithmically, with D =kln 0.05 in the range

Î -[ ]k h0.1, 10 Mpcmax
1, and bin μ in 11 evenly spaced bins

from −1 to 1.
Forecasts for a combination of experiments can be calculated

by summing their Fisher matrices, and a forecast for the lower
bound on the error for a given parameter is given by the
Cramer–Rao inequality

s
-⎪

⎪

⎧
⎨
⎩

( ) ( ) ( )
( )

p
F

F

marginalized
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i

ii
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1

3. Results

We now present the principal results. To give an idea of the
approximate overall level of constraint on the cosmological
parameters, we summarize the fiducial constraints for our
CMB-S4 forecast on the spectral runnings: when fixing βs=0,
we obtain marginalized error on the spectral running of
s = ´a

-3.0 10 3. When allowing βs to vary, we find

4
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s s= ´ = ´a b
- -3.4 10 , 8.0 103 3. (All constraints listed are

the marginalized error, unless otherwise noted.) These
constraints are similar to those of Muñoz et al. (2017),
although slightly weaker because we do not include lensing
information.

We now turn to the main goal of the paper: exploring
whether and how adding information from LSS improves
constraints on the spectral runnings. We first consider galaxy
clustering alone, and then in conjunction with CMB-S4.

3.1. Galaxy Clustering

To see how information from LSS data at small scales
impacts constraints on the first spectral running, we forecast the
marginalized 1σ constraints on αs as a function of kmax. For the
moment, we hold the second running βs fixed at 0; we will let
βs vary further below, in Section 5.

Figure 2 shows the increase in constraining power when we
include clustering information at small scales, comparing the
performance of the No Nuisance (blue), Mead (red), and MFP
models (black) for nonlinear effects. We also show constraints
for the No Nuisance and MFP cases without the trispectrum
contribution to the covariance (dashed), to demonstrate that its
contribution to the error budget is minor (see Appendix A for a
case where shot noise is suppressed and the trispectrum
dominates the error budget).

In the No Nuisance case, that is, the forecast for constraints
if no parameters need to be introduced to model nonlinear
effects, we find a large gain in constraining power for high
kmax. This gain remains whether or not we include the
trispectrum contributions to the power spectrum’s covariance
at small scales (solid and dashed curves, respectively).
However, the overall gain with increasing kmax, even in this
no-systematics case, is not as significant as might be expected
based on the behavior at linear scales, because the slope of the
sa versus kmax curve changes at scales where nonlinearities
become important, -k h0.1 Mpcmax

1. This flattening in
sa ( )kmax implies that, even in the optimistic no-systematics

scenario and pushing out to = -k h10 Mpcmax
1, the Euclid

constraint on the running would only be comparable to the
expected inflationary signal, sa - 10 3 and so be insufficient
for a statistically significant detection of α of that size.
The red and black curves in Figure 2 show how these

constraints respond to the addition of nuisance parameters
intended to capture nonlinear effects, corresponding to the
Mead and MFP models, respectively. The Mead model, which
introduces only two new parameters, produces results similar to
the No Nuisance case. In contrast, constraints become
considerably weaker (e.g., by a factor of ∼5 at

= -k h10 Mpcmax
1) for the MFP model, which captures

nonlinear effects via an agnostic, piecewise-in-k ( )M k z,nl with
MFPs (up to 279 for the highest kmax). Thus, in this more
conservative treatment of small-scale systematics, the gains
from including high-k modes are rendered modest at best,
particularly for  -k h1 Mpcmax

1. We will show below in
Section 4, however, that the MFP parameterization does protect
the constraints against the systematic biases due to modeling
uncertainties in the high-k power spectrum.
Clearly, in the comparison of forecasted constraints, the

more gentle treatment of systematics (with fewer free
parameters) in the Mead model produces more favorable
results than the more agnostic MFP case. However, this
comparison of statistics-only errors alone is not enough to
answer the question of whether a given treatment of
systematics is sufficient for an analysis. Rather, modeling
choices must be made by balancing the consideration of
expected constraining power with the need for nuisance
parameters to protect against biases to the best-fit cosmological
parameters. Accordingly, we compare our three ( )M k z,nl

treatments by studying their relative ability to protect against
biases in Section 4.

Figure 2. Error (1σ here and everywhere) in the spectral running αs as a
function of kmax, evaluated for our fiducial Euclid-like survey, assuming
b = 0s . The legend shows our assumption about modeling of the systematics,
while a bTk k, refers to the inclusion of the trispectrum to the data covariance.
Note that here and in subsequent plots, the value of the running denoted as the
“Inflationary prediction” (purple horizontal line) is only approximate.

Figure 1. Galaxy number density n(z) of Euclid and DESI in each redshift bin.
The features in the DESI n(z) are due to the fact that the sample is a
combination of several populations of sources.
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3.2. Galaxy Clustering Plus CMB

The large lever arm provided by the combination of CMB
and LSS allows for much tighter constraints on the running
than using LSS data alone. We illustrate this in Figure 3, which
gives the marginalized 1σ constraints on αs for different kmax

when combining LSS information from a Euclid-like and/or a
DESI-like survey with that from a CMB-S4 experiment. We
now show only forecasts that include the trispectrum contrib-
ution to the covariance, and use the comparison between the
solid and dashed curves to compare the performance of the
No Nuisance and MFP models, respectively. For clarity, we do
not display the curves for the Mead model, which are similar to
those for the No Nuisance case.

The curves for LSS data alone show results similar to those
in Figure 2. We find that DESI and Euclid yield comparable
errors in the running (with a ∼30% smaller error for Euclid),
with their combination giving a slight improvement over Euclid
alone.

As in the Euclid-only case, we see a 5–10×degradation in
constraints if the MFP treatment of systematics is adopted
compared to the No Nuisance case. We note that this
degradation is greater for DESI (black) than for Euclid (blue).

Next we consider the effect of adding CMB-S4 information
to the Euclid+DESI combination, which is shown in orange in
Figure 3. When large and mildly nonlinear scales of the LSS
(  -k h0.5 Mpcmax

1) are used, the CMB information dom-
inates the (CMB+LSS) constraining power, and the combined
error is essentially equivalent to that from CMB-S4 alone. At
smaller scales, the LSS surveys help tighten constraints, but
only in the No Nuisance case. In the MFP case, where many
nuisance parameters are marginalized over, LSS data adds little
constraining power on αs compared to CMB-S4 data alone.

4. Systematic Biases in Model Parameters

The fact that there are significant modeling uncertainties
associated with the theoretical prediction of galaxy clustering at

small scales is our primary motivation for studying different
choices of the ( )M k z,nl function to describe nonlinear effects.
Any analysis will have to make simplifying choices for how to
model the physics of nonlinear structure growth, baryonic
effects, and scale-dependent galaxy bias. To the extent that
those choices provide an incomplete description of the
underlying physics there will be inaccuracies in the theoretical
prediction for the observed galaxy power spectrum. Here we
examine how these systematic errors—that is, residuals
between the true and assumed power spectrum—impact
parameter estimation for the spectral running.
In order to characterize this, we represent a typical form for

the residuals due to systematic errors by taking the difference
between two commonly used parameterizations of the matter
power spectrum on small scales. Specifically, we subtract the
nonlinear prescription by Takahashi et al. (2012) from that of
Mead et al. (2015).4 The power spectra generated with these
two codes differ by up to ∼5%, roughly independent of redshift
for the range considered. For the future surveys we consider,
we optimistically assume that that theoretical advances will
allow the small-scale power spectrum to be computed to an
accuracy of about 1%. We therefore adopt a fifth of the
Takahashi-Mead difference as our fiducial model for residual
systematics, that is,

d m m m= -( ) [ ( ) ( )] ( )P k z P k z P k z, , 0.2 , , , , , 17Taka Mead

which we show in Figure 4 as a fraction of our fiducial power
spectrum.
We use the Fisher matrix formalism to predict the bias that

the residuals in Equation (17) will produce in cosmological
parameters(Knox et al. 1998; Huterer 2002). In the limit where
changes to best-fit parameters can be expanded linearly in small
changes to the observations, the bias in parameter pi can be

Figure 3. Marginalized constraints on αs when combining information from
different surveys (DESI-like, Euclid-like, CMB-S4, and also in combination).
Solid curves include the MFP description of the systematic errors in galaxy
surveys (see Equation (9), while the dashed curves do not. Results using the
Mead parameterization are similar to the No Nuisance (No Nuis) case, and so
we we omit them here for clarity.

Figure 4. Relative difference between the nonlinear predictions from two
popular fits: that of Takahashi et al. (2012) and of Mead et al. (2015) scaled so
as to correspond to about 1% maximum difference at small scales. The quantity
shown, d = -( )P P P P P0.2 taka mead mead, is the fiducial model for the small-
scale systematics that we employ in subsequent plots to gauge the protection
offered by our systematics parameterizations.

4 We take the default parameter values of Abary and h0 corresponding to the
DMONLY case in HMcode as of 2018 February, which includes the updates of
Mead et al. (2016).
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written as

åd » -( ) ( )p F G , 18i
j

ij j
1

where

å m
m

d m=
¶

¶m

a
b

-

a b

a b

( ) [ ] ( )G d
P k z

p
P k z

, ,
Cov , , ,j

z k k j
k k

, , ,

1
,

and Cov is the same covariance matrix defined in
Equation (10). This formula is only accurate when the biases
are small compared to the forecasted errors—that is, d ∣ ∣pi

s = -( )Fp ii
1

i
—so we use it to determine the approximate

threshold at which the bias on pi becomes unacceptably large.
We plot both the bias da∣ ∣s (dashed) and marginalized

uncertainty sas (solid) for Euclid+CMB-S4 constraints on αs in
Figure 5. The value of kmax where the bias and uncertainty
become comparable tells us roughly the smallest scales that can
be included in an analysis without the systematic effects in δ P
adversely biasing the results for α. We see that though the MFP
nuisance parameter prescription (black) has weaker constraints
than the No Nuisance and Mead cases, it also is significantly
better at protecting against bias. That is to say, on all kmax

scales we examined, the bias in α for the MFP case is well
below its statistical uncertainty. In contrast, the No Nuisance
and Mead prescriptions have d s»a as s at » -k h0.4 Mpcmax

1

and » -k h0.6 Mpcmax
1 respectively. Comparing the value for

sas
at these kmax values, we see that if we restrict ourselves to

scales with d s<a as s, the improvement from adding high-k LSS
data is marginal for all three ( )M k z,nl treatments.

To confirm that these results are robust against changes
to the shape of our residual function d ( )P k z, , we compared
the same bias projections for a variety of other dPi j,

µ -( ) ( ) ( )k z P k z P k z, , ,i j , where i, jä(Mead(Mead et al.

2015), Takahashi(Takahashi et al. 2012), Bird (Bird et al. 2012),
Peacock,5 Halo model(Peacock & Smith 2000)) runs over a
subset of possible prescriptions for the nonlinear matter power
spectrum in CAMB. We normalized these so that the relative
difference d ( )P k z P,i j, Mead had the same rms as our fiducial
case6 (see Appendix B). Thus the fiducial d m( )P k z, , given in
Equation (17) and the magnitude of resulting biases derived
therefrom should be fairly representative of possible errors in
modeling ( )P k z, , while also aligning with the oft-quoted
baseline assumption that uncertainties have to be controlled to
1% or better in order to not degrade the accuracy of future
cosmological measurements of dark energy (e.g., Huterer &
Takada 2005).

5. Constraining the Second Running: ΛCDM+αs+βs

We now expand the cosmological parameter space to include
the second running βs—that is, we extend our expansion of the
spectral index to second order in kln . This is a parameter for
which constraints from LSS data have the potential to be
particularly interesting. Recent Planck results have suggested a
positive second running βs at nearly s2 confidence which, if it
persists, will help to discriminate between inflationary
models(Cabass et al. 2016; Escudero et al. 2016). Addition-
ally, as mentioned in Section 1, the current best-fit of
βs=0.025±0.013 has important implications for physics of
the late universe, as it makes PBHs a viable dark matter
candidate (albeit with the requirement of a negative third-order
running to avoid overproduction; Carr et al. 2016).
The left panel of Figure 6 shows that, when bs is allowed to

vary, combined constraints from CMB-S4 and LSS are no
longer able to reach the inflationary prediction for αs at any

< -k h10 Mpcmax
1, even when the nonlinear ( )P k z, is

modeled perfectly and with no nuisance parameters (solid blue
curve). On the other hand, the right panel of Figure 6 shows
that βs itself benefits greatly from the addition of the LSS data.
While CMB-S4 is expected to improve constraints on bs by a
factor of ∼4 over current levels, our results indicate that LSS
data in the nonlinear regime from Euclid or DESI has the
potential to improve this significantly up to ~ -k h2 Mpcmax

1,
at which point shot-noise limits the information that can be
gained.
We next consider the systematic biases in βs using the same

prescription as that in Section 4. Using our fiducial model for
power spectrum residuals due to unaccounted-for systematics
(Equation (17)), Figure 6 shows that, without introducing
undue bias, adding data from a Euclid-like survey can improve
constraints on βs by a factor of 3–4 compared to the CMB-S4
only case.7 While still an order of magnitude too large to reach
bs predicted by standard single-field slow-roll inflation, this
level of precision is in the regime necessary to test for models
relevant for PBH formation(Carr et al. 2016; Muñoz
et al. 2017; Kohri & Terada 2018).

Figure 5. 1σ statistical errors (solid curves) and bias (dashed) in the first
spectral running, as a function of kmax. We adopt the Euclid+CMB-S4
combination of surveys. The legend on top denotes three alternate assumptions
about the systematic error modeling: none (blue), Mead (red), and MFP
(black).

5 http://www.roe.ac.uk/~jap/haloes
6 For > -k h0.005 Mpc 1, corresponding to the minimum k for which CAMB
calculates nonlinear modifications to the power spectrum.
7 This was the one case where our fiducial d m( )P k z, , differed somewhat in
its bias forecast from the ensemble of other d m( )P k z, , tested, with d s =b b 1
occurring at »k 0.5max and -h0.7 Mpc 1 for the No Nuisance and Mead
models, respectively (~ ´4 improvement in sb), compared to »k 0.2max and

-h0.4 Mpc 1 for the typical d m( )P k z, , (∼3×improvement in sb). The results
are still qualitatively similar, however.

7

The Astrophysical Journal, 862:137 (11pp), 2018 August 1 Li et al.

http://www.roe.ac.uk/~jap/haloes


6. Conclusions

In this work, we have investigated how small-scale
information from LSS surveys can improve constraints on the
first [αs] and second [βs] runnings of the scalar spectral index
[ns]. Previous analyses have been limited to the linear regime
where the matter power spectrum is accurately described by
theory, but the possibility of extending analyses to nonlinear
regimes in the future is attractive. There are two reasons for
this. First, there are many more modes at small scales and
hence statistical errors from cosmic variance are greatly
reduced. Second, accessing high k values provides a longer
lever arm when combined with CMB constraints, which
increases the sensitivity to variations in the spectral index
and its runnings.

Attempts to include small-scale information are limited by
challenges associated with theoretical modeling of the non-
linear power spectrum. Nonlinear clustering of dark matter,
baryonic effects, and scale-dependent galaxy bias all contribute
to modeling uncertainties on small scales. Therefore, it is
critical to not only calibrate models for these effects as
accurately as possible, but also to carefully characterize how
analyses’ cosmological results are affected by residual errors in
predictions for small-scale power.

Motivated by these considerations, we compare forecasted
constraints for spectral runnings from a few different
parameterizations intended to capture the effects of systematics
in the nonlinear regime. Specifically, we study cases where
small scales are modeled using the fiducial halo model code
(No Nuisance case), the parameterization from Mead et al.
(2016), which introduces two nuisance parameters (Mead
case), and an agnostic treatment adapted from Bielefeld et al.
(2015) with up to a few hundred parameters, depending on kmax

(Many Free Parameters, or MFP case).
We first study the forecasts for statistical errors on the first

spectral running αs for future LSS surveys like Euclid and
DESI alone, as well as in combination with CMB-S4. We
find that in the No Nuisance and Mead cases, the constraints
from LSS surveys tighten substantially as kmax is raised to

include nonlinear scales. The MFP case also shows improve-
ment, but with a flatter dependence on kmax and weaker
constraints overall. It is also at nonlinear scales where
constraints using LSS and CMB data begin to improve αs

constraints compared to CMB-S4 data alone. The tightest
constraints come from the Euclid+DESI+CMB-S4 combina-
tion, for which our No Nuisance forecasts for statistical errors
reach a value of about a third of the αs predicted by single-field
slow-roll inflation at  -k h3 Mpcmax

1. This could be precise
enough to achieve a ∼3σ detection. These results become less
promising, however, when we investigate the extent to which
mismodeling of the nonlinear power spectrum biases cosmo-
logical parameter estimation. Using the difference between two
commonly used nonlinear prescriptions as an example of
expected modeling uncertainties, we determine the highest kmax

we can use in an analysis before the resulting systematic bias in
αs becomes comparable to its statistical errors.
We find that for 1% errors in the power spectrum, in

the No Nuisance case both αs and βs remain unbiased (i.e.,
bias is smaller than the 1σ statistical error) up to

» -–k h0.3 0.4 Mpcmax
1. Including these smaller scales results

in significant improvements in sb, but only marginal improve-
ments in sa. Adopting the Mead parameterization of the
systematics leads to very similar results, indicating that the two
free parameters from Mead et al. (2015), motivated to account
for baryonic feedback, are not sufficient to offer protection
against the 1%-level residual small-scale systematics in the
power spectrum we might expect to encounter. In contrast, for
the MFP parameterization αs and bs are unbiased for all kmax

studied, but the statistical error on the runnings in the CMB
+LSS scenarios is only marginally better than that of CMB-S4
alone.
Our level of optimism regarding future measurements of the

spectral runnings using LSS data is therefore mixed. The values
of αs and βs predicted by standard, single-field slow-roll
models of inflation seem out of reach even when CMB-S4
information is combined with that of most powerful future LSS
surveys once the small-scale systematics in the galaxy surveys
are taken into account. On the other hand, larger values of

Figure 6. Similar to Figure 5, except now bs is allowed to vary. The left panel shows the 1σ error and parameter bias in αs as a function of kmax, while the right panel
shows the same for bs. The curves have the same meaning as those in Figure 5.
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spectral runnings predicted by other classes of inflationary
models, as well as those motivated by other physics (e.g.,
PBHs) are within reach, and should be testable with the next
generation of surveys.
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Appendix A
Increasing the Number Density n(z)

As shown in Figures 2 and 5, a Euclid-like survey will be
unable to constrain the spectral running to s <a

-10 3, which
would be necessary to be able to detect the value predicted by
single-field, slow-roll inflation. To better understand the
limiting factors of these forecasted constraints, we consider
constraints for a survey similar to the Euclid-like one studied
above, but with the number density increased dramatically
to  ´( ) ( )n z n z1000 . We show forecasts for its statistical
errors and systematic biases in Figure 7. We find that for this
high-source-density survey, the LSS information tightens
constraints at lower kmax, reaching sa -10 3 at »kmax

-{ } h0.5, 0.7, 2 Mpc 1 for the no nuisance, Mead, and MFP

models, respectively. We also find that the increased density
makes parameter estimation for αs more sensitive to systematic
biases: if P(k) is mismodeled, then only the MFP model
improves constraints over CMB-S4 before introducing unac-
ceptable levels of bias.
This hypothetical ´ ( )n z1000 survey is also useful to gauge

the effect of the trispectrum-induced covariance on cosmolo-
gical parameter constraints from modes in the strongly
nonlinear regime. Unlike our main results in Figure 2, where
the covariance term was shot-noise dominated at small
scales, the trispectrum term becomes important when the
number density is very high. The result, as can be seen in
Figure 7, is that there is little improvement in sa—especially
when combining with CMB-S4—from wavenumbers k

-h2 Mpc 1. Note that we have not included the additional
“super-sample covariance” term(Takada & Hu 2013) that
could further degrade the contribution from modes in the
nonlinear regime.
Therefore, we conclude that, once the realistic systematics

are accounted for, even a Euclid-like survey with an artificially
high number density of sources is unable to reach the precision
required to detect the spectral runnings predicted by single-
field, slow-roll inflationary models.

Appendix B
Robustness of Results to Choice of d m( )P k z, ,

As noted in Section 4, here we consider the robustness of our
parameter bias results against changes to the shape of
d m( )P k z, , . We do this by computing the differences between
various prescriptions for the nonlinear power spectrum
available in CAMB. Because we want to test sensitivity to the
shape of d m( )P k z, , , we normalize each curve so that its rms
over all z and < -k h0.005 10 Mpc 1 is equal to that of our
fiducial “takahashi-mead” d m( )P k z, , .

Figure 7. Constraints on the spectral running αs for a hypothetical survey with  ´( ) [ ( ) ]n z n z1000 Euclid alone (left, compare to Figure 2) and with a CMB-S4
experiment (right, compare to Figure 5). While the LSS constraints improve with the increased number density, the trispectrum still limits the information that can be
gained from nonlinear scales of  -k h0.6 Mpc 1 (left, dashed vs. solid). If ( )P k z, is mismodeled, then only the MFP prescription (black) improves constraints over
CMB-S4 before significantly biasing the results.
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Figure 8 shows the resulting ensemble of d m( )P k z, ,
considered, for the shallowest redshift bin, z=0.65. When
looking at this figure, there are a couple of things worth noting.
First, because we are primarily interested in how constraints on
the runnings become biased as we push to higher scales, i.e.,
kmax at which d s =∣ ∣ 1p pi i

, the results are insensitive to the sign
of d m( )P k z, , . Second, the relatively small magnitude of the
bird−peacock (orange) curve is due to its large magnitude at
higher redshifts compared to the other curves. Thus the low-z

range shown contributes less to its normalized rms than it does
for the other curves.
The parameter biases in αs and bs resulting from these

d m( )P k z, , curves are shown in Figure 9 for the combined
analysis of Euclid and CMB-S4. These biases are analogous to
those shown in Figure 6. Though there is certainly variation in
the shape of the curves, we see that the results for da ( )kmaxs and
db ( )kmaxs for our fiducial d m( )P k z, , (blue solid curves) are
fairly typical. Therefore, we conclude that our fiducial choice

Figure 8. Other systematic shifts in P(k) tested to verify that the results of Section 4 are robust to the choice of d ( )P k . Note that because Equation (18) is linear in
d ( )P k and we are interested in where d s =∣ ∣ 1, the overall sign of d ( )P k is inconsequential.

Figure 9. Parameter bias from different d ( )P k z, for ΛCDM a b+ +s s using Euclid + CMB-S4 for αs (top) and bs (bottom). The 1σ uncertainty is in black and
columns correspond to different nonlinear prescriptions from Section 2.
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of the uncorrected bias in ( )P k z, at small scales, given in
Equation (17), is fairly typical of such choices.
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